Probabilistic Methods in Combinatorics

Homework assignment \#1

Due date: Sunday, November 23, 2014

Problem 1. Prove that the off-diagonal Ramsey numbers $R(4, k)$ satisfy

$$
R(4, k) \geqslant \Omega\left(\frac{k^{2}}{(\log k)^{2}}\right)
$$

Problem 2. Let G be a bipartite graph with 2^{n} vertices and suppose that each vertex of G is given a list of n colors. Assuming that $n \geqslant 2$, prove that there is a proper coloring of G that assigns to each vertex a color from its list.

Problem 3. Let \mathcal{A} be a family of subsets of $\{1, \ldots, n\}$ such that there are no $A, B \in \mathcal{A}$ with $A \subseteq B$. Prove that

$$
|\mathcal{A}| \leqslant\binom{ n}{\lfloor n / 2\rfloor}
$$

by considering a random permutation σ of $\{1, \ldots, n\}$ and computing the expectation of the random variable X defined by

$$
X(\sigma)=|\{i \in[n]:\{\sigma(1), \ldots, \sigma(i)\} \in \mathcal{A}\}| .
$$

Problem 4. Suppose that G is a graph with minimum degree at least two. Show that there exist three pairwise disjoint independent sets A, B, and C with

$$
|A|+|B|+|C| \geqslant \sum_{v \in V(G)} \frac{3}{\operatorname{deg}_{G}(v)+1} .
$$

Problem 5. Let \mathcal{F} be a finite collection of binary strings of finite lengths such that no member of \mathcal{F} is a prefix of another. Let N_{i} denote the nuber of strings of length i in \mathcal{F}. Prove that

$$
\sum_{i=1}^{\infty} \frac{N_{i}}{2^{i}} \leqslant 1 .
$$

Problem 6. Prove that an arbitrary set of ten points in the plane can be covered by a family of pairwise disjoint unit disks.

