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tLet L be a set of n lines in spa
e. A joint of L is a point in R3 where at least threenon-
oplanar lines meet. We show that the number of joints of L isO(n112=69 log6=23 n) =O(n1:6232), improving the previous bound O(n1:643) of Sharir [11℄.1 Introdu
tionLet L be a set of n lines in spa
e. A joint of L is a point in R3 where at least threenon-
oplanar lines `; `0; `00 of L meet. We denote the joint by the triple (`; `0; `00) (observingthat the same joint may be en
oded by more than one su
h triple).Let JL denote the set of joints of L, and put J(n) = max jJLj, taken over all sets L of nlines in spa
e. A trivial upper bound on J(n) is O(n2), but it was shown in [11℄, followinga weaker subquadrati
 bound in [5℄, that J(n) is only O(n23=14polylog(n)) = O(n1:643). Aneasy 
onstru
tion, based on lines forming an n1=2 � n1=2 � n1=2 portion of the integer grid,shows that jJLj 
an be 
(n3=2) (see Figure 1 and [5℄). The goal of this paper is to narrowthe gap between these upper and lower bounds.One of the main motivations for studying joints of a set L of lines in spa
e is their
onne
tion to elementary 
y
les of L. An elementary 
y
le is a subset L0 of at least threelines of L with the following properties: (i) The xy-proje
tions of the lines in L0 all bounda 
ommon fa
e in the arrangement of the xy-proje
tions of the lines in L. (ii) As we goaround the boundary of the 
ommon fa
e, we always pass from the proje
tion of one line `to the proje
tion of another line `0 su
h that `0 passes above ` in 3-spa
e. See Figure 2.A major open problem in the study of visibility in three dimensions is to obtain asubquadrati
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Figure 1: The lower bound 
onstru
tion for joints.
Figure 2: An elementary 
y
le of lines in spa
e.be regarded as a degenerate 
ase of elementary 
y
les. In fa
t, a slight random perturbationof the lines in L turns any joint in
ident to O(1) lines into an elementary 
y
le with some
onstant probability, implying that the number of joints is strongly related to the numberof elementary 
y
les.Unfortunately, very little is known about the number of elementary 
y
les. Chazelle etal. [5℄ obtained a bound of O(n9=5) for the spe
ial 
ase of line segments (rather than lines)whose xy-proje
tions form a (distorted) grid. Re
ently, Aronov et al. [1℄ obtained a boundof O(n2�1=69+"), for any " > 0, on the number of triangular elementary 
y
les (i.e., 
y
lesformed by only three lines) for general line arrangements. Solan [13℄ and Har-Peled andSharir [9℄ have given algorithms that eliminate all (not ne
essarily elementary) 
y
les of aset of lines in spa
e, by 
utting the lines at appropriate points. These algorithms run insubquadrati
 time, and 
ut the lines in a subquadrati
 number of points, provided that asubquadrati
 bound on the number of elementary 
y
les is known.The problem of joints is 
onsiderably simpler, as witnessed by the mu
h sharper upperbound of [11℄, mentioned above. Still, it is a rather 
hallenging problem, open for 10 years,to tighten the gap between the upper and lower bounds. It is our hope that better insightsinto the joints problem would lead to tools that 
ould also be used to obtain subquadrati
bounds for elementary 
y
les, and for many other problems that involve lines in spa
e.Re
ently, Sharir and Welzl [12℄ have shown that the number of in
iden
es between thepoints in JL and the lines in L is O(n5=3).In this paper we improve the upper bound on J(n) to O(n112=69 log6=23 n) = O(n1:6232).The proof pro
eeds by mapping the lines of L into points and/or hyperplanes in proje
tive2



5-spa
e, using Pl�u
ker 
oordinates [6℄. We then apply a two-stage de
omposition pro
ess,whi
h partitions the problem into subproblems, using 
uttings of arrangements of appro-priate subsets of the Pl�u
ker hyperplanes. We estimate the number of joints within ea
hsubproblem, and sum up the resulting bounds to obtain the bound asserted above. Theproof adapts and applies some of the tools used by Sharir and Welzl [12℄ and re
ently en-han
ed by Aronov and Sharir [3℄, related mainly to the 
onne
tion between joints and regulispanned by the lines of L; see below for more details.2 The Upper Bound2.1 The toolboxWe begin by re
alling and developing some of the tools we need for our proof.Szemer�edi-Trotter bound [15℄. Given a set L of n lines and a set P of m points, bothin a 
ommon (2-dimensional) plane, we haveI(P;L) = O(n2=3m2=3 + n+m) : (1)(This bound is tight in the worst 
ase.) We use this bound to proveLemma 2.1. Let L be a set of n lines in spa
e. The number of planes that 
ontain at leastk lines of L is O�n2k3 + nk� ;and the number of 
ontainments between the lines of L and these planes isO�n2k2 + n� :Proof: Let H be a set of t planes and L a set of n lines in R3 . Draw a generi
 plane � inR3 that meets every plane in H at a line and meets every line in L at a point. The numberI(L;H) of 
ontainments between lines of L and planes of H is at most the number ofin
iden
es between the resulting n points and t lines in �. Applying the Szemer�edi-Trotterbound (1), the number of these in
iden
es, and thus I(L;H), isO(n2=3t2=3 + t+ n): (2)Now let H = H�k be the set of all planes that 
ontain at least k lines of L, and putt = jH�kj. We 
learly have I(L;H�k) � tk. Combining this with (2) yieldstk = O(n2=3t2=3 + t+ n);or t = O�n2k3 + nk� :Substituting this bound in (2), we obtainI(L;H�k) = O �n2k3 + nk�2=3 n2=3 + n2k3 + nk + n! = O n2k2 + n4=3k2=3 + n! ;3



and the middle term is always dominated by the �rst or the third term, as is easily veri�ed.2Reguli (see [14℄). Two lines in R3 that are disjoint and not parallel are 
alled skew.Given three pairwise skew lines `1; `2; `3, the set � = �(`1; `2; `3) of lines interse
ting allthree lines is 
alled a regulus. All lines in � are pairwise skew. If `01; `02; `03 are in �, then�? = �(`01; `02; `03) 
onstitutes another regulus, that is independent of the 
hoi
e of the threelines in �. (Note that the three generating lines `1; `2; `3 of � do not belong to �, but ratherto �?.)S`2� ` = S`2�? ` is a ruled surfa
e (whi
h is a quadri
|a hyperboloid of one sheet ora hyperboli
 paraboloid) in R3 , denoted by �� = ��(`1; `2; `3); � and �? are 
alled thegenerating families of �� and we say that �? is the 
omplementary regulus of �, and vi
eversa: (�?)? = �. Every point in �� is 
ontained in exa
tly one line from � and in exa
tlyone line from �?. For any line ` in R3 , either ` 2 � [ �? (i.e., ` � ��), or ` interse
ts �� inat most two points.It follows that the number of joints in L that lie on the surfa
e of any regulus � is atmost minfjL \ �j � jL \ �?j; 2jLjg:This follows from the observation that at most two of the lines that form su
h a joint 
anlie in ��, and the third line must 
ross ��. This allows us to apply the following pruningpro
edure. We �x a parameter s, whose value will be determined later. As long as thereexists a regulus � that 
ontains more than s lines of L, we remove all these lines from L,and lose in this pro
ess at most 2n joints. Repeating this step at most n=s times, we getrid of all \heavy" reguli and lose at most O(n2=s) joints.A similar prunning pro
ess 
an be applied to planes that 
ontain more than s lines ofL. Here we use the fa
t that any plane 
an 
ontain at most n joints, be
ause any su
h jointmust be in
ident to at least one line that is not 
ontained in the plane, and thus meets itin a single point.To re
ap, we may (and will) assume in what follows that no plane or regulus 
ontainsmore than s lines of L, and will add O(n2=s) to the overall bound for the number of joints.In
iden
es between lines and reguli [3℄. Given a set L of m lines and a set R of nreguli in 3-spa
e, the number I(L;R) of in
iden
es between the lines of L and the reguli ofR (re
all that we regard a regulus as a set of lines and not as the surfa
e that they span)satis�es I(L;R) = O(m4=7n17=21 +m2=3n2=3 + n+m) : (3)This has re
ently been shown by Aronov and Sharir [3℄. It extends and improves a weakerbound of O(m3=5n4=5 +m+ n) proved in [12℄ for a spe
ial 
ase.We use this to prove:Lemma 2.2. Let L be a set of n lines in spa
e. The number of reguli that 
ontain at leastk lines of L is O� n3k21=4 + n2k3 + nk� ;4



and the number of in
iden
es between the lines of L and these reguli isO� n3k17=4 + n2k2 + n� :Proof: Let R�k denote the set of these reguli, and put t = jR�kj. The bound (3) impliesthat tk � I(L;R�k) = O(n4=7t17=21 + n2=3t2=3 + n+ t);and the rest of the analysis pro
eeds in 
omplete analogy with the proof of Lemma 2.1. 2Mapping into Pl�u
ker spa
e. Let L be a set of n lines in R3 . We may assume, withoutloss of generality, that no pair of lines in L are parallel. This 
an be enfor
ed by anappropriate proje
tive transformation that maps L to another set of lines that does nothave parallel pairs, without 
hanging the in
iden
e stru
ture between the lines and theirjoints.We start by repli
ating the set of lines L into two sets, 
olor one set as blue, and theother as red. We bound the number of points at whi
h a red line and two blue lines, not inthe same plane, meet.1We map ea
h blue line ` to its Pl�u
ker hyperplane �`, and map ea
h red line ` into itsPl�u
ker point p`. Both points and hyperplanes lie in proje
tive 5-spa
e, and the points alllie in a 4-dimensional quadri
 surfa
e � known as the Pl�u
ker surfa
e. Two lines `; `0 2 Lmeet ea
h other if and only if p` lies on �`0 (and p`0 lies on �`). See [6℄ for more details onthis transformation.Cuttings. Let � be a set of n algebrai
 ar
s or 
urves in the plane, of 
onstant maximumdegree, and let 1 � r � n be a parameter. A (1=r)-
utting of the arrangement A(�) of � isa partition of R2 into pairwise disjoint relatively open 
ells2 of dimensions 0,1,2, su
h thatea
h 
ell is 
rossed by (i.e., interse
ted by, but not 
ontained in) at most n=r 
urves of 
.The size of the 
utting is the number of its 
ells. It has been shown (see [4, 8℄) that therealways exists a (1=r)-
utting of size O(r2), whi
h is asymptoti
ally optimal.The notion of 
uttings 
an be extended in an obvious manner to arrangements of surfa
esin higher dimensions. In general, however, optimal or near-optimal bounds for the size ofthe 
uttings are harder to derive, and in most 
ases are not yet known. Still, in the 
aseof hyperplanes in Rd , there exist (1=r)-
uttings, whose 
ells are simpli
es, of optimal sizeO(rd) [4℄. In our analysis, we repeatedly rely on a variant of this result, in whi
h we needto 
onstru
t (1=r)-
uttings for a four-dimensional 
ross-se
tion (within the Pl�u
ker surfa
e)of an arrangement of hyperplanes in proje
tive 5-spa
e; see below for more details.2.2 The primal partitioning stageWe 
onstru
t a (1=r)-
utting � of the arrangement of the set H of the Pl�u
ker hyperplanes,or, more pre
isely, of its 
ross se
tion within the Pl�u
ker surfa
e �. The 
utting is obtained1In the �rst de
omposition stage the 
olors play no signi�
ant role, but they will be more meaningful inthe se
ond de
omposition stage, where ea
h subproblem will involve two di�erent subsets of L.2In the standard de�nition of a 
utting, the 
ells are required to have 
onstant des
riptive 
omplexity,meaning that ea
h of them is de�ned by a 
onstant number of polynomial equalities and inequalities, involvingpolynomials of 
onstant maximumdegree. In our appli
ations, though, this additional property is not needed.5



by taking a random sample R of r hyperplanes of H, by triangulating ea
h 
ell of A(R), andby taking the 
ross se
tions within � of the resulting simpli
es. The a
tual 
onstru
tionis somewhat more involved, and follows the te
hnique of Chazelle and Friedman [4℄, whi
huses additional samplings within some of the 
ells 
onstru
ted above.3 Omitting the routinedetails, we end up with a larger sample, whi
h we still denote by R, 
onsisting of O(r)hyperplanes, and yielding a 
utting that 
onsists of O(r4 log r) 
ells of 
onstant des
riptive
omplexity (ea
h 
ell is the interse
tion of some j-simplex, for 1 � j � 5, with �), so thatea
h 
ell is 
rossed by at most n=r blue Pl�u
ker hyperplanes. (The size of the 
utting is a
onsequen
e of the Zone theorem of Aronov et al. [2℄, whi
h implies that the 
omplexity ofthe zone of � in A(R) is O(r4 log r), from whi
h it follows that the 
ells of A(R) that are
rossed by � 
an be triangulated into O(r4 log r) simpli
es.) Moreover, by splitting 
ellsinto sub
ells, if ne
essary, we may also assume that ea
h 
ell 
ontains at most n=(r4 log r)red Pl�u
ker points. (Re
all that lower-dimensional 
ells may be 
ontained in many moreblue hyperplanes, but ea
h is 
rossed by at most n=r of them.)We now bound the number of red-blue-blue joints by applying a 
ase analysis on thelo
ation, within the 
utting �, of the Pl�u
ker point of the red line in the joint.Verti
es of �. Consider a joint (`1; `2; `3), for `1; `2; `3 2 L, su
h that p`1 is a vertex of �.The number of su
h joints is at most the sumPv dv, where the sum is over the verti
es v of� and dv is the number of lines ` 2 L su
h that �` passes through v. We denote the set ofthese lines as L(v). We may assume that v is a vertex formed as the transversal interse
tionof � with four hyperplanes of R. Any other vertex of � will not 
oin
ide with a Pl�u
kerpoint p`, for ` 2 L, provided that the triangulation is performed in a suÆ
iently generi
manner.4We �x a hyperplane �`, for ` 2 L(v), and interse
t it with all hyperplanes of R and with�. Sin
e the four hyperplanes of R that form the vertex v interse
t there transversally,their 
ross se
tions within �`\� also interse
t transversally at v, so this point is a vertex ofthe 3-dimensional arrangement of these 
ross se
tions. The number of su
h verti
es, within�` \�, is at most O(r3), for a total bound of O(nr3) on the number of joints at verti
es of�.Edges of �. Let 
 be an interse
tion 
urve of three hyperplanes of R with �. (As in the
ase of verti
es, only edges of � 
ontained in su
h 
urves are of interest, if the triangulation issuÆ
iently generi
. Note also that we 
onsider here full interse
tion 
urves, ea
h 
onsistingof many edges of �.) Let `1; `2; `3 be the three 
orresponding lines of L. Suppose �rst thatthese lines are pairwise skew and thus form a regulus �. Let ` 2 L be su
h that p` 2 
.Then ` lies in �� (and belongs to �). Let (`; `0; `00) be a joint that involves `. It is impossiblethat both �`0 ; �`00 fully 
ontain 
, be
ause then `0; `00 would belong to �? and thus wouldnot meet at all. Hen
e, say, �`0 
rosses 
, and `0 
rosses ��, in at most two points. In otherwords, we 
an 
harge the joint under 
onsideration to one of these 
rossing points of `0 with��. The number of su
h 
rossings is at most 2n for ea
h regulus �, for a total of O(nr3)joints.3It might be simpler to digest the following analysis by ignoring the Chazelle-Friedman re�nement. Thiswill only a�e
t the polylogarithmi
 fa
tor appearing in the overall bound.4E.g., ea
h 
ell 
an be triangulated into simpli
es, all emanating from some 
ommon generi
 point in therelative interior of the 
ell. 6



`1 `2
`3

h h0q q0
Figure 3: The pair of planes 
orresponding to an edge of �.Suppose next that two of the lines, say `1; `2, meet ea
h other. Thus they de�ne a
ommon plane h and a 
ommon point q. If the third line `3 lies in h or passes through qthen the interse
tion �`1 \�`2 \�`3 is two-dimensional, as is easily seen, so these three linesdo not de�ne an edge of �. Hen
e `3 meets h at a single point q0 6= q. It follows that anyline ` with p` 2 
 either lies in h and passes through q0, or passes through q and through`3, and thus lies in the plane h0 spanned by q and `3. See Figure 3. In other words, anyjoint on ` lies in h[ h0, and at least one of the three lines forming the joint must 
ross h orh0 at the joint. There are at most 2n su
h 
rossing points, so the number of joints in this
ase is at most 2n, for a total of O(nr3) joints.2-Fa
es of �. Let ' be an interse
tion 2-surfa
e of two hyperplanes of R with � (again,only 2-fa
es of � that lie in su
h 2-surfa
es are of interest, and we 
onsider full interse
tion2-fa
es rather than individual 2-fa
es), and let `1; `2 be the two 
orresponding lines of L.Suppose �rst that `1; `2 pass through a 
ommon point q, and thus lie in a 
ommon planeh. Then any line � with p� 2 ' either lies in h or passes through q. We 
an thus view' as the union of two sub-surfa
es 'q; 'h, where 'q (resp., 'h) is the lo
us of all (pointsrepresenting) lines passing through q (resp., lying in h).Let (`; `0; `00) be a joint where p` 2 'q. We may assume that p` does not lie on any edgeof � that is 
ontained in ', be
ause su
h points have already been a

ounted for. If �`0 ,say, fully 
ontains 'q then `0 must pass through q (sin
e it tou
hes every line that passesthrough q), and thus the joint in question must be the point q itself. The overall numberof su
h joints is only O(r2). We may thus assume that both �`0 and �`00 
ross 'q.Similarly, let (`; `0; `00) be a joint where p` 2 'h. If �`0 , say, fully 
ontains 'h then `0must lie in h. In this 
ase, the joint must lie in h. As we have already noted, h 
ontains atmost n joints, so the overall number of joints of this kind is at most O(nr2). We may thusassume that both �`0 and �`00 
ross 'h.Thus, in either 
ase, we are left with subproblems, ea
h asso
iated with a 2-fa
e � of �(the surfa
e ' is now de
omposed ba
k into its 
onstituent 2-fa
es), su
h that � 
ontains atmost n=(r4 log r) red Pl�u
ker points and is 
rossed by at most n=r blue Pl�u
ker hyperplanes;the problem asso
iated with � 
onsiders red-blue-blue joints where the red point lies in �and both blue hyperplanes 
ross � . The number of subproblems is O(r4 log r). We willhandle these subproblems in the se
ond dual stage of the analysis|see below.7



Finally, suppose that `1 and `2 are skew. Consider a joint (`; `0; `00), where p` 2 '.Neither of the hyperplanes �`0 , �`00 
an fully 
ontain ', be
ause then the 
orresponding linewould have to be in
ident to every line that meets `1 and `2, whi
h is 
learly impossible.Hen
e, in this 
ase we obtain, as above, a 
olle
tion of subproblems, ea
h asso
iated witha 2-fa
e � of � (a subfa
e of '), su
h that � 
ontains at most n=(r4 log r) red Pl�u
kerpoints and is 
rossed by at most n=r blue Pl�u
ker hyperplanes. As above, the number ofsubproblems is O(r4 log r), and they are all handled in the se
ond dual stage of the analysis.3-Fa
es of �. Let p` be a point in the relative interior of some 3-fa
e of �, 
ontained inthe interse
tion of � with some hyperplane �`1 in R (only su
h 3-fa
es are of interest). Anyhyperplane in
ident to p`, with the ex
eption of �`1 , 
rosses ea
h of the two adja
ent 
ellsof �. We 
an thus assign p` to either of these 
ells, and 
ount the joints on ` as part of thesubproblem asso
iated with that 
ell (losing in the redu
tion a total of at most n joints).Thus no spe
ial treatment is needed for points on 3-fa
es of �. Alternatively, we 
an regardea
h 3-fa
e � as yielding a subproblem of its own, involving the (at most n=(r4 log r)) redpoints that it 
ontains and the (at most n=r) blue hyperplanes that 
ross it. The numberof subproblems is O(r4 log r) and they are handled in the subsequent dual stage.Cells of �. As in the 
ase of 2-fa
es and 3-fa
es, ea
h 
ell � of � generates a subprobleminvolving the at most n=(r4 log r) red Pl�u
ker points in � and the at most n=r blue Pl�u
kerhyperplanes that 
ross � . There are O(r4 log r) subproblems of this kind.2.3 The dual partitioning stageLet � be a 
ell of �; we in
lude here also the 
ases where � is a 2-fa
e or a 3-fa
e of �,and only hyperplanes that 
ross � are 
onsidered. Let L� be the set of all lines ` 2 Lsu
h that p` 2 � , and let L0� be the set of all lines ` 2 L su
h that �` 
rosses � ; we havejL� j � n=(r4 log r) and jL0� j � n=r. We \dualize" the problem, by mapping the lines of L�to (red) Pl�u
ker hyperplanes and lines of L0� to (blue) Pl�u
ker points in proje
tive 5-spa
e.Re
all that we 
onsider here joints (`1; `2; `3) where `1 2 L� , `2; `3 2 L0� . Sin
e both `2; `3are mapped to (distin
t) points, the triple intera
tion of `1; `2; `3 is not lo
alized at any pointof this dual parametri
 5-spa
e. We therefore do not 
onsider at all any triple intera
tionat this stage. Instead, we 
harge the joint in question simply to the in
iden
e between p`2and �`1 , or to the in
iden
e between p`3 and �`1 . Clearly, this 
ount is a (probably gross)overestimate of the number of joints under 
onsideration.5We 
onstru
t a (1=r)-
utting �0� of the 
ross se
tion within � of the hyperplanes �`,for ` 2 L� , using, as above, a generi
 triangulation of the arrangement A(R� ), for anappropriate sample R� of O(r) of these hyperplanes. As above, the size of �0� is O(r4 log r),and we may assume that ea
h of its 
ells � 0 
ontains at most (n=r)=(r4 log r) = n=(r5 log r)blue Pl�u
ker points p`, for ` 2 L0� , and is 
rossed by at most (n=(r4 log r))=r = n=(r5 log r)red Pl�u
ker hyperplanes �`, for ` 2 L� .We pro
eed to bound the number of in
ident pairs (p`2 ; �`1), for `2 2 L0� , `1 2 L� ,applying a 
ase analysis on the lo
ation of p`2 in �0� .5Arguably, this is one of the weak spots of our analysis. Any method of `preserving' the triple intera
tionsat joints would likely lead to an improved bound on J(n).8



Verti
es of �0� . Consider a joint (`1; `2; `3) where `1 2 L� , `2; `3 2 L0� , su
h that p`2 , say,is a vertex of �0� . As in the primal stage, the number of su
h joints is at most the sumPv dv, taken over the verti
es v of �0� , where dv is the number of red lines ` 2 L� su
hthat �` passes through v. We denote the set of these lines as L(v)� . As in the primal stage,only verti
es v in
ident to four hyperplanes of R� that meet there transversally need to be
onsidered.We �x a hyperplane �` for ` 2 L(v)� and interse
t it with all hyperplanes of R� and with�. Sin
e the four hyperplanes of R� that form the vertex v interse
t there transversally,their 
ross se
tions within �` \ � also interse
t transversally at v, so that this point isa vertex of the 3-dimensional arrangement of these 
ross se
tions. The number of su
hverti
es, within �` \�, is at most O(r3), for a total of O(r3 � nr4 log r ), whi
h, multiplied bythe number of 
ells � , yields a bound of O(nr3) on the number of joints at verti
es of the
uttings �0� .Regulus edges of �0� . This is the most intri
ate part of our analysis. Let 
 be aninterse
tion 
urve of three hyperplanes of R� with �, representing three respe
tive lines`1; `2; `3 (again, only su
h 
urves are of interest). Suppose �rst that these lines are pairwiseskew, so that they form a regulus �. Let M� (resp., M 0�) denote the number of lines ` ofL� (resp., of L0� ) that are 
ontained in �? (resp., in �); in 5-spa
e these are lines for whi
h�` 
ontains 
 (resp., p` lies in 
). We need to bound the number of in
ident pairs of lines(`; `0) 2 L� � L0� , su
h that p`0 2 
. We do not in
lude in this 
ount lines `0 2 L0� whosepoints p`0 are verti
es of �0� , sin
e they have already been a

ounted for. We distinguishbetween the 
ase where �` 
ontains 
 and the 
ase where �` 
rosses 
.Consider �rst the 
ase where �` 
ontains 
, so ` 2 �?. A trivial upper bound on thenumber of joints under 
onsideration (or, rather, the number of in
ident pairs (`; `0), asabove) is M� �M 0�. Our next steps pro
eed by 
ase analysis on the values of M� and M 0�,whi
h uses two threshold values s; t that we will spe
ify later, where s is the parameterused in the pro
ess of pruning away heavy reguli and planes, applied at the beginning ofthe analysis.(a)M� � t: In this 
ase we bound the number of joints by tP� M 0�, where the sum extendsover all reguli � with this property. Sin
e, in 5-spa
e,M 0� 
ounts points that lie on the 
urvesrepresenting the reguli and ea
h point is 
ounted only on
e (sin
e we ex
lude verti
es ofthe 
utting), the above sum is at most tn=r. Summed over all 
ells � , this yields an overallbound of O(nr3t log r) joints (whi
h already dominates the bounds O(nr3) obtained for theverti
es of the dual 
uttings, as well as for the verti
es and edges of the primal 
utting).6(b) M� > t: By the initial pruning pro
ess, we may assume that M 0� � s. In this 
ase weuse Lemma 2.2 to 
on
lude that the number of reguli � for whi
h M� > t (for the �xed 
ell�) is at mostO0B�� nr4 log r�3t21=4 + � nr4 log r�2t3 + nr4 log rt 1CA = O� n3r12t21=4 log3 r + n2r8t3 log2 r + nr4t log r� ;6This is one of the two `weak spots' in our analysis|see the dis
ussion at the end of the paper.9



and the sum P� M�, over these reguli �, isO� n3r12t17=4 log3 r + n2r8t2 log2 r + nr4 log r� :Multiplying by s and by the number of 
ells � , we obtain the boundO� n3sr8t17=4 log2 r + n2sr4t2 log r + ns�on the number of joints under 
onsideration.Consider next the 
ase where �` 
rosses 
. We split 
 into the edges of the 
uttingthat it is 
omprised of, and repeat this for all 
urves 
 that represent reguli. This yieldsa 
olle
tion of O(r4 log r) subproblems, ea
h asso
iated with an edge � 0 of �0� , su
h that � 0
ontains at most n=(r5 log r) blue Pl�u
ker points of L0� and is 
rossed by at most n=(r5 log r)red Pl�u
ker hyperplanes of L� . Any joint under 
onsideration is an interse
tion point of twolines, one mapped into one of these Pl�u
ker points and the other into one of these Pl�u
kerhyperplanes. Hen
e the number of these joints is at most O((n=(r5 log r)) � (n=(r5 log r))) =O(n2=(r10 log2 r)). The overall bound on the number of joints of this kind, summed overall su
h edges � 0 of �0� , and over all 
ells � of the primal 
utting, isO�(r4 log r)2 � n2r10 log2 r� = O�n2r2� :Non-regulus edges of �0� . Suppose next that two of the lines that de�ne the interse
tion
urve, say `1; `2, meet ea
h other. Thus they de�ne a 
ommon plane h and a 
ommon pointq. If the third line `3 2 L� lies in h or passes through q then the interse
tion �`1\�`2\�`3\�is two-dimensional, so these three lines do not de�ne an edge of �0� . Hen
e `3 meets h ata single point q0 6= q. It follows (
f. Figure 3) that any line ` with p` 2 
 either lies in hand passes through q0, or it passes through q and through `3, and thus lies in the plane h0spanned by q and `3. In other words, any joint on ` lies in h [ h0. We 
an de
ompose 
into two sub
urves 
h, 
h0 , where 
h (resp., 
h0) 
onsists of all points p` for whi
h ` lies inh and passes through q0 (resp., lies in h0 and passes through q).We next repeat the pre
eding analysis, handling planes instead of reguli, whi
h makesit somewhat simpler.7 Let then 
 = 
h [ 
h0 be an interse
tion 
urve of three hyperplanesof R� , representing lines `1; `2; `3 that form a pair of planes h; h0, as above. We fo
us onone of the sub
urves, say 
h. Let Mh (resp., M 0h) denote the number of lines ` of L� (resp.,of L0� ) that are 
ontained in h; in 5-spa
e these are lines for whi
h �` 
ontains 
h (resp., p`lies in 
h). We need to bound the number of in
ident pairs of lines (`; `0) 2 L� � L0� , forwhi
h p`0 2 
h. We do not in
lude in this 
ount lines `0 2 L0� whose points p`0 are verti
esof �0� , sin
e they have already been a

ounted for. As in the 
ase of reguli, we distinguishbetween the 
ase where �` 
ontains 
h and the 
ase where �` 
rosses 
h.Consider �rst the 
ase where �` 
ontains 
h. A trivial upper bound on the number ofjoints under 
onsideration isMh �M 0h. Our next steps pro
eed by 
ase analysis on the valuesof Mh and M 0h, whi
h uses the same two threshold values s; t as for the 
ase of reguli.7It also yields smaller bounds, as we shall see, so this part of the analysis does not really a�e
t the �naloverall bound. 10



(a)Mh � t: In this 
ase we bound the number of joints by tPhM 0h, where the sum extendsover all planes h with this property. Sin
e, in 5-spa
e, M 0h 
ounts blue points (representinglines in L0� ) that lie on the 
orresponding 
urves 
h, and ea
h point is 
ounted only on
e(sin
e we ex
lude verti
es of the 
utting), the above sum is at most tn=r. Summed over all
ells � , this yields an overall bound of O(nr3t log r).(b) Mh > t: The pruning pro
ess allows us to assume that M 0h � s. In this 
ase we useLemma 2.1 to 
on
lude that the number of planes h for whi
h Mh > t (for the �xed 
ell �)is at most O0B�� nr4 log r�2t3 + nr4 log rt 1CA = O� n2r8t3 log2 r + nr4t log r� ;and the sum PhMh, over these planes h, isO� n2r8t2 log2 r + nr4 log r� :Multiplying by s and by the number of 
ells � , we obtain the boundO� n2sr4t2 log r + ns� (4)on the number of joints under 
onsideration.Consider next the 
ase where �` 
rosses 
h. As in the 
ase of reguli, we split 
h into theedges of the 
utting that it is 
omprised of, and repeat this for all 
urves 
h. This yields a
olle
tion of O(r4 log r) subproblems, ea
h involving at most n=(r5 log r) blue Pl�u
ker pointsof L0� and at most n=(r5 log r) red Pl�u
ker hyperplanes of L� . Arguing as above, the overallnumber of joints under 
onsideration is at most O(n2=r2).2-Fa
es of �0� . The analysis follows 
losely that for the 2-fa
es of the primal 
utting �.Spe
i�
ally, let ' be an interse
tion 2-surfa
e of two hyperplanes of R� with �, and let`1; `2 be the two 
orresponding lines of L� . Suppose �rst that `1; `2 pass through a 
ommonpoint q, and thus lie in a 
ommon plane h. Then any line ` with p` 2 ' either lies in h orpasses through q. We 
an thus view ' as the union of two surfa
es 'q; 'h, where 'q (resp.,'h) is the lo
us of all (points representing) lines passing through q (resp., lying in h).Let (`; `0; `00) be a joint where ` 2 L� , `0; `00 2 L0� , and, say, p`0 2 'q. We may assumethat p`0 does not lie on any edge of �0� that is 
ontained in ', be
ause su
h points havealready been taken 
are of. If �` fully 
ontains 'q then ` must pass through q, and thus thejoint in question must be the point q itself. The overall number of su
h joints is only O(r2),for an overall bound of O(r6 log r). We may thus assume that ` does not pass through q,and that �` 
rosses 'q.Similarly, let (`; `0; `00) be a joint as above, where p`0 2 'h. If �` fully 
ontains 'h then` must lie in h. In this 
ase, the joint must lie in h. We then pro
eed exa
tly as in theanalysis of non-regulus edges of �0� . (In 
ase (a) of the analysis, the sumPhM 0h is at mostn=r, sin
e it 
ounts lines of L0� without multipli
ity, as we ignore the 
orresponding Pl�u
kerpoints that lie on edges of �0� .) This yields the same bounds as in 
ases (a) and (b) of thenon-regulus edges, i.e., a total bound of O � n2sr4t2 log r + ns+ nr3t log r� for the number ofjoints of this kind. We may thus assume that �` 
rosses 'h.11



Thus, in either 
ase, we are left with subproblems, ea
h asso
iated with a 2-fa
e � 0 of �0�(the surfa
e ' is now de
omposed ba
k into its 
onstituent 2-fa
es), su
h that � 0 
ontains atmost n=(r5 log r) blue Pl�u
ker points of L0� and is 
rossed by at most n=(r5 log r) red Pl�u
kerhyperplanes of L� . Arguing as in the 
ase of edges, we obtain O(r4 log r) subproblems ofthis kind, implying, as above, that the overall number of joints under 
onsideration is atmost O(n2=r2).Finally, suppose that `1 and `2 are skew. Consider a joint (`; `0; `00), where, say, p`0 2 '.The hyperplane �` 
annot fully 
ontain ', be
ause then the line ` would have to be in
identto every line that meets `1 and `2, whi
h is 
learly impossible. Hen
e, in this 
ase we obtain,as above, a 
olle
tion of O(r4 log r) subproblems, ea
h asso
iated with a 2-fa
e � 0 of �0� (asubfa
e of '), su
h that � 0 
ontains at most n=(r5 log r) blue Pl�u
ker points and is 
rossedby at most n=(r5 log r) red Pl�u
ker hyperplanes. As above, the overall number of jointsunder 
onsideration is O(n2=r2).Cells of �0� . Ea
h 
ell � 0 of �0� is 
rossed by at most n=(r5 log r) red Pl�u
ker hyperplanes�`, for ` 2 L� , and 
ontains at most n=(r5 log r) blue Pl�u
ker points p`, for ` 2 L0� . Hen
e,similar to the analysis of edges and 2-fa
es, the number of joints that involve lines ` withp` 2 � 0 is at most n2=(r10 log2 r). Summing these bounds over all 
ells � 0 and � , we obtainan overall number of O(n2=r2) joints.3-Fa
es of �0� . We argue here in mu
h the same way as in the primal de
omposition. Letp`0 , where `0 2 L0� , be a blue point in the relative interior of some 3-fa
e of �0� , 
ontained in�` \ �, for some ` 2 L� . Any hyperplane in
ident to p`0 , with the ex
eption of �`, 
rossesea
h of the two adja
ent 
ells of �0� . We 
an thus assign p`0 to either of these 
ells, and
ount the joints on `0 of the type we seek as part of the subproblem asso
iated with that
ell. This ex
ludes the joint formed (if at all) by `0 and `. The overall number of su
h jointsis O(r4 log r � nr ) = O(nr3 log r). (Alternatively, we may pro
eed as in the 
ases of edges,2-fa
es and 
ells, and obtain dire
tly the same bound of O(n2=r2) joints.)Putting it all together. Adding the bounds obtained in the pre
eding analysis steps,we obtain a grand total ofO�n2s + nr3t log r + n3sr8t17=4 log2 r + n2r2 + n2sr4t2 log r + ns+ r6 log r�joints. We now 
hooser = n13=69log3=23 n; s = r2 = n26=69log6=23 n; t = nr5 log n = n4=69log8=23 n;to obtain that the overall number of joints is O(n112=69 log6=23 n). (This 
hoi
e of parametersequalizes the �rst four terms in the above bound; the last three terms are dominated by the�rst four.)We thus obtain the main result of this paper:Theorem 2.3. The number of joints of a set of n lines in 3-spa
e is O(n112=69 log6=23 n) =O(n1:6232). 12



2.4 Dis
ussionThere are two natural 
onje
tures 
on
erning J(n). The �rst (in view of the best knownlower bound) is that J(n) = �(n3=2). The se
ond, and somewhat weaker 
onje
ture, isthat J(n) � O(n8=5). There are several informal reasons for the se
ond 
onje
ture. Forexample, observe that the two stages of de
omposition end up with about r8 subproblems,ea
h involving about n=r5 lines, whi
h leads to a re
urren
e relation, whose basi
 solutionis about n8=5. (Of 
ourse, the subproblems are di�erent from the original one, sin
e jointsare `lost' there. Still, the general 
hara
teristi
s of the de
omposition suggest this bound.)We strongly believe that at least the se
ond 
onje
ture is true. There are two weakspots in our analysis. The �rst is the handling of regulus-edges of the dual 
uttings. We
an handle well reguli that 
ontain many lines of L0� , but it seems that we handle the `lighter'reguli in a suboptimal manner. At any rate, the term that the analysis of these light reguliyields, namely O(nr3t log r) is one of the 
auses for our bound to be weaker than O(n8=5).The se
ond 
ause is the way we handle the subproblems at the se
ond partitioning stage:We bound there the number of relevant joints simply by the produ
t of the sizes of the two
orresponding sets of lines. We suspe
t that this is a gross overestimate, and that sharperbounds 
an be obtained using a more 
areful analysis.A
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