Random graphs

Homework assignment \#1

Problem 1. Prove that every nontrivial monotone graph property has a threshold in $G_{n, m}$ directly, that is, without appealing to the asymptotic equivalence between $G_{n, p}$ and $G_{n, m}$.

Problem 2. Show that for every $r \geqslant 3$ and $\varepsilon>0$, there is a constant $C>0$ such that the following holds. If $p \geqslant C n^{-2 / r}$, then $G_{n, p}$ a.a.s. contains a collection of at least $(1-\varepsilon) n / r$ vertex-disjoint copies of K_{r}.

Problem 3. Show that for every $r \geqslant 3$, there is a constant $c>0$ such that the following holds. If $p \leqslant c n^{-2 / r}(\log n)^{1 /\binom{r}{2}}$, then $G_{n, p}$ a.a.s. does not have a K_{r}-factor (a collection of n / r vertex-disjoint copies of K_{r}).

Remark. It is true, for every $r \geqslant 3$, that if $p \geqslant C n^{-2 / r}(\log n)^{1 /\binom{r}{2}}$ and n is divisible by r, then $G_{n, p}$ a.a.s. contains a K_{r}-factor. This was proved by Johansson, Kahn, and Vu (2008).

Problem 4. Let k be a nonnegative integer, let $p=\frac{1}{n}(\log n+k \log \log n+C(n))$, and suppose that $G \sim G_{n, p}$. Show that if $C(n) \rightarrow-\infty$, then a.a.s. $\delta(G) \leqslant k$.

Problem 5. Suppose that $p=c / n$, where $c>1$ is a constant. Show that a.a.s. $G_{n, p}$ is not planar.

Problem 6. Show that for every integer $k \geqslant 3$ and real $c>0$, there exists $\theta>0$ such that the following holds. If $G \sim G_{n, p}$ and $p \leqslant c / n$, then a.a.s. every subset A with $\delta(G[A]) \geqslant k$ has at least θn elements.

Remark. The k-core of a graph G is the largest subgraph H of G with $\delta(H) \geqslant k$. The previous problem implies that a.a.s. the k-core of $G_{n, p}$ is either empty or has $\Omega(n)$ vertices.

