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Integrated Active Contours for Texture
Segmentation

Chen Sagiv, Nir A. Socheriiember, IEEEand Yehoshua Y. Zeevi

Abstract—We address the issue of textured image seg-selected. Common choices are windowed Fourier trans-
mentation in the context of the Gabor feature space forms, the Gabor representation [18], Wavelet transforms
of images. Gabor f|_|ters tuned to a set pf orientations, [5], [26], [48], local histograms [17], the local structure
scales and frequencies are applied to the images to creatgensor [40] and the space of oscillating functions [49].
the Gabor feature space. A two-dimensional Riemannian In the second step, texture features are extracted, e.g
manifold of local features is extracted via the Beltrami . ! o

the magnitude of the response of the Gabor filters

framework. The metric of this surface provides a good 4 !
indicator of texture changes and is used, therefore, in @nd particular moments which are calculated from local

a Beltrami-based diffusion mechanism and in a geodesic histograms [18],[42].
active contours algorithm for texture segmentation. The  An introduction of a measure on the texture char-
performance of the proposed algorithm is compared with acteristic features is the heart of the third stage of
that of the edgeless active contours algorithm applied for processing. The measure indicates how much variability
texture segmentation. Moreover, an integrated approach, s characteristic of the texture. Kulback-Leibler, Mutual
extending the geodesic and edgeless active contours apcarmation, gradients, and other distance measure are
proaches to texture segmentation, is presented. We showtypical for this stage.
Finally, some obijective function can be defined using
the texture features, and the segmentation is formulated
Index Terms—Texture segmentation, Gabor analysis, a5 an optimization, minimization or clustering problem.
Geodesic active contours, Beltrami framework, Active . roqion hased algorithms the third and fourth stages
Contours without Edges, Anisotropic diffusion, image .
manifolds. become inseparable.
The texture segmentation algorithm proposed in this
study is based on a generalization of the geodesic ac-
I. INTRODUCTION tive contours model from the one-dimensional intensity-

T HE task of unsupervised texture segmentation haased feature space to a muIti-dimensional_space.of tex-
been the subject of intensive research in recent stitre features. The Gabor-Morlet transform is applied to

ies, attempting to discriminate between regions whidhe image, in the first stage, using self similar and rotated
have different textures [17], [36],[40],[45]. Gabor functions. At the second stage, features yielding

This is usually an effortless task for a human observ&faximum response for the Gabor filters, are selected

but far from being an easy one in image processirf@]r each pixel in the .image [41]; this choice defines a
and computer vision. The reasons for these difficulti§sPSpace of the spatial-feature space. Alternatively, the
are twofold: First, segmentation is not a straightforwacPMPlete set of the Gabor responses may be selected
problem even in the case of un-textured images. SecoRd features. In the third step a texture edge indicator is
there does not exist a universal mathematical modelq)qﬁned. Its construction is one of the main contributions
real world textures, although some attempts to devi€b this paper, and we refer to it when describing the
such models have been reported [16], [19], [49], [51§el_tram| framework. Flne_llly, a new f_orm of geodesm
and it is therefore difficult to analyze them. active contours mechanism is applied to obtain the
Texture segmentation algorithms combine usually fo§pgmMentation. We also study the integration of this active

major components: First, a texture representation spac§q§tours model with the edgeless active contours model
proposed by Chan and Vese [4], which was recently
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that combining boundary and region information yields
more robust and accurate texture segmentation results.
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the texture gradients information. We base our work onWe begin by briefly reviewing related studies dealing
the approach developed by Kimmel, Sochen and Malladith texture segmentation. Then we present the Ga-
[24], [25] who have shown that the Gabor spatial-featubmr transform, feature space generation, the Beltrami
space can be described, via the Beltrami framework [4Tfamework and geodesic active contours. We review the
as a 4D Riemannian manifold embeddedrih. Using Gaborian submanifold generation and diffusion, and then
this framework, the Gabor feature space is elaborated the application of the active contours with and without
representation, processing and segmentation of textuegtjes in the Gabor feature space. Finally, a combined
images via diffusion and curve evolution PDE flowspproach utilizing both geodesic contours and edge-less
applied in this space. active contours is considered. Results are compared with
The construction of the "texture edge indicator”, anthose obtained by using the unsupervised "edge-less”
of the generalized stopping term, in the context a@éxture segmentation technique [45].
texture-based geodesic active contours, begins with an
analysis and a revised viewpoint of the form of the stop-
ping term in the intensity-based geodesic active contours.
It is shown that it can be interpreted, via the Beltrami Texture representation and modelling can be roughly
framework, in terms of the Riemannian structure on trevided into two classes: statistical based approaches and
two-dimensional surface described by the graph of tifidering based approaches. Statistical modelling is based
intensity function. In order to define a meaningful texturen the assumption that each texture has unique statistical
gradient the chosen feature subspace is represented atiidbutes. Among them are: local statistical features
the Beltrami framework, as a submanifold. This submaf#], random field models [8], [14], [31], co-occurence
ifold inherits a Riemannian structure, i.e. the inducematrices [12], second order statistics [6], statistics of
metric, from the full spatial-feature space. The metriexton attributes [19], local linear transforms [48], and
introduced in the Gaborian subspace is used to der&eyaussian distribution modelling of the structure tensor
the inverse edge indicator functidi, which attracts in [40].
turn the evolving curve towards the texture boundary in The filtering modelling is based on applying some
the geodesic active contours scheme. filter bank to the image and considering the filters’
The main contributions of this work are as followsresponses as information about the local behavior of
First, we derive an edge indication function in the Gabdine image. A popular choice are the Gabor filters. The
feature space of the images, by viewing this feature spanetivation for the use of Gabor filters in texture analysis
as a manifold. The determinant of this manifold’s metris double fold. First, it is believed that simple cells in
is interpreted as a measure for the presence of gradights visual cortex can be modelled by Gabor functions
on the manifold. This is because the integral over th@], [32], and that the Gabor scheme provides a suitable
square root of the determinant of the metric is simphepresentation for visual information in the combined
the area of the manifold. When the contribution of thitequency-position space [37]. Second, the Gabor rep-
integrand is large, this means that the area of this partrekentation has been shown to be optimal in the sense
the manifold is large comparing to the projected area @fi minimizing the joint two-dimensional uncertainty in
the x — y plane. This is an indication for the existencéhe combined spatial-frequency space [13]. The analysis
of large gradients. of Gabor filters was generalized to multi-window Gabor
Second, while we look for gradients in the Gabor fedilters [53] and to Gabor-wavelets [27], [34], [37], [53],
ture space, Chan, Vese and Sandberg [45] are interestad studied both analytically and experimentally on var-
in the homogeneity of the Gabor features and apply timus classes of images [1], [11], [53]. Most approaches
vector valued active contours without edges algorithose the power spectrum of the Gabor filtered images. The
to this space. We compare the conceptual features dochl phase information obtained by Gabor filtering was
performance of the geodesic snakes and the active calso used for simple test images [10]. Nevertheless, it
tours without edges approaches using synthetic and reeéms that utilizing the phase information still requires
life examples, and explore the idea of combining thegarther investigation. The wavelets approach to texture
two approaches into a single segmentation procedunedelling was also considered [5], [26], [48]. Some ap-
for textured images. This idea is a generalization of moaches combine statistical modelling, structural mod-
recent publication of Kimmel [23], but is innovative inelling and the filter bank model. The FRAME theory
expanding the scalar case to a more general vectopabposed by Zhu et al [51], [52] combines the use of
case with application of this idea to the Gabor featuféters, random fields and maximum entropy as a unified
space. approach for texture modelling.

Il. RELATED STUDIES
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Once the representation space is selected, textusmd in region growing. Sandberg, Chan and Vese [45]
features are obtained and the segmentation procedapplied a vector-valued active contour without edges
evolves in a boundary based approach, or a region basggthanism [4] to the Gabor filtered images. Vese and
approach. Here, we review some of the schemes alre&dsher [49] used a model which assumes that an image
proposed for texture segmentation. We focus on thasea linear combination of some bounded variation func-
schemes which either use the Gabor representationtion, a "cartoon” approximation of the image, and an
minimization of energy functionals approaches. Lee escillatory function which represents texture or noise,
al [28] attempted to use the Gabor feature space for ségifowing a model proposed by Meyer [33].
mentation, by implementing a variant of the Mumford- In the framework presented here, we are interested
Shah functional adapted to signature vectors in the Galodefining "texture gradients” and utilizing them in the
space. Porat and Zeevi [38] proposed using localizgdodesic snakes mechanism, to determine the texture
features based on the Gabor transform of the imadmundaries. The geodesic snakes mechanism is rooted
and computed for this purpose the mean and varianipethe popular "snakes”, or active contours segmentation
of the localized frequency, orientation and intensity. In @gorithm proposed by Kaas et al [20]. In this framework
previous study [42], we applied a Beltrami-based multan initial contour is deformed towards the boundary
valued snhakes algorithm to this feature space. Jain asfdan object to be detected. The evolution equation
Farrokhnia [18] used Gabor filters to obtain texturis derived from minimization of an energy functional,
features by subjecting each filtered image to a nonlineafiich obtains a minimum for a curve located at the
threshold-like transform, and computing a measure bbundary of the object. The geodesic or geometric active
"energy” in a window around each pixel. A square errarontours model [3], [21] offers a different perspective for
clustering algorithm was then used to produce segmewlving the boundary detection problem; it is based on
tation. Manjunath and Ma [30] defined features vectdine observation that the energy minimization problem is
whose components are the responses of the Gabor clequivalent to finding a geodesic curve in a Riemannian
nels. They used the Euclidean distance between thepace whose metric is derived from image content. The
vectors as a criterion for similarity between textures. Kimgeodesic curve can be found via parameterization
et al [22] viewed the segmentation problem as a maxnvariantgeometric flow. Utilizing the Osher and Sethian
mization of the mutual information between region labelsvel set numerical algorithm [39], allows automatic
and the image pixel intensities, subject to a limitationandling of changes of topology. This snakes’ model was
on the length of region boundaries. Hofmann et al [1éxtended to account for vector-valued active contours,
considered the homogeneity between pairs of textumad to handle more complex scenery such as color
patches by a non-parametric statistical test applied itbages [46] and multi-texture images [42]. Goldenberg
the Gabor space. A pairwise data clustering algorithet al [15] offer a fast algorithm based on the AOS scheme
was utilized to perform segmentation. In Paragios amor geodesic active contours, and generalize it to color
Deriche [36], a supervised variational framework wamages.
developed, where the responses of isotropic, anisotropiddn edgeless active contours model was recently pro-
and Gabor filters applied to the texture image wemmsed by Chan and Vese [4]. It is also based on tech-
considered as multi component conditional probabilityiques of curve evolution and level set methods, but
density functions. This information served as the stofhe gradient-based information is replaced by a criterion
ping term in a variation of the geodesic snakes mechahich is related to region homogeneity. The active con-
nism. Rousson, Brox and Deriche [40] extracted textuteurs without edges model was extended to vector valued
features using the gray level values and a structure tensnages [4] and specifically to texture segmentation [45].
which is defined as smoothed versions of image deriv@han and Vese [4] use a reduced form of the Mumford-
tives. Then, assuming a Gaussian model for the eleme8tgah functional [35] where the image is approximated
of the structure tensor and Parzen density for the imalgg a piecewise constant function. They add a regularity
intensity channel, an energy functional that is the tarm that controls the contour's smoothness which is
posteriori partitioning probability is maximized. Zhu etts arc-length. Kimmel [23] proposed to incorporate a
al [51], [52] proposed an approach called region compmore general weighted arclength in the edgeless active
tition, unifying snakes, region growing and Bayes/MDlcontours method. The arclength is weighted by a func-
criterion by the application of a variational principldgion of the image’s gradients. This addition is practically
for multi- band image segmentation. This algorithrthe geodesic active contours functional. In his work he
integrates the geometric benefits of the snakes/ballo@mwmnbines the Chan-Vese approach with the geodesic
mechanism with the benefits of the statistical modelliractive contours model, along with an alignment term
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which gets high values if the normal to the curve aligns
with the direction of the image’s gradient.

Motivated by the basic approach of the Mumford-Shah
functional [35], which combines piecewise smoothness
with the existence of edges, and by the studies of a
general model which combines active contours with
and without edges [23], we also apply the Integrated
Active Contours model (IAC) (with and without edges)
to the problem of texture segmentation. Thus, we offer a
new mechanism for the concept of "texture gradients”
which is based on the metric of the Gabor features
space manifold, and combine the information on the
gradients of the Gabor features with the information on '- : ; : ' e
the homogeneity of these features.

Fig. 1. In this diagram the responses in the frequency domian of

I1l. PRELIMINARIES a possible set of Gabor wavelets is presented. A common design
strategy of Gabor filters is to ensure that the half-peak magnitude
A. Gabor Transform and Feature Space support of the filter responses in the frequency domain touch each

A Gabor filter centered at the 2D frequency coordfther-
nates(U, V') has the general form of:

h(z,y) = g(2’,y) exp@ri(Uz + Vy)) (1) this way, a set of filters for a known number of scales,
where S, and orientations K:
/ /

(@', y) = (x cos(¢) + y sin(¢), —z sin(e) +y cos(¢)), T (2, 9) = @™ (=, L), (6)

am™’ am
@ where (', ') are the spatial coordinates rotated ¥y
1 z? y? and scaled by powers. = 0...S — 1. The responses of
p <_2)\202 N %2> ’ (3) Gabor wavelets in the frequency spectrum can be seen
in figure (1).

and X is the aspect ratio characterizing the elliptic . .
: . . . Alternatively, one can obtain Gabor wavelets by log-
Gaussian windowg is the scale parameter, and the major

axis of the Gaussian is oriented at angleslative to the _arlthm|ca||_y d|stor'F|n_g the frequency axis [37] or by
. . . . incorporating multiwindows [53]. In the latter case one
x-axis and to the modulating sinewave gratings.

; . obtains a more general scheme wherein subsets of the
Accordingly, the Fourier transform of the Gabor func: = . . : .
tion is: functions constitute either wavelet sets or ngorlan S(_ets.
There are several degrees of freedom in selecting

H (u,v) = exp (—27r202((u’—U’)2A2+(v’—v’)2) the family of Gabor filters to be used: number and
4) values of scales, frequencies and orientations. In order

where, (+/,v') and (U’, V') are rotated frequency coor-to obtain good segmentation results, the filters should be
dinates. carefully selected, so that they represent the data and the
Thus,H(u', ') is a bandpass Gaussian with its minodifferences in textures within the data in an accurate way.
axis oriented at angle from the u-axis, and the radialAlthough some techniques were suggested to obtain such

center frequencyF is defined by :F = (U? 4 V?)1/2, selection [11], [50], they are complex to implement and
with orientation § = arctan(V/U). Since maximal we manually selected the number of orientations, and the
resolution in orientation is desirable, the filters whosé@lues of scales and frequencies. Our selection was also

sinewave gratings are co-oriented with the major axis @fotivated by the guidelines offered by Lee [27].

the modulating Gaussian are usually consideree=(¢ ~ The feature space of an image is obtained by the inner

9, y) = 53

and )\ > 1), and the Gabor filter is reduced to: product of this set of Gabor filters with the image:
h(z,y) = g(2',y )exp(2miFx’). (5) Winn(2,y) = R (2, y) + 1Jmn (2, y)
It is possible to generate Gabor wavelets from a = 1(@,y) * hmnn (2, y). (7)

single mother-Gabor-wavelet by transformations such asOnce this feature space is generated, one may use
translations, rotations and dilations. We can generate alh channels, or use an appropriate subspace. In this
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study, the features space is either the full set of Galitbe Gaborian space, we may view the image-feature
coefficients (for all scales, orientations and frequenciggformation as aN-dimensional manifold embedded
or only the maximal value of Gabor coefficients at each a N + M dimensional space, wher® stands for
pixel location, when maximization is done per scal¢he number of local parameters needed to index the
orientation and frequency. manifold of interest andV/ is the number of feature
coordinates. For example, the Gabor transformed image
can be viewed as 2D manifold with local coordinates
(x,y) embedded in & D feature space. The embedding
Sochen et al. [47] proposed to view images and imageap is (x,y,0(z,y),o(x,y), f(x,y), R(z,y), J(z,y)),
feature spaces as Riemannian manifolds embeddedninere R and J are the real and imaginary parts of the
a higher dimensional space. Their approach, rooted @abor transform value, artj o and f are the direction,
high-energy physics, is based on the Polyakov actigpale and frequency for which a maximal response has
functional which weights the mapping between the inbeen obtained.
age manifold (and its metric) and the image featuresWe are interested in measuring distances on the mani-
manifold (and its corresponding metric). The term imageld. For example, consider a two-dimensional manifold
manifold is used here as the surface formed by the graphwith local coordinatego, o2). Since the local coor-
of the image (not to be confused with the space of allnates are curvilinear, the distance is calculated using
images). This functional can be minimized with respeet positive definite symmetric bilinear form called the
to the image features manifold parameters (embeddimgtric whose components are denoted y (o1, 02):
space), the Riemannian structure (the metric parameters), ) v
or both. It was shown that different choices for minimiza- ds” = guydo*do”, (8)

tion lead to different known flows [47], e.g. the heat flowyhere the Einstein summation convention is used: el-

a generalized Perona-Malik flow and the mean curvatygents with identical superscripts and subscripts are

flow. . . o summed over.
Using the Beltrami framework, the image is viewed as Hyow is the metric on the manifold chosen? This

a two-dimensional manifold, which represents the spati@l, pe done using either a variational or a geometric
extent of the image, embedded in a muIti—dimensiongbproaCh_ In the variational approach the Polyakov ac-
feature space. Formally, an image is described as;j@ is minimized with respect to the metric [47]. The
section of a fiber bundle. The base manifold of thesylting Euler-Lagrange equation is solved analytically
bundle is the image domain and the fiber is the featuigy the minimizing metric is the induced metric. We
space. A choice of a point in the feature space fQescribe below how the induced metric is obtained, from
each point in the base manifold is called a SeCtiOB-geometric point of view, via the pullback procedure.
Thus, image analysis turns into analysis of manifolds | ot ¥ . »» . A/ be an embedding o in M,
(sections). The most important concept related to OlWhere 1/ is a Riemannian manifold with a metric;;.
research is determining distances on the manifold. {fis another Riemannian manifold, and thus has its own
many applications the notion of distance between tWgetric. We assume that the embeddingfin M is
locations on the image refers not only to the spatiglometric and thus we may use the knowledge of the

distance, but also to the "information” part of the dismetric ons and the mapX to construct the metric on
tance between points. This can be calculated for examplethis pullback procedure is as follows:

by Euclidean or the Kullback-Leibler distance measures. e
The Beltrami framework offers a”_natural _ch,(,)lcg for (gu)s (!, 0?) = hij(X(U1702))77V, 9)
distances measurements, as the "information” distance ot do
between points in the image turns into distance betweahere we use the Einstein summation convention—=
points on the image manifold; This can be calculated. .., dim(M), and o',0? = 1,...,dim(X) are the
using the manifold’s metric. local coordinates on the manifold. We actually use the

As a simple example, let us examine a gray scalacobian,/, of the smooth mapX : ¥ — M to obtain
image I(x,y). It can be viewed as a 2-dimensionathe metric of¥ from the metric ofM; the jacobian of
Riemannian surface (manifold), witliz,y) as local the mapping should be computed, and for an Euclidean
coordinates, embedded iR® with (X,Y,Z) as local embedding space with a Cartesian coordinate system (as
coordinates. The relation is given X = z,Y = is the case here), the desired metric can be obtained by
y,Z = I(z,y)). When we consider feature spaces ohultiplying the transpose of that jacobian by the jacobian
images, e.g. color space, statistical moments space, aself: g, = JJ.

B. The Beltrami Framework
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If we pull back the metric of a 2D image manifoldregarding the boundaries in the image. The resultant
from the Euclidean embedding space (x,y,l) we get: evolution equation is the gradient descent flow:

1+ 13 L, > . (10) ac _ E(|VI))kN — (VE -N) N, (13)

(gMV(xay)) = ( ley 1 +I§ dt
. . . wherek denotes curvature anll is a unit vector which
In the more general case of higher dimensional feat%enormal to the curve

— . 1 . n . - .
spacer” = (F(z,y), -, F"(x,y)) the metric is given  norining 2 functiont/, so thatC = (2, y)|U (x, y) =

by 0), we may use the Osher-Sethian Level-Sets approach
1+, FiF! > F;F;' [39] and replace the evolution equation for the cu@e
(9w () = S, FiFL 14, FiF. (11) with an evolution equation for the embedding function

U:
It turns out that the inverse of the metric’s determinant dUu . VU
can serve as a good edge detector. The rationale behind dt [VU[Dv (E(VI) |VU\> ' (14)

thls IS as fOIIOWS'. The metrlgyw is used to _me_asure A popular choice for the stopping functiofi(|V])
distances on manifolds, and its components indicate the . ) 1 .

: . e s given by: E(|VI|) = ——<= [29], but other image-

rate of change of the manifold given a specific direction. ~ .- . 1+ V1]

. specific functions may also be used. For gray level

Therefore, when the determinant gof, has a value . . ) o . :
which is much laraer than unitv it indicates the resenc':mages' this expression coincides with the determinant

d Y P of the image’s manifoldg,,: 1 + I,2 + I,% Thus, we

of a strong gradient on the manifold. A value which is . . : )
2 . ) can rewrite the expression for the stopping tétnn the
close to unity indicates a region where the manifold IS . . )
- l%eodesw shakes mechanism as follows:
almost flat. Thus, we may select as an edge indicator the
inverse of the determinant gf,,,. Moreover, the metric's E(|VI|) = 1 1 (15)

determinant gives an indication for the ratio between 1+ |VI? B det(gu)’

the size of an area elemertdy when measured on  The importance of the Beltrami framework for seg-
the manifold and when measured on the x-y plane. Theantation in general, and for texture segmentation in
larger the metric, the less horizontal is this patch of theyticular, is that it offers a general tool for evaluation

manifold (thus contains an edge). of gradients on the image manifold regardless of the
features used. Given a set of texture features, we can
IV. GEODESICACTIVE CONTOURS derive the metric of the image manifold embedded in

. , , that feature space, and use it as described to create the
We review the geodesic active contours method for, )

. : . edge indicator function.
non-textured images according to the formalism pre-
sented in [3], [21].

Let C(q) : [0,1] — R? be a parametrized curve, and
let 7:[0,a] x[0,b] — R™ be the given image. Let We choose, in the Gabor feature space, a submanifold
E(r) :[0,00[— R™ be an inverse edge detector, so thaf most relevant information for the determination of
E approaches zero whenapproaches infinity. Visually, texture boundaries. We may interpret the Gabor trans-
E should represent the edges in the image, so that feem of an image as a function assigning to each pixel's
can judge the "quality” of the stopping terf by the coordinates, scale, orientation and frequency, a velue
way it represents the edges and boundaries in an imalgethis study, we select texture features to be either the
Thus, the stopping terry has a fundamental role in theGabor responseld” per scale, orientation and frequency,
geodesic active snakes mechanism; if it does not well alternatively, the scale, orientation and frequency for
represent the edges, application of the snakes mecWhich maximum amplitude of the transform is obtained
nism is likely to fail. Minimizing the energy functionalat each pixel. Thus, for each pixel, we obtal;,q.,
proposed in the classical snakes is generalized to findiig maximum value of the transform, ..., omae and
a geodesic curve in a Riemannian space by minimizing;..., i.€. the orientation, scale and frequency that yield

this maximum value. Whatever the features selection
Lp = /E(|VI(C(q))|)|C’(q)\dq. (12) is, it can be naturally represented as2® manifold
(with local coordinatesz,y)), embedded in a higher

We may consider this term to be a weighted length dimensional space. This initial manifold is noisy and
a curve, where the Euclidean length element is weightskdould be regularized before it can be used. We use here
by a factorE(|VI(C(q))|), which contains information the Beltrami flow with a regularized metric. In order

V. THE GABORIAN SUBMANIFOLD
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to proceed we need to define the Riemannian structurd=or the orientation feature manifold, y, 6(x, y)) this
on this submanifold. Using the pullback mechanismmetric is given by:

described earlier, we get the following metric:
g g 1+62 0.0,

Lt Zoal Loy g )= (o ) 19)

(guv) = ( (i ; ()2
2 wiali)sa(i)y Lt wia(i), The resultant gradient descent process is the Beltrami
wherei indicates the relevant Gabor featu®), and flow for the orientation featuref. According to the
w; accounts for the different weights given to each Gabgfler-Lagrange method we get:
feature. As stated earlier, the texture features can be
the Gabor response, the scale, the orientation or the ‘LS — _div<v9(det(9))> (19)
frequency. Each feature has its own range of values. o6 2./det(g) )’
Thus, in order to obtain a meaningful metric, the weighw

) : Pere
w; are used to obtain the same numerical range for al

features. _ ,Odet(g) Odet(g)
VI. GABOR FEATURE SPACE DIFFUSION According to the steepest descent method the evolution
In the previous section we have described how tiggluation is:
Gabor feature space can be treated e&Damanifold 6, = — 1 08 ‘ (20)
embedded in a higher dimensional space. We have used \/det(g) 00

a maximum criterion to obtain a single orientation, scale L . e
and frequency for each pixel location. This selection Note that this is identical to Beltrami diffusion for gray

has the advantage of being simple. However, it doltesvselﬂl(;nagsez,'rﬁslwzs aII'reeda?())/ s;iiegtsg;% rrllle;;£2t42éHere
not always well represent the textural information an ' W IS Simply app'l o ' ure.
2) Gabor Feature Space Diffusion via a coupled

is sensitive to local variations in texture characteristics. trami flow: Th ling t in th led Bel
The resultant Gabor features can be therefore quite noé . r_a?l ‘?W-th € c?gp |Ingtherm In the coup:_e e-h
The full set of Gabor responses per scale, orientati mi Tlow 1S the metric. In the previous section, eac

and frequency can also suffer from noise. Thus, it %;borian component is Beltrami-diffused in a stand
desirable to reduce the amount of noise in the Gaboria .ni ap_pr_oa}ch. Here, we dleflne arZi enerctz:jydfunc]:uonal
features and obtain a smoother function to be usedJf{jiich minimizes an area elemeny/det(g)dzdy, 0

the geodesic snakes mechanism (e.g. [44]). We pres Ifeatur(jgs’ manifold, V\t')h'gg g'aDDn}anlfold with
two approaches: the first is the Beltrami flow, applie%ca %0(3; 9mate$.a:,y) embedded in a1 feature space
to texture features which were selected according t& ¥ %% f):

the maximum criterion, and the second is a Gaussian- g ( R, J,0,0,f) =

Belt i fl lied to the full set of Gab .
eltrami flow, applied to the full set of Gabor responses [ Vdet(g(VR,VJ,Vo,V0,V f))dzdy, (21)

A. Gabor Feature Space Diffusion via the Beltrami flowheredet(g) is the determinant of the metric of the Ga-

In the framework of the Beltrami approach, an ejgorfeatures manifold, given in general for any number of
ergy functional is defined to minimize an area eleme Eatures,a(z), each weighted by; (see equation (16)).

dedy, of a manifold. We consider first how toFor the Gabor feature submanifold of maximal feature

implement Beltrami diffusion for each feature separatel _s_ponses, 0
A coupled scheme is presented in the next section. * — (z,y, R(z,y), J(2,9),0(2,9), 0(,y), f(z,9)),

1) Gabor Feature Space Diffusion via the Beltra we assign a metric by the pullback mechanism as fol-
flow: Let us take, for example, the orientation featur"s: 7
manifold, which is &D manifold with local coordinates G = Oy + Z FiF, (22)
(z,y) embedded in 8D feature spacéz,y,6(z,y)). =3

The energy functional is defined as
The combination,/det(g)dzdy, an area element of

S(z,y,0) :/\/ det(g(0,,0,))dxdy,  (17) the Gabor features manifold, is the term that forces
smoothing as the features field reduces its overall area

where det(g) is the determinant of the metric of thewhen it flows towards the optimal solution. The resultant
Gabor features manifold. gradient descent process is the Beltrami flow for each
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Gaborian feature. Let represent one of the Gaborian VIl. GABOR-SPACE GEODESICACTIVE CONTOURS

features, than according to the Euler-Lagrange method: WITH AND WITHOUT EDGES
58 [ Va(det(g)) In this section we review the geodesic snakes and
o= Taw| e e——— |, (23)  the active contours without edges models applied to the
da 2\/det(g) ; .
Gabor feature space. We also present the integration of
where the two models as an extension of the work of Kimmel
Odet(g) Odet(g) [23].
o(det = , .
Va(det(g)) = (<5, =5, )
According to the steepest descent method the evolutféh Gapor-Space Gegdesm Active Contours .
equations are: Having the essential components of the formalism
L s presented so far, it is straightforward to generalize the

Ry (24) Geodesic Active Contours algorithm to texture segmen-
Vdet(g) 0a tation. Based on the defined two-dimensional submani-

We obtain a set of coupled evolution equations. TH‘gld of texture features, and using the natural Riemannian

update of the values ok, J, 0,6, f is done at the end metric defined on it, we proceed to build the key ingre-
of each iteration. R dient of the Geodesic active Contours algorithm, namely

In order to further regularize the process, one c4fi€ StopPping function. We construct it in an analogous

smooth the metric before applying the Beltrami flowV@ 1o the intensity based algorithm:
To regularize the metric, we first convolve each feature 1

. . E(texturd z, = 27
channel with a Gaussian kernel and only then calculate ( €z,9)) 27)

ay =

a det(guw)

the derivatives and construct the metric. Once the met@ging this stopping term in the context of the Osher-
is obtained we denoise the features with the Beltram§ithian formulation yields:

flow as is derived above. This pre-smoothing of the

metric yields a more robust and accurate submanifold dau = |VU|Div (E(VI)VU> _ (28)

which, in turn, yields a better texture edge detector and dt IVU|

a more accurate and robust segmentation. The zero-crossings of the resulting generates the
desired segmentation.

B. Gabor Feature Space Diffusion via a Gaussian-

Beltrami flow B. Active contours without edges for Texture segmenta-

e . . . tion
The Beltrami diffusion flow is characterized by its _ _
edge preserving ability, in comparison to linear op- The active contours without edges model was ex-

erators. It is advantageous to use bigger stencil fnded to vector valued images in general [4], and was
the calculation of the metric in order to improve th@Pplied to the Gabor space of images for texture segmen-
robustness of the Beltrami diffusion. The metric used f&ation [45]. The multi-valued information is the magni-
the Gaussian-Beltrami flow is calculated using gaussigtfle of the Gabor transforms obtained when convolving
smoothed derivatives of the image. For a gray |evg|abor filters with the image. Lety be the textured

image, the metric is usually calculated as: image, andug, @ = 1,..., N, be N Gabor transforms
) of the original imageu,, obtained for different scales,
() = <1 + 13 Iny2> (25) orientations and frequencies. L&tbe the evolving con-

g L1, 1+4+1,)° tour, andc’, andc’ the averages of the Gabor channel

wherel,, I, are the image derivatives. For the GaussiaHo inside and outside the curv€' respectively. The
Beltrami scheme, we convolve the image derivatives wifAlloWing energy functional is minimized with respect

— _{iN  — _ [N .
a relatively large gaussian filtdi: I} = H « I, I}, = tocy = {c} }iLy, = ={c };L,, andC:
H x I,;, and the metric is then given by: F(er,e=,C) = p(length(C)) +
14+ (H? 1l 1N .
() = ( 11 VIR (26) / — N |ud(z,y) — ¢ |Pdad
i Y 11 siteicy N ; Ylug(z,y) =y [Fdedy

Using a linearly smoothed metric as the edge indicator 1N ‘
has the advantage of being more robust, while its edge+/ ' N Z)\Hug(aﬁ,y) — ¢ |?dxdy,  (29)
preservation quality is kept . outside(C) =% —y
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wherey > 0 and A, \". > 0 are fixed parameters for
each channel. Note that the first term is merely the arc-
length of the curve. Using the level sets algorithm [39],
the Euler-Lagrange equation for the level getwhich

is defined via:C' = {(z,y)|¢(z,y) = 0}, is:

99 V¢
ot ,u,dw(|v¢’)
TN -
N > (Wi (uf =€) = A (uf — ¢2)*X30)

i
=
=
-

=1

C. The combined energy functional and evolution equéig. 2. An image composed of two very similar Brodatz textures.
tion

Following the model developed by Kimmel [23] for
gray level images, we generalize the active contoutfannel or the maximum response in scale, orientation
model with and without edges to texture segmentatiogind frequency, are obtained. The metric of the image
The energy functional to be minimized can be seen agrnifold embedded in the higher dimensional feature
natural extension of the Chan and Vese functional, Wh@Sace is C&lCUl&tEd, and used to obtain a texture edge
the term which accounts for the arc-length of the cunestector, to be used in the Geodesic Active Contours
is replaced by the geodesic length of the curve, whighechanism or in the combined model. The selection

is weighted by the gradient information: of the Gabor filters is fine-tuned to obtain the best
texture representation. The geodesic snakes mechanism
F(cx,e-,C) = M/c h(C(s))ds+ is initialized with a signed distance function.
| X The first test image (Fig. 2) is composed of two
/ il Z /\mué(%y) — cﬂdedy Brodatz textures taken from a widely-used photographic
inside(C) N i=1 album [2]. First, the image is convolved with Gabor-

1N . wavelets of five scales, eight orientations and a single

+/ —Z)\Hug(a:,y) — " |*dzdy, (31) frequency. Next, the texture features (in this case, the
outside(C) IV i=1 orientation and scale which yielded the maximal Gabor
where h(C(s)) will be calculated as the inverse of theesponse for each pixel) are obtained. Following a cou-
determinant of the features submanifold’s metric. AgaiRled Beltrami process of smoothing, the edge indicator
the level sets algorithm [39] is used, and the Eulefunction is calculated, using the metric of the image

Lagrange equation for a level setis: manifold (Fig. 3). As can be seen, there are a few
outliers in the background which are weaker than the

[ . Vo , -
= 0.(9) | * div(h(z,y) =) square’s gradients, but do not correspond to any relevant
ot Vol boundary. These outliers are the result of using the
1 & P P maximum value of the Gabor features rather than the

N Z Ny (up — ) complete data.
szl Nevertheless, the result obtained for the Brodatz ex-
1 i ; ample is quite satisfying (Fig. 4), and comparable to that

- A 1 4\2 32 : )
+ N ; ~(up = ct) ] ’ (32) obtained by Sandberg, Chan and Vese [45].

. N . .., The second example is of a zebra image (Fig. 5), tested
wheredc(¢) is the derivative of a regularized Heav's'd%lso in our previous studies [44]. The texture features

function. The zero-crossings of the resultingenerates selected are the orientation and scale which yielded the

the desired segmentation. maximal Gabor response for each pixel. The Beltrami
diffusion procedure was applied to obtain a smooth edge
VIII. RESULTS indicator (Fig. 6). The resulting segmentation is shown in

To demonstrate the performance of the proposédure (7). The segmentation result obtained in this study
method, both synthetic and natural images are usélmore accurate in comparison to that obtained in our
The Gabor feature space is generated for this purpgsevious study [44]. This is primarily due to the follow-
and the texture features, being the Gabor responses ipgrimprovements: First, a better selection of the Gabor



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 1, NO. 1, FEBRUARY 2004 10

filters was implemented in the present study; indeed,
oy ‘ selection of the best (in terms of texture discrimination)
¢ I 2 Gabor filters is very important in general, and is espe-
cially crucial when considering maximal values as we do.
Second, application of Beltrami diffusion to the resultant
texture features yields a noise-free edge detector func-
! tion. Third, a careful selection of the geodesic snakes
' parameters proves to be very important for obtaining
good results. We refer the readers to Rousson et al [40]
for a comparable result obtained by the structure tensor
% based approach. We present another segmentation result
o e for an image of a leopard (Fig. 8). Segmentation fails in
Fig. 3. The inverse edge indicator of the Brodatz image shown in Fg]e neck area and in the face area, because the texture
2. The following orientationsf0, T, 2=, 37 4x 57 67 Tr] scales: N these areas is not very different from the background,
[0.8638,0.9070, 0.9525, 1], and a single frequency.15, were used. and thus, the limited set of Gabor filters used for this
Beltrami coupled diffusion was applied f@0 iterations with a0.1 example are limited in their capability to detect very
time step. . . .
similar textures. Although further improvement of this
result can be obtained, it is interesting to evaluate the
performance of our algorithm with that of the geodesic
active contours algorithm when simpler edge detectors,
such as the popular image gradient, are used. Thus, we
obtain the edge detection function using:

1
E(|VI|) = ———— 33
rather than using
B(VI) = - (34)
dt( v)

As the segmentation results are very poor when using
the usual gradient information, we choose to present the
%ége detectors obtained (Fig. 9). The upper image is the
edge detector when using our approach. The boundary
between the leopard and the background is obvious,
and this explains the good segmentation result shown in
: ) figure (8). The image in the middle is the edge detector
: when we use the gradients of the original image

Fig. 4. The resultant segmentation of the image composed of Brodat
textures, using the geodesic snakes approach.

1

1+ |VI|? (35)

E(|VI]) =
As can be seen, no boundary information exists. There
is no valuable edge information in the gradients of
a textured image, as the image itself contains several

¥ ¥ y 1“'.. ! . . . . .

i “i:-; s L gradients within the textural structure. This is why the
) Y el AR L Gabor or similar transforms are needed to obtain the

BRI G TSR e AR e boundary information in textured images. To present the

e Rein : . st

_ _ _ _ _actual benefit of using thg— edge detector, we also
Fig. 5. Real-life test image of a zebra. We applied Gabor filtegy|cy|ated the edge detector obtained from accumulating
having the following orientationtl, £, %, 3, 3, 5, ¢, %), scales: o gradient contributions of all the Gabor channels
[1,2,3], and frequencied.225,0.3,0.375]. ‘ - :

Thus, if the Gabor channels are marked®s andi is
indexing the number of filters used, the edge detector
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;
= -:‘i" it ¥l

2
- AR e Fig. 8. The segmentation result for a leopard using the geodesic
shakes algorithm for textures.
Fig. 6. The inverse edge indicator of the zebra image obtained by
applying the Beltrami diffusion to each texture feature separately.
[The Beltrami diffusion was applied fal0 iterations with a0.1 time
step.]

The problem is, that this approach will not always work.
Consider a simple example of a gray level image which
depicts a bright circle on a dark background, with a
tited plane of illumination added to the image (Fig.
10). While the tilted illumination plane presents no
problem to the geodesic snakes mechanism (Fig. 11),
the approach of active contours without edges fails in
this simple segmentation task (Fig. 12). Implicit to the
active contours without edges is the assumption that each
i region, e.g. object and background, can be described by
N e | the mean gray level value, without regarding the edges.

This example illustrates that edges still contain valuable
Fig. 7. The segmentation result for the zebra image. information.

A similar argument applies to textured images, where
the Gabor channels exhibit properties analogous to that
of the tilted illumination plane. We use for this purpose

— 1 ] (36) @ synthetic image composed of two ’'spatial chirps’ (Fig.
1+ Zf\il(Gi + G?y) 13): The base frequency of the squared object is selected

The lower image in figure (9) is this edge detector. T%g be higher than that of the base frequency of the

is given by:

E([VI])

leopard’s silhouette can be seen, but there are sev '%ﬁ:kground. The _(tj_ependencgl of tt::e (ljmageds horlzofn:sl
outliers and important gradients are not present, so t uency on position resembles the dependence of the

a e .
segmentation fails. gray level value on position in the previous example.
We wish to further assess the performance of o

fact, the low-pass filtered image resembles a similar
method, and compare it to results that were obtained ough tilted towards the horizontal axis) gradient across
another, previously proposed, algorithm. We restrict o

ifie field. The squared object is in this case darker than
comparison to a study which uses a similar conceth

2 background.
approach. Moreover, we would like to explore the pros the square object gradients are not the only ones

and cons of the edge and region based approaches. nresent in the edge detection function calculated using
In the study of Sandberg et al. [45], segmentation g{;r approach (Fig. 14), but they are definitely the most

the Brodatz image, used also here, is very good. Thgsminant. Application of geodesic snakes yields the
study is based on a variational formulation, in which 8egmentation result shown in figure 15.

texture region is characterized by a certain value. Thus,

the homogeneity in some variables is important. This To compare with, application of the Gabor-based
refers to the assumption that in each Gaborian chanaetive contours without edges process results in inac-
there is a certain mean response value for each textunaracies (Fig. 16). Let's examine the energy functional
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Fig. 10. A bright circle on a dark background, illuminated by a
tilted plane that generates a gradual change in intensity across the
image.

Fig. 11. Segmentation of the circle-on-background image, using
geodesic active contours algorithm. As can be seen, the tilted back-
ground presents no problem for the geodesic snakes process.

Fig. 9. The inverse edge indicator of the leopard image obtained
when using: 1. Them edge detector (upper image). 2. The
image gradients edge detectd?(|VI|) = ﬁ (mid image). 3.

1

The gradients of the Gbor channeB(|VI|) = W

(lower image). . . . . .
Fig. 12. Segmentation of the circle-on-background image, using the
active contours without edge algorithm. As can be seen, the tilted
brightness of the backgrounds results in outliers when using the active
contours without edges approach.
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i

Fig. 16. The squred image segmented by using the active contours

Fig. 13. A test image is composed of two ,Spatia[]l;/oithout edge-based algorithm. The parameters (eq. 32) jare:

chirps’: The object's base frequency is higher than that o » A4 = 100000, A~ = 50,000.
the background. The Gabor filters applied have scales:
[0.6667,1,1.5,2.25,3.375,5.0625, 7.5938], a single frequency).4

and a single orientation, zero.

in the case of this approach:

F(Z,CT C) = p(length(C)) +

/ o) NZ)\ luh(z,y) — ¢, [*dzdy

et PETROR TS 1 i |0 i
i ot At _|_/ N Z AL |ug(z,y) — & |2dxdy,
outside(C) i=1

where C is the contour, the constant§ and ¢’ that
depend onC' are the averages af, inside and outside

C respectively, andy > 0 and Xo, AL > 0 are
fixed parameters for each channel. The second and third
terms of the above expression are generated under the
assumption that each Gaborian channel is endowed with
a certain mean value for each textured region (inside
%e curve and outside the curve). The contribution of
these terms in the evolution equation is depicted in figure
17. Thus, because of the frequency-tilted nature of the
original image, the minimum value of the defined energy
functional is obtained for a falsely segmented image.

The next example is composed of two textures (Fig.
18). The background texture of a brick wall exhibits a

R Lo

Fig. 14. The inverse edge indicator of the two-chirps image us
along with the Gabor space geodesic snakes algorithm.

filters, the absolute values of the Gabor channels were
considered as texture features. Then, these texture fea-
tures were submitted to the gaussian Beltrami diffusion
mechanism. Applying the geodesic active contours on
the the diffused Gabor feature space provides a satis-

|||| ]|] "chirp-like” behavior. Following application of the Gabor
I" | factory result (Fig. 19), but the active contours without

edges scheme halts away from the boundary (Fig. 20).
Next, we show that the combined approach may
Fig. 15. Segmentation of the two-chirps aquare image, using thOduce better segmentation results than the geodesic
gradient based Gabor space geodesic snakes algorithm. snakes or the edgeless active contours scheme - when
they are independently applied. The first example is
again a simple gray level image, yet, it demonstrates the
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Fig. 20. The resultant segmentation following the active contours

Fig. 17. A function used in the active contours without edge‘g'thOUt edges model for the Gabor space.
algorithm. This function represents the contribution of the Gabor
channels to the evolution of the level skt

Fig. 21. A test image which is composed of a bright ring on a
darker background with a tilted illumination plane.

Fig. 18. An image of a "chirp-like” brick-wall background and a

Brodatz texture object. The gabor filters used here have four orien: ; ;
tations:0, 5, Z, 27, six scales{0.3277, 0.4096, 0.512,0.64, 0.8, 1], Usefulness of applying the Integrated Active Contours

and a single frequency).4. The texture features are the responséslp_\c) mOdel- The image (Fig. 21) is co_mpog.ed Qf a
obtained for each Gabor channel. bright ring and a darker background. A tilted illumina-

tion plane is added to the image4it degrees. Thus, the
top left corner is the darkest, and the bottom right corner
is the brightest, even brighter than the ring. This simple
image poses major difficulties to both algorithms. The
geodesic snakes algorithm stops at the outer boundary,
with no detection of the inner boundary (Fig. 22).
The edgeless active contours model divides the image
into two parts which do not correspond to the actual
boundaries (Fig. 23). This is because the gradual change
in gray level values makes it impossible to characterize
the object by one constant value and the background
by another constant value. Application of the combined
active contours model (with and without edges) results
in a good segmentation result, as can be seen in figure
Fig. 19. The resultant segmentation following the Gabor space actE/‘elI.f we test the idea of the combined approach on the
contours model. .

zebra’s image we have used before, we may observe the

contribution of each approach to the integrated scheme.
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Fig. 22. Application of geodesic snakes results in the detection '5'9 25.  The segmentation of 'the zebra usir)g the active contours
the outer boundary only. without edges approach results in several outliers.

Application of the Chan-Vese algorithm resulted in a
good segmentation, however with a large degree of noise
(Fig 25). Recall that application of the geodesic snakes
mechanism resulted in a much smoother boundary (Fig.
7). The integrated result yields a smooth boundary which
captures the details more accurately (Fig. 26).

We have also tested the algorithms on another natural
image of a leopard lying on the grass. Gabor wavelets,
with 6 scales[0.9803,0.9901, 1,1.01, 1.0201, 1.0303], 4
orientations [0, Z, 2, 2], and a single frequenay.4 are

applied to the image. The texture features are selected for
Fig. 23. The edgeless active contours model fails to detect tHais example to be the Gabor responses for each channel.
boundary, and divides the image into two parts which have the moghe resulting segmentation using the geodesic snakes
different mean gray levels. a ; :
pproach, the active contours without edges approach,
and the integrated approach are shown in figures (27,
28) and (29) respectively. As can be seen, the results are
B not satisfactory, and further improvement is desirable.
p There are only a few outliers, and the detection of the
. o . _ feet boundaries are improved as can be seen in figure
Fig. 24. Application of the combined approach results in an accuraé
detection (bottom image). The curve’s evolution (top left to top righty™"

Clearly, part of the head, and the front pows, are more

similar to the background than to the main texture of the

represents the combined influence of both mechanisms. These are the best results we got for this image. We
cannot say that these are the absolute best results, as

leopard. The problem is caused because of the existence
of more then one textural region in the object (the
leopard). Still, we would like to present this result to
show that combining both approaches provides better
results. For example, let’s take a closer look on the feet
area. Application of the Gabor-space geodesic snakes to
the leopard image (Fig. 27) fails to accurately detect the
leopard’s feet, as the gradient there is not sharp enough.
We may also see that the edgeless active contours model
provides unsatisfactory results (Fig. 28). However, the
leopard’s feet are better detected. The IAC mechanism
produces the best result, as can be seen in figure 29.
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Fig. 29. The combined approach results in a better segmentation,
Fig. 26. The segmentation of the zebra image can be accuratijle producing only a small number of outliers.
smooth and capture details using the integrated approach.

_ _ _ ) Fig. 30. A closer look at the leopard's feet shows that the combined
Fig. 27. The segmentation when applying the geodesic actigpproach better detects them (up) than the geodesic snakes alone
contours model. There are inaccuracies where the edges are not sliagtom).

the problem involves a large set of parameters (Gabor
filters parameters, geodesic snakes parameters, Chan-
Vese parameters and the weighting of the two approaches
parameters), and each parameter may have a substantial
impact on the final result. However, the point we would
like to stress here is the usefulness of combining the two
conceptually different approaches.

IX. DIscUssION

In the introduction we pointed out that there are
several methods to generate texture features, and at
least that many optimization criteria that can be im-
plemented in order to obtain the actual segmentation.
Fig. 28. The segmentation when applying the active contours withddt is difficult to assess the performance of each algo-
edges model. As can be seen, there are many outliers. rithm, and to pinpoint the right choices in each step,
e.g. the quality of the feature selection, or the quality
of the optimization procedure. Each algorithm seems
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to be suitable for a specific type of textured image Another main contribution of this work is the com-
segmentation problem and, most likely, there does nmrison of the geodesic snakes with the edgeless active
exist a universal segmentation algorithm that is optimabntours model for the issue of texture segmentation.
for the entire wide spectrum of natural textured image$hese attitudes are conceptually different. The snakes
It is therefore still desirable to enhance the repertoireechanism relies on gradients present in the image or
of methods and algorithms available for applicationsnage features and the edgeless approach considers the
and the fittest will survive. However, some rationalenage to be a piecewise constant function. The two
should motivate the development of such algorithms spproaches were integrated into a unified algorithm in
that they will not proliferate without real necessity othe work of Kimmel [23]. The proposed energy func-
purpose. With these boundary conditions in mind, wenal is composed of a geodesic snakes term and a
presented here an approach based on scaled (i.e. wavetitimal variance term, which is the Chan-Vese approach
type) and oriented Gabor representation of images, whtg In this study we generalized the unified algorithm
the Gaborian filters responses or their maximal values Kimmel for texture images. Both algorithms were
define the texture features. The analysis is based on theéependently applied to test images, as well as the
gradients present in these texture features space. In sambegrated scheme. We have shown that both methods
cases, this approach yields better results than approadieege their drawbacks: the geodesic snakes may produce
based on some homogeneity criteria like the edge-lasssatisfactory results when the gradients are not sharp
active contours approach. Further, the combined amough, and the edgeless active contours model fails to
proach, which combines boundary detection with regidrandle intensity tilts in gray level images, as well as
growing algorithms can serve as a more general schefreguency tilts in texture images. The combined approach
for texture segmentation. which accounts for both the gradients between regions
In this study we examined a feature set which &nd region’s homogeneity, may produce better results for
generated by taking the maximum amplitude of thgray level and texture images.
Gabor coefficients at each pixel location, along with
the scale_and orie_ntation f(_)r W_hiCh this maximum Va'”RcknowIedgments
was obtained. This selection is based on the assump-_ . _
tion that maximum values provide adequate information This rese_arch has been supported in part by_the
about textures, as long as the textures are homogendgiendort Minerva Center, the Fund for the Promotion
The selection of maximal values provides only partiz9f Res.earch. at the Technion, Israel Academy of Science,
information regarding image structure, and in turn, ma;EFI'A\_"V _U_n|ver5|ty f_und, the Ao_lams Center and the
generate less than satisfactory segmentation resultslﬁ'i‘?e“ Ministry 01_: SC|'ence'. YYZ is presently supported
the case of more complex textures. The solution ?ASO by the Medical imaging Group of the Department

this problem may be a better selection of the featuPé BME, Columbia University, and by the ONR MURI

space, and adding some statistical data, in the spirit Ffpgram NOOOM-01-1-0625.
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