# Probabilistic methods in combinatorics 

Homework assignment \#4
Due date: Monday, June 10, 2019

Problem 1. Let $\mathcal{G}$ be a family of graphs with vertex set $[2 n]$ such that the intersection of every pair of graphs in $\mathcal{G}$ contains a perfect matching. Prove that $|\mathcal{G}| \leqslant 2^{\binom{2 n}{2}-n}$.

Problem 2. Let $\mathcal{F}_{n}$ denote the family of all triangle-free graphs with vertex set $[n]$. Prove that the sequence $\binom{n}{2}^{-1} \log \left|\mathcal{F}_{n}\right|$ is decreasing. Deduce that $\left|\mathcal{F}_{n}\right| \leqslant 7\binom{n}{2} / 3$ for all $n \geqslant 3$.

Problem 3. Let $A$ be a finite set of finite sequences of elements of $[r]$. Suppose that no two distinct concatenations of sequences in $A$ can produce the same string. Prove that

$$
\sum_{a \in A} r^{-|a|} \leqslant 1,
$$

where $|a|$ is the length of the sequence $a$.
Definition. The length of a longest common subsequence of two sequences $x$ and $y$, denoted by $\operatorname{LCS}(x, y)$, is the largest integer $\ell$ such that there are $i_{1}<\ldots<i_{\ell}$ and $j_{1}<\ldots<j_{\ell}$ for which $x_{i_{k}}=y_{j_{k}}$ for all $k \in[\ell]$.

Problem 4. Let $M$ be a fixed integer and suppose that $x=x(n)$ and $y=y(n)$ are two independent uniformly chosen $\{1, \ldots, M\}$-valued sequences of length $n$. Prove that there exists a constant $c=c(M)$ with $0<c<1$ such that

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}[\operatorname{LCS}(x, y)]}{n}=c
$$

Problem 5. Let $M: \mathbb{N} \rightarrow \mathbb{N}$ be arbitrary and suppose that $x=x(n)$ and $y=y(n)$ are two independent uniformly chosen $\{1, \ldots, M(n)\}$-valued sequences of length $n$. Prove that there exists an $\ell: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $\omega: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $\omega(n) \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(|\operatorname{LCS}(x, y)-\ell(n)| \leqslant \omega(n) \sqrt{\ell(n)})=1 .
$$

