Random graphs

Homework assignment #3

Problem 1. Prove that for every $\varepsilon > 0$ and every sequence r(n) of positive integers satisfying $r(n) \ll n^{1/7}/\log n$, there exists a sequence p(n) of probabilities such that for all sufficiently large n,

$$\Pr\left(\chi(G_{n,p}=r) \ge 1-\varepsilon\right)$$

Problem 2. Prove that if $p \ge c/n$ for some constant c > 1, then

 $\Pr(G_{n,p} \text{ is bipartite}) = o(1/\log n).$

Problem 3. Complete the proof of the "switching lemma" stated in class (we omitted the analysis of the "double edge removal switch", see proofs of Claims 3 and 4 there).

Problem 4. Suppose that d = o(n) and let $G_{n,d}$ be the uniformly chosen random *d*-regular graph with vertex set $\{1, \ldots, n\}$. Prove that there exists a constant *C* such that a.a.s.

$$\alpha(G_{n,d}) \leqslant \frac{Cn\log n}{d}.$$

Problem 5. Let $G_{n,2}$ denote the uniformly chosen random 2-regular graph with vertex set $\{1, \ldots, n\}$. Prove that there exists a constant C such that

 $Pr(G_{n,2} \text{ has more than } C \log n \text{ cycles}) = o(1).$

Problem 6. Let $G_{n,3}$ denote the uniformly chosen random 3-regular graph with vertext set $\{1, \ldots, n\}$. Prove that a.a.s. $G_{n,3}$ is not planar.