Probabilistic methods in combinatorics

Homework assignment \#1

Due date: Monday, April 8, 2019

Problem 1. Let \mathcal{F} be a finite collection of binary strings of finite lengths such that no member of \mathcal{F} is a prefix of another. Let N_{i} denote the number of strings of length i in \mathcal{F}. Prove that

$$
\sum_{i=1}^{\infty} \frac{N_{i}}{2^{i}} \leqslant 1 .
$$

Problem 2. Let $k \geqslant 1$ and suppose that \mathcal{A} is a collection of subsets of $[n]$ that does not contain a chain o $k+1$ sets. That is, there are no $A_{1}, \ldots, A_{k+1} \in \mathcal{A}$ such that $A_{1} \subsetneq \cdots \subsetneq A_{k+1}$. Show that \mathcal{A} can have at most as many elements as the largest union of k levels of the Boolean lattice, that is,

$$
|\mathcal{A}| \leqslant \max \left\{\sum_{i \in I}\binom{n}{i}: I \subseteq[n] \text { and }|I|=k\right\} .
$$

Problem 3. Prove that an arbitrary set of ten points in the plane can be covered by a family of pairwise disjoint unit disks.

Problem 4. Prove that every set of n nonzero integers contains two disjoint sum-free subsets B_{1} and B_{2} such that $\left|B_{1}\right|+\left|B_{2}\right|>2 n / 3$.

Problem 5. Suppose that G is a graph with no isolated vertices. Show that there exist disjoint independent sets I and J such that

$$
|I|+|J| \geqslant \sum_{v \in V(G)} \frac{2}{\operatorname{deg}_{G} v+1} .
$$

Problem 6. Show that there is a positive constant δ such that the following holds. Suppose that $a_{1}, \ldots, a_{n} \in \mathbb{R}$ satisfy $a_{1}^{2}+\cdots+a_{n}^{2}=1$ and that $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent random variables with $\operatorname{Pr}\left(\varepsilon_{i}=1\right)=\operatorname{Pr}\left(\varepsilon_{i}=-1\right)=1 / 2$ for every i. Then

$$
\operatorname{Pr}\left(\left|\varepsilon_{1} a_{1}+\cdots+\varepsilon_{n} a_{n}\right| \leqslant 1\right)>\delta .
$$

Please do NOT submit written solutions to the following exercises:
Exercise 1. Modify the argument we used to show that every n-uniform hypergraph with fewer than 2^{n-1} edges is 2 -colourable so that it yields the stronger assertion that every n-uniform hypergraph with at most 2^{n-1} edges is 2 -colourable.

Exercise 2. Show that the Ramsey number $R(4, k)$ satisfies $R(4, k) \geqslant c(k / \log k)^{2}$ for some constant $c>0$.

Exercise 3. Deduce from the theorem of Ajtai-Komlós-Szemerédi that $R(3, k) \leqslant C k^{2} / \log k$ for some constant C.

