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Abstract� A geometric framework for image scale space� enhancement�
and segmentation is presented� We consider intensity images as surfaces
in the �x� I	 space� The image is thereby a �D surface in 
D space for gray
level images� and a �D surface in �D for color images� The new formula�
tion uni�es many classical schemes and algorithms via a simple scaling
of the intensity contrast� and results in new and ecient schemes� Exten�
sions to multi dimensional signals become natural and lead to powerful
denoising and scale space algorithms� Here� we demonstrate the pro�
posed framework by applying it to denoise and improve gray level and
color images�

� Introduction� A philosophical point of view

In this paper we adopt an action potential that was recently introduced in physics
and use it to produce a natural scale space for images as surfaces� It will lead us
to the construction of image enhancement procedures for gray and color images�
This model also integrates many existing segmentation and scale space proce�
dures by a change of a single parameter that switches between the L� and L�
Euclidean norms�

Let the input to the low level vision process be a map X � � � M where
� is a one� two� or three dimensional manifold and X is the embedding of this
manifold in a space which is a hybrid space of spatial coordinates and feature
coordinates� the �space�feature�� For example� the most common map is from
a two dimensional surface to IR� where we have at each point of the plane an
intensity I�x� y�� The IR� space�feature has Cartesian coordinates �x� y� I� where
x and y are the spatial coordinates and I is the feature coordinate �� Higher
dimensions of the embedding space are encountered for example in color images�
Three dimensional manifolds � occur in movie analysis and in volumetric medi�
cal images �	
�� The output of the low level process in most models consists of a
�simplied�� �denoised�� �deblurred�� �segmented�� or �cleaned� image� for further
analysis and processing�

The importance of the dynamics of the image geometry in the perception and
understanding of images is by now well established in computer vision� There
are many denitions for scale space of images aiming to arrive at a coherent

� While in this paper the feature coordinate is simply the zeroth jet space j�I� we use
the term feature space to leave room for a more general cases like texture ���� etc�



framework that unies many requirements� One such requirement is that �only

isophotes matter�� or equivalently assume the importance of the morphologi�

cal assumption of the scale space to be contrast invariant� We argue that this
assumption� though leading to many interesting results� seems to fail in many
other natural cases� Let us demonstrate it with a very simple example� Consider
the intensity image of a dark object in a white background� At this point the
boundary of the object is closely related to one of the isophotes of the gray
level image� Consider the intensity image as a function� and add to this function
a new smooth function �e�g� a tilted plane�� This additional smooth function
might be the result of non�uniform lighting conditions ����� It is clear that in the
new intensity image the isophotes play only a minor role in the understanding
process�

The importance of edges in scale space construction is obvious� Boundaries
between objects should survive as long as possible along the scale space� while
homogeneous regions should be simplied and �attened in a more rapid way�
We also want to preserve the geometrical beauty that results in some interesting
non�linear �scale spaces� as a result of the morphological assumption� Among
these are the Euclidean and a�ne invariant �ows �	� �� ���� Moreover� we want
our framework to handle multi channel images� A color image is a good example
since we actually talk about 
 images �Red� Green� Blue� that are composed into
one�

We propose to view images as embedding maps� that �ow towards minimal
surfaces� We go two dimensions higher than most of the classical schemes ����
and instead of dealing with isophotes as planar curves we deal with the whole
image as a surface� For example� we consider a color image as a �D surface in
�D �x�y�R�G�B��

Section � introduces the arclength and the denition of a metric on a sur�
face� Next� Section 
 presents the �action� that we borrowed from high energy
physics and the way it produces a general framework for non�linear di�usion in
computer vision� In Section � we introduce a new �ow that we have chosen to
name Beltrami �ow� and present a geometric interpretation in the simplest 
D
case� Next� in Section � we present the resulting �ow for multi channel �color�
images and its advantages over previous models� and show some experiments
with color images with and without constraints� We refer the interested reader
to ���� for further details and more examples�

� Measuring Distances on Surfaces� The Induced Metric

The basic concept of Riemannian di�erential geometry is distance� The natural
question is how should we measure distances� We will rst take the important
example X � � � IR�� We denote the local coordinates on the two dimen�
sional manifold � by ���� ���� see Fig� 	� The map X is explicitly given by
�X����� ���� X����� ���� X����� ����� Since the local coordinates �i are curvilin�
ear� and not orthogonal in general� the distance square between two close points
on �� p � ���� ��� and p��d��� d��� is not ds� � d����d���� In fact� the squared



distance is given by a positive denite symmetric bilinear form called the metric
whose components we denote by g����

�� ����

ds� � g��d�
�d�� � g���d�

��� � �g��d�
�d�� � g���d�

���� �	�

where we used Einstein summation convention in the second equality� identical
indices that appear one up and one down are summed over� We will denote the
inverse of the metric by g�� � so that g��g�� � ��� � where ��� is the Kronecker
delta�
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Fig� �� Length element of a surface curve ds� may be de�ned either as a function of a
local metric de�ned on the surface ���� ��� �gij		� or as a function of the coordinates of
the space in which the surface is embedded �x�y� I	�

Let X � � � M be an embedding of ��� g� in �M�h�� where � and M are
Riemannian manifold and g and h are their metrics respectively� We can use the
knowledge of the metric on M and the map X to construct the metric on ��
This procedure� which is denoted formally as �g���� � X��hij�M � is called the
pullback and is given explicitly as�

g����
�� ��� � hij�X���X

i��X
j � ���

where i� j � 	� ���� dimM are being summed over� and in short we use ��X
i �

�Xi���� ��������
An example� often used in computer vision� is the embedding of a surface

described as a graph in IR�� X � ���� ��� � ���� ��� I���� �����Using Eq� ��� we
get

�g��� �

�
	 � I�x IxIy
IxIy 	 � I�y

�
�
�

where we used the identication x � �� and y � �� in the map X � �x� y� I��
Actually we can understand this result in an intuitive way� Eq� ��� means

that the distance measured on the surface by the local coordinates is equal to the



distance measured in the embedding coordinates� see Fig� 	� Under the above
identication� we can write ds� � dx��dy��dI� � dx��dy���Ixdx�Iydy�

� �
�	 � I�x�dx

� � �IxIydxdy � �	 � I�y �dy
��

Next we provide a measure on the space of these maps�

� Polyakov Action and Harmonic Maps

In this section� we present a general framework for non�linear di�usion in com�
puter vision� We have shown in ���� that many of the known methods fall natu�
rally into this framework� Here we show how to derive new ones� The equations
will be derived by a minimization problem from an action functional� The func�
tional in question depends on both the image manifold and the embedding space�
Denote by ��� g� the image manifold and its metric and by �M�h� the space�
feature manifold and its metric� then the map X � � � M has the following
weight

S�Xi� g�� � hij� �

Z
dm�

p
gg����X

i��X
jhij�X�� ���

where m is the dimension of �� g is the determinant of the image metric� g�� is
the inverse of the image metric� the range of indices is �� � � 	� � � � � dim�� and
i� j � 	� � � � � dimM � and hij is the metric of the embedding space�

This functional� for m � �� was rst proposed by Polyakov �	�� in the context
of high energy physics� Given the above functional� we have to choose the mini�
mization�We may choose for example to minimize with respect to the embedding
alone� In this case the metric g�� is treated as a parameter of the theory and
may be xed by hand� Another choice is to vary only with respect to the feature
coordinates of the embedding space� or we may choose to vary with respect to
the image metric as well� We have shown that di�erent choices yield di�erent
�ows� Some �ows are recognized as existing methods� other choices are new and
some will be described below�

Using standard methods in variational calculus� the Euler�Lagrange equa�
tions with respect to the embedding are �see ���� for a derivation��

� 	

�
p
g
hil

�S

�Xl
�

	p
g
���

p
gg����X

i� � 	 i
jk��X

j��X
kg�� � �� ���

where 	 i
jk are the Levi�Civita connection coe�cients with respect to the met�

ric hij that describes the geometry of the embedding space �see ���� ��� for a
denition of the Levi�Civita connection��

Our proposal is to view scale�space as the gradient descent �ow�

Xi
t �

�Xi

�t
� � 	

�
p
g
hil

�S

�Xl
���

Few remarks are in order� First notice that we used our freedom to multiply the
Euler�Lagrange equations by a strictly positive function and a positive denite
matrix� This factor is the simplest one that does not change the minimization



solution while giving a reparametrization invariant expression i�e� invariant under
�� � ������� ���� The operator that is acting on Xi in the rst term is the
natural generalization of the Laplacian from �at spaces to manifolds and is called
the second order di�erential parameter of Beltrami �	��� or for short Beltrami

operator� and we will denote it by 
g�
When the embedding is in an Euclidean space with Cartesian coordinate

system the connection elements are zero� In this case 
gX� for grey�level image�
is the usual mean curvature vector� This simple denition for the general mean
curvature vector provides a straightforward calculation procedure� extends to
higher dimensions� to cases with co�dimension greater than one� and to non�
trivial geometries and coordinate systems� e�g� we consider a color image as a
�D surface in �D� in which case the co�dimension is 
�

The Beltrami operator with a metric that corresponds to the plane with non�
Cartesian coordinate system was discussed in Florac et al� �	��� Our approach
is a generalization in two ways� one is the choice of a metric with non�trivial
Riemann tensor �or equivalently for surfaces� the Gaussian curvature of the im�
age manifold is di�erent from zero�� the other is the possibility to deal with
non�trivial embedding� We also have here a framework that can treat curves�
surfaces� and higher dimensional image data embedded in gray� color and higher
dimensional and geometrically non�trivial embedding spaces�

Evolving a surface according to its curvature vector HN � 
gX is the
steepest descent �ow towards a minimal surface� and may be written as

Xt � HN � ���

where H is the mean curvature� N is the normal to the surface�� For co�
dimension 	�

N �
	p
g
��rI� 	�T ���

where g � 	� jrIj�� This is mean curvature �ow� This should not be a surprise�
since if we check the action functional� we notice that� for the choice of the
induced metric Eq� �
� as the image metric g�� � we are left with S �

R
d��

p
g �R

d��
p
det���Xi��Xi��which is the Euler functional that describes the area of

the surface �also known in high energy physics as the Nambu action��
In ���� we survey di�erent choices for the dynamic and parametric degrees

of freedom in the action functional that lead to known methods� These include
the reparameterization invariant linear scale�space by Florac et al� �	��� Perona�
Malik anisotropic di�usion �	��� geodesic active contour models for segmentation�
Mumford�Shah segmentation models that are based on the L� �

R jrIj�� norm
�	�� 	��� Rudin�Osher�Fatemi total variation �TV� method ���� for image en�
hancement based on the L� �

R jrIj� norm� and the di�erent Blake�Zisserman
membrane models �
�� We actually show that by varying the aspect ratio be�
tween the I axis and the xy axes� we can switch between the L� and the L�

� In what follows� we denote by g the determinant of the metric� g � det�g	� the metric
itself will be denoted as �gij	� Note also that some de�nitions of the mean curvature
include a factor of � that we omit in our de�nition�



norms for image processing� In fact� we can approach the L� norm� which is
practically regularized in most application to avoid zero denominator� The reg�
ularized functional

R p
�� � jrIj� may be viewed as an area minimization� that

approaches the L� total variation norm as � � �� For gray level images it is just
a mathematical exercise� however� when we deal with more complicated cases
like multi channel images or color images� we have a very natural extension of
the total variation method� We will show why this extension is better and more
natural than previous multi channel norms�

For images which are maps from an m dimensional manifold to n dimen�
sional embedding space with n�m � 	� the normals to the image span an n�m
normal space� The way the mean curvature is generalized to these maps �for
Euclidean embedding spaces with Cartesian Coordinate system� is via the Bel�
trami operator� This operator is built from the metric only� and there is no need
for any extrinsic information to express it� It acts on the embedding coordinates
and coincides with the usual denition of the mean curvature for hypersurfaces�
When the metric of the embedding space is not trivial the �generalized� mean
curvature �ow is obtained by the more general Eq� ����

Note that this �ow is the �generalized� mean curvature �ow only if we move all
the coordinates Xi simultaneously� Below we concentrate on another possibility�
We �ow only the feature coordinate�s�� We call this generalized �ow the Beltrami

�ow and discuss its characteristics in the next section�

� The Beltrami �ow

Let the image be an embedding mapX � � � IR�� where � is a two dimensional
manifold� and the �ow is natural in the sense that it minimizes the action func�
tional with respect to I and �gij�� while being reparametrization invariant� The
coordinates x and y are parameters from this view point and are identied as
above with �� and �� respectively� The result of the minimization is the Beltrami
operator acting on I�

It � 
gI � 	p
g
���

p
gg����I� � HN �I ���

where the metric is the induced one given in Eq� ���� and  I is the unit vector in
the I direction��

� The mean curvature �ow can be written as �
�t

�
x

I

�
� �g

�
x

I

�
� Fixing the xy co�

ordinates amounts to moving the surface via its mean curvature feature components
I� thereby preserving the edges at which these component are small� Along the edges
�cli�s	� the surface normal is almost parallel to the x�y plane� Thus� I�x�y	 hardly
evolves along the edges while the �ow drives other regions of the image towards a
minimal surface at a more rapid rate�



��� Geometric Flows Towards Minimal Surfaces

A minimal surface is the surface with least area that satises given boundary
conditions� It has nice geometrical properties� and is often used as a natural
model of various physical phenomena� e�g� soap bubbles �Plateau�s problem�� in
computer aided design� in architecture �structural design�� and recently even for
medical imaging ���� It was realized by J� L� Lagrange in 	���� that the mean
curvature equal to zero is the Euler Lagrange equation for area minimization�
Hence� the mean curvature �ow is the most e�cient �ow towards a minimal
surface� see Fig� � �left��

We refer to ��� for the derivation of H for a graph surface S � �x� y� I�x� y��
�as D�L� Chopp summarizes the original derivation by J�L� Lagrange from 	����

H � div

�
rIp

	 � jrIj�

�
�

�	 � I�y �Ixx � �IxIyIxy � �	 � I�x�Iyy

�	 � I�x � I�y �
���

� �	��
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Fig� �� Left� Mean curvature �ow� Consider the surface mean curvature �ow St � HN �
A geometrically equivalent �ow is the graph �ow It � H�� � jrIj�	��� which yields
the mean curvature �ow when projected onto the normal� Right� Beltrami �ow� Now�
consider the mean curvature vector HN � It can also be expressed as HN � �gS�
Beltrami operator that operates on I� �gI� is the third component of this vector�
Projection onto the I direction�

The mean curvature for a graph �the image� is given by the following evolu�
tion equation

It �
�	 � I�y �Ixx � �IxIyIxy � �	 � I�x�Iyy

	 � I�x � I�y
� �		�

with the image itself as initial condition I�x� y� �� � I�x� y�� Using Beltrami
second order operator 
g� Eq� �		� may be read as It � g
gI� The Beltrami
�ow �selective mean curvature �ow� on the other hand� It � 
gI� is given
explicitly for the gray level case as

It �
�	 � I�y �Ixx � �IxIyIxy � �	 � I�x�Iyy

�	 � I�x � I�y �
�

� �	��



see Fig� � �right�� In other words� the Beltrami �ow can be viewed as St �
�

gHN � where g �
p
	 � jrIj� is basically an edge indicator� Other methods

that consider gray level images as surfaces are Yanowitz and Bruckstein �����
El�Fallah et al� ���� and Malladi and Sethian �	���

Fig� 
 compares the results of the Beltrami �ow and the mean curvature �ow
both applied to a digital subtraction angiogram �DSA�� It demonstrates the edge
preserving property of the Beltrami �ow�

Fig� �� On the left is the original medical image� In the middle is the result of smoothing
via the mean curvature �ow� and on the right is the result of the Beltrami �ow�

� Color

We generalize the Beltrami �ow to the � dimensional space�feature needed in
color images� The embedding space�feature space is taken to be Euclidean with
Cartesian coordinate system� The image� thus� is the map f � � � IR� where �
is a two dimensional manifold�
Explicitly the map is f �

�
x���� ���� y���� ���� Ir���� ���� Ig���� ���� Ib���� ���

�
�

We minimize our action ��� with respect to the metric and with respect to
�Ir � Ig � Ib�� For convenience we denote �r� g� b� by �	� �� 
�� or in general notation
i� Minimizing the action with respect to the metric gives� as usual� the induced
metric which is now given by�

g�� � ��� �
X
i

�
���I

i����I
i�
�
�

where ��� is the Kronecker delta� The determinant is g � det�gij� � g��g���g����
Note that this metric di�ers from the Di Zenzo metric ��� by the addition of 	
to g�� and g��� The source of the di�erence lies is the map used to describe the
image� Di Zenzo used f � � � IR� while we use f � � � IR��

The action functional under this choice of the metric is the Euler functional
S �

R
d��

p
g�where the generalized surface area element

p
g is dened by

g � 	 �
X
i

jrIij� � 	

�

X
ij

�rIi�rIj��� �	
�



where �rIi�rIj� stand for the magnitude of the vector product of the vectors
rIi and rIj �

The action is simply the area of the image surface� Minimization with respect
to Ii gives the Beltrami �ow

Iit � 
gI
i� �	��

where 
gI
i � �p

g ���
p
gg����I

i�� Again� this is a �ow towards a minimal sur�

face�

��� Relation to other color di�usion methods

Chambolle ���� and Sapiro and Ringach ��	�� generalized the idea of smoothing
a single valued function via a second directional derivative in the direction of
minimal change� i�e� isophotes curvature �ow� into a multi valued function� These
are non�variational �ows�

As pointed out in ���� for image segmentation� edge preserving and selective
smoothing purposes� this is a result of a weakly coupled denition in color space�
Blomgren and Chan ��� try to improve these results and dened the color TV

norm as
qP

i��

�R jrIij��� with a constraint� Observe that in this case the
coupling between the channels is only by the constraint� Actually� without the
constraint the minimization yields a channel by channel curvature �ow�

A di�erent norm was used by Shah in ��
��
R pP

i�� jrIij�� As in all the
previous norms this norm is simplied to the L� �TV� norm for the single channel
case�

We notice that the proposed area
R p

g norm� Eq� �	
�� includes a new term
that does not appear in previous norms� The term

P
ij�rIi�rIj�� measures

the directional di�erence of the gradient between di�erent channels� The min�
imization of a norm that includes this term� directs di�erent channels to align
together as they become smoother and simpler in scale� One should recognize
this cross correlation of orientation between the channels as a very important
feature� e�g� overcoming the color �uctuations along edges as a result of a lossy
JPEG compression�

If we now tune the regularization ratio � to small values� we approach an
extension of the TV norm that still includes the alignment term and serves as a
natural coupling between the channels� see �		� for further details�

��� Experimental Results

We now present some results of denoising color images using our model� Spatial
derivatives are approximated using central di�erences and an explicit Euler step
is employed to reach the solution� We have tested the Beltrami �ow with and
without constraints� on color images� See Fig� ��

� It is possible to impose a meaningful convergence on the Beltrami �ow through the
right constraints on the action functional� As a simple example we derive a variance
constraint similar to the TV method ���� for image denoising with convergence�



Fig� �� Upper row� The Beltrami �ow as an edge preserving scale space in color� Sec�
ond row� Reconstructing a color image with noise artifacts introduced by wavelet lossy
compression� The noisy image is on the left� the next image is the result of applying
the Beltrami �ow without constraints� Next is a reconstruction with noise artifacts
introduced by JPEG compression� Again the noisy image is on the left and the re�
construction on the right Third row� Reconstruction of a color image corrupted with
Gaussian noise� the second image is the result of �ow with constraints �convergent
scheme	� while the third image is the result of the �ow without constraints after the
same number of numerical iterations� �This is a color image��

Note that since we have a powerful selective smoothing operator� good re�
sults may be obtained even without invoking these constraints� Without the

Given the variance for every channel� i�e�
R
�Ii � Ii�	

�dxdy � ��iwhere �i is the
given noise variance for channel i� The Euler Lagrange isP

��x�y
�

�
��

�
�p
g
�g
�Ii�

	
��i�Ii�Ii�	 � ��Again� using the freedom of parametrization

�multiplying by g����	� yields the �ow Iit � �gI
i� �p

g
�i�Ii�Ii�	�where �

i is computed

via �i � � �

���
i

R P
��x�y

�p
g
�g
�Ii�

�Ii� � Ii��	dxdy�

We used the notation �g��Ii�� that for the multi channel �color	 case simpli�es to
�g
�Iix

� �Iixg�� � �Iiyg��� and �g
�Iiy

� �Iiyg�� � �Iixg���



constraints� the time we run the evolution is related to the noise variance�

� Concluding Remarks

Inventing a perceptually good segmentation process� and formulating a mean�
ingful scale space for images is not an easy task� Here we tried to address these
questions and to come up with a new framework that unies many previous
results and introduces new procedures� There are still many open questions to
be asked� like what is the right aspect ratio between the intensity and the image
plane� An even deeper question to answer is what is the �right� embedding space
hij�

The question of what is the �right norm� when dealing with images is indeed
not trivial� and the right answer probably depends on the application� For ex�
ample� the answer for the �right� color metric hij is the consequence of empirical
results� experimental data� and the application� Here we covered some of the gaps
between the two classical norms in a geometrical way and proposed a new ap�
proach to deal with multi dimensional images� We used recent results from high
energy physics that yield promising algorithms for enhancement� segmentation
and scale space�
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