Graph Theory

Homework assignment \#1
Due date: Sunday, December 1, 2019

Problem 1. Prove that for each $n \geqslant 1$, the number of graphs with vertex set $\{1, \ldots, n\}$ and all degrees even is $2\binom{n-1}{2}$.

Problem 2. Suppose that $n \geqslant 9$. Prove that every n-vertex graph with at least $7 n-27$ edges contains a subgraph with minimum degree at least 8 .

Problem 3. Prove that every graph G with m edges admits a bipartition $V(G)=V_{1} \cup V_{2}$ such that the number of edges of G crossing between V_{1} and V_{2} is at least $m / 2$.

Problem 4. Let G be a connected graph of order n and suppose that $k \in\{1, \ldots, n\}$. Show that G contains a connected subgraph of order k.

Problem 5. Let G be a graph with $\delta(G) \geqslant 2$. Show that there is a connected graph with the same vertex set and the same degree sequence. More precisely, show that there is a connected graph H with $V(H)=V(G)$ such that $\operatorname{deg}_{G}(v)=\operatorname{deg}_{H}(v)$ for all $v \in V(G)$.

Problem 6. Let d_{1}, \ldots, d_{n} be positive integers. Prove that there exists a tree with degree sequence d_{1}, \ldots, d_{n} if and only if

$$
d_{1}+\ldots+d_{n}=2 n-2 .
$$

Problem 7. Prove that every graph G contains each tree with $\delta(G)$ edges as a subgraph.
Problem 8. Compute the number of spanning trees of the complete bipartite graph $K_{m, n}$.

Please do NOT submit written solutions to the following exercises:

Exercise 1. Show that every graph with at least two vertices has two vertices of equal degree.
Exercise 2. Show that every tree with maximum degree $\Delta \geqslant 1$ has at least Δ leaves.
Exercise 3. Show that a graph is bipartite if and only if it contains no odd cycles. In particular, all trees are bipartite.

