
Estimation of the Optimal Variational
Parameter via SNR Analysis

Guy Gilboa1 ?, Nir A. Sochen2 ??, and Yehoshua Y. Zeevi3 ? ? ?

1 Department of Mathematics, UCLA, Los Angeles, CA 90095, USA.
2 Department of Applied of Mathematics, Tel-Aviv Univ., Tel-Aviv 69978, Israel.

3 Department of Electrical Engineering, Technion, Haifa 32000, Israel.

Abstract. We examine the problem of finding the optimal weight of the
fidelity term in variational denoising. Our aim is to maximize the signal
to noise ratio (SNR) of the restored image. A theoretical analysis is
carried out and several bounds are established on the performance of the
optimal strategy and a widely used method, wherein the variance of the
residual part equals the variance of the noise. A necessary condition is set
to achieve maximal SNR. We provide a practical method for estimating
this condition and show that the results are sufficiently accurate for a
large class of images, including piecewise smooth and textured images.

1 Introduction

Variational methods have been increasingly applied for purposes of image denois-
ing and restoration (for some examples see [3, 6, 8, 11, 12]). The basic concept is
to view the restoration process as a task of energy minimization. Classically, the
restored image is a minimization of a weighted sum of two fundamental energy
terms:

E(u) = Esmooth(u) + λEfidelity(u, f), (1)

where u is the restored image, and f is the input (noisy) image. Esmooth is a
smoothing term which rewards smooth signals and penalizes oscillatory ones.
Efidelity accounts for fidelity, or closeness, to the input image f . The under-
lying assumption is that the original clean image is smoother than the noisy
image. By minimizing both terms we seek a compromise between a smooth so-
lution (often in the TV sense, so edges are preserved) and one which is “close
enough” to the original image. Any minimization of one of the terms by itself
leads to degenerate solutions which are not interesting (a constant or the in-
put noisy image). The appropriate compromise then highly depends on λ, the
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weight parameter between these two energies. When it is too low, the restored
image is over-smoothed. When it is too high, u still contains too much noise.
Finding the right value of λ for the problem at hand is therefore imperative. A
similar problem has been investigated in regularization theory, in the context of
operator inversion by Tikhonov-type methods (e.g. [4, 9]). As we are concerned
with denoising of images (therefore our operator is the identity and the regu-
larization preserves edges), different approaches should be used. In our field of
PDE-base image processing, the problem was seriously addressed by only a few
researchers: by [11] for total-variation denoising and by [7] and [13] for a closely
related problem of finding the right stopping time in nonlinear scale-space. We
refer in this paper only to the variational setting, but our method has shown to
be very effective also for selecting the proper stopping time [5].

An analysis of the optimal parameter choice from SNR perspective is pre-
sented. We examine the widely used denoising strategy of [11] where the weight
of the fidelity term is set such that the variance of the residual part equals that
of the noise. Lower bound on the SNR performance of this strategy is established
as well as a proof of non existence of an upper bound. Examples which illustrate
worst- and best-case scenarios are presented and discussed.

Next, we derive a necessary condition for optimality in the SNR sense. From a
theoretical viewpoint, this facilitates the computation of upper and lower bounds
of the optimal strategy. From a practical viewpoint, the condition suggests the
numerical method that should be followed for the purpose of maximizing the
SNR of the filtered image. An algorithm for parameter calculation is suggested
based on the above condition, resulting in fairly accurate estimates.

2 SNR Bounds for the Scalar Φ Process

2.1 Denoising Model, Definitions and Assumptions

We assume that the input signal f is composed of the original signal s and
additive uncorrelated noise n of variance σ2. Our aim is to find a decomposition
u, v such that u approximates the original signal s and v is the residual part of
f :

f = s + n = u + v. (2)

We accomplish that by finding the minimum to the following energy

ẼΦ(u) =

∫

Ω

(

Φ(|∇u|) + λ̃(f − u)2
)

dΩ. (3)

Φ is assumed to be convex in this paper. Some of the following results, though,
can also apply to the more general case of monotonically increasing Φ. The
standard condition

∫

Ω
fdΩ =

∫

Ω
udΩ is set, (corresponding to the Neumann

boundary condition of the evolutionary equations). Then
∫

Ω
vdxdy = 0, rescaling

λ̃ by the area of the domain |Ω|: λ = λ̃|Ω|, we get

EΦ(u, v) =

∫

Ω

Φ(|∇u|)dΩ + λV (v), f = u + v. (4)



where V (q) is the variance of a signal q: V (q)
.
= 1

|Ω|

∫

Ω
(q − q̄)2dΩ, and q̄ is

the mean value: q̄
.
= 1

|Ω|

∫

Ω
qdΩ. The covariance of two signals is defined as:

cov(q, r)
.
= 1

|Ω|

∫

Ω
(q − q̄)(r − r̄)dΩ. We remind the identity V (q + r) = V (q) +

V (r) + 2cov(q, r).
Let us denote uz as the solution of (4) for f = z. For example, us is the

solution where f = s. The decorrelation assumption is taken also between s and
n with respect to the Φ process:

cov(us, n) = 0, cov(un, s) = 0, ∀λ ≥ 0. (5)

We further assume the Φ process applied to f = s + n does not amplify or
sharpen either s or n. This can be formulated in terms of covariance as follows:

cov(us+n, s) ≤ cov(f, s), cov(us+n, n) ≤ cov(f, n), ∀λ ≥ 0. (6)

Both of the above assumptions were verified numerically on a collection of nat-
ural images. We are investigating the possibility to characterize in an analytical
manner the appropriate spaces of s and n such that (5) and (6) are followed. In
this paper this question is left open and we resort to the following definition:

Definition 1 ((s, n) pair). An (s, n) pair consists of two uncorrelated signals
s and n which obey conditions (5) and (6).

Theorem 1. For any (s, n) pair and an increasing Φ (Φ′(q) > 0,∀q ≥ 0) the
covariance matrix of U = (f, s, n, u, v)T has only non-negative elements.

For proof see the appendix. Theorem 1 implies that the denoising process has
smoothing properties and consequently, there is no negative correlation between
any two elements of U . This basic theorem will be later used to establish several
bounds in our performance analysis.

We define the Signal-to-Noise Ratio (SNR) of the recovered signal u as

SNR(u)
.
= 10 log

V (s)

V (u− s)
= 10 log

V (s)

V (n− v)
, (7)

where log
.
= log10. The initial SNR of the input signal, denoted by SNR0, where

no processing is carried out (u = f , v = 0), is according to (7) and (2):

SNR0
.
= SNR(f) = 10 log

V (s)

V (n)
= 10 log

V (s)

σ2
. (8)

Let us define the optimal SNR of a certain Φ process applied to an input
image f as:

SNRopt
.
= max

λ
SNR(uλ) (9)

where u = uλ attains the minimal energy of (4) with weight parameter λ (for
a given f , v is implied). We denote by (uopt, vopt) the decomposition pair (u, v)
that reaches SNRopt, and define Vopt

.
= V (vopt).



Equivalently, the desired variance could be set as V (v) = P , where P is some
constant, and then (4) is reformulated to a constrained convex optimization
problem

min
u

∫

Ω

Φ(|∇u|)dΩ subject to V (v) = P. (10)

In this formulation λ is viewed as a Lagrange multiplier. The value λ can be
computed using the Euler-Lagrange equations and the pair (u, v):

λ =
1

P

∫

Ω

div

(

Φ′ ∇u

|∇u|

)

vdΩ. (11)

The problem then transforms to which value P should be imposed.
The strategy of [11] is to assume v ≈ n and therefore impose

V (v) = σ2. (12)

We define
SNRσ2

.
= SNR(u)|V (v)=σ2 . (13)

We denote by (uσ2 , vσ2) the (u, v) pair that obeys (12) and minimizes (4). We
will now analyze this method for selecting u in terms of SNR.
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Fig. 1. Approaching best-case scenario in piece-wise constant images. In this example
SNR increases by almost 20dB from 19.9dB to 39.6dB (variance of noise is ≈

1

100
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the input noise). From left: f , u, v, SNR as a function of V (v)/σ2.

Proposition 1 (SNR lower bound) Imposing (12), for any (s, n) pair SNRσ2

is bounded from below by

SNRσ2 ≥ SNR0 − 3dB, (14)

where we use the customary notation 3dB for 10 log10(2).

Proof. From Theorem 1 we have cov(n, v) ≥ 0, therefore,

SNRσ2 = 10 log V (s)
V (n−v)

≥ 10 log V (s)
V (n)+V (v)

= 10 log V (s)
2σ2

= SNR0 − 3dB. �
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Fig. 2. Approaching worst-case scenario in a checkered-board image. SNR decreases by
almost 3dB from 19.9dB to 17.0dB. From left: f , u, v, SNR as a function of V (v)/σ2.

The lower bound of proposition 1 is reached only in the very rare and extreme
case where cov(n, v) = 0. This implies that only parts of the signal were filtered
out and no denoising was performed.

Proposition 2 (SNR upper bound) Imposing (12), then there does not exist
an upper bound 0 < M <∞, where SNRσ2 ≤ SNR0 + M , that is valid for any
given (s, n) pair.

Proof. To prove this we need to show only a single case where the SNR cannot
be bounded. Let us assume V (s) = hσ2, 0 < h < 1. Then SNR0 = 10 log h. As
signal and noise are not correlated we have V (f) = V (s)+V (n) = (1+h)σ2. We
can write V (f) also as V (u+v) = V (u)+V (v)+2cov(u, v). From (12), V (v) = σ2,
and from Theorem 1, cov(u, v) ≥ 0, therefore V (u) ≤ hσ2. Since cov(u, s) ≥ 0
(Theorem 1) we get V (u− s) ≤ 2hσ2. This yields SNRσ2 ≥ 10 log 1

2 and

SNRσ2 − SNR0 ≥ 10 log
1

2h
.

For any M we can choose a sufficiently small h where the bound does not hold.
�

Simulations that illustrate worst- and best-case scenarios are presented in Figs.
1 and 2. A signal that consists of a single very contrasted step function is shown
in Fig. 1. This example illustrates a best-case scenario for an edge preserving Φ.
SNR resulting from the PDE-based denoising is greatly increased (by ∼ 20dB).
Note that this case approximates an ideal decomposition u ≈ s, v ≈ n which
differs from the simple case used in the proof of Proposition 2. A worst-case
scenario is illustrated in Fig. 2 by means of the Checkered-board example. A very
oscillatory signal s is being denoised and, in the process, is heavily degraded.
The reduction in SNR, compared to SNR0, is ∼ 2.9dB, close to the theoretical
3dB bound.

2.2 Condition for optimal SNR

We will now develop a necessary condition for the optimal SNR. As discussed,
we have a single degree of freedom of choosing V (v). We therefore regard SNR



as a function SNR(V (v)) and assume that it is smooth. A necessary condition
for the maximum in the range V (v) ∈ (0, V (f)) is:

∂ SNR

∂V (v)
= 0. (15)

Rewriting V (n− v) as V (n) + V (v)− 2cov(n, v), and using (15) and (7), yields

∂cov(n, v)

∂V (v)
=

1

2
. (16)

The meaning of this condition may not appear at first glance to be very clear.
We therefore resort to our intuition: let us think of an evolutionary process with
scale parameter V (v). We begin with V 0(v) = 0 and increment the variance of v
by a small amount dV (v), so that in the next step V 1(v) = dV (v). The residual
part of f , v, contains now both part of the noise and part of the signal. As long

as in each step the noise is mostly filtered, that is ∂cov(n,v)
∂V (v) > 1

2 , then one should

keep on with the process and SNR will increase. When we reach the condition
of (16), noise and signal are equally filtered and one should therefore stop. If
filtering is continued, more signal than noise is filtered (in terms of variance)
and SNR decreases.

There is also a possibility that the maximum is at the boundaries: If SNR

is dropping from the beginning of the process we have ∂cov(n,v)
∂V (v) |V (v)=0 < 1

2 and

SNRopt = SNR0. The other extreme case is when SNR increases monotonically
and is maximized when V (v) = V (f) (the trivial constant solution u = f̄). We
will see later (Proposition 3) that this can only happen when SNR0 is negative
or, equivalently, when V (s) < σ2.

In light of these considerations, provided that one can estimate cov(n, v), our
basic numerical algorithm should be as follows:

1. Set cov0(n, v) = 0, V 0(v) = 0, i = 1.
2. V i(v)← V i−1(v) + dV (v). Compute covi(n, v).

3. If covi(n,v)−covi−1(n,v)
dV (v) ≤ 1

2 then stop.

4. i← i + 1. Goto step 2.

In the next section we suggest a method to approximate the covariance term.

Definition 2 (Regular SNR). We define the function SNR(V (v)) as regu-
lar if (16) is a sufficient condition for optimality or if the optimum is at the
boundaries.

Proposition 3 (Range of optimal SNR) If SNR is regular, then for any
(s, n) pair 0 ≤ Vopt ≤ 2σ2.

Proof. Let us first show the relation cov(n, v) ≤ σ2: cov(n, f) = cov(n, n + s) =
V (n)+cov(n, s) = σ2. On the other hand cov(n, f) = cov(n, u+v) = cov(n, u)+
cov(n, v). The relation is validated by using cov(n, u) ≥ 0 (Theorem 1).



We reach the upper bound by the following inequalities:

σ2 ≥ cov(n, v)|Vopt
=

∫ Vopt

0

∂cov(n, v)

∂V (v)
dV (v) ≥

∫ Vopt

0

1

2
dV (v) =

1

2
Vopt.

The inequality on the right is based on that ∂cov(n,v)
∂V (v) ≥ 1

2 for V (v) ∈ (0, Vopt).

The lower bound Vopt = 0 is reached whenever ∂cov(n,v)
∂V (v) |V (v)=0 < 1

2 . �

Theorem 2 (Bound on optimal SNR). If SNR is regular, then for any (s, n)
pair and Vopt ∈ {[0, σ2), (σ2, 2σ2]},

0 ≤ SNRopt − SNR0 ≤
{

−10 log(1 + Vopt/σ2 − 2
√

Vopt/σ2), 0 ≤ Vopt < σ2

−10 log(Vopt/σ2 − 1), σ2 < Vopt ≤ 2σ2

(17)

Proof. By the SNR definition, (7), and expanding the variance expression, we
have

SNRopt − SNR0 = 10 log(
σ2

σ2 + Vopt − 2cov(n, vopt)
). (18)

For the lower bound we use the relation shown in Proposition 3: cov(n, vopt) ≥
1
2Vopt. For the upper bound we use two upper bounds on cov(n, vopt) and take

their minimum. The first one, cov(n, vopt) ≤ σ
√

Vopt, is a general upper bound
on covariance. The second relation, cov(n, vopt) ≤ σ2, is outlined in Proposition
3. �

A plot of the upper bound of the optimal SNR with respect to Vopt/σ2 is
depicted in Fig. 3, left.

In practice, the flow is not performed by directly increasing V (v), but by
decreasing the value of λ. Therefore, it is instructive to check how V (v) varies,
as well as the other energies, as λ varies. In the next proposition we show that
as λ decreases the total energy strictly decreases, Ev(v)

.
= V (v) increases and

Eu(u)
.
=

∫

Ω
Φ(|∇u|)dΩ decreases.

Proposition 4 (Energy change as a function of λ) The energy parts of Eq.
(4) vary as a function of λ as follows:

∂EΦ

∂λ
> 0,

∂Ev

∂λ
≤ 0,

∂Eu

∂λ
≥ 0. (19)

For proof see [5].

3 Estimating cov(n, v)

The term cov(n, v) is unknown, as we do not know the noise, and therefore should
be estimated. We are showing here for the first time a representation of denoising
by a family of curves which connects the variance of the noise, λ and cov(n, v)



of pure noise. This can be regarded as some sort of nonlinear statistics of noise
with respect to a specific Φ process. It appears that cov(n, v) as a function of
λ is almost independent from the underlying image and can be estimated with
quite a good accuracy.

First we need to compute the “statistics” by processing a patch of pure noise
and measuring cov(n, v) with respect to λ. This is done a single time for each
noise variance and can be regarded as a look-up-table (see Fig. 3, right). For each
processed image the behavior of λ with respect to V (v) is measured. Combining
the information, it is possible to approximate how cov(n, v) behaves with respect
to V (v). In other words, this is simply the chain-rule for differentiation:

∂cov(n,v)
∂V (v) = ∂cov(n,v)

∂λ
∂λ

∂V (v)

≈ ∂cov(n,v)
∂λ

|f=patch
∂λ

∂V (v) |f=s+n.
(20)
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Fig. 3. Left: Visualization of Theorem 2: Upper bound of SNRopt−SNR0 as a function
of Vopt/σ2. For Vopt → σ2 the bound approaches ∞. Right: Precomputed function
∂cov(n, v)/∂λ plotted as a function of λ (log scale). Graphs depict plots for values of
σ: 5, 10, 15, 20, from upper curve to lower curve, respectively.

3.1 Experimental results

We compare our method for finding λ with the standard method of imposing
(12) and with the optimal λ, which maximizes the SNR. Six classical benchmark
images are processed: Cameraman, Lena, Boats, Barbara, Toys and Sailboat.
The summary of the results is shown in Table 1. Our method is quite close
to the optimal denoising (less than 0.1dB difference on average) and performs
better than the method of [11].

We used Φ(s) =
√

1 + s2, which can be viewed as the Vogel-Oman [12] reg-
ularization of TV [11] with ε = 1 or the Charbonnier [2] process. The image
grey-level range is 1 : 256 so edges are well preserved. Other details about this
experiment can be found in [5].



Fig. 4. Part of Boats image. Top (left to right): s, f . Bottom (left to right): u by
standard method (V (v) = σ2), u by our estimation method. More textural information
is preserved by our method.

In Fig. 4 we show example results of processing the Boats image. The main
visual difference from the standard method is that textural information is bet-
ter preserved, as we approach the optimal λ. In Fig. 5 the terms SNR(u) and
∂cov(n,v)

∂λ
are plotted as functions of the normalized variance V (v)/σ2. It is ap-

parent that the SNR is smooth and behaves regularly, in accordance with our
assumptions. An interesting phenomenon is that the covariance derivative esti-
mation tends to be more accurate near the critical value of 1

2 . Naturally, this
is advantageous to our algorithm. We currently have no explanation for this
behavior.

4 Conclusion

Most image denoising processes are quite sensitive to the choice and fine tuning
of various parameters. This is a major obstacle for fully automatic algorithms.
This problem motivated us to develop a criterion for the optimal choice of the
fidelity weight parameter in variational denoising. Our criterion is to maximize
the SNR of the resultant image. Bounds on the SNR as well as on the optimal
variance are obtained. We demonstrate our method on a series of benchmark
images and show that the performance is only slightly worse than optimal (less
than 0.1dB difference).
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Fig. 5. SNR as a function of V (v)/σ2 (left). dcov(n, v)/dV (v) as a function of V (v)/σ2

(right), as computed by our estimation method (solid) and the ground truth (dashed).
Graphs depict processing of Toys (top) and Boats (bottom).

We should comment that the SNR criterion is not always in accordance with
human-based quality evaluations. Other, more sophisticated criteria, may also
be applied for parameter selection using the spirit of the method presented here.

The basic ingredients of the proposed method, namely the covariance con-
dition (16) and its estimation (20), are quite universal and do not depend on
the specific denoising algorithm. The method was generalized for selecting the
stopping time in nonlinear diffusion [5] and for regularizations based on BV and
Hilbert-space norms [1].

A Proof of Theorem 1

We present the main steps of the proof. A full version is given in [5]. Since
cov(q, r) = cov(r, q), the matrix is symmetric. The diagonal is the variance of
each element, which is non negative. Therefore we have to consider all 10 possible
signal pairs and show that their covariance is non-negative.

cov(s, n), cov(f, s), cov(f, n). Since s and n are not correlated, we have
cov(s, n) = 0, cov(f, s) = cov(s + n, s) = V (s) ≥ 0, cov(f, n) = cov(s + n, n) =
V (n) ≥ 0.



Image SNR0 SNRopt SNRσ2 SNRours

Cameraman 15.86 19.56 19.32 19.50

Lena 13.47 18.19 17.65 18.18

Boats 15.61 20.23 19.83 20.22

Barbara 14.73 16.86 16.21 16.64

Toys 10.00 17.69 17.29 17.65

Sailboat 10.36 15.51 15.16 15.48

Average
difference
from SNRopt 4.67 0.00 0.43 0.06

Table 1. Denoising results of several images widely used in image processing. The
original images were degraded by additive white Gaussian noise (σ = 10) prior to their
processing.

cov(u, v), cov(f, u), cov(f, v). Once we prove cov(u, v) ≥ 0, then we readily
have cov(f, u) = cov(u + v, u) = V (u) + cov(u, v) ≥ 0 and cov(f, v) = cov(u +
v, v) = V (v) + cov(u, v) ≥ 0.

We follow the spirit of the proof of Meyer [8]. As the (u, v) decomposition
minimizes the energy of Eq. (4), we can write for any function h ∈ BV and
scalar ε > 0 the following inequality:

∫

Ω

Φ(|∇(u− εh)|)dΩ + λV (v + εh) ≥
∫

Ω

Φ(|∇u|)dΩ + λV (v). (21)

Replacing V (v + εh) by V (v) + ε2V (h) + 2εcov(v, h) and then changing h to u
and dividing both sides by ε we get

2λcov(v, u) ≥ 1

ε

∫

Ω

(Φ(|∇u|)− Φ(|∇(u− εu)|)) dΩ − λεV (u).

In the limit as ε→ 0, the right term on the right-hand-side vanishes. Since Φ is
increasing, the term in the integral is non-negative.

cov(s, u), cov(n, u). By writing V (v) as V (s+n−u), expanding the variance
expression and omitting expressions that do not involve u, we can reach the fol-
lowing minimization problem equivalent to minimizing (4): u = argminu{ÊΦ(u)}
where

ÊΦ(u) =

∫

Ω

Φ(|∇u|)dΩ + λ(V (u)− 2cov(s, u)− 2cov(n, u)). (22)

Since cov(s, u) + cov(n, u) = cov(f, u) ≥ 0 at least one of the terms cov(s, u)
or cov(n, u) must be non-negative. We will now show, by contradiction, that it
is not possible that the other term be negative. Let us assume, without loss of
generality, that cov(s, us+n) ≥ 0 and cov(n, us+n) < 0. We denote the optimal
(minimal) energy of (22) with f = s+n as Ê∗

Φ|f=s+n. The energy can be written



as

Ê∗
Φ|f=s+n = ÊΦ|f=s+n(us+n)

=
∫

Ω
Φ(|∇us+n|)dΩ + λ(V (us+n)− 2cov(s, us+n)− 2cov(n, us+n)).

(23)
On the other hand, according to condition (5), cov(us, n) = 0 and we have

ÊΦ|f=s+n(us) =
∫

Ω
Φ(|∇us|)dΩ + λ(V (us)− 2cov(s, us))

= Ê∗
Φ|f=s ≤ ÊΦ|f=s(u

s+n) =
∫

Ω
Φ(|∇us+n|)dΩ + λ(V (us+n)− 2cov(s, us+n)).

In the above final expression, adding the term −λ2cov(n, us+n) we obtain the
right hand side of expression (23). Since we assume cov(n, us+n) < 0, we get the
following contradiction: ÊΦ|f=s+n(us) < Ê∗

Φ|f=s+n. Similarly, the opposite case
cov(n, us+n) ≥ 0 and cov(s, us+n) < 0 is not possible.

cov(s, v), cov(n, v). This follows directly from condition (6) as cov(f, s) =
cov(u, s) + cov(v, s) and cov(f, n) = cov(u, n) + cov(v, n). �
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