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Abstract— This paper is concerned with finding the best PDE- prisingly, was seriously addressed in the context of PD&eba
based denoising process, out of a set of possible ones. We focus ejmage processing only by a few studies [11], [18], [24].
ther on finding the proper weight of the fidelity term in the energy We derive a necessary condition for optimality in the Signal
minimization formulation, or on determining the optimal stopping to-Noise Ratio (SNR) sense. From a practical vi int. th
time of a nonlinear diffusion process. o 7t pracucal viewpoint, the

A necessary condition for achieving maximal SNR is stated, condition suggests a numerical method that should be feltow
based on the covariance of the noise and the residual part. We for the purpose of maximizing the SNR of the filtered image.
provide two practical alternatives for estimating this condition, by ~ Two algorithms for the parameter calculation are proposed,
observing that the filtering of the image and the noise can be ap- pased on the above condition, yielding fairly accuratemestis.

proximated by a decoupling technique, with respect to the weight . . - . I .
or time parameters. Our automatic algorithm obtains quite accu- From a theoretical viewpoint, this facilitates the compiotaof

rate results on a variety of synthetic and natural images, including UPpPer and lower bounds of the optimal strategy.

piecewise smooth and textured ones. We assume that the statis- Next, we present an analysis of the optimal parameter from a
tics of the noise were previously estimated. No a-priori knowledge SNR viewpoint. We also examine the popular denoising strat-
regarding the characteristics of the clean image is required . egy, based on Morozov’'s discrepancy principle [13], used in

A theoretical analysis is carried out, where several SNR per- ) g . )
formance bounds are established for the optimal strategy and fo the field of regularization theory. This method was most no

a widely used method, wherein the variance of the residual part tably usedin \_/ariational image proces_sing inthe ngindirRu _
equals the variance of the noise. Osher-Fatemi paper [18]. The selection of the weight of the fi

delity term is such that the variance of the residual paraéqu
that of the noise. A lower bound on the SNR performance of
I. INTRODUCTION this strategy is established, as well as a proof of non exdste

The use of Partial Differential Equations (PDE's) to requf an upper pound. Examples Which illustrate worst- and-best
larize images is becoming a very active field of research. TR&S€ Scenarios are presented and discussed. _
elegance of the formulation, frequently via the calculugas- W& demonstrate our method and show its advantages with
ations, and the good results, attract researchers andalers "€SPect to the methods of [18], [11] and [24]. N
For some comprehensive studies and background on the ‘subg',et,our main focus in this paper is on variational denoising {Sec
see [1], [23], [4], [17], [22] and the references thereinvai-  1ONS [1-V). In Sect|on I we present fthe variational Qenngs
ably, these methods require the determination of a paramdféde! and derive the optimality condition. Two practicaftine

in the process. This parameter is the time, or number of jt&dS are provided for the approximation of this conditionéesS
ations, in diffusion-like processes, or the weight of theliig tion lll. In Section IV an analysis of the SNR performance is

term of the energy functional in the calculus of variatiops a ¢&'Ted out, where lower and upper bounds are establisied. |
proach. In both cases, a simplification of the image is aefievS€Ction V we present numerical results on a set of benchmark
via a parameter-dependent PDE. It is desirable that the™trJMages. Similar methods are applied to diffusion-like ps=es
signal will not be degraded in the process of this simplifarat 1" Section VI. A detailed comparison to other stopping cigte
while noise is removed. In fact, both noise AND signal are b& Presented. The comparison is carried out from both tieore
ing altered in the process. The fact that the signal is aftei 1c@l and empirical viewpoints. Conclusions and future cire
clear, since an image without noise is also altered in theqzm t|ons.are d|scussed_ in S_ecnon VII. P_roofs and detayls of the
The PDE'’s are constructed to reduce noise level at a fagter f@90rithms are provided in the appendix. A short versiorhef t
than the piecewise smooth image parts are affected. Yet, {2 presented here can be found in [10].
process must be stopped before the structure of the image has
been modified too much, for example textured segments havdl- DENOISING MODEL AND OPTIMALITY CONDITION
become smooth. We try to solve the additive noise model, where the input
It is thus important to determine what is the optimal poirgignal f is composed of the original signaland additive un-
of stopping the process. This question is imperative, hut, s correlated noise of variances?2:
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We accomplish this decomposition by minimizing the followFig. 8). A necessary condition for the maximum in the range
ing energy function: V(v) € (0,V(f))is:

) ) OSNR
B (u) = /Q (@(\Vu\) + )\(U)2> dx. 3) i) = )

& is assumed to be convex. For a condethe solution(u,v) RewritingV(n — v) asV(n) + V(v) — 2cov(n, v), and using

exists and is unique [1]. More explanations and examples f&) and (5), yields

garding this type of regularization can be seen e.g. in [63], dcov(n,v) 1

[1], [21], [22], [8], [16]. Some of the following results aedso V@) 2 (8)

applicable to the more general case of monotonically irsinga

®. This holds as long a® is regularized so that a minimizer The meaning of this condition may not appear at first glance

exists (such as in the discrete case or by convolving thei-gra® be very clear. We therefore resort to our intuition: let us

ent) and is unique. For the sake of simplicity we remain in tH&ink of an evolutionary process with scale paraméter). We

convex framework. begin withV°(v) = 0 and increment the variance ofby a
The condition [, fd? = |, ud< is set, (corresponding to Small amountiV’(v), so that in the next stel™* (v) = dV/(v).

the Neumann boundary condition of the evolutionary equa&he residual part of’, v, contains now both part of the noise

tions). This yieIdsz vdQ = 0. Rescaling) by the area of and part of the signal. As long as in each step the noise is

the domain: A = A2, we get mostly filtered, that is”572) > 4, then one should keep

on with the process and the SNR will increase. When we reach
Eo(u,v) = / O(|Vu)dQ+ AV (v), f=utv. (4) the condition of (8), the noise and the signal are equallgréit
Q and one should therefore stop. If filtering is continued, enor
signal than noise is filtered (in terms of variance) and th&SN
decreases.
1 There is also a possibliblity to have the maximum at the
Vig) = 9] /(q - )*dQ, boundaries: If the SNR is dropping from the beginning of the
e process, we hav%h/(“):o < % and the optimal SNR
andg is the mean value is SNRy. The other extreme case is when the SNR increases
1 monotonically and is maximized fdr (v) = V(f) (the trivial
q= @/ qd2. constant solutiom = f). We shall see later (Proposition 3) that
@ this can only happen whe$iN Ry is negative or, equivalently,
The covariance of two signals is defined as whenV (s) < o2.
In light of these considerations, provided that one can es-
- L (¢ — q)(r — 7). timate coyn, v), our basic nhumerical algorithm should be as
12[ Jo follows:
1) Setcof(n,v) =0,Vv)=0,i=1.
2) Vi(v) < V= (v) + dV (v). Compute coi(n, v).
3)

whereV (q) is the variance of a signal

cov(q, )

Note that these quantities are based on the empirical defigijt
and therefore could be measured for a given image. We recal

‘(n,v)—cov' "t (n,v
the identity If cotlnu)oeor (nv) < 1 then stop.
4) i — i+ 1. Goto step 2.
V(g+r)=V(q)+V(r)+2covq,r). We will now suggest two ways to approximate the covariance
. . term.
The SNR of the recovered signais defined as
) V(s) V(s) I1l. ESTIMATING THE OPTIMAL SOLUTION
SNR(u) = 10log Viu—s) 10log Vin—ov) ®)  In order to approximate céu,v), we need an estimate of

the noise. We may try to use only segments of the image where
wherelog = log;,. The initial SNR of the input signal, denotedwe have high confidence that we are able to distinguish betwee
by SN Ry, where no processing is carried out£ f, v = 0), the noise and the image. These are typically the smoothrregio
is according to (5) and (1): The problem is that normally we do not know in advance which
regions of the image are smooth and which are not.

SNRy = SNR(f) = 10log @ = 10log V(j). (6) Our observation is that the extent of filtering of additive
(n) g noise, with respect ta, is not affected much by the underly-

N _ ing images. What mainly affects the denoising performance
A. Condition for Optimal SNR is the extent of filtering ok. This property is very natural in

We proceed by developing a necessary condition for the dpe linear caseh x f=h x (s + n)=h * s + h x n, whereh is
timal SNR. In this convex problem we have a single degreke filtering kernel, and denotes convolution. We show that in
of freedom of choosing/(v) [1], [3]. We therefore can re- some sense a similar decoupling can be applied to the nonlin-
gard the SNR as a functio§,N R(V (v)), and assume that it is ear case. Currently, we investigate the possibility to iobaa
smooth (see examples of SNR functions of different imagesamalytic expression for the approximation error.



respect toV (v). In other words, we use the chain-rule for dif-

ferentiation:
ocov(n,v)  dcov(n,v) OA
oviv) o IV(v)

acov(ﬁ,v)| 0 | ©)
o TEhav(v) =

The first term on the right-hand-side is a precomputed fongti
or in the discrete case of can be regarded as a look-up table
Fig. 1. lllustration of the direct (patch) method. Left: inpmagef. Right: a2 (see Fig. 2). The second term is computed while the image is
patch of pure noise with statistics similarstds attached to the right side ¢t being processed.
In this scheme we rely on a very simplistic assumption that
. L we can estimate the behavior of ¢ayv) of any image based
A. Direct Estimation on the very degenerate case where the image is simply pure
We assume that we have access to a source of a synthgéise. Quite extraordinarily, our numerical experimerrtsve
noise generator. Instead of finding regions in the image &heahat the estimations are not so far from the ground truth (see
we can estimate the noise, we simply extend the image withrgy. 8, right side). A more comprehensive approach may ac-
"noise patch”. This patch is an extension of the image in oRYmmodate the computation of the functigﬁg;””) based on
direction, by a constant function with additive noise ofi@ace 5 representative collection of natural images.
o? (as previously mentioned, we assume the noise variance isyymerical examples of both estimation methods are shown
known a-priori or could be well estimated beforehand). [Seg, section V.
Fig. 1.] Knowing, for this patch, both andn, we can com-
pute their covariance. Note that althougly(n, v) is estimated
based on the patchy;(v) is measured in the usual way based on
the original image domain.

Q

IV. SNR BOUNDS FOR THESCALAR ® PROCESS

In this section we address a few theoretical issues andgeovi
some bounds on the standard and optimal methods.

Let us denote:” as the solution of (4) fof = . For exam-
ple,u® is the solution wherg = s.

The decorrelation assumption is taken also betweandn
with respect to thé process:

B. Indirect Estimation

cov(u®,n) =0, cov(u",s)=0, VA>0. (10)

We further assume that tlieprocess applied t¢ = s+ n does
not amplify or sharpen eitheror n. This can be formulated in
terms of covariance as follows:

d(cov(\I/,n))/d)\

cov(usT", s) < cov(f,s), cov(u*T" n) < cov(f,n),
] YA > 0.
. ‘ ‘ (11)
10" 10 10 Both of the above assumptions were verified numerically on a

collection of natural images.

Fig. 2. Precomputed function for indirect estimatiodcov(n, v)/0X is We are investigating the possibility to characterize in aa&-a

D e o cebick it 07 VAUES:! il manner the appropriate spaces @i such that (10)
and (11) are followed. In this paper this question is leftrope
and we resort to the following definition:

Another way of estimating c@w, v) is by an indirect man-  Definition 1—s,n) pair: An (s,n) pair consists of two un-
ner, which does not rely on physically attaching a synthetiorrelated signals andn which obey conditions (10) and (11).
patch to the image. Consequently, some minor inferencesTheorem 1:For any(s, n) pair and an increasing (®'(q) >
which may occur on the image-patch boundary, and whichvg > 0) the covariance matrix o/ = (f, s, n,u,v)” has
cause some side affects on the processed image near the pattyrnon-negative elements.
and which affect the computations carried within the padeh, For proof see the appendix. Theorem 1 implies that the denois
avoided. ing process has smoothing properties and that, conseguentl

The idea is to separate the computation to two phases. tifere is no negative correlation between any two elements of
patch of noisen with similar statistics ton is processed and U. This basic theorem will be later used to establish several
cov(n, v) is measured with respect fo For the case of white bounds in our performance analysis.

Gaussian noise, only? should be estimated in order to gener- Let us define the optimal SNR of a certairprocess applied
aten. Then the input image is processed and the behaviortofan input imagef as:

A with respect tol/ (v) is measured. Combining the informa- )

tion, it is possible to approximate how dax v) behaves with SN Rop = max SNR(uy), (12)




whereu = wu, attains the minimal energy of (4) with weight
parameter\ (for a given f, v is implied). We denote by
(wopt» Vopt) the decomposition paiiu, v) that reacheS N R,
and defind/;,, = V (vopt ).

Equivalently, the desired variance could be setés) = P,
where P is some constant, and then (4) is reformulated to a
constrained convex optimization problem

min / B(|Vu|)d subjecttoV(v) = P, (13)
v Ja

In this formulation) is viewed as a Lagrange multiplier. The
value A can be computed using the Euler-Lagrange equations
and the paifu, v):

A= %/Qdiv <(I>’(|Vu)|§—7:|) vdQ. (14)

V(v) / o?

The problem then transforms to which valffeshould be im- Fig. 4. Approaching worst-case scenario in a checkereddbioaage. For

posed (see [3], [1] for details). V(v) = o2, the SNR decreases by almastB from 19.9dB t0 17.0dB. Top:
A popular denoising strategy ([13]' [18]) is to assume n f (left), w (right). Bottom:v (left), SNR as a function oV’ (v) /o= (right).

and therefore impose

V(v) = o2, (15) Proof: From Theorem 1 we have cpv,v) > 0, there-
fore,
We define SNR,2 = 10log %
SNRy> = SNR(u)|v(v)=02, (16) > 10log VEn‘;-(i-s‘)/(v)
and denote by(u,z,v,2) the (u,v) pair that obeys (15) and = 10log ZTZ)
minimizes (4). We shall now analyze this method for selegtin = SNR,—3dB.
w in terms of SNR. n

rare and extreme case where @ew) = 0. This implies that

accomplished.

Proposition 2—SNR upper boundimposing (15), there
does not exist an upper bourl < M < oo, where
SNR,2 < SNRy+ M, thatis valid for any giveris, n) pair.

where the SNR cannot be bounded. Let us assifsg = ho?,

0 < h <1 ThenSNRy; = 10logh. Since the signal and
noise are not correlated, we haV& f) = V(s) + V(n) =
(1 + h)o?. We can writeV (f) also asV (u + v) = V(u) +

V (v) + 2cov(u, v). From (15),V (v) = o2, and from Theorem
1, coMu,v) > 0, thereforeV (u) < ho?. Since covu,s) > 0
(Theorem 1) we get’ (u — s) < 2ho?. This yieldsSNR,> >
101log % and

05 15 2

V(v)llcrz 1
Fig. 3. Approaching best-case scenario in piece-wise aohshages. In this SNR;2 — SNRo > 10log ﬁ

example, forV (v) = o2, the SNR increases by almaxidB from 19.9dB to

39.6dB (the variance of the noise i 1 of the input noise). Topy (left),  Thus, for anyM we can choose a sufficiently smalivhere the
u (right). Bottom:v (left), SNR as a function of (v) /o2 (right). In this case pound does not hold. [

Vopt = 1.0202, SN Rop: = 40.2dB. . . . .
opt o ort Simulations that illustrate worst- and best-case scesairie

The lower bound of Proposition 1 is reached only in the very

only signal components were filtered out and no denoising was

Proof: To prove this we need to show only a single case

presented in Figs. 3 and 4. A signal that consists of a single

Proposition 1—SNR lower boundmposing (15), for any very contrasted step function is shown in Fig. 3. This exampl

(s,n)-pair, SN R, is bounded from below by illustrates a best-case scenario for an edge presefivirfgNR
resulting from the PDE-based denoising is greatly incrédsg

SNR,: > SNRy — 3dB, (17) ~ 20dB). Note that this case approximates an ideal decompo-

where we use the customary notatiB for 10 log;,(2). sition, u ~ s, v &~ n, which differs from the simple case used
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in the proof of Proposition 2. A worst-case scenario is #lus
trated in Fig. 4 by means of the Checkered-board example. A o —SNR

. . . . . . . + Optimal
very oscillatory signas is being denoised and, in the process, is \ o Standard
heavily degraded. The reduction in SNR, compared ARy, s
is ~ 2.9dB, close to the theoretic8t B bound.
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A. Regular SNR e
Our experience shows that in these well-behaved denoising v /o®
processes the SNR ‘?'09_5_ not oscillate _and has a 5'”9'e mﬁ?@"e Denoising part of the Boats image. Top rawleft), f (right). Middle
mum. We use this significant observation for our estimatiabw: « by our direct estimation (lefty. by standard method{(v) = o2,
procedures and Would ||ke to assume th|s property also mr ﬂight) Bottom row: SNR (Ieft), an@cov(n, U)/@V(’U) (rlght) as a function of
. . . . - V(v)/o2.
theoretical analysis. Let us define first the SNR regularity:
Definition 2—Regular SNRWe define the  function
SNR(V(v)) as regular if (8) is a sufficient condition for

o

15 2 [¢] 0.5 15 2

1
V(v) / 62

optimality or if the optimum is at the boundaries. For the lower bound we use the relation shown in Proposition
Proposition 3—Range of optimal SNi:the SNR is regu- 3: COM7,vopt) > 5Vop. For the upper bound we use two
lar, then for any(s, n) pair0 < V,,, < 202. upper bounds on cdx, v.,:) and take their minimum. The

Proof: Let us first show the relation cow,v) < o2: firstone, covn, vep) < o/ Vope, is a general upper bound on
cov(n, f) = cov(n,n + s) = V(n) + cov(n, s) = 2. On the covariance. The second relation, ¢ovv,,:) < o2, is outlined
other hand cofr, f) = cov(n, u+v) = cov(n, u) +cov(n,v). N Proposition 3.

The relation is validated by using cov, u) > 0 (Theorem 1). u
We reach the upper bound by the following inequalities: A plot of the upper bound of the optimal SNR with respect
, Vape doov(m.0) to V,,¢ /02 is depicted in Fig. 5.
o? = cov(n,v)lv,,. = Jy " vy dV(v) = In practice, the flow is not performed by directly increasing
fOVOP‘ 1dV (v) = $Vopt. V (v), but by decreasing the value &f Therefore, it is instruc-
tive to check the change df (v), as well as the other ener-
The second inequality is based on the fact Iﬁ%% > 1 gies,with respect to a change dn In the next proposition we

for V(v) € (0, V,pe), when the SNR is regular. show that as\ decreases the total energ strictly decreases,
The lower boundV,,, = 0 is reached wheneverthe energy ternE,(v) = V(v) increases whereas the energy
8080“;((’;? v wy=0 < L. B termE,(u) = [, ®(|Vu|)dQ decreases.
Theorem 2—Bound on the optimal SNIRthe SNR is regu- ~ Proposition 4—Energy change as a functiomofThe
lar, then for any(s, n) pair andV,,; € {[0,0?), (62,202}, energy parts of Eq. (4) vary as a function)oés follows:
0<SNRy —SNRy < 0FEs OF, OFE,
— >0, <0, ——>0. 20
—10log(1 + Vopt/a2 — 2/ Vopt/02), 0< Vo < o2 o o\ — oA (20)
—10log(Vype /0% — 1), 02 < Vi < 202 The proof is in the appendix.
(18)
~Proof: By the SNR definition, (5), and expanding the V. VARIATIONAL DENOISING EXPERIMENTS
variance expression, we have We compare our two methods for findingvith the standard
o? method of imposing (15) and with the optimal which maxi-
SN Ropy = SNFo = 1010g(g2 + Vopt — 2€0V(12, Vop) mizes the SNR. Six classical benchmark images are processed

(19) Cameraman, Lena, Boats, Barbara, Toys and Sailboat. The



Fig. 7.

Top row: f. Second row:s (left), n. Third row: u (left), v by our

indirect estimation. Bottom row (left), v by standard method{(v) = o2).

Ours Ours
Image SNRg | SNRopt | SNR,2 | SNRyir | SNRing
Cameraman|| 15.86 19.56 19.32 19.50 19.50
Lena 13.47 18.19 17.65 18.13 18.18
Boats 15.61 20.23 19.83 20.16 20.22
Barbara 14.73 16.86 16.21 16.73 16.64
Toys 10.00 17.69 17.29 17.66 17.65
Sailboat 10.36 1551 15.16 15.48 15.48
Average
difference
from
SNRopt 4.67 N/A 0.43 0.06 0.06

TABLE |

COMPARISON OF METHODS PRESENTED IN SECTIONI: D ENOISING

RESULTS OF SEVERAL IMAGES WIDELY USED IN IMAGE PROCESSINGIHE
ORIGINAL IMAGES WERE DEGRADED BY ADDITIVE WHITE GAUSSIAN

NOISE (0 = 10) PRIOR TO THEIR PROCESSING
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Fig. 8. SNR as a function df (v) /o2 (left). dcov(n, v)/dV (v) as a function
of V(v)/a? (right), as computed by indirect estimation (solid) and theugd

truth (dashed). Graphs depict processing of the followiatyiral images (from
top): Cameraman, Lena, Toys, Boats.

summary of the results is shown in Table I. Both of our methods
are quite close to the optimal denoising (less thad B differ-
ence on average) and perform better than the standard scheme

In Figures 6 and 7 results are shown for the direct and intirec
estimations, respectively. Qualitatively, the proposesthad
(with both estimation techniques) tends to better prestge
textural information than the standard method.

We used®(s) = +/1+ s2, which can be viewed as the
Vogel-Oman [21] regularization of TV [18] with = 1 or the
Charbonnier [5] process. The image grey-level rande:i256
so edges are well preserved. Other details about this enpeti
can be found in the appendix.

In Fig. 8the term$' N R(u) and% are plotted as func-
tions of the normalized variandé(v)/o?. It is apparent that
the SNR is smooth and behaves regularly, in accordance with
our assumptions. An interesting phenomenon is that theriecova
ance derivative estimation tends to be more accurate near th
critical point Where%(’j;f) = % Naturally, this is advanta-
geous to our algorithm. We currently have no explanation for

this behavior.



VI. EVOLUTIONARY FLOWS The other approaches differ from each other and from our

The process of the estimation of the optimal solution can BECPosed method in the non-ideal cases of most natural snage
similarly formulated in evolutionary flows that do not have #/here images contain textured regions and fine details.
fidelity term, e.g. [15], [23], [24], [11], [9]. We refer theader ~ The main advantage of the method proposed in [11] is that no
to [16], [19] to learn more on the close connections betwed&Rowledge of the noise variance is required. It is also easy t
variational denoising and nonlinear diffusion methods| tre COmpute, without any need for estimations. It is, howevet, n
similar role of the weight and time parameters. In the evotut @lways practical to use this method for all classes of images
ary case one has to Select the best Stopping ﬁmeur defi_ If the denoising proceSS smoothes also some Signiﬁcant com-
nitions are changed somewhat, but essentially have the sdtfgents of the signal, such that we cannot assumen, the

sense. The process is stopping criterion of (23) may produce undesirable resiélts
tually, its performance in terms of SNR, cannot be bound from
up = div(e(|Vu|)Vu),  uli=o = f, (21) below such as is determined by Proposition 1. One can con-

struct examples where the stopping time should be tieaf),
wherec(|Vul) is the adaptive diffusion coefficient. For convexyhereas coffu, v) decreases for a very long duration. This can
processes one has to validate tiiat:(q)qdq is convex [1]. We pe illustrated, for example, by the checkered-board imaie.
definev(z;t) = f(x) — u(z;t). In this formulationdV (v) is  curves of the SNR function and the correlation are depiated i
defined asiV (v(t)) = V(v(t)) — V(u(t — dt)). Other simi- Fig. 10. In a more realistic example of processing the Barbar
lar changes in notations are straightforward. For examb&, image (Fig. 11), the results are not as extreme, but image is
indirect estimation of Eq. (9), for evolutionary flows is considerably over-smoothed.
_ The method of [24] is similar in its spirit to imposing (15).
deov(n, v) ~ deov#, v) | r=n ot lf=s+n.  (22) Here, though, the teracov(u, v) is being deducted, resulting
9V (v) ot OV (v) in an early stopping of the process (especially wheand v
The detailed algorithm for implementing this method is i th@"€ highly correlated as in the case of textured images)nyn a
appendix. case, the stopping time is in the 'safe’ regiri¢v) < o2 (and
thus its performance has a lower bound).

A. Comparison to Previous Stopping Mechanisms

A comprehensive study of the stopping time problem is dis-
cussed in [11]. Here we relate to the most recent method pro-
posed by Mrazek and Navara [11] and the more classical one
suggested by Weickert in [24].

25

)
. . . . . . .. S, — SNR
The former aims at finding the point in time of minimal cor- 215w « Optimal
: . O Ours
relation betweem andv: g $ Weinkert
o gﬂ,(‘aRzekaavara
T = argmin, {corr(u(t), v(t))} (23) o mhih
SNR0
where sl . .
cov(u,v) 0 10 20 30 40 50 60

corr(u,v) = .
V(v)V(u)
. . . . Fig. 9. Processing a step image (as in Fig. 3). SNR plot as difumof ¢.
The underlying assumption of the method is thaarries most stopping time is sufficiently close to the optimal selectiorbogh methods of
of the noise at the beginning of the denoising process. Aazek-Navara and ours.
corr(s,n) = 0 it is argued that a reasonable decomposition

would be at a time where the correlation betweeandv is The diﬁerences between our method and those of [24] and
minimal (in practice, the first local minimum is sought). [11] are illustrated in In Figs. 11, 12 and 13. The Barbara im-
Weickert's method requires that age, contaminated by additive white Gaussian naise-(10)
V(u(T)) 1 is processed by the nonlinear diffusion equation (21), with
= (24) c(s) = 1/¥/1+ s%. The image contains smooth regions and
V(f) L+ V(n)/V(s) highly textured ones. This breaks the implicit assumptibn o
both [24] and [11], which regardsas mostly containing noise.
In partly textured imagesy contains both noise and texture.
V(v) = V(n) — 2cov(u, v). (25) In the case of [24], the term cw,v) is large, and the pro-
cess stops too early. In the case of [11], the consequences
All three methods of imposing (15), [11] and [24], work wellare more severe and cut v) is minimal only when the tex-
on piecewise smooth images (without fine-scale featurag)ll | ture is smoothed out (see Fig. 12 for a plot of the correlation
three methods the decomposition is n€dp) = V(n), which  function). In terms of SNR, applying the method of [11] to
approaches the optimal decomposition in these cases. W&ngthis image results in a drop of more tha@B below SN Ry.
method of [24] the process is often stopped considerablyrbef The SNR results areSNRy = 14.73, SNR,,: = 16.65,
the optimal time. SNRy = 16.19, SNRyn = 11.51, SNRgsz = 16.59,

or equivalenthy?V’ (u) = V(s), which can also be written as
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Fig. 12. Processing Barbara image. ¢atr) as a function ot. The mini-
mum is marked with 'X’. As seen in the SNR plot, the minimum cortielais
not attained near the time with the largest SNR.

d(cov(v,n))/dV(v)
-

)

Fig. 10. A checkered-board image (medium contrast) with noiBep:
Left - SNR as a function of, right - coru, v) as a function oft, bottom -
dcov(n, v)/dV (v) as a function of. Whereas the criterion of Eq. (23) can-
not be used in this example (no local minimum near 0), our estimatf the
general criterion stated in Eq. (8) works well also on higtelytured signals
(stopping time isI" = 0.12 versus the optimal,,¢: = 0.09).
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Fig. 11. Processing Barbara image. Left: SNR plot as a functfad. Right:
dcov(n,v)/dV (v) as a function of.

which stand for the SNR of the input image, the optimal de-
noising, the method of [24] , the method of [11] and our direct
estimation method (attaching a “noise patch”), respelgtiveor
the image results see Fig. 13.

Fig. 13. Effects of stopping criterion on processing resottdifferent stopping
VIl. CONCLUSION times, processing Barbara image (head part is shown). TomiEfty imagef;
. L. . . Right - Weickert's method (24). Bottom left: Mrazek-Navaga), right - our
Most image denoising processes are quite sensitive to th&hod of direct estimation.

choice and fine tuning of various parameters. In order tolreac

fully automatic denoising procedures, systematic mettmdo

gies for determining the appropriate parameters of a giwen iyields with sufficient accuracy the first local maximum of the

age are a prerequisite. This problem motivated us to devel8PR with respect to the variance of the residual path prin-

a new method for the optimal choice of the scale of interestciple, there can be additional local maxima at larger soaits

significant parameter in PDE-based denoising, represédntedhigher values of SNR. In practice, however, we have not en-

the weight of the fidelity term in the variational formulation, countered a natural image nor managed to generate a sgntheti

or by the stopping timé@” in evolutionary processes. one, wherein the SNR depicts more than a single maximum.
Our criterion is to maximize the SNR, resulting from the apour experience leads us to the empirical conclusion that suc

plication of a PDE-based denoising process. We provide twases with peculiar SNR are quite rare in convex PDE-based

practical alternatives for estimating this condition, Hyserv- processing.

ing that the filtering of the noise with respect to the weight o We compare the performance of our algorithm with the per-

the time parameters is in some sense decoupled of the fijterformance of those obtained by means of previously proposed

of the clean image. Thus, we can study the behavior of a noalgorithms [18], [11], [24] and demonstrate that our method

with similar statistics with respect to the nonlinear filtgypro- achieves better results on a series of benchmark images.

cess and utilize it for the approximation. This is done with- Bounds on the SNR of the optimal strategy (which we esti-

out assuming any knowledge of the clean image. Our methotdhte) and the one used by ROF [18] are presented. These are



proved for all signal and noise pairs which obey a strong dec®eplacingV (v + eh) by V (v) + €2V (h) + 2ecov(v, h) we get
relation property (10) and a non-enhancement property, (11)

with respect to the process. Further studies may extend tQJX%cov(v, h) >

framework by finding new bounds and relations or, perhaps,

/ (®(|Vu|) — ®(|V(u — €h)])) d2=Ae*V (h).
by Q

using more relaxed assumptions. At this stage, we have Wiplacingh by « and dividing both sides bywe get
found a numerical example where these assumptions are vio-

lated.

We should also comment that the SNR criterion is not always

in accord with human-based subjective criteria of qualitgle
uations. For the purpose of achieving this, other, moreistiph
cated criteria, may also be applied for parameter seleasorgy

the spirit of the methods presented here. For a recent rapert

1
2 cov(v, u) > —
€

/Q (®(|Vu|) — 2(|V(u — eu)|)) dQ—XeV (u).

In the limit ase — 0, the right term on the right-hand-side
vanishes. Sincé is increasing, the term in the integral is non-
negative.

plying this method to a generalized Hilbert-space SNR werref
the reader to [2]. Thus, whereas the criterion developedpnd cov(s, u), cov(n, u)

plied in this study yields sufficiently promising resultsmay

Let us first examine an equivalent minimization problem to

be further elaborated and, perhaps, combined with additiofninimizing (4). Sincev = s + n — u, thenu that minimizes

criteria under the variational framework.

We have restricted the analysis, for practical reasonsx-to e

amination of the widely-studied classical case of additiite

Gaussian noise. Filtering other types of additive and uncor
related noise may be analyzed in a similar manner. General-

izations to other regularization processes, and to naastaly
spatially varying parameters [8], are under current irigast
tion.

APPENDIX
PROOF OFTHEOREM 1

The covariance matrix o/ = (f,s,n,u,v)” has 25 ele-
ments. Since cdy,r) = cov(r,q), the matrix is symmetric.
The diagonal is the variance of each element, which is noa n
ative. Therefore we have to check the covariance of the 10
ments of the upper right triangle.

We recall the identity

cov(q + 7,5 +t) = cov(gs) + cov(qt) + cov(rs) + cov(rt).

In the sequel we consider all 10 possible signal pairs ana sho

that their covariance is non-negative.

cov(s, n), cov(f,s), cov(f,n)

Sinces andn are not correlated, we have deyn) = 0,
cov(f,s) = cov(s +n,s) = V(s) > 0, cov(f,n) = cov(s +
n,n) =V(n) > 0.

cov(u, v), cov(f,u), cov(f,v)

Once we prove cdw,v) > 0, then we readily have
cov(f,u) cov(u + v,u) = V(u) + cov(u,v) > 0 and
cov(f,v) = cov(u + v,v) = V(v) + cov(u, v) > 0.

We follow the spirit of the proof of Meyer [12]. As the, v)

decomposition minimizes the energy of Eq. (4), we can Wri'@imilarly the opposite case cov,ust")

for any functionh € BV and scalak > 0 the following in-
equality:

J

O(|Vu|)dQ+AV (v).
(26)

O(|V(u—eh))dQU+AV (v+e€h) > /
Q

e
ele
C

Fs is

= argmin{ [, ®(|Vu|)dQ + AV (s +n —u)}
argmin,{ /o, ®(|Vu|)dQ + A(V(s) + V(n) + V(u)
+2cov(s,n) — 2cov(s, u) — 2cov(n, u))}.

We can disregard expressions that do not invelhand, there-
fore, the equivalent energy functional to be minimized is:

Es(u) /Q O(|Vu])dQ+A(V (u) —2cov(s, u) —2com(n, u)),

(27)
whereu, = argmin,{ £ (u)}. Since coys, u) + cov(n,u) =
cov(f,u) > 0 at least one of the terms c@vu) or coMn, u)
must be non-negative. We will now show, by contradiction,
that it is not possible that the other term be negative. Let us
?%sume, without loss of generality, that ¢caw**") > 0 and
ov(n, u®T™) < 0. We denote the optimal (minimal) energy of
(27) with f = 5+ n asE%|;—s1. The energy can be written
as

E$|f:s+n = E'i>|f:s+n (uern)

= [o (| Vusrt)dQ + AV (ust™)  (28)
—2coV(s, u*T") — 2cov(n, ust™m)).
On the other hand, according to condition (10), @dyn) =0

and we have

EAq>|f:A5+n(uS) = Jo @(|Vur])d + AV (u®) — 2cov(s, u®))
= Eglf=s < Ea|j=s(u"*")
= [ @(|Vust)dQ + A\(V (u¥T") — 2cov(s, u®™)).

In the above final expression, adding the term
—X2cov(n,u*T") we obtain the right hand side of ex-
pression (28). Since we assume @aw*") < 0, we get the
following contradiction

E@“f:sﬁLn(us) < E;) | f=s+n-

> 0 and

cov(s,u®t™) < 0 is not possible.

cov(s,v), cov(n,v)
This follows directly from condition (11) as c@y,s) =
cov(u, s) + cov(v, s) and co\ f, n) = cov(u,n) + cov(v,n).
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PROOF OFPROPOSITION4
Proof:

Partl: Eg

Let us definguy,, vy, ) as the solution foFg with A = Ao.
Then for any\ = A\g — ¢, where0 < € < \g, we have

Eq)|)\0 = fQ \Vu,\0| dQ+/\0V(U)\O)
> fQ (|[Vux, NdQ 4+ (Ao — €)V (va,)
> ming,,) o ®(|Vul)dQ+ (Ao — €)V (v)
= ‘)\U —e-
Partll: F,, F,

We examine both energies together and show that the only4

possible option is that’, decreases and, increases as\

decreases. Let us state the four possible optionsa ae-

creases:

(a) E, isincreasing and’, is nondecreasing.

(b) E, is nonincreasing anf, is decreasing.

(c) E, isincreasing ands, is decreasing.

(d) E, isnonincreasing anfl,, is nondecreasing.

Option (a) is contradicted by setting the pé&ir,,, vy,) in the

energy withA = )y — ¢, reaching the contradictiof, (u,,) +

(Mo —€)Ey(va,) < Ea|r,—e. Option (b) is contradicted by set-

ting the pair(uy,—., vx,—) in the energy withA = Xy, reach-

ing the contradictiorE, (ux,—c) + Ao Ey(Vag—c) < Ea|aq-
Option (c) is somewhat more subtle. We assume that

E,(vy,—.) decreases by some meas#ie> 0. ThenE, must

be bounded byZ,, (vx,—c) < Eyu(vy,) + €K, (else we reach an

immediate contradiction similar to option (a)). In this eage

get the following inequalities

(U)\U E) + >\OE'U (U)\(J—E)

< Eu(u)\o) + EKE + AOEq)(UAO—e)

=FE, (’LL)\O) +eK + ()‘0 - 6)(EU(UA0) -
+e(Ey(va,) — Ke)

= EU(U’)\O) + )\OEU(UAO) -

K,)
()\0 — E)KE.

Since the terniAo —€) K. is positive we reach the contradiction
Eu(ux\ofe) + )\OE’U (’U/\ofe) < E<I>|)\0-

Option (d) is, therefore, the only valid one. ]

DETAILED ALGORITHMS

We give below the general algorithm that covers both denois-
ing methods (energy-based / time-flow) and both estimations
(direct / indirect). When there is a difference in the alduorit
we write the energy-based first and the time-flow second in
curly brackets:{Energy}{Flow}. Explanations about param-
eters and a few remarks appear hereafter.

Main
1) Parametersszp, N, {\°, A\ }{DT}.
2) SetEcov® =0,v° =0,i=0.
3) Initialize according to method.
4) Loop
a)i—i+1, A= NI

b) Computeu’ by {Eq. (4) with\? (useu'~! as initial
approximation}{Eq. (21), evolvingu‘~! by DT'}.
c) vt f—ul.
d) DEcov® « Estimated covariance derivative ac-
cording to method.
e) until (DEcov’ < £ (or (i = N,))
5) (If direct method, remove patch fron)
6) Returnu—!

Direct method

Initialization: adding a patch to the right of the image.

1) mc < mean value of right column of image.

2) ny,(k,1) < patch of random noise with varianeg.

3) fp(k,l) — mc+ny(k,1)

) [ < [ffp] (concatenate patch to right of image). We
defineQ2 = Qy U ,,, where), contains the input image
andf2, contains the patch.

Estimation of covariance:

1) U;‘pr— f‘Q”, — ui‘QP.
2) Ecov' «< v,,n, > (discrete covariance, see (29)).
3) DEcovt « (Ecovt — Ecov'™1)/(V (v?) — V(vi=1)).

Indirect method

acev(n,v

Precomputing a discrete estimationgfw’t}).
1) Parameterss?, N, szp, {\o, A }{DT}.
2) f < noise patch.
3) Loop ( «— 1;itT;4 < N,)
a) {\— XTI\
b) Computeu’, " as in Main.
c) Ecov' —< ', f > (see (29)).
d) DEcovpre (Ecovt — Ecov'=1)/{(\!
ANTHHDTY

«—

4) Return vectoD Ecovpy.
Estimation of covariance:

1) DEgovi — DEcov),. - {(\' = X""YHDT}/(V(v*) -
V(vi=1y).

Remarks

o Parameters (in brackets are values used for processing nat-

ural images):
1) szp - size of patch (direct 10x (image length) pix-
els, indirect80 x 80 pixels).
- number of precomputed points, that is different
A values or time-points for indirect method (30). The
main loop should do at mo$¥,, iterations.
3) A% -initial A (1), ), - ratio of successiva (0.9).
4) DT - time between consecutive timepoints. (We
usedDT = 0.6, 3 iterations ofdt = 0.2 (where
dt < CFL)).
It is important to note that this parameters mainly control
the step resolution and no tuning is needed for different
images. We used the same values, in brackets, for our ex-
periments on natural images.

2) N,

« Discrete covariance:

<qr>= (29)

1
~ 2 (alk 1) —

k,l

Q(r(k,1) = 7),
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whereN is the number of pixels ig (or r). [20] L.A. Vese, S.J. Osher, “Modeling textures with total variation
« With regard to the indirect method, in the specific im- ~ minimization and oscillatory patterns in image processing”, J.
plementation presented here, where thealues / time Scientific Computing, 19, pp. 553-572, 2003.

. f th in oh | in th l{121] R.V. Vogel and M.E. Oman, “Iterative methods for total variation
points of the Main phase are exactly as in the Precom-" yoqiging, SIAM J. Scientific Computing, 17(1):227—238, 1996.
puting phase, one can actually omit the multiplication angd2] J. weickert, “A review of nonlinear diffusion filtering”, B. ter
division by {(\* — X*"H)}{DT} in the computation of Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Eds.),
DEcov and D Ecov,,. (we kept it to be consistent with Scale-Space Theory in Computer Vision, LNCS 1252, Springer,
our formulation). Berlin, pp. 3-28, 1997. =~ .
[23] J. Weickert,Anisotropic Diffusion in Image ProcessingCMI
Series, Teubner, Stuttgart, 1998.
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