Probabilistic methods in combinatorics

Homework assignment #1

Due date: Monday, April 8, 2019

Problem 1. Let \mathcal{F} be a finite collection of binary strings of finite lengths such that no member of \mathcal{F} is a prefix of another. Let N_i denote the number of strings of length i in \mathcal{F} . Prove that

$$\sum_{i=1}^{\infty} \frac{N_i}{2^i} \leqslant 1.$$

Problem 2. Let $k \ge 1$ and suppose that \mathcal{A} is a collection of subsets of [n] that does not contain a chain o k + 1 sets. That is, there are no $A_1, \ldots, A_{k+1} \in \mathcal{A}$ such that $A_1 \subsetneq \cdots \subsetneq A_{k+1}$. Show that \mathcal{A} can have at most as many elements as the largest union of k levels of the Boolean lattice, that is,

$$|\mathcal{A}| \leq \max\left\{\sum_{i \in I} \binom{n}{i} : I \subseteq [n] \text{ and } |I| = k\right\}.$$

Problem 3. Prove that an arbitrary set of ten points in the plane can be covered by a family of pairwise disjoint unit disks.

Problem 4. Prove that every set of *n* nonzero integers contains two disjoint sum-free subsets B_1 and B_2 such that $|B_1| + |B_2| > 2n/3$.

Problem 5. Suppose that G is a graph with no isolated vertices. Show that there exist disjoint independent sets I and J such that

$$|I| + |J| \ge \sum_{v \in V(G)} \frac{2}{\deg_G v + 1}.$$

Problem 6. Show that there is a positive constant δ such that the following holds. Suppose that $a_1, \ldots, a_n \in \mathbb{R}$ satisfy $a_1^2 + \cdots + a_n^2 = 1$ and that $\varepsilon_1, \ldots, \varepsilon_n$ are independent random variables with $\Pr(\varepsilon_i = 1) = \Pr(\varepsilon_i = -1) = 1/2$ for every *i*. Then

$$\Pr\left(|\varepsilon_1 a_1 + \dots + \varepsilon_n a_n| \leq 1\right) > \delta.$$

Please do NOT submit written solutions to the following exercises:

Exercise 1. Modify the argument we used to show that every *n*-uniform hypergraph with *fewer* than 2^{n-1} edges is 2-colourable so that it yields the stronger assertion that every *n*-uniform hypergraph with *at most* 2^{n-1} edges is 2-colourable.

Exercise 2. Show that the Ramsey number R(4, k) satisfies $R(4, k) \ge c(k/\log k)^2$ for some constant c > 0.

Exercise 3. Deduce from the theorem of Ajtai–Komlós–Szemerédi that $R(3,k) \leq Ck^2/\log k$ for some constant C.