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Estimation of Optimal PDE-based Denoising
in the SNR Sense

Guy Gilboa, Nir Sochen and Yehoshua Y. Zeevi

Abstract— This paper is concerned with finding the best PDE-
based denoising process, out of a set of possible ones. We focus ei-
ther on finding the proper weight of the fidelity term in the energy
minimization formulation, or on determining the optimal stopping
time of a nonlinear diffusion process.

A necessary condition for achieving maximal SNR is stated,
based on the covariance of the noise and the residual part. We
provide two practical alternatives for estimating this condition, by
observing that the filtering of the image and the noise can be ap-
proximated by a decoupling technique, with respect to the weight
or time parameters. Our automatic algorithm obtains quite accu-
rate results on a variety of synthetic and natural images, including
piecewise smooth and textured ones. We assume that the statis-
tics of the noise were previously estimated. No a-priori knowledge
regarding the characteristics of the clean image is required .

A theoretical analysis is carried out, where several SNR per-
formance bounds are established for the optimal strategy and for
a widely used method, wherein the variance of the residual part
equals the variance of the noise.

I. I NTRODUCTION

The use of Partial Differential Equations (PDE’s) to regu-
larize images is becoming a very active field of research. The
elegance of the formulation, frequently via the calculus ofvari-
ations, and the good results, attract researchers and usersalike.
For some comprehensive studies and background on the subject
see [1], [23], [4], [17], [22] and the references therein. Invari-
ably, these methods require the determination of a parameter
in the process. This parameter is the time, or number of iter-
ations, in diffusion-like processes, or the weight of the fidelity
term of the energy functional in the calculus of variations ap-
proach. In both cases, a simplification of the image is achieved
via a parameter-dependent PDE. It is desirable that the “true”
signal will not be degraded in the process of this simplification
while noise is removed. In fact, both noise AND signal are be-
ing altered in the process. The fact that the signal is affected is
clear, since an image without noise is also altered in the process.
The PDE’s are constructed to reduce noise level at a faster rate
than the piecewise smooth image parts are affected. Yet, the
process must be stopped before the structure of the image has
been modified too much, for example textured segments have
become smooth.

It is thus important to determine what is the optimal point
of stopping the process. This question is imperative, but, sur-
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prisingly, was seriously addressed in the context of PDE-based
image processing only by a few studies [11], [18], [24].

We derive a necessary condition for optimality in the Signal-
to-Noise Ratio (SNR) sense. From a practical viewpoint, the
condition suggests a numerical method that should be followed
for the purpose of maximizing the SNR of the filtered image.
Two algorithms for the parameter calculation are proposed,
based on the above condition, yielding fairly accurate estimates.
From a theoretical viewpoint, this facilitates the computation of
upper and lower bounds of the optimal strategy.

Next, we present an analysis of the optimal parameter from a
SNR viewpoint. We also examine the popular denoising strat-
egy, based on Morozov’s discrepancy principle [13], used in
the field of regularization theory. This method was most no-
tably used in variational image processing in the seminal Rudin-
Osher-Fatemi paper [18]. The selection of the weight of the fi-
delity term is such that the variance of the residual part equals
that of the noise. A lower bound on the SNR performance of
this strategy is established, as well as a proof of non existence
of an upper bound. Examples which illustrate worst- and best-
case scenarios are presented and discussed.

We demonstrate our method and show its advantages with
respect to the methods of [18], [11] and [24].

Our main focus in this paper is on variational denoising (Sec-
tions II-V). In Section II we present the variational denoising
model and derive the optimality condition. Two practical meth-
ods are provided for the approximation of this condition in Sec-
tion III. In Section IV an analysis of the SNR performance is
carried out, where lower and upper bounds are established. In
Section V we present numerical results on a set of benchmark
images. Similar methods are applied to diffusion-like processes
in Section VI. A detailed comparison to other stopping criteria
is presented. The comparison is carried out from both theoret-
ical and empirical viewpoints. Conclusions and future direc-
tions are discussed in Section VII. Proofs and details of the
algorithms are provided in the appendix. A short version of the
ideas presented here can be found in [10].

II. D ENOISING MODEL AND OPTIMALITY CONDITION

We try to solve the additive noise model, where the input
signalf is composed of the original signals and additive un-
correlated noisen of varianceσ2:

f = s + n. (1)

Our aim is to find a decompositionu, v such thatu approxi-
mates the original signals andv is the residual part off :

f = u + v. (2)
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We accomplish this decomposition by minimizing the follow-
ing energy function:

ẼΦ(u) =

∫

Ω

(

Φ(|∇u|) + λ̃(v)2
)

dΩ. (3)

Φ is assumed to be convex. For a convexΦ the solution(u, v)
exists and is unique [1]. More explanations and examples re-
garding this type of regularization can be seen e.g. in [18],[6],
[1], [21], [22], [8], [16]. Some of the following results arealso
applicable to the more general case of monotonically increasing
Φ. This holds as long asΦ is regularized so that a minimizer
exists (such as in the discrete case or by convolving the gradi-
ent) and is unique. For the sake of simplicity we remain in the
convex framework.

The condition
∫

Ω
fdΩ =

∫

Ω
udΩ is set, (corresponding to

the Neumann boundary condition of the evolutionary equa-
tions). This yields

∫

Ω
vdΩ = 0. Rescalingλ̃ by the area of

the domain|Ω|: λ = λ̃|Ω|, we get

EΦ(u, v) =

∫

Ω

Φ(|∇u|)dΩ + λV (v), f = u + v. (4)

whereV (q) is the variance of a signalq

V (q)
.
=

1

|Ω|

∫

Ω

(q − q̄)2dΩ,

andq̄ is the mean value

q̄
.
=

1

|Ω|

∫

Ω

qdΩ.

The covariance of two signals is defined as

cov(q, r)
.
=

1

|Ω|

∫

Ω

(q − q̄)(r − r̄)dΩ.

Note that these quantities are based on the empirical definitions,
and therefore could be measured for a given image. We recall
the identity

V (q + r) = V (q) + V (r) + 2cov(q, r).

The SNR of the recovered signalu is defined as

SNR(u)
.
= 10 log

V (s)

V (u− s)
= 10 log

V (s)

V (n− v)
, (5)

wherelog
.
= log10. The initial SNR of the input signal, denoted

by SNR0, where no processing is carried out (u = f , v = 0),
is according to (5) and (1):

SNR0
.
= SNR(f) = 10 log

V (s)

V (n)
= 10 log

V (s)

σ2
. (6)

A. Condition for Optimal SNR

We proceed by developing a necessary condition for the op-
timal SNR. In this convex problem we have a single degree
of freedom of choosingV (v) [1], [3]. We therefore can re-
gard the SNR as a function,SNR(V (v)), and assume that it is
smooth (see examples of SNR functions of different images in

Fig. 8). A necessary condition for the maximum in the range
V (v) ∈ (0, V (f)) is:

∂SNR

∂V (v)
= 0. (7)

RewritingV (n − v) asV (n) + V (v) − 2cov(n, v), and using
(7) and (5), yields

∂cov(n, v)

∂V (v)
=

1

2
. (8)

The meaning of this condition may not appear at first glance
to be very clear. We therefore resort to our intuition: let us
think of an evolutionary process with scale parameterV (v). We
begin withV 0(v) = 0 and increment the variance ofv by a
small amountdV (v), so that in the next stepV 1(v) = dV (v).
The residual part off , v, contains now both part of the noise
and part of the signal. As long as in each step the noise is
mostly filtered, that is∂cov(n,v)

∂V (v) > 1
2 , then one should keep

on with the process and the SNR will increase. When we reach
the condition of (8), the noise and the signal are equally filtered
and one should therefore stop. If filtering is continued, more
signal than noise is filtered (in terms of variance) and the SNR
decreases.

There is also a possibliblity to have the maximum at the
boundaries: If the SNR is dropping from the beginning of the
process, we have∂cov(n,v)

∂V (v) |V (v)=0 < 1
2 and the optimal SNR

is SNR0. The other extreme case is when the SNR increases
monotonically and is maximized forV (v) = V (f) (the trivial
constant solutionu = f̄ ). We shall see later (Proposition 3) that
this can only happen whenSNR0 is negative or, equivalently,
whenV (s) < σ2.

In light of these considerations, provided that one can es-
timate cov(n, v), our basic numerical algorithm should be as
follows:

1) Set cov0(n, v) = 0, V 0(v) = 0, i = 1.
2) V i(v)← V i−1(v) + dV (v). Compute covi(n, v).

3) If covi(n,v)−covi−1(n,v)
dV (v) ≤ 1

2 then stop.
4) i← i + 1. Goto step 2.

We will now suggest two ways to approximate the covariance
term.

III. E STIMATING THE OPTIMAL SOLUTION

In order to approximate cov(n, v), we need an estimate of
the noise. We may try to use only segments of the image where
we have high confidence that we are able to distinguish between
the noise and the image. These are typically the smooth regions.
The problem is that normally we do not know in advance which
regions of the image are smooth and which are not.

Our observation is that the extent of filtering of additive
noise, with respect toλ, is not affected much by the underly-
ing images. What mainly affects the denoising performance
is the extent of filtering ofs. This property is very natural in
the linear case:h ∗ f=h ∗ (s + n)=h ∗ s + h ∗ n, whereh is
the filtering kernel, and∗ denotes convolution. We show that in
some sense a similar decoupling can be applied to the nonlin-
ear case. Currently, we investigate the possibility to obtain an
analytic expression for the approximation error.
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Fig. 1. Illustration of the direct (patch) method. Left: input imagef . Right: a
patch of pure noise with statistics similar ton is attached to the right side off .

A. Direct Estimation

We assume that we have access to a source of a synthetic
noise generator. Instead of finding regions in the image where
we can estimate the noise, we simply extend the image with a
”noise patch”. This patch is an extension of the image in one
direction, by a constant function with additive noise of variance
σ2 (as previously mentioned, we assume the noise variance is
known a-priori or could be well estimated beforehand). [See
Fig. 1.] Knowing, for this patch, bothv andn, we can com-
pute their covariance. Note that althoughcov(n, v) is estimated
based on the patch,V (v) is measured in the usual way based on
the original image domain.

B. Indirect Estimation
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Fig. 2. Precomputed function for indirect estimation.∂cov(n, v)/∂λ is
plotted as a function ofλ (log scale). Graphs depict plots for values ofσ:
5, 10, 15, 20, from upper curve to lower curve, respectively.

Another way of estimating cov(n, v) is by an indirect man-
ner, which does not rely on physically attaching a synthetic
patch to the image. Consequently, some minor inferences,
which may occur on the image-patch boundary, and which
cause some side affects on the processed image near the patch
and which affect the computations carried within the patch,are
avoided.

The idea is to separate the computation to two phases. A
patch of noisẽn with similar statistics ton is processed and
cov(ñ, v) is measured with respect toλ. For the case of white
Gaussian noise, onlyσ2 should be estimated in order to gener-
ate ñ. Then the input image is processed and the behavior of
λ with respect toV (v) is measured. Combining the informa-
tion, it is possible to approximate how cov(n, v) behaves with

respect toV (v). In other words, we use the chain-rule for dif-
ferentiation:

∂cov(n, v)

∂V (v)
=

∂cov(n, v)

∂λ

∂λ

∂V (v)

≈ ∂cov(ñ, v)

∂λ
|f=ñ

∂λ

∂V (v)
|f=s+n.

(9)

The first term on the right-hand-side is a precomputed function,
or in the discrete case ofλ can be regarded as a look-up table
(see Fig. 2). The second term is computed while the image is
being processed.

In this scheme we rely on a very simplistic assumption that
we can estimate the behavior of cov(n, v) of any image based
on the very degenerate case where the image is simply pure
noise. Quite extraordinarily, our numerical experiments show
that the estimations are not so far from the ground truth (see
Fig. 8, right side). A more comprehensive approach may ac-
commodate the computation of the function∂cov(n,v)

∂λ
based on

a representative collection of natural images.
Numerical examples of both estimation methods are shown

in Section V.

IV. SNR BOUNDS FOR THESCALAR Φ PROCESS

In this section we address a few theoretical issues and provide
some bounds on the standard and optimal methods.

Let us denoteuz as the solution of (4) forf = z. For exam-
ple,us is the solution wheref = s.

The decorrelation assumption is taken also betweens andn
with respect to theΦ process:

cov(us, n) = 0, cov(un, s) = 0, ∀λ ≥ 0. (10)

We further assume that theΦ process applied tof = s+n does
not amplify or sharpen eithers or n. This can be formulated in
terms of covariance as follows:

cov(us+n, s) ≤ cov(f, s), cov(us+n, n) ≤ cov(f, n),
∀λ ≥ 0.

(11)
Both of the above assumptions were verified numerically on a
collection of natural images.

We are investigating the possibility to characterize in an ana-
lytical manner the appropriate spaces ofs andn such that (10)
and (11) are followed. In this paper this question is left open
and we resort to the following definition:

Definition 1—(s, n) pair: An (s, n) pair consists of two un-
correlated signalss andn which obey conditions (10) and (11).

Theorem 1:For any(s, n) pair and an increasingΦ (Φ′(q) >
0,∀q ≥ 0) the covariance matrix ofU = (f, s, n, u, v)T has
only non-negative elements.
For proof see the appendix. Theorem 1 implies that the denois-
ing process has smoothing properties and that, consequently,
there is no negative correlation between any two elements of
U . This basic theorem will be later used to establish several
bounds in our performance analysis.

Let us define the optimal SNR of a certainΦ process applied
to an input imagef as:

SNRopt
.
= max

λ
SNR(uλ), (12)
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whereu = uλ attains the minimal energy of (4) with weight
parameterλ (for a given f , v is implied). We denote by
(uopt, vopt) the decomposition pair(u, v) that reachesSNRopt,
and defineVopt

.
= V (vopt).

Equivalently, the desired variance could be set asV (v) = P ,
whereP is some constant, and then (4) is reformulated to a
constrained convex optimization problem

min
u

∫

Ω

Φ(|∇u|)dΩ subject toV (v) = P. (13)

In this formulationλ is viewed as a Lagrange multiplier. The
valueλ can be computed using the Euler-Lagrange equations
and the pair(u, v):

λ =
1

P

∫

Ω

div

(

Φ′(|∇u|) ∇u

|∇u|

)

vdΩ. (14)

The problem then transforms to which valueP should be im-
posed (see [3], [1] for details).

A popular denoising strategy ([13], [18]) is to assumev ≈ n
and therefore impose

V (v) = σ2. (15)

We define
SNRσ2

.
= SNR(u)|V (v)=σ2 , (16)

and denote by(uσ2 , vσ2) the (u, v) pair that obeys (15) and
minimizes (4). We shall now analyze this method for selecting
u in terms of SNR.
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Fig. 3. Approaching best-case scenario in piece-wise constant images. In this
example, forV (v) = σ2, the SNR increases by almost20dB from 19.9dB to
39.6dB (the variance of the noise is≈ 1

100
of the input noise). Top:f (left),

u (right). Bottom:v (left), SNR as a function ofV (v)/σ2 (right). In this case
Vopt = 1.02σ2, SNRopt = 40.2dB.

Proposition 1—SNR lower bound:Imposing (15), for any
(s, n)-pair,SNRσ2 is bounded from below by

SNRσ2 ≥ SNR0 − 3dB, (17)
where we use the customary notation3dB for 10 log10(2).
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Fig. 4. Approaching worst-case scenario in a checkered-board image. For
V (v) = σ2, the SNR decreases by almost3dB from 19.9dB to 17.0dB. Top:
f (left), u (right). Bottom:v (left), SNR as a function ofV (v)/σ2 (right).

Proof: From Theorem 1 we have cov(n, v) ≥ 0, there-
fore,

SNRσ2 = 10 log V (s)
V (n−v)

≥ 10 log V (s)
V (n)+V (v)

= 10 log V (s)
2σ2

= SNR0 − 3dB.

The lower bound of Proposition 1 is reached only in the very
rare and extreme case where cov(n, v) = 0. This implies that
only signal components were filtered out and no denoising was
accomplished.

Proposition 2—SNR upper bound:Imposing (15), there
does not exist an upper bound0 < M < ∞, where
SNRσ2 ≤ SNR0 + M , that is valid for any given(s, n) pair.

Proof: To prove this we need to show only a single case
where the SNR cannot be bounded. Let us assumeV (s) = hσ2,
0 < h < 1. ThenSNR0 = 10 log h. Since the signal and
noise are not correlated, we haveV (f) = V (s) + V (n) =
(1 + h)σ2. We can writeV (f) also asV (u + v) = V (u) +
V (v) + 2cov(u, v). From (15),V (v) = σ2, and from Theorem
1, cov(u, v) ≥ 0, thereforeV (u) ≤ hσ2. Since cov(u, s) ≥ 0
(Theorem 1) we getV (u− s) ≤ 2hσ2. This yieldsSNRσ2 ≥
10 log 1

2 and

SNRσ2 − SNR0 ≥ 10 log
1

2h
.

Thus, for anyM we can choose a sufficiently smallh where the
bound does not hold.

Simulations that illustrate worst- and best-case scenarios are
presented in Figs. 3 and 4. A signal that consists of a single
very contrasted step function is shown in Fig. 3. This example
illustrates a best-case scenario for an edge preservingΦ. SNR
resulting from the PDE-based denoising is greatly increased (by
∼ 20dB). Note that this case approximates an ideal decompo-
sition, u ≈ s, v ≈ n, which differs from the simple case used
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Fig. 5. Visualization of Theorem 2: Upper bound ofSNRopt − SNR0 as a
function ofVopt/σ2. ForVopt → σ2 the bound approaches∞.

in the proof of Proposition 2. A worst-case scenario is illus-
trated in Fig. 4 by means of the Checkered-board example. A
very oscillatory signals is being denoised and, in the process, is
heavily degraded. The reduction in SNR, compared toSNR0,
is∼ 2.9dB, close to the theoretical3dB bound.

A. Regular SNR

Our experience shows that in these well-behaved denoising
processes the SNR does not oscillate and has a single maxi-
mum. We use this significant observation for our estimation
procedures and would like to assume this property also for the
theoretical analysis. Let us define first the SNR regularity:

Definition 2—Regular SNR:We define the function
SNR(V (v)) as regular if (8) is a sufficient condition for
optimality or if the optimum is at the boundaries.

Proposition 3—Range of optimal SNR:If the SNR is regu-
lar, then for any(s, n) pair0 ≤ Vopt ≤ 2σ2.

Proof: Let us first show the relation cov(n, v) ≤ σ2:
cov(n, f) = cov(n, n + s) = V (n) + cov(n, s) = σ2. On the
other hand cov(n, f) = cov(n, u+v) = cov(n, u)+cov(n, v).
The relation is validated by using cov(n, u) ≥ 0 (Theorem 1).

We reach the upper bound by the following inequalities:

σ2 ≥ cov(n, v)|Vopt
=

∫ Vopt

0
∂cov(n,v)

∂V (v) dV (v) ≥
∫ Vopt

0
1
2dV (v) = 1

2Vopt.

The second inequality is based on the fact that∂cov(n,v)
∂V (v) ≥ 1

2

for V (v) ∈ (0, Vopt), when the SNR is regular.
The lower bound Vopt = 0 is reached whenever

∂cov(n,v)
∂V (v) |V (v)=0 < 1

2 .
Theorem 2—Bound on the optimal SNR:If the SNR is regu-

lar, then for any(s, n) pair andVopt ∈ {[0, σ2), (σ2, 2σ2]},

0 ≤ SNRopt − SNR0 ≤
{

−10 log(1 + Vopt/σ2 − 2
√

Vopt/σ2), 0 ≤ Vopt < σ2

−10 log(Vopt/σ2 − 1), σ2 < Vopt ≤ 2σ2

(18)
Proof: By the SNR definition, (5), and expanding the

variance expression, we have

SNRopt − SNR0 = 10 log(
σ2

σ2 + Vopt − 2cov(n, vopt)
).

(19)
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Fig. 6. Denoising part of the Boats image. Top row:s (left), f (right). Middle
row: u by our direct estimation (left),u by standard method (V (v) = σ2,
right). Bottom row: SNR (left), and∂cov(n, v)/∂V (v) (right) as a function of
V (v)/σ2.

For the lower bound we use the relation shown in Proposition
3: cov(n, vopt) ≥ 1

2Vopt. For the upper bound we use two
upper bounds on cov(n, vopt) and take their minimum. The
first one, cov(n, vopt) ≤ σ

√

Vopt, is a general upper bound on
covariance. The second relation, cov(n, vopt) ≤ σ2, is outlined
in Proposition 3.

A plot of the upper bound of the optimal SNR with respect
to Vopt/σ2 is depicted in Fig. 5.

In practice, the flow is not performed by directly increasing
V (v), but by decreasing the value ofλ. Therefore, it is instruc-
tive to check the change ofV (v), as well as the other ener-
gies,with respect to a change inλ. In the next proposition we
show that asλ decreases the total energyEΦ strictly decreases,
the energy termEv(v)

.
= V (v) increases whereas the energy

termEu(u)
.
=

∫

Ω
Φ(|∇u|)dΩ decreases.

Proposition 4—Energy change as a function ofλ: The
energy parts of Eq. (4) vary as a function ofλ as follows:

∂EΦ

∂λ
> 0,

∂Ev

∂λ
≤ 0,

∂Eu

∂λ
≥ 0. (20)

The proof is in the appendix.

V. VARIATIONAL DENOISING EXPERIMENTS

We compare our two methods for findingλ with the standard
method of imposing (15) and with the optimalλ, which maxi-
mizes the SNR. Six classical benchmark images are processed:
Cameraman, Lena, Boats, Barbara, Toys and Sailboat. The
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Fig. 7. Top row:f . Second row:s (left), n. Third row: u (left), v by our
indirect estimation. Bottom row:u (left), v by standard method (V (v) = σ2).

Ours Ours
Image SNR0 SNRopt SNRσ2 SNRdir SNRind

Cameraman 15.86 19.56 19.32 19.50 19.50
Lena 13.47 18.19 17.65 18.13 18.18
Boats 15.61 20.23 19.83 20.16 20.22
Barbara 14.73 16.86 16.21 16.73 16.64
Toys 10.00 17.69 17.29 17.66 17.65
Sailboat 10.36 15.51 15.16 15.48 15.48

Average
difference
from
SNRopt 4.67 N/A 0.43 0.06 0.06

TABLE I
COMPARISON OF METHODS PRESENTED IN SECTIONIII: D ENOISING

RESULTS OF SEVERAL IMAGES WIDELY USED IN IMAGE PROCESSING. THE

ORIGINAL IMAGES WERE DEGRADED BY ADDITIVE WHITE GAUSSIAN

NOISE (σ = 10) PRIOR TO THEIR PROCESSING.
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Fig. 8. SNR as a function ofV (v)/σ2 (left). dcov(n, v)/dV (v) as a function
of V (v)/σ2 (right), as computed by indirect estimation (solid) and the ground
truth (dashed). Graphs depict processing of the following natural images (from
top): Cameraman, Lena, Toys, Boats.

summary of the results is shown in Table I. Both of our methods
are quite close to the optimal denoising (less than0.1dB differ-
ence on average) and perform better than the standard scheme.

In Figures 6 and 7 results are shown for the direct and indirect
estimations, respectively. Qualitatively, the proposed method
(with both estimation techniques) tends to better preservethe
textural information than the standard method.

We usedΦ(s) =
√

1 + s2, which can be viewed as the
Vogel-Oman [21] regularization of TV [18] withε = 1 or the
Charbonnier [5] process. The image grey-level range is1 : 256
so edges are well preserved. Other details about this experiment
can be found in the appendix.

In Fig. 8 the termsSNR(u) and∂cov(n,v)
∂λ

are plotted as func-
tions of the normalized varianceV (v)/σ2. It is apparent that
the SNR is smooth and behaves regularly, in accordance with
our assumptions. An interesting phenomenon is that the covari-
ance derivative estimation tends to be more accurate near the
critical point where∂cov(n,v)

∂V (v) = 1
2 . Naturally, this is advanta-

geous to our algorithm. We currently have no explanation for
this behavior.
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VI. EVOLUTIONARY FLOWS

The process of the estimation of the optimal solution can be
similarly formulated in evolutionary flows that do not have a
fidelity term, e.g. [15], [23], [24], [11], [9]. We refer the reader
to [16], [19] to learn more on the close connections between
variational denoising and nonlinear diffusion methods, and the
similar role of the weight and time parameters. In the evolution-
ary case one has to select the best stopping timeT . Our defi-
nitions are changed somewhat, but essentially have the same
sense. The process is

ut = div(c(|∇u|)∇u), u|t=0 = f, (21)

wherec(|∇u|) is the adaptive diffusion coefficient. For convex
processes one has to validate that

∫ s

0
c(q)qdq is convex [1]. We

definev(x; t) = f(x) − u(x; t). In this formulationdV (v) is
defined asdV (v(t)) = V (v(t)) − V (v(t − dt)). Other simi-
lar changes in notations are straightforward. For example,the
indirect estimation of Eq. (9), for evolutionary flows is

∂cov(n, v)

∂V (v)
≈ ∂cov(ñ, v)

∂t
|f=ñ

∂t

∂V (v)
|f=s+n. (22)

The detailed algorithm for implementing this method is in the
appendix.

A. Comparison to Previous Stopping Mechanisms

A comprehensive study of the stopping time problem is dis-
cussed in [11]. Here we relate to the most recent method pro-
posed by Mrazek and Navara [11] and the more classical one
suggested by Weickert in [24].

The former aims at finding the point in time of minimal cor-
relation betweenu andv:

T = argmint {corr(u(t), v(t))} , (23)

where

corr(u, v)
.
=

cov(u, v)
√

V (v)V (u)
.

The underlying assumption of the method is thatv carries most
of the noise at the beginning of the denoising process. As
corr(s, n) = 0 it is argued that a reasonable decomposition
would be at a time where the correlation betweenu andv is
minimal (in practice, the first local minimum is sought).

Weickert’s method requires that

V (u(T ))

V (f)
=

1

1 + V (n)/V (s)
(24)

or equivalentlyV (u) = V (s), which can also be written as

V (v) = V (n)− 2cov(u, v). (25)

All three methods of imposing (15), [11] and [24], work well
on piecewise smooth images (without fine-scale features). In all
three methods the decomposition is nearV (v) = V (n), which
approaches the optimal decomposition in these cases. Usingthe
method of [24] the process is often stopped considerably before
the optimal time.

The other approaches differ from each other and from our
proposed method in the non-ideal cases of most natural images,
where images contain textured regions and fine details.

The main advantage of the method proposed in [11] is that no
knowledge of the noise variance is required. It is also easy to
compute, without any need for estimations. It is, however, not
always practical to use this method for all classes of images.
If the denoising process smoothes also some significant com-
ponents of the signal, such that we cannot assumev ≈ n, the
stopping criterion of (23) may produce undesirable results. Ac-
tually, its performance in terms of SNR, cannot be bound from
below such as is determined by Proposition 1. One can con-
struct examples where the stopping time should be neart = 0,
whereas corr(u, v) decreases for a very long duration. This can
be illustrated, for example, by the checkered-board image.The
curves of the SNR function and the correlation are depicted in
Fig. 10. In a more realistic example of processing the Barbara
image (Fig. 11), the results are not as extreme, but image is
considerably over-smoothed.

The method of [24] is similar in its spirit to imposing (15).
Here, though, the term2cov(u, v) is being deducted, resulting
in an early stopping of the process (especially whenu andv
are highly correlated as in the case of textured images). In any
case, the stopping time is in the ’safe’ regimeV (v) ≤ σ2 (and
thus its performance has a lower bound).
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Fig. 9. Processing a step image (as in Fig. 3). SNR plot as a function of t.
Stopping time is sufficiently close to the optimal selection byboth methods of
Mrazek-Navara and ours.

The differences between our method and those of [24] and
[11] are illustrated in In Figs. 11, 12 and 13. The Barbara im-
age, contaminated by additive white Gaussian noise (σ = 10)
is processed by the nonlinear diffusion equation (21), with
c(s) = 1/

√
1 + s2. The image contains smooth regions and

highly textured ones. This breaks the implicit assumption of
both [24] and [11], which regardsv as mostly containing noise.
In partly textured images,v contains both noise and texture.
In the case of [24], the term cov(u, v) is large, and the pro-
cess stops too early. In the case of [11], the consequences
are more severe and corr(u, v) is minimal only when the tex-
ture is smoothed out (see Fig. 12 for a plot of the correlation
function). In terms of SNR, applying the method of [11] to
this image results in a drop of more than3dB below SNR0.
The SNR results are:SNR0 = 14.73, SNRopt = 16.65,
SNRW = 16.19, SNRMN = 11.51, SNRGSZ = 16.59,
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Fig. 10. A checkered-board image (medium contrast) with noise: Top:
Left - SNR as a function oft, right - corr(u, v) as a function oft, bottom -
dcov(n, v)/dV (v) as a function oft. Whereas the criterion of Eq. (23) can-
not be used in this example (no local minimum near 0), our estimation of the
general criterion stated in Eq. (8) works well also on highlytextured signals
(stopping time isT = 0.12 versus the optimalTopt = 0.09).
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Fig. 11. Processing Barbara image. Left: SNR plot as a function of t. Right:
dcov(n, v)/dV (v) as a function oft.

which stand for the SNR of the input image, the optimal de-
noising, the method of [24] , the method of [11] and our direct
estimation method (attaching a “noise patch”), respectively. For
the image results see Fig. 13.

VII. C ONCLUSION

Most image denoising processes are quite sensitive to the
choice and fine tuning of various parameters. In order to reach
fully automatic denoising procedures, systematic methodolo-
gies for determining the appropriate parameters of a given im-
age are a prerequisite. This problem motivated us to develop
a new method for the optimal choice of the scale of interest, a
significant parameter in PDE-based denoising, representedby
the weight of the fidelity termλ in the variational formulation,
or by the stopping timeT in evolutionary processes.

Our criterion is to maximize the SNR, resulting from the ap-
plication of a PDE-based denoising process. We provide two
practical alternatives for estimating this condition, by observ-
ing that the filtering of the noise with respect to the weight or
the time parameters is in some sense decoupled of the filtering
of the clean image. Thus, we can study the behavior of a noise
with similar statistics with respect to the nonlinear filtering pro-
cess and utilize it for the approximation. This is done with-
out assuming any knowledge of the clean image. Our method
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Fig. 12. Processing Barbara image. corr(u, v) as a function oft. The mini-
mum is marked with ’X’. As seen in the SNR plot, the minimum correlation is
not attained near the time with the largest SNR.

Fig. 13. Effects of stopping criterion on processing results of different stopping
times, processing Barbara image (head part is shown). Top left: noisy imagef ;
Right - Weickert’s method (24). Bottom left: Mrazek-Navara (23), right - our
method of direct estimation.

yields with sufficient accuracy the first local maximum of the
SNR with respect to the variance of the residual partv. In prin-
ciple, there can be additional local maxima at larger scaleswith
higher values of SNR. In practice, however, we have not en-
countered a natural image nor managed to generate a synthetic
one, wherein the SNR depicts more than a single maximum.
Our experience leads us to the empirical conclusion that such
cases with peculiar SNR are quite rare in convex PDE-based
processing.

We compare the performance of our algorithm with the per-
formance of those obtained by means of previously proposed
algorithms [18], [11], [24] and demonstrate that our method
achieves better results on a series of benchmark images.

Bounds on the SNR of the optimal strategy (which we esti-
mate) and the one used by ROF [18] are presented. These are
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proved for all signal and noise pairs which obey a strong decor-
relation property (10) and a non-enhancement property (11),
with respect to the process. Further studies may extend this
framework by finding new bounds and relations or, perhaps, by
using more relaxed assumptions. At this stage, we have not
found a numerical example where these assumptions are vio-
lated.

We should also comment that the SNR criterion is not always
in accord with human-based subjective criteria of quality eval-
uations. For the purpose of achieving this, other, more sophisti-
cated criteria, may also be applied for parameter selectionusing
the spirit of the methods presented here. For a recent reportap-
plying this method to a generalized Hilbert-space SNR we refer
the reader to [2]. Thus, whereas the criterion developed andap-
plied in this study yields sufficiently promising results, it may
be further elaborated and, perhaps, combined with additional
criteria under the variational framework.

We have restricted the analysis, for practical reasons, to ex-
amination of the widely-studied classical case of additivewhite
Gaussian noise. Filtering other types of additive and uncor-
related noise may be analyzed in a similar manner. General-
izations to other regularization processes, and to nonstationary
spatially varying parameters [8], are under current investiga-
tion.

APPENDIX

PROOF OFTHEOREM 1

The covariance matrix ofU = (f, s, n, u, v)T has 25 ele-
ments. Since cov(q, r) = cov(r, q), the matrix is symmetric.
The diagonal is the variance of each element, which is non neg-
ative. Therefore we have to check the covariance of the 10 ele-
ments of the upper right triangle.

We recall the identity

cov(q + r, s + t) = cov(qs) + cov(qt) + cov(rs) + cov(rt).

In the sequel we consider all 10 possible signal pairs and show
that their covariance is non-negative.

cov(s, n), cov(f, s), cov(f, n)

Sinces and n are not correlated, we have cov(s, n) = 0,
cov(f, s) = cov(s + n, s) = V (s) ≥ 0, cov(f, n) = cov(s +
n, n) = V (n) ≥ 0.

cov(u, v), cov(f, u), cov(f, v)

Once we prove cov(u, v) ≥ 0, then we readily have
cov(f, u) = cov(u + v, u) = V (u) + cov(u, v) ≥ 0 and
cov(f, v) = cov(u + v, v) = V (v) + cov(u, v) ≥ 0.

We follow the spirit of the proof of Meyer [12]. As the(u, v)
decomposition minimizes the energy of Eq. (4), we can write
for any functionh ∈ BV and scalarε > 0 the following in-
equality:
∫

Ω

Φ(|∇(u−εh)|)dΩ+λV (v+εh) ≥
∫

Ω

Φ(|∇u|)dΩ+λV (v).

(26)

ReplacingV (v + εh) by V (v) + ε2V (h) + 2εcov(v, h) we get

2λεcov(v, h) ≥
∫

Ω

(Φ(|∇u|)− Φ(|∇(u− εh)|)) dΩ−λε2V (h).

Replacingh by u and dividing both sides byε we get

2λcov(v, u) ≥ 1

ε

∫

Ω

(Φ(|∇u|)− Φ(|∇(u− εu)|)) dΩ−λεV (u).

In the limit asε → 0, the right term on the right-hand-side
vanishes. SinceΦ is increasing, the term in the integral is non-
negative.

cov(s, u), cov(n, u)

Let us first examine an equivalent minimization problem to
minimizing (4). Sincev = s + n − u, thenu that minimizes
EΦ is

u = argminu{
∫

Ω
Φ(|∇u|)dΩ + λV (s + n− u)}

= argminu{
∫

Ω
Φ(|∇u|)dΩ + λ(V (s) + V (n) + V (u)

+2cov(s, n)− 2cov(s, u)− 2cov(n, u))}.

We can disregard expressions that do not involveu and, there-
fore, the equivalent energy functional to be minimized is:

ÊΦ(u) =

∫

Ω

Φ(|∇u|)dΩ+λ(V (u)−2cov(s, u)−2cov(n, u)),

(27)
whereu = argminu{ÊΦ(u)}. Since cov(s, u) + cov(n, u) =
cov(f, u) ≥ 0 at least one of the terms cov(s, u) or cov(n, u)
must be non-negative. We will now show, by contradiction,
that it is not possible that the other term be negative. Let us
assume, without loss of generality, that cov(s, us+n) ≥ 0 and
cov(n, us+n) < 0. We denote the optimal (minimal) energy of
(27) with f = s + n asÊ∗

Φ|f=s+n. The energy can be written
as

Ê∗
Φ|f=s+n = ÊΦ|f=s+n(us+n)

=
∫

Ω
Φ(|∇us+n|)dΩ + λ(V (us+n)

−2cov(s, us+n)− 2cov(n, us+n)).
(28)

On the other hand, according to condition (10), cov(us, n) = 0
and we have

ÊΦ|f=s+n(us) =
∫

Ω
Φ(|∇us|)dΩ + λ(V (us)− 2cov(s, us))

= Ê∗
Φ|f=s ≤ ÊΦ|f=s(u

s+n)
=

∫

Ω
Φ(|∇us+n|)dΩ + λ(V (us+n)− 2cov(s, us+n)).

In the above final expression, adding the term
−λ2cov(n, us+n) we obtain the right hand side of ex-
pression (28). Since we assume cov(n, us+n) < 0, we get the
following contradiction

ÊΦ|f=s+n(us) < Ê∗
Φ|f=s+n.

Similarly, the opposite case cov(n, us+n) ≥ 0 and
cov(s, us+n) < 0 is not possible.

cov(s, v), cov(n, v)

This follows directly from condition (11) as cov(f, s) =
cov(u, s) + cov(v, s) and cov(f, n) = cov(u, n) + cov(v, n).
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PROOF OFPROPOSITION4

Proof:

Part I: EΦ

Let us define(uλ0
, vλ0

) as the solution forEΦ with λ = λ0.
Then for anyλ = λ0 − ε, where0 < ε < λ0, we have

EΦ|λ0
=

∫

Ω
Φ(|∇uλ0

|)dΩ + λ0V (vλ0
)

>
∫

Ω
Φ(|∇uλ0

|)dΩ + (λ0 − ε)V (vλ0
)

≥ min(u,v)

∫

Ω
Φ(|∇u|)dΩ + (λ0 − ε)V (v)

= EΦ|λ0−ε.

Part II: Eu, Ev

We examine both energies together and show that the only
possible option is thatEu decreases andEv increases asλ
decreases. Let us state the four possible options asλ de-
creases:
(a) Eu is increasing andEv is nondecreasing.
(b) Eu is nonincreasing andEv is decreasing.
(c) Eu is increasing andEv is decreasing.
(d) Eu is nonincreasing andEv is nondecreasing.
Option (a) is contradicted by setting the pair(uλ0

, vλ0
) in the

energy withλ = λ0 − ε, reaching the contradictionEu(uλ0
) +

(λ0− ε)Ev(vλ0
) < EΦ|λ0−ε. Option (b) is contradicted by set-

ting the pair(uλ0−ε, vλ0−ε) in the energy withλ = λ0, reach-
ing the contradictionEu(uλ0−ε) + λ0Ev(vλ0−ε) < EΦ|λ0

.
Option (c) is somewhat more subtle. We assume that

Ev(vλ0−ε) decreases by some measureKε > 0. ThenEu must
be bounded byEu(vλ0−ε) < Eu(vλ0

) + εKε (else we reach an
immediate contradiction similar to option (a)). In this case we
get the following inequalities

Eu(uλ0−ε) + λ0Ev(vλ0−ε)
< Eu(uλ0

) + εKε + λ0Ev(vλ0−ε)
= Eu(uλ0

) + εKε + (λ0 − ε)(Ev(vλ0
)−Kε)

+ε(Ev(vλ0
)−Kε)

= Eu(uλ0
) + λ0Ev(vλ0

)− (λ0 − ε)Kε.

Since the term(λ0−ε)Kε is positive we reach the contradiction
Eu(uλ0−ε) + λ0Ev(vλ0−ε) < EΦ|λ0

.
Option (d) is, therefore, the only valid one.

DETAILED ALGORITHMS

We give below the general algorithm that covers both denois-
ing methods (energy-based / time-flow) and both estimations
(direct / indirect). When there is a difference in the algorithm
we write the energy-based first and the time-flow second in
curly brackets:{Energy}{Flow}. Explanations about param-
eters and a few remarks appear hereafter.

Main

1) Parameters:szp,Np, {λ0, λr}{DT}.
2) SetEcov0 = 0, v0 = 0, i = 0.
3) Initialize according to method.
4) Loop

a) i← i + 1, {λi ← λi−1λr}{} .

b) Computeui by {Eq. (4) withλi (useui−1 as initial
approximation)}{Eq. (21), evolvingui−1 by DT}.

c) vi ← f − ui.
d) DEcovi ← Estimated covariance derivative ac-

cording to method.
e) until (DEcovi < 1

2 (or (i = Np))
5) (If direct method, remove patch fromu)
6) Returnui−1

Direct method

Initialization: adding a patch to the right of the image.
1) mc←mean value of right column of image.
2) np(k, l)← patch of random noise with varianceσ2.
3) fp(k, l)← mc + np(k, l)
4) f ← [ffp] (concatenate patch to right of image). We

defineΩ = Ω0 ∪ Ωp, whereΩ0 contains the input image
andΩp contains the patch.

Estimation of covariance:
1) vi

p|Ωp
← f |Ωp

− ui|Ωp
.

2) Ecovi ←< vi
p, np > (discrete covariance, see (29)).

3) DEcovi ← (Ecovi − Ecovi−1)/(V (vi)− V (vi−1)) .

Indirect method

Precomputing a discrete estimation of∂cov(n,v)
∂{λ}{t} .

1) Parameters:σ2, Np, szp, {λ0, λr}{DT}.
2) f ← noise patch.
3) Loop (i← 1; i++; i ≤ Np)

a) {λi ← λi−1λr}{}.
b) Computeui, vi as in Main.
c) Ecovi ←< vi, f > (see (29)).
d) DEcovi

pre ← (Ecovi − Ecovi−1)/{(λi −
λi−1)}{DT}

4) Return vectorDEcovpre

Estimation of covariance:
1) DEcovi ← DEcovi

pre · {(λi − λi−1)}{DT}/(V (vi)−
V (vi−1)).

Remarks
• Parameters (in brackets are values used for processing nat-

ural images):
1) szp - size of patch (direct -10×(image length) pix-

els, indirect80× 80 pixels).
2) Np - number of precomputed points, that is different

λ values or time-points for indirect method (30). The
main loop should do at mostNp iterations.

3) λ0 - initial λ (1), λr - ratio of successiveλ (0.9).
4) DT - time between consecutive timepoints. (We

usedDT = 0.6, 3 iterations ofdt = 0.2 (where
dt < CFL)).

It is important to note that this parameters mainly control
the step resolution and no tuning is needed for different
images. We used the same values, in brackets, for our ex-
periments on natural images.

• Discrete covariance:

< q, r >≡ 1

N

∑

k,l

(q(k, l)− q̄)(r(k, l)− r̄), (29)
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whereN is the number of pixels inq (or r).
• With regard to the indirect method, in the specific im-

plementation presented here, where theλ values / time
points of the Main phase are exactly as in the Precom-
puting phase, one can actually omit the multiplication and
division by {(λi − λi−1)}{DT} in the computation of
DEcov andDEcovpre (we kept it to be consistent with
our formulation).
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