Probabilistic Methods in Combinatorics

Homework assignment \#3

Due date: Sunday, January 4, 2015

Problem 1. Let G be a graph with m edges and let S be a subset of $V(G)$ selected uniformly at random. Prove that $e_{G}(S)=0$ with probability at least $(3 / 4)^{m}$.

Problem 2. Let P denote the probability that the random graph $G(n, 1 / 2)$ contains a Hamilton cycle (HC) and let Q denote the probability that a uniformly chosen random coloring of the edges of K_{n} with red and blue contains both a red HC and a blue HC. Is $Q \leqslant P^{2}$?

Problem 3. A family of subsets \mathcal{F} is called intersecting if $A_{1} \cap A_{2} \neq \emptyset$ for all $A_{1}, A_{2} \in \mathcal{F}$. Let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ be k intersecting families of subsets of $\{1, \ldots, n\}$. Prove that

$$
\left|\bigcup_{i=1}^{k} \mathcal{F}_{i}\right| \leqslant 2^{n}-2^{n-k}
$$

Problem 4. Show that there exists an n_{0} such that the following holds. Let G be a graph with $n \geqslant n_{0}$ vertices and minimum degree $\delta(G) \geqslant(\log n)^{2}$. The vertex set of G may be partitioned into three sets V_{1}, V_{2}, and V_{3} such that $\delta\left(G\left[V_{i}\right]\right) \geqslant 0.33 \cdot \delta(G)$ for every i.

Problem 5. Let G be a graph with $\chi(G)=2000$. Let U be a subset of $V(G)$ selected uniformly at random and let $H=G[U]$ be the subgraph of G induced by U. Prove that

$$
\operatorname{Pr}(\chi(H) \leqslant 900) \leqslant \frac{1}{10}
$$

