Graph Theory

Homework assignment \#3
Due date: Sunday, Jnuary 5, 2020

Problem 1. Let G be a bipartite graph with bipartition $V(G)=A \cup B$. Define

$$
\delta(A)=\max _{S \subseteq A}(|S|-|N(S)|) .
$$

Prove that the maximum size of a matching in G is $|A|-\delta(A)$.
Problem 2. An $n \times n$ Latin squere (resp. $r \times n$ Latin rectangle) is an $n \times n$ (resp. $r \times n$) matrix with entries in $\{1, \ldots, n\}$ such that no two entries in the same row or column are the same. Prove that if $r<n$, then every $r \times n$ Latin rectangle may be extended to an $n \times n$ Latin square.

Problem 3. Let v be a vertex of a connected graph G and, for $r \geqslant 0$, let G_{r} be the subgraph of G induced by the vertices at distance exactly r from v. Show that

$$
\chi(G) \leqslant \max \left\{\chi\left(G_{r}\right)+\chi\left(G_{r+1}\right): r \geqslant 0\right\} .
$$

Problem 4. Let G be a graph on n vertices. Prove that $\chi(G) \cdot \chi(\bar{G}) \geqslant n$.
Problem 5. Suppose that a graph G is a union of k trees. Prove that $\chi(G) \leqslant 2 k$.
Problem 6. Suppose that every pair of odd cycles in a graph G has a common vertex. Show that $\chi(G) \leqslant 5$.

Please do NOT submit written solutions to the following exercises:

Exercise 1. Let G be a connected graph with an even number of edges. Use Tutte's theorem to prove that the set of edges of G can be partitioned into pairwise disjoint paths of length 2 .

Exercise 2. Prove that every bipartite graph with maximum degree Δ is a subgraph of some Δ-regular bipartite graph. Use this fact to give another proof of König's theorem.

Exercise 3. A square matrix $A=\left(a_{i j}\right)$ of nonnegative real numbers is called doubly stochastic if the entries of each row and each column sum up to 1 , that is, for every i and j,

$$
\sum_{i} a_{i j}=\sum_{j} a_{i j}=1 .
$$

A doubly stochastic matrix with all entries in $\{0,1\}$ is called a permutation matrix. Prove the Birkhoff-von Neumann theorem, which states that every doubly stochastic matrix is a convex combination of permutation matrices.

