Random graphs

Homework assignment \#2

Problem 1. Prove the following statements about long paths in sparse random graphs:
(a) Let m and n be integers and suppose that G is an n-vertex graph such that $e_{G}(A, B)>0$ for every two disjoint sets A and B of m vertices of G. Prove that G contains a path of length $n-2 m$.
(b) Show that for every $\delta>0$, there is a $K>0$ such that a.a.s. $G_{n, K / n}$ contains a path of length at least $(1-\delta) n$.
(c) Prove that if K is a sufficiently large constant, then a.a.s. $G \sim G_{K n, K / n}$ has the following property. For every colouring $c: E(G) \rightarrow\{R, B\}$, there is a monochromatic path of length n, i.e., either $c^{-1}(R)$ or $c^{-1}(B)$ contains a path of length n.

Problem 2. Reconstruct Bollobás' original proof of the fact that a.a.s.

$$
\chi\left(G_{n, p}\right) \leqslant(1+o(1)) \cdot \frac{n}{2 \log _{1 /(1-p)} n}
$$

(a) Suppose that $q \in(0,1)$ and $\varepsilon>0$ are fixed constants, let $k=\left\lfloor(2-\varepsilon) \log _{1 / q} n\right\rfloor$, and let X denote the largest size of a collection of pairwise edge-disjoint copies of K_{k} in $G_{n, q}$. Show that $\mathbb{E}[X] \geqslant \Omega\left(n^{2} /(\log n)^{C}\right)$ for some absolute constant C.
(b) By considering the appropriate Doob martingale (the 'edge-exposure' martingale), prove that for some constant C and all sufficiently large n,

$$
\operatorname{Pr}\left(\omega\left(G_{n, q}\right) \leqslant(2-\varepsilon) \log _{1 / q} n\right)=\exp \left(-\frac{n^{2}}{(\log n)^{C}}\right),
$$

where $\omega(G)$ is the largest size of a clique in G.
Problem 3. Prove that for all integers $k \geqslant 3$ and $r \geqslant 2$, there exists a constant C such that if $p \geqslant C n^{-2 / k}$, then $G \sim G_{n, p}$ a.a.s. has the following property. For every $\varphi: V(G) \rightarrow\{1, \ldots, r\}$, there is an $i \in[r]$ such that the subgraph of G induced by $\varphi^{-1}(i)$ contains a copy of K_{k}.
Remark. It is also true that for every $k \geqslant 3$, there exists a constant c such that if $p \leqslant c n^{-2 / k}$, then a.a.s. the vertex set of $G_{n, p}$ can be partitioned into two sets A and B such that neither $G[A]$ nor $G[B]$ contain a K_{k}. This is significantly harder to prove, but you might try to do it!

