Probabilistic methods in combinatorics

Homework assignment #4

Due date: Monday, June 10, 2019

Problem 1. Let \mathcal{G} be a family of graphs with vertex set [2n] such that the intersection of every pair of graphs in \mathcal{G} contains a perfect matching. Prove that $|\mathcal{G}| \leq 2^{\binom{2n}{2}-n}$.

Problem 2. Let \mathcal{F}_n denote the family of all triangle-free graphs with vertex set [n]. Prove that the sequence $\binom{n}{2}^{-1} \log |\mathcal{F}_n|$ is decreasing. Deduce that $|\mathcal{F}_n| \leq 7^{\binom{n}{2}/3}$ for all $n \geq 3$.

Problem 3. Let A be a finite set of finite sequences of elements of [r]. Suppose that no two distinct concatenations of sequences in A can produce the same string. Prove that

$$\sum_{a\in A}r^{-|a|}\leqslant 1,$$

where |a| is the length of the sequence a.

Definition. The length of a longest common subsequence of two sequences x and y, denoted by LCS(x, y), is the largest integer ℓ such that there are $i_1 < \ldots < i_{\ell}$ and $j_1 < \ldots < j_{\ell}$ for which $x_{i_k} = y_{j_k}$ for all $k \in [\ell]$.

Problem 4. Let M be a fixed integer and suppose that x = x(n) and y = y(n) are two independent uniformly chosen $\{1, \ldots, M\}$ -valued sequences of length n. Prove that there exists a constant c = c(M) with 0 < c < 1 such that

$$\lim_{n \to \infty} \frac{\mathbb{E}[\mathrm{LCS}(x, y)]}{n} = c.$$

Problem 5. Let $M : \mathbb{N} \to \mathbb{N}$ be arbitrary and suppose that x = x(n) and y = y(n) are two independent uniformly chosen $\{1, \ldots, M(n)\}$ -valued sequences of length n. Prove that there exists an $\ell : \mathbb{N} \to \mathbb{N}$ such that for every $\omega : \mathbb{N} \to \mathbb{R}$ satisfying $\omega(n) \to \infty$,

$$\lim_{n \to \infty} \Pr\left(\left|\mathrm{LCS}(x, y) - \ell(n)\right| \leq \omega(n)\sqrt{\ell(n)}\right) = 1.$$