Probabilistic methods in combinatorics

Homework assignment #3

Due date: Monday, May 27, 2019

Problem 1. Let $\mathcal{PD}(K_4)$ denote the following graph property: $G \in \mathcal{PD}(K_4)$ if and only if G contains a collection of $\lfloor |V(G)|/8 \rfloor$ pairwise vertex-disjoint copies of K_4 . Find a function $\theta \colon \mathbb{N} \to [0, 1]$ such that

$$\lim_{n \to \infty} \Pr\left(G_{n,p(n)} \in \mathcal{PD}(K_4)\right) = \begin{cases} 1 & \text{if } p(n) \gg \theta(n), \\ 0 & \text{if } p(n) \ll \theta(n). \end{cases}$$
(1)

(The problem asks not only to determine θ but also to prove that this θ satisfies (1).)

Problem 2. For a graph G, let $\alpha_3(G)$ denote the largest size of a set $U \subseteq V(G)$ such that the subgraph G[U] induced by U contains no triangles. Show that there are constants c, C > 0 such that

$$\Pr\left(c\log n \leqslant \alpha_3(G_{n,1/2}) \leqslant C\log n\right) = 1 - o(1).$$

Problem 3. Prove that, for every positive ε , there is an n_0 such that, for every $n > n_0$, there is an *n*-vertex graph that contains every graph on $\lfloor (2-\varepsilon) \log_2 n \rfloor$ vertices as an *induced* subgraph.

Problem 4. Show that moment bounds for tail probabilities are always better than Cramér–Chernoff bounds. More precisely, let X be a nonnegative random variable such that $\mathbb{E}[e^{\lambda X}] < \infty$ for every $\lambda \ge 0$ and let t > 0. Prove that

$$\inf_{q \in \mathbb{N}} \frac{\mathbb{E}\left[X^q\right]}{t^q} \leqslant \inf_{\lambda > 0} \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda t}},$$

where \mathbb{N} is the set of natural numbers, that is, $\mathbb{N} = \{0, 1, 2, ...\}$.

Problem 5. Show that there exists an n_0 such that the following holds. Let G be a graph with $n \ge n_0$ vertices and minimum degree $\delta(G) \ge (\log n)^2$. The vertex set of G may be partitioned into three sets V_1 , V_2 , and V_3 such that $\delta(G[V_i]) \ge 0.33 \cdot \delta(G)$ for every *i*.

Problem 6. Let G be a graph with $\chi(G) = 2000$. Let U be a subset of V(G) selected uniformly at random and let H = G[U] be the subgraph of G induced by U. Prove that

$$\Pr\left(\chi(H) \leqslant 900\right) \leqslant \frac{1}{10}.$$

Please do NOT submit written solutions to the following exercises:

Exercise 1. Let X be a square-integrable real-valued random variable and let m be a median of X, that is, m is a number such that both $X \leq m$ and $X \geq m$ hold with probability at least 1/2. Show that

$$\left|\mathbb{E}[X] - m\right| \leqslant \sqrt{\operatorname{Var}(X)}.$$