Probabilistic methods in combinatorics

Homework assignment \#3
Due date: Monday, May 27, 2019

Problem 1. Let $\mathcal{P} \mathcal{D}\left(K_{4}\right)$ denote the following graph property: $G \in \mathcal{P} \mathcal{D}\left(K_{4}\right)$ if and only if G contains a collection of $\lfloor|V(G)| / 8\rfloor$ pairwise vertex-disjoint copies of K_{4}. Find a function $\theta: \mathbb{N} \rightarrow[0,1]$ such that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, p(n)} \in \mathcal{P} \mathcal{D}\left(K_{4}\right)\right)= \begin{cases}1 & \text { if } p(n) \gg \theta(n) \tag{1}\\ 0 & \text { if } p(n) \ll \theta(n)\end{cases}
$$

(The problem asks not only to determine θ but also to prove that this θ satisfies (1).)
Problem 2. For a graph G, let $\alpha_{3}(G)$ denote the largest size of a set $U \subseteq V(G)$ such that the subgraph $G[U]$ induced by U contains no triangles. Show that there are constants $c, C>0$ such that

$$
\operatorname{Pr}\left(c \log n \leqslant \alpha_{3}\left(G_{n, 1 / 2}\right) \leqslant C \log n\right)=1-o(1) .
$$

Problem 3. Prove that, for every positive ε, there is an n_{0} such that, for every $n>n_{0}$, there is an n-vertex graph that contains every graph on $\left\lfloor(2-\varepsilon) \log _{2} n\right\rfloor$ vertices as an induced subgraph.

Problem 4. Show that moment bounds for tail probabilities are always better than CramérChernoff bounds. More precisely, let X be a nonnegative random variable such that $\mathbb{E}\left[e^{\lambda X}\right]<\infty$ for every $\lambda \geqslant 0$ and let $t>0$. Prove that

$$
\inf _{q \in \mathbb{N}} \frac{\mathbb{E}\left[X^{q}\right]}{t^{q}} \leqslant \inf _{\lambda>0} \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda t}},
$$

where \mathbb{N} is the set of natural numbers, that is, $\mathbb{N}=\{0,1,2, \ldots\}$.
Problem 5. Show that there exists an n_{0} such that the following holds. Let G be a graph with $n \geqslant n_{0}$ vertices and minimum degree $\delta(G) \geqslant(\log n)^{2}$. The vertex set of G may be partitioned into three sets V_{1}, V_{2}, and V_{3} such that $\delta\left(G\left[V_{i}\right]\right) \geqslant 0.33 \cdot \delta(G)$ for every i.

Problem 6. Let G be a graph with $\chi(G)=2000$. Let U be a subset of $V(G)$ selected uniformly at random and let $H=G[U]$ be the subgraph of G induced by U. Prove that

$$
\operatorname{Pr}(\chi(H) \leqslant 900) \leqslant \frac{1}{10} .
$$

Please do NOT submit written solutions to the following exercises:

Exercise 1. Let X be a square-integrable real-valued random variable and let m be a median of X, that is, m is a number such that both $X \leqslant m$ and $X \geqslant m$ hold with probability at least $1 / 2$. Show that

$$
|\mathbb{E}[X]-m| \leqslant \sqrt{\operatorname{Var}(X)} .
$$

