Probabilistic Methods in Combinatorics

Homework assignment \#4

Due date: Sunday, January 25, 2015

Problem 1. Prove that there exists an absolute constant c such that for every integer $n \geqslant 2$, there is an interval I_{n} of at most $c \sqrt{n} / \log n$ consecutive integers satisfying

$$
\operatorname{Pr}\left(\chi(G(n, 1 / 2)) \in I_{n}\right) \geqslant 0.99
$$

Problem 2. Let σ be a uniformly chosen random permutation of $\{1, \ldots, n\}$ and let $\operatorname{LIS}(\sigma)$ be the length of a longest increasing subsequence of σ. Show that there exist positive constants c and C such that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(c \sqrt{n} \leqslant \operatorname{LIS}(\sigma) \leqslant C \sqrt{n})=1
$$

Problem 3. The length of a longest common subsequence of two sequences x and y, denoted $\operatorname{LCS}(x, y)$, is the largest integer ℓ such that there are $i_{1}<\ldots<i_{\ell}$ and $j_{1}<\ldots<j_{\ell}$ for which $x_{i_{k}}=y_{j_{k}}$ for all $k \in\{1, \ldots, \ell\}$.

Let $M: \mathbb{N} \rightarrow \mathbb{N}$ be arbitrary and suppose that $x=x(n)$ and $y=y(n)$ are two independent uniformly chosen $\{1, \ldots, M(n)\}$-valued sequences of length n. Prove that there exists an $\ell: \mathbb{N} \rightarrow$ \mathbb{N} such that for every $\omega: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $\omega(n) \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(|\operatorname{LCS}(x, y)-\ell(n)| \leqslant \omega(n) \sqrt{\ell(n)})=1 .
$$

Problem 4. Prove that for every positive ε, there is some n_{0} such that for every $n>n_{0}$, there is an n-vertex graph which contains every graph on $\left\lfloor(2-\varepsilon) \log _{2} n\right\rfloor$ vertices as an induced subgraph.

Problem 5. Find a threshold function for the following property: $G(n, p)$ contains at least $n / 8$ (pairwise) vertex-disjoint copies of K_{4}.

Problem 6. Let X be a square-integrable real-valued random variable, let $\mu=\mathbb{E}[X]$, and let m be the median of X, that is, a number for which $\operatorname{Pr}(X \geqslant m) \geqslant 1 / 2$ and $\operatorname{Pr}(X \leqslant m) \geqslant 1 / 2$. Prove that $|\mu-m| \leqslant \sqrt{\operatorname{Var}(X)}$. (Hint: Use Jensen's inequality.)

