Probabilistic Methods in Combinatorics

Homework assignment \#2

Due date: Sunday, December 14, 2014

Problem 1. Let X be a random variable taking nonnegative integer values. Prove that

$$
\operatorname{Pr}(X=0) \leqslant \frac{\operatorname{Var}[X]}{\mathbb{E}\left[X^{2}\right]}
$$

Problem 2. Show that there is a positive constant δ such that the following holds. Suppose that $a_{1}, \ldots, a_{n} \in \mathbb{R}$ satisfy $a_{1}^{2}+\ldots+a_{n}^{2}=1$ and that $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent random variables with $\operatorname{Pr}\left(\varepsilon_{i}=1\right)=\operatorname{Pr}\left(\varepsilon_{i}=-1\right)=1 / 2$ for every i. Then

$$
\operatorname{Pr}\left(\left|\varepsilon_{1} a_{1}+\ldots+\varepsilon_{n} a_{n}\right| \leqslant 1\right)>\delta .
$$

Problem 3. Let v_{1}, \ldots, v_{n} be two-dimensional vectors whose coordinates are positive integers not exceeding $2^{n / 2} /(10 \sqrt{n})$. Prove that there are two disjoint nonempty sets $I, J \subseteq\{1, \ldots, n\}$ such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j} .
$$

Problem 4. Let G be a graph with maximum degree D and let $V_{1} \cup \ldots \cup V_{s}$ be a partition of $V(G)$ into s pairwise disjoint sets such that $\left|V_{i}\right| \geqslant 2 e D$ for each i. Prove that there is an independent set of G containing precisely one vertex from each V_{i}.

Problem 5. A coloring f of the vertices of a graph G is nonrepetitive if there is no simple path $v_{1} \ldots v_{2 r}$ in G with $f\left(v_{i}\right)=f\left(v_{r+i}\right)$ for each i. Prove that there is a constant C such that every simple graph G with maximum degree D admits a nonrepetitive coloring with $C D^{2}$ colors.

Problem 6. A 1 -subdivision of a graph G with n vertices and m edges is the (bipartite) graph with $n+m$ vertices and $2 m$ edges obtained from G by replacing each of its edges with a path of length 2 . Prove that every n-vertex graph with εn^{2} edges contains a 1-subdivision of a complete graph with $\left\lfloor\varepsilon^{3 / 2} n^{1 / 2}\right\rfloor$ vertices.

