Random graphs

Homework assignment \#3

Problem 1. Prove that for every $\varepsilon>0$ and every sequence $r(n)$ of positive integers satisfying $r(n) \ll n^{1 / 7} / \log n$, there exists a sequence $p(n)$ of probabilities such that for all sufficiently large n,

$$
\operatorname{Pr}\left(\chi\left(G_{n, p}=r\right) \geqslant 1-\varepsilon .\right.
$$

Problem 2. Prove that if $p \geqslant c / n$ for some constant $c>1$, then

$$
\operatorname{Pr}\left(G_{n, p} \text { is bipartite }\right)=o(1 / \log n) .
$$

Problem 3. Complete the proof of the "switching lemma" stated in class (we omitted the analysis of the "double edge removal switch", see proofs of Claims 3 and 4 there).

Problem 4. Suppose that $d=o(n)$ and let $G_{n, d}$ be the uniformly chosen random d-regular graph with vertex set $\{1, \ldots, n\}$. Prove that there exists a constant C such that a.a.s.

$$
\alpha\left(G_{n, d}\right) \leqslant \frac{C n \log n}{d} .
$$

Problem 5. Let $G_{n, 2}$ denote the uniformly chosen random 2-regular graph with vertex set $\{1, \ldots, n\}$. Prove that there exists a constant C such that

$$
\operatorname{Pr}\left(G_{n, 2} \text { has more than } C \log n \text { cycles }\right)=o(1)
$$

Problem 6. Let $G_{n, 3}$ denote the uniformly chosen random 3-regular graph with vertext set $\{1, \ldots, n\}$. Prove that a.a.s. $G_{n, 3}$ is not planar.

