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Integrated Active Contours for Texture
Segmentation

Chen Sagiv, Nir A. Sochen,Member, IEEE,and Yehoshua Y. Zeevi

Abstract— We address the issue of textured image seg-
mentation in the context of the Gabor feature space
of images. Gabor filters tuned to a set of orientations,
scales and frequencies are applied to the images to create
the Gabor feature space. A two-dimensional Riemannian
manifold of local features is extracted via the Beltrami
framework. The metric of this surface provides a good
indicator of texture changes and is used, therefore, in
a Beltrami-based diffusion mechanism and in a geodesic
active contours algorithm for texture segmentation. The
performance of the proposed algorithm is compared with
that of the edgeless active contours algorithm applied for
texture segmentation. Moreover, an integrated approach,
extending the geodesic and edgeless active contours ap-
proaches to texture segmentation, is presented. We show
that combining boundary and region information yields
more robust and accurate texture segmentation results.

Index Terms— Texture segmentation, Gabor analysis,
Geodesic active contours, Beltrami framework, Active
Contours without Edges, Anisotropic diffusion, image
manifolds.

I. I NTRODUCTION

T HE task of unsupervised texture segmentation has
been the subject of intensive research in recent stud-

ies, attempting to discriminate between regions which
have different textures [17], [36],[40],[45].

This is usually an effortless task for a human observer,
but far from being an easy one in image processing
and computer vision. The reasons for these difficulties
are twofold: First, segmentation is not a straightforward
problem even in the case of un-textured images. Second,
there does not exist a universal mathematical model of
real world textures, although some attempts to devise
such models have been reported [16], [19], [49], [51],
and it is therefore difficult to analyze them.

Texture segmentation algorithms combine usually four
major components: First, a texture representation space is
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selected. Common choices are windowed Fourier trans-
forms, the Gabor representation [18], Wavelet transforms
[5], [26], [48], local histograms [17], the local structure
tensor [40] and the space of oscillating functions [49].
In the second step, texture features are extracted, e.g
the magnitude of the response of the Gabor filters
and particular moments which are calculated from local
histograms [18],[42].

An introduction of a measure on the texture char-
acteristic features is the heart of the third stage of
processing. The measure indicates how much variability
is characteristic of the texture. Kulback-Leibler, Mutual
information, gradients, and other distance measure are
typical for this stage.

Finally, some objective function can be defined using
the texture features, and the segmentation is formulated
as an optimization, minimization or clustering problem.
In region based algorithms the third and fourth stages
become inseparable.

The texture segmentation algorithm proposed in this
study is based on a generalization of the geodesic ac-
tive contours model from the one-dimensional intensity-
based feature space to a multi-dimensional space of tex-
ture features. The Gabor-Morlet transform is applied to
the image, in the first stage, using self similar and rotated
Gabor functions. At the second stage, features yielding
maximum response for the Gabor filters, are selected
for each pixel in the image [41]; this choice defines a
subspace of the spatial-feature space. Alternatively, the
complete set of the Gabor responses may be selected
as features. In the third step a texture edge indicator is
defined. Its construction is one of the main contributions
of this paper, and we refer to it when describing the
Beltrami framework. Finally, a new form of geodesic
active contours mechanism is applied to obtain the
segmentation. We also study the integration of this active
contours model with the edgeless active contours model
proposed by Chan and Vese [4], which was recently
extended to texture segmentation [45]. This approach is
based on a general model that was recently developed
by Kimmel [23], which combines active contours with
and without edges.

An important aspect of our research is how to obtain
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the texture gradients information. We base our work on
the approach developed by Kimmel, Sochen and Malladi
[24], [25] who have shown that the Gabor spatial-feature
space can be described, via the Beltrami framework [47],
as a 4D Riemannian manifold embedded inR6. Using
this framework, the Gabor feature space is elaborated for
representation, processing and segmentation of textured
images via diffusion and curve evolution PDE flows
applied in this space.

The construction of the ”texture edge indicator”, and
of the generalized stopping term, in the context of
texture-based geodesic active contours, begins with an
analysis and a revised viewpoint of the form of the stop-
ping term in the intensity-based geodesic active contours.
It is shown that it can be interpreted, via the Beltrami
framework, in terms of the Riemannian structure on the
two-dimensional surface described by the graph of the
intensity function. In order to define a meaningful texture
gradient the chosen feature subspace is represented, via
the Beltrami framework, as a submanifold. This subman-
ifold inherits a Riemannian structure, i.e. the induced
metric, from the full spatial-feature space. The metric
introduced in the Gaborian subspace is used to derive
the inverse edge indicator functionE, which attracts in
turn the evolving curve towards the texture boundary in
the geodesic active contours scheme.

The main contributions of this work are as follows:
First, we derive an edge indication function in the Gabor
feature space of the images, by viewing this feature space
as a manifold. The determinant of this manifold’s metric
is interpreted as a measure for the presence of gradients
on the manifold. This is because the integral over the
square root of the determinant of the metric is simply
the area of the manifold. When the contribution of the
integrand is large, this means that the area of this part of
the manifold is large comparing to the projected area on
the x − y plane. This is an indication for the existence
of large gradients.

Second, while we look for gradients in the Gabor fea-
ture space, Chan, Vese and Sandberg [45] are interested
in the homogeneity of the Gabor features and apply the
vector valued active contours without edges algorithm
to this space. We compare the conceptual features and
performance of the geodesic snakes and the active con-
tours without edges approaches using synthetic and real
life examples, and explore the idea of combining these
two approaches into a single segmentation procedure
for textured images. This idea is a generalization of a
recent publication of Kimmel [23], but is innovative in
expanding the scalar case to a more general vectorial
case with application of this idea to the Gabor feature
space.

We begin by briefly reviewing related studies dealing
with texture segmentation. Then we present the Ga-
bor transform, feature space generation, the Beltrami
framework and geodesic active contours. We review the
Gaborian submanifold generation and diffusion, and then
the application of the active contours with and without
edges in the Gabor feature space. Finally, a combined
approach utilizing both geodesic contours and edge-less
active contours is considered. Results are compared with
those obtained by using the unsupervised ”edge-less”
texture segmentation technique [45].

II. RELATED STUDIES

Texture representation and modelling can be roughly
divided into two classes: statistical based approaches and
filtering based approaches. Statistical modelling is based
on the assumption that each texture has unique statistical
attributes. Among them are: local statistical features
[7], random field models [8], [14], [31], co-occurence
matrices [12], second order statistics [6], statistics of
texton attributes [19], local linear transforms [48], and
a gaussian distribution modelling of the structure tensor
[40].

The filtering modelling is based on applying some
filter bank to the image and considering the filters’
responses as information about the local behavior of
the image. A popular choice are the Gabor filters. The
motivation for the use of Gabor filters in texture analysis
is double fold. First, it is believed that simple cells in
the visual cortex can be modelled by Gabor functions
[9], [32], and that the Gabor scheme provides a suitable
representation for visual information in the combined
frequency-position space [37]. Second, the Gabor rep-
resentation has been shown to be optimal in the sense
of minimizing the joint two-dimensional uncertainty in
the combined spatial-frequency space [13]. The analysis
of Gabor filters was generalized to multi-window Gabor
filters [53] and to Gabor-wavelets [27], [34], [37], [53],
and studied both analytically and experimentally on var-
ious classes of images [1], [11], [53]. Most approaches
use the power spectrum of the Gabor filtered images. The
local phase information obtained by Gabor filtering was
also used for simple test images [10]. Nevertheless, it
seems that utilizing the phase information still requires
further investigation. The wavelets approach to texture
modelling was also considered [5], [26], [48]. Some ap-
proaches combine statistical modelling, structural mod-
elling and the filter bank model. The FRAME theory
proposed by Zhu et al [51], [52] combines the use of
filters, random fields and maximum entropy as a unified
approach for texture modelling.
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Once the representation space is selected, texture
features are obtained and the segmentation procedure
evolves in a boundary based approach, or a region based
approach. Here, we review some of the schemes already
proposed for texture segmentation. We focus on those
schemes which either use the Gabor representation or
minimization of energy functionals approaches. Lee et
al [28] attempted to use the Gabor feature space for seg-
mentation, by implementing a variant of the Mumford-
Shah functional adapted to signature vectors in the Gabor
space. Porat and Zeevi [38] proposed using localized
features based on the Gabor transform of the image,
and computed for this purpose the mean and variance
of the localized frequency, orientation and intensity. In a
previous study [42], we applied a Beltrami-based multi-
valued snakes algorithm to this feature space. Jain and
Farrokhnia [18] used Gabor filters to obtain texture
features by subjecting each filtered image to a nonlinear,
threshold-like transform, and computing a measure of
”energy” in a window around each pixel. A square error
clustering algorithm was then used to produce segmen-
tation. Manjunath and Ma [30] defined features vector
whose components are the responses of the Gabor chan-
nels. They used the Euclidean distance between these
vectors as a criterion for similarity between textures. Kim
et al [22] viewed the segmentation problem as a maxi-
mization of the mutual information between region labels
and the image pixel intensities, subject to a limitation
on the length of region boundaries. Hofmann et al [17]
considered the homogeneity between pairs of texture
patches by a non-parametric statistical test applied to
the Gabor space. A pairwise data clustering algorithm
was utilized to perform segmentation. In Paragios and
Deriche [36], a supervised variational framework was
developed, where the responses of isotropic, anisotropic
and Gabor filters applied to the texture image were
considered as multi component conditional probability
density functions. This information served as the stop-
ping term in a variation of the geodesic snakes mecha-
nism. Rousson, Brox and Deriche [40] extracted texture
features using the gray level values and a structure tensor
which is defined as smoothed versions of image deriva-
tives. Then, assuming a Gaussian model for the elements
of the structure tensor and Parzen density for the image
intensity channel, an energy functional that is the a
posteriori partitioning probability is maximized. Zhu et
al [51], [52] proposed an approach called region compe-
tition, unifying snakes, region growing and Bayes/MDL
criterion by the application of a variational principle
for multi- band image segmentation. This algorithm
integrates the geometric benefits of the snakes/balloons
mechanism with the benefits of the statistical modelling

used in region growing. Sandberg, Chan and Vese [45]
applied a vector-valued active contour without edges
mechanism [4] to the Gabor filtered images. Vese and
Osher [49] used a model which assumes that an image
is a linear combination of some bounded variation func-
tion, a ”cartoon” approximation of the image, and an
oscillatory function which represents texture or noise,
following a model proposed by Meyer [33].

In the framework presented here, we are interested
in defining ”texture gradients” and utilizing them in the
geodesic snakes mechanism, to determine the texture
boundaries. The geodesic snakes mechanism is rooted
in the popular ”snakes”, or active contours segmentation
algorithm proposed by Kaas et al [20]. In this framework
an initial contour is deformed towards the boundary
of an object to be detected. The evolution equation
is derived from minimization of an energy functional,
which obtains a minimum for a curve located at the
boundary of the object. The geodesic or geometric active
contours model [3], [21] offers a different perspective for
solving the boundary detection problem; it is based on
the observation that the energy minimization problem is
equivalent to finding a geodesic curve in a Riemannian
space whose metric is derived from image content. The
geodesic curve can be found via aparameterization
invariantgeometric flow. Utilizing the Osher and Sethian
level set numerical algorithm [39], allows automatic
handling of changes of topology. This snakes’ model was
extended to account for vector-valued active contours,
and to handle more complex scenery such as color
images [46] and multi-texture images [42]. Goldenberg
et al [15] offer a fast algorithm based on the AOS scheme
for geodesic active contours, and generalize it to color
images.

An edgeless active contours model was recently pro-
posed by Chan and Vese [4]. It is also based on tech-
niques of curve evolution and level set methods, but
the gradient-based information is replaced by a criterion
which is related to region homogeneity. The active con-
tours without edges model was extended to vector valued
images [4] and specifically to texture segmentation [45].
Chan and Vese [4] use a reduced form of the Mumford-
Shah functional [35] where the image is approximated
by a piecewise constant function. They add a regularity
term that controls the contour’s smoothness which is
its arc-length. Kimmel [23] proposed to incorporate a
more general weighted arclength in the edgeless active
contours method. The arclength is weighted by a func-
tion of the image’s gradients. This addition is practically
the geodesic active contours functional. In his work he
combines the Chan-Vese approach with the geodesic
active contours model, along with an alignment term
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which gets high values if the normal to the curve aligns
with the direction of the image’s gradient.

Motivated by the basic approach of the Mumford-Shah
functional [35], which combines piecewise smoothness
with the existence of edges, and by the studies of a
general model which combines active contours with
and without edges [23], we also apply the Integrated
Active Contours model (IAC) (with and without edges)
to the problem of texture segmentation. Thus, we offer a
new mechanism for the concept of ”texture gradients”
which is based on the metric of the Gabor features
space manifold, and combine the information on the
gradients of the Gabor features with the information on
the homogeneity of these features.

III. PRELIMINARIES

A. Gabor Transform and Feature Space

A Gabor filter centered at the 2D frequency coordi-
nates(U, V ) has the general form of:

h(x, y) = g(x′, y′) exp(2πi(Ux + V y)) (1)

where

(x′, y′) = (x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ)),
(2)

g(x, y) =
1

2πσ2
exp

(
− x2

2λ2σ2
− y2

2σ2

)
, (3)

and λ is the aspect ratio characterizing the elliptic
Gaussian window,σ is the scale parameter, and the major
axis of the Gaussian is oriented at angleφ relative to the
x-axis and to the modulating sinewave gratings.

Accordingly, the Fourier transform of the Gabor func-
tion is:

H(u, v) = exp
(
−2π2σ2((u′ − U ′)2λ2 + (v′ − V ′)2)

)

(4)
where,(u′, v′) and (U ′, V ′) are rotated frequency coor-
dinates.

Thus,H(u′, v′) is a bandpass Gaussian with its minor
axis oriented at angleφ from the u-axis, and the radial
center frequencyF is defined by :F = (U2 + V 2)1/2,
with orientation θ = arctan(V/U). Since maximal
resolution in orientation is desirable, the filters whose
sinewave gratings are co-oriented with the major axis of
the modulating Gaussian are usually considered (φ = θ
andλ > 1), and the Gabor filter is reduced to:

h(x, y) = g(x′, y′)exp(2πiFx′). (5)

It is possible to generate Gabor wavelets from a
single mother-Gabor-wavelet by transformations such as:
translations, rotations and dilations. We can generate, in

Fig. 1. In this diagram the responses in the frequency domian of
a possible set of Gabor wavelets is presented. A common design
strategy of Gabor filters is to ensure that the half-peak magnitude
support of the filter responses in the frequency domain touch each
other.

this way, a set of filters for a known number of scales,
S, and orientations K:

hmn(x, y) = a−mh(
x′

am
,

y′

am
), (6)

where(x′, y′) are the spatial coordinates rotated byπn
K

and scaled by powersm = 0...S − 1. The responses of
Gabor wavelets in the frequency spectrum can be seen
in figure (1).

Alternatively, one can obtain Gabor wavelets by log-
arithmically distorting the frequency axis [37] or by
incorporating multiwindows [53]. In the latter case one
obtains a more general scheme wherein subsets of the
functions constitute either wavelet sets or Gaborian sets.

There are several degrees of freedom in selecting
the family of Gabor filters to be used: number and
values of scales, frequencies and orientations. In order
to obtain good segmentation results, the filters should be
carefully selected, so that they represent the data and the
differences in textures within the data in an accurate way.
Although some techniques were suggested to obtain such
selection [11], [50], they are complex to implement and
we manually selected the number of orientations, and the
values of scales and frequencies. Our selection was also
motivated by the guidelines offered by Lee [27].

The feature space of an image is obtained by the inner
product of this set of Gabor filters with the image:

Wmn(x, y) = Rmn(x, y) + iJmn(x, y)

= I(x, y) ∗ hmn(x, y). (7)

Once this feature space is generated, one may use
all channels, or use an appropriate subspace. In this
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study, the features space is either the full set of Gabor
coefficients (for all scales, orientations and frequencies)
or only the maximal value of Gabor coefficients at each
pixel location, when maximization is done per scale,
orientation and frequency.

B. The Beltrami Framework

Sochen et al. [47] proposed to view images and image
feature spaces as Riemannian manifolds embedded in
a higher dimensional space. Their approach, rooted in
high-energy physics, is based on the Polyakov action
functional which weights the mapping between the im-
age manifold (and its metric) and the image features
manifold (and its corresponding metric). The term image
manifold is used here as the surface formed by the graph
of the image (not to be confused with the space of all
images). This functional can be minimized with respect
to the image features manifold parameters (embedding
space), the Riemannian structure (the metric parameters),
or both. It was shown that different choices for minimiza-
tion lead to different known flows [47], e.g. the heat flow,
a generalized Perona-Malik flow and the mean curvature
flow.

Using the Beltrami framework, the image is viewed as
a two-dimensional manifold, which represents the spatial
extent of the image, embedded in a multi-dimensional
feature space. Formally, an image is described as a
section of a fiber bundle. The base manifold of the
bundle is the image domain and the fiber is the feature
space. A choice of a point in the feature space for
each point in the base manifold is called a section.
Thus, image analysis turns into analysis of manifolds
(sections). The most important concept related to our
research is determining distances on the manifold. In
many applications the notion of distance between two
locations on the image refers not only to the spatial
distance, but also to the ”information” part of the dis-
tance between points. This can be calculated for example
by Euclidean or the Kullback-Leibler distance measures.
The Beltrami framework offers a natural choice for
distances measurements, as the ”information” distance
between points in the image turns into distance between
points on the image manifold; This can be calculated
using the manifold’s metric.

As a simple example, let us examine a gray scale
image I(x, y). It can be viewed as a 2-dimensional
Riemannian surface (manifold), with(x, y) as local
coordinates, embedded inR3 with (X, Y, Z) as local
coordinates. The relation is given by(X = x, Y =
y, Z = I(x, y)). When we consider feature spaces of
images, e.g. color space, statistical moments space, and

the Gaborian space, we may view the image-feature
information as aN -dimensional manifold embedded
in a N + M dimensional space, whereN stands for
the number of local parameters needed to index the
manifold of interest andM is the number of feature
coordinates. For example, the Gabor transformed image
can be viewed as a2D manifold with local coordinates
(x,y) embedded in a7D feature space. The embedding
map is (x, y, θ(x, y), σ(x, y), f(x, y), R(x, y), J(x, y)),
where R and J are the real and imaginary parts of the
Gabor transform value, andθ, σ andf are the direction,
scale and frequency for which a maximal response has
been obtained.

We are interested in measuring distances on the mani-
fold. For example, consider a two-dimensional manifold
Σ with local coordinates(σ1, σ2). Since the local coor-
dinates are curvilinear, the distance is calculated using
a positive definite symmetric bilinear form called the
metric whose components are denoted bygµν(σ1, σ2):

ds2 = gµνdσµdσν , (8)

where the Einstein summation convention is used: el-
ements with identical superscripts and subscripts are
summed over.

How is the metric on the manifold chosen? This
can be done using either a variational or a geometric
approach. In the variational approach the Polyakov ac-
tion is minimized with respect to the metric [47]. The
resulting Euler-Lagrange equation is solved analytically
and the minimizing metric is the induced metric. We
describe below how the induced metric is obtained, from
a geometric point of view, via the pullback procedure.

Let X : Σ → M be an embedding ofΣ in M ,
whereM is a Riemannian manifold with a metrichij .
Σ is another Riemannian manifold, and thus has its own
metric. We assume that the embedding ofΣ in M is
isometric and thus we may use the knowledge of the
metric onM and the mapX to construct the metric on
Σ. This pullback procedure is as follows:

(gµν)Σ(σ1, σ2) = hij(X(σ1, σ2))
∂Xi

∂σµ

∂Xj

∂σν
, (9)

where we use the Einstein summation convention,i, j =
1, . . . , dim(M), and σ1, σ2 = 1, . . . , dim(Σ) are the
local coordinates on the manifoldΣ. We actually use the
Jacobian,J , of the smooth mapX : Σ → M to obtain
the metric ofΣ from the metric ofM ; the jacobian of
the mapping should be computed, and for an Euclidean
embedding space with a Cartesian coordinate system (as
is the case here), the desired metric can be obtained by
multiplying the transpose of that jacobian by the jacobian
itself: gµν = JT J .
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If we pull back the metric of a 2D image manifold
from the Euclidean embedding space (x,y,I) we get:

(gµν(x, y)) =
(

1 + I2
x IxIy

IxIy 1 + I2
y

)
. (10)

In the more general case of higher dimensional feature
space~F = (F 1(x, y), · · · , Fn(x, y)) the metric is given
by

(gµν(x, y)) =
(

1 +
∑

i F
i
xF i

x

∑
i F

i
xF i

y∑
i F

i
xF i

y 1 +
∑

i F
i
yF

i
y.

)
(11)

It turns out that the inverse of the metric’s determinant
can serve as a good edge detector. The rationale behind
this is as follows: The metricgµν is used to measure
distances on manifolds, and its components indicate the
rate of change of the manifold given a specific direction.
Therefore, when the determinant ofgµν has a value
which is much larger than unity it indicates the presence
of a strong gradient on the manifold. A value which is
close to unity indicates a region where the manifold is
almost flat. Thus, we may select as an edge indicator the
inverse of the determinant ofgµν . Moreover, the metric’s
determinant gives an indication for the ratio between
the size of an area elementdxdy when measured on
the manifold and when measured on the x-y plane. The
larger the metric, the less horizontal is this patch of the
manifold (thus contains an edge).

IV. GEODESICACTIVE CONTOURS

We review the geodesic active contours method for
non-textured images according to the formalism pre-
sented in [3], [21].

Let C(q) : [0, 1] → R2 be a parametrized curve, and
let I : [0, a]× [0, b] → R+ be the given image. Let
E(r) : [0,∞[→ R+ be an inverse edge detector, so that
E approaches zero whenr approaches infinity. Visually,
E should represent the edges in the image, so that we
can judge the ”quality” of the stopping termE by the
way it represents the edges and boundaries in an image.
Thus, the stopping termE has a fundamental role in the
geodesic active snakes mechanism; if it does not well
represent the edges, application of the snakes mecha-
nism is likely to fail. Minimizing the energy functional
proposed in the classical snakes is generalized to finding
a geodesic curve in a Riemannian space by minimizing:

LR =
∫

E(|∇I(C(q))|) |C′(q)|dq. (12)

We may consider this term to be a weighted length of
a curve, where the Euclidean length element is weighted
by a factorE(|∇I(C(q))|), which contains information

regarding the boundaries in the image. The resultant
evolution equation is the gradient descent flow:

dC
dt

= E(|∇I|)kN− (∇E ·N) N, (13)

wherek denotes curvature andN is a unit vector which
is normal to the curve.

Defining a functionU , so thatC = ((x, y)|U(x, y) =
0), we may use the Osher-Sethian Level-Sets approach
[39] and replace the evolution equation for the curveC
with an evolution equation for the embedding function
U :

dU

dt
= |∇U |Div

(
E(|∇I|) ∇U

|∇U |
)

. (14)

A popular choice for the stopping functionE(|∇I|)
is given by:E(|∇I|) = 1

1+|∇I|2 [29], but other image-
specific functions may also be used. For gray level
images, this expression coincides with the determinant
of the image’s manifold,gµν : 1 + Ix

2 + Iy
2. Thus, we

can rewrite the expression for the stopping termE in the
geodesic snakes mechanism as follows:

E(|∇I|) =
1

1 + |∇I|2 =
1

det(gµν)
. (15)

The importance of the Beltrami framework for seg-
mentation in general, and for texture segmentation in
particular, is that it offers a general tool for evaluation
of gradients on the image manifold regardless of the
features used. Given a set of texture features, we can
derive the metric of the image manifold embedded in
that feature space, and use it as described to create the
edge indicator function.

V. THE GABORIAN SUBMANIFOLD

We choose, in the Gabor feature space, a submanifold
of most relevant information for the determination of
texture boundaries. We may interpret the Gabor trans-
form of an image as a function assigning to each pixel’s
coordinates, scale, orientation and frequency, a valueW .
In this study, we select texture features to be either the
Gabor responsesW per scale, orientation and frequency,
or alternatively, the scale, orientation and frequency for
which maximum amplitude of the transform is obtained
at each pixel. Thus, for each pixel, we obtain:Wmax,
the maximum value of the transform,θmax, σmax and
fmax, i.e. the orientation, scale and frequency that yield
this maximum value. Whatever the features selection
is, it can be naturally represented as a2D manifold
(with local coordinates(x, y)), embedded in a higher
dimensional space. This initial manifold is noisy and
should be regularized before it can be used. We use here
the Beltrami flow with a regularized metric. In order
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to proceed we need to define the Riemannian structure
on this submanifold. Using the pullback mechanism
described earlier, we get the following metric:

(gµν) =
(

1 +
∑

wia(i)2x
∑

wia(i)xa(i)y∑
wia(i)xa(i)y 1 +

∑
wia(i)2y

)
, (16)

where i indicates the relevant Gabor featuresa(i), and
wi accounts for the different weights given to each Gabor
feature. As stated earlier, the texture features can be
the Gabor response, the scale, the orientation or the
frequency. Each feature has its own range of values.
Thus, in order to obtain a meaningful metric, the weights
wi are used to obtain the same numerical range for all
features.

VI. GABOR FEATURE SPACE DIFFUSION

In the previous section we have described how the
Gabor feature space can be treated as a2D manifold
embedded in a higher dimensional space. We have used
a maximum criterion to obtain a single orientation, scale
and frequency for each pixel location. This selection
has the advantage of being simple. However, it does
not always well represent the textural information and
is sensitive to local variations in texture characteristics.
The resultant Gabor features can be therefore quite noisy.
The full set of Gabor responses per scale, orientation
and frequency can also suffer from noise. Thus, it is
desirable to reduce the amount of noise in the Gaborian
features and obtain a smoother function to be used in
the geodesic snakes mechanism (e.g. [44]). We present
two approaches: the first is the Beltrami flow, applied
to texture features which were selected according to
the maximum criterion, and the second is a Gaussian-
Beltrami flow, applied to the full set of Gabor responses.

A. Gabor Feature Space Diffusion via the Beltrami flow

In the framework of the Beltrami approach, an en-
ergy functional is defined to minimize an area element,√

det(g)dxdy, of a manifold. We consider first how to
implement Beltrami diffusion for each feature separately.
A coupled scheme is presented in the next section.

1) Gabor Feature Space Diffusion via the Beltrami
flow: Let us take, for example, the orientation feature
manifold, which is a2D manifold with local coordinates
(x, y) embedded in a3D feature space(x, y, θ(x, y)).
The energy functional is defined as

S(x, y, θ) =
∫ √

det(g(θx, θy))dxdy, (17)

where det(g) is the determinant of the metric of the
Gabor features manifold.

For the orientation feature manifold(x, y, θ(x, y)) this
metric is given by:

(gµν) =
(

1 + θ2
x θxθy

θxθy 1 + θ2
y

)
. (18)

The resultant gradient descent process is the Beltrami
flow for the orientation feature,θ. According to the
Euler-Lagrange method we get:

δS

δθ
= −div

(∇θ(det(g))
2
√

det(g)

)
, (19)

where

∇θ(det(g)) = (
∂det(g)

∂θx
,
∂det(g)

∂θy
).

According to the steepest descent method the evolution
equation is:

θt = − 1√
det(g)

δS

δθ
. (20)

Note that this is identical to Beltrami diffusion for gray
level images, as was already presented earlier [24]. Here
this flow is simply applied to each Gaborian feature.

2) Gabor Feature Space Diffusion via a coupled
Beltrami flow: The coupling term in the coupled Bel-
trami flow is the metric. In the previous section, each
Gaborian component is Beltrami-diffused in a stand
alone approach. Here, we define an energy functional
which minimizes an area element,

√
det(g)dxdy, of

the features’ manifold, which is a2D manifold with
local coordinates(x, y) embedded in a7D feature space
(x, y, R, J, θ, σ, f):

S ( R, J, σ, θ, f) =∫ √
det(g(∇R,∇J,∇σ,∇θ,∇f))dxdy, (21)

wheredet(g) is the determinant of the metric of the Ga-
bor features manifold, given in general for any number of
features,a(i), each weighted bywi (see equation (16)).
For the Gabor feature submanifold of maximal feature
responses,
F = (x, y,R(x, y), J(x, y), θ(x, y), σ(x, y), f(x, y)),
we assign a metric by the pullback mechanism as fol-
lows:

gµν = δµν +
7∑

i=3

F i
µF i

ν , (22)

The combination
√

det(g)dxdy, an area element of
the Gabor features manifold, is the term that forces
smoothing as the features field reduces its overall area
when it flows towards the optimal solution. The resultant
gradient descent process is the Beltrami flow for each
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Gaborian feature. Leta represent one of the Gaborian
features, than according to the Euler-Lagrange method:

δS

δa
= −div

(∇a(det(g))
2
√

det(g)

)
, (23)

where

∇a(det(g)) = (
∂det(g)

∂ax
,
∂det(g)

∂ay
).

According to the steepest descent method the evolution
equations are:

at = − 1√
det(g)

δS

δa
. (24)

We obtain a set of coupled evolution equations. The
update of the values ofR, J, σ, θ, f is done at the end
of each iteration.

In order to further regularize the process, one can
smooth the metric before applying the Beltrami flow.
To regularize the metric, we first convolve each feature
channel with a Gaussian kernel and only then calculate
the derivatives and construct the metric. Once the metric
is obtained we denoise the features with the Beltrami
flow as is derived above. This pre-smoothing of the
metric yields a more robust and accurate submanifold
which, in turn, yields a better texture edge detector and
a more accurate and robust segmentation.

B. Gabor Feature Space Diffusion via a Gaussian-
Beltrami flow

The Beltrami diffusion flow is characterized by its
edge preserving ability, in comparison to linear op-
erators. It is advantageous to use bigger stencil for
the calculation of the metric in order to improve the
robustness of the Beltrami diffusion. The metric used for
the Gaussian-Beltrami flow is calculated using gaussian
smoothed derivatives of the image. For a gray level
image, the metric is usually calculated as:

(gµν) =
(

1 + I2
x IxIy

IxIy 1 + I2
y

)
, (25)

whereIx, Iy are the image derivatives. For the Gaussian-
Beltrami scheme, we convolve the image derivatives with
a relatively large gaussian filterH: I1

x = H ∗ Ix, I1
y =

H ∗ Iy, and the metric is then given by:

(gµν) =
(

1 + (I1
x)2 I1

xI1
y

I1
xI1

y 1 + (I1
y )2

)
. (26)

Using a linearly smoothed metric as the edge indicator
has the advantage of being more robust, while its edge
preservation quality is kept .

VII. G ABOR-SPACE GEODESICACTIVE CONTOURS

WITH AND WITHOUT EDGES

In this section we review the geodesic snakes and
the active contours without edges models applied to the
Gabor feature space. We also present the integration of
the two models as an extension of the work of Kimmel
[23].

A. Gabor-Space Geodesic Active Contours

Having the essential components of the formalism
presented so far, it is straightforward to generalize the
Geodesic Active Contours algorithm to texture segmen-
tation. Based on the defined two-dimensional submani-
fold of texture features, and using the natural Riemannian
metric defined on it, we proceed to build the key ingre-
dient of the Geodesic active Contours algorithm, namely
the stopping function. We construct it in an analogous
way to the intensity based algorithm:

E(texture(x, y)) =
1

det(gµν)
. (27)

Using this stopping term in the context of the Osher-
Sethian formulation yields:

dU

dt
= |∇U |Div

(
E(|∇I|) ∇U

|∇U |
)

. (28)

The zero-crossings of the resultingU generates the
desired segmentation.

B. Active contours without edges for Texture segmenta-
tion

The active contours without edges model was ex-
tended to vector valued images in general [4], and was
applied to the Gabor space of images for texture segmen-
tation [45]. The multi-valued information is the magni-
tude of the Gabor transforms obtained when convolving
Gabor filters with the image. Letu0 be the textured
image, andui

0, i = 1, ..., N , be N Gabor transforms
of the original imageu0, obtained for different scales,
orientations and frequencies. LetC be the evolving con-
tour, andci

+ and ci− the averages of the Gabor channel
ui

0 inside and outside the curveC respectively. The
following energy functional is minimized with respect
to c+ = {ci

+}N
i=1, c− = {ci−}N

i=1, andC:

F (c+, c−, C) = µ (length(C))+
∫

inside(C)

1
N

N∑

i=1

λi
+|ui

0(x, y)− ci
+|2dxdy

+
∫

outside(C)

1
N

N∑

i=1

λi
−|ui

0(x, y)− ci
−|2dxdy, (29)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 1, NO. 1, FEBRUARY 2004 9

whereµ ≥ 0 and λi
+, λi− ≥ 0 are fixed parameters for

each channel. Note that the first term is merely the arc-
length of the curve. Using the level sets algorithm [39],
the Euler-Lagrange equation for the level setφ, which
is defined via:C = {(x, y)|φ(x, y) = 0}, is:

∂φ

∂t
= µdiv(

∇φ

|∇φ|)

− 1
N

N∑

i=1

(
λi

+(ui
0 − ci

+)2 − λi
−(ui

0 − ci
−)2

)
.(30)

C. The combined energy functional and evolution equa-
tion

Following the model developed by Kimmel [23] for
gray level images, we generalize the active contours
model with and without edges to texture segmentation.
The energy functional to be minimized can be seen as a
natural extension of the Chan and Vese functional, where
the term which accounts for the arc-length of the curve
is replaced by the geodesic length of the curve, which
is weighted by the gradient information:

F (c+, c−, C) = µ

∫

C
h(C(s))ds+

∫

inside(C)

1
N

N∑

i=1

λi
+|ui

0(x, y)− ci
+|2dxdy

+
∫

outside(C)

1
N

N∑

i=1

λi
−|ui

0(x, y)− ci
−|2dxdy, (31)

whereh(C(s)) will be calculated as the inverse of the
determinant of the features submanifold’s metric. Again,
the level sets algorithm [39] is used, and the Euler-
Lagrange equation for a level setφ is:

∂φ

∂t
= δε(φ)

[
µ ∗ div(h(x, y)

∇φ

|∇φ|)

− 1
N

N∑

i=1

λi
+(ui

0 − ci
+)2

+
1
N

N∑

i=1

λi
−(ui

0 − ci
−)2

]
, (32)

whereδε(φ) is the derivative of a regularized Heaviside
function. The zero-crossings of the resultingφ generates
the desired segmentation.

VIII. R ESULTS

To demonstrate the performance of the proposed
method, both synthetic and natural images are used.
The Gabor feature space is generated for this purpose
and the texture features, being the Gabor responses per

Fig. 2. An image composed of two very similar Brodatz textures.

channel or the maximum response in scale, orientation
and frequency, are obtained. The metric of the image
manifold embedded in the higher dimensional feature
space is calculated, and used to obtain a texture edge
detector, to be used in the Geodesic Active Contours
mechanism or in the combined model. The selection
of the Gabor filters is fine-tuned to obtain the best
texture representation. The geodesic snakes mechanism
is initialized with a signed distance function.

The first test image (Fig. 2) is composed of two
Brodatz textures taken from a widely-used photographic
album [2]. First, the image is convolved with Gabor-
wavelets of five scales, eight orientations and a single
frequency. Next, the texture features (in this case, the
orientation and scale which yielded the maximal Gabor
response for each pixel) are obtained. Following a cou-
pled Beltrami process of smoothing, the edge indicator
function is calculated, using the metric of the image
manifold (Fig. 3). As can be seen, there are a few
outliers in the background which are weaker than the
square’s gradients, but do not correspond to any relevant
boundary. These outliers are the result of using the
maximum value of the Gabor features rather than the
complete data.

Nevertheless, the result obtained for the Brodatz ex-
ample is quite satisfying (Fig. 4), and comparable to that
obtained by Sandberg, Chan and Vese [45].

The second example is of a zebra image (Fig. 5), tested
also in our previous studies [44]. The texture features
selected are the orientation and scale which yielded the
maximal Gabor response for each pixel. The Beltrami
diffusion procedure was applied to obtain a smooth edge
indicator (Fig. 6). The resulting segmentation is shown in
figure (7). The segmentation result obtained in this study
is more accurate in comparison to that obtained in our
previous study [44]. This is primarily due to the follow-
ing improvements: First, a better selection of the Gabor
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Fig. 3. The inverse edge indicator of the Brodatz image shown in Fig.
2. The following orientations:[0, π

8
, 2π

8
, 3π

8
, 4π

8
, 5π

8
, 6π

8
, 7π

8
], scales:

[0.8638, 0.9070, 0.9525, 1], and a single frequency:0.15, were used.
Beltrami coupled diffusion was applied for20 iterations with a0.1
time step.

Fig. 4. The resultant segmentation of the image composed of Brodatz
textures, using the geodesic snakes approach.

Fig. 5. Real-life test image of a zebra. We applied Gabor filters
having the following orientations:[0, π

6
, π

4
, π

3
, π

2
, 2π

3
, 3π

4
, 5π

6
], scales:

[1, 2, 3], and frequencies:[0.225, 0.3, 0.375].

filters was implemented in the present study; indeed,
selection of the best (in terms of texture discrimination)
Gabor filters is very important in general, and is espe-
cially crucial when considering maximal values as we do.
Second, application of Beltrami diffusion to the resultant
texture features yields a noise-free edge detector func-
tion. Third, a careful selection of the geodesic snakes
parameters proves to be very important for obtaining
good results. We refer the readers to Rousson et al [40]
for a comparable result obtained by the structure tensor
based approach. We present another segmentation result
for an image of a leopard (Fig. 8). Segmentation fails in
the neck area and in the face area, because the texture
in these areas is not very different from the background,
and thus, the limited set of Gabor filters used for this
example are limited in their capability to detect very
similar textures. Although further improvement of this
result can be obtained, it is interesting to evaluate the
performance of our algorithm with that of the geodesic
active contours algorithm when simpler edge detectors,
such as the popular image gradient, are used. Thus, we
obtain the edge detection function using:

E(|∇I|) =
1

1 + |∇I|2 (33)

rather than using

E(|∇I|) =
1

det(gµν)
. (34)

As the segmentation results are very poor when using
the usual gradient information, we choose to present the
edge detectors obtained (Fig. 9). The upper image is the
edge detector when using our approach. The boundary
between the leopard and the background is obvious,
and this explains the good segmentation result shown in
figure (8). The image in the middle is the edge detector
when we use the gradients of the original image

E(|∇I|) =
1

1 + |∇I|2 . (35)

As can be seen, no boundary information exists. There
is no valuable edge information in the gradients of
a textured image, as the image itself contains several
gradients within the textural structure. This is why the
Gabor or similar transforms are needed to obtain the
boundary information in textured images. To present the
actual benefit of using the 1

det(gµν) edge detector, we also
calculated the edge detector obtained from accumulating
the gradient contributions of all the Gabor channels.
Thus, if the Gabor channels are marked asGi, and i is
indexing the number of filters usedN , the edge detector
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Fig. 6. The inverse edge indicator of the zebra image obtained by
applying the Beltrami diffusion to each texture feature separately.
[The Beltrami diffusion was applied for10 iterations with a0.1 time
step.]

Fig. 7. The segmentation result for the zebra image.

is given by:

E(|∇I|) =
1

1 +
∑N

i=1(G
2
ix

+ G2
iy

)
. (36)

The lower image in figure (9) is this edge detector. The
leopard’s silhouette can be seen, but there are several
outliers and important gradients are not present, so that
segmentation fails.

We wish to further assess the performance of our
method, and compare it to results that were obtained by
another, previously proposed, algorithm. We restrict our
comparison to a study which uses a similar conceptual
approach. Moreover, we would like to explore the pros
and cons of the edge and region based approaches.

In the study of Sandberg et al. [45], segmentation of
the Brodatz image, used also here, is very good. Their
study is based on a variational formulation, in which a
texture region is characterized by a certain value. Thus,
the homogeneity in some variables is important. This
refers to the assumption that in each Gaborian channel
there is a certain mean response value for each texture.

Fig. 8. The segmentation result for a leopard using the geodesic
snakes algorithm for textures.

The problem is, that this approach will not always work.
Consider a simple example of a gray level image which
depicts a bright circle on a dark background, with a
tilted plane of illumination added to the image (Fig.
10). While the tilted illumination plane presents no
problem to the geodesic snakes mechanism (Fig. 11),
the approach of active contours without edges fails in
this simple segmentation task (Fig. 12). Implicit to the
active contours without edges is the assumption that each
region, e.g. object and background, can be described by
the mean gray level value, without regarding the edges.
This example illustrates that edges still contain valuable
information.

A similar argument applies to textured images, where
the Gabor channels exhibit properties analogous to that
of the tilted illumination plane. We use for this purpose
a synthetic image composed of two ’spatial chirps’ (Fig.
13): The base frequency of the squared object is selected
to be higher than that of the base frequency of the
background. The dependence of the image’s horizontal
frequency on position resembles the dependence of the
gray level value on position in the previous example.
In fact, the low-pass filtered image resembles a similar
(though tilted towards the horizontal axis) gradient across
the field. The squared object is in this case darker than
the background.

The square object gradients are not the only ones
present in the edge detection function calculated using
our approach (Fig. 14), but they are definitely the most
dominant. Application of geodesic snakes yields the
segmentation result shown in figure 15.

To compare with, application of the Gabor-based
active contours without edges process results in inac-
curacies (Fig. 16). Let’s examine the energy functional
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Fig. 9. The inverse edge indicator of the leopard image obtained
when using: 1. The 1

det(gµν)
edge detector (upper image). 2. The

image gradients edge detector:E(|∇I|) = 1
1+|∇I|2 (mid image). 3.

The gradients of the Gbor channels:E(|∇I|) = 1
1+
PN

i=1(G2
ix

+G2
iy

)

(lower image).

Fig. 10. A bright circle on a dark background, illuminated by a
tilted plane that generates a gradual change in intensity across the
image.

Fig. 11. Segmentation of the circle-on-background image, using
geodesic active contours algorithm. As can be seen, the tilted back-
ground presents no problem for the geodesic snakes process.

Fig. 12. Segmentation of the circle-on-background image, using the
active contours without edge algorithm. As can be seen, the tilted
brightness of the backgrounds results in outliers when using the active
contours without edges approach.
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Fig. 13. A test image is composed of two ’spatial
chirps’: The object’s base frequency is higher than that of
the background. The Gabor filters applied have7 scales:
[0.6667, 1, 1.5, 2.25, 3.375, 5.0625, 7.5938], a single frequency,0.4
and a single orientation, zero.

Fig. 14. The inverse edge indicator of the two-chirps image used
along with the Gabor space geodesic snakes algorithm.

Fig. 15. Segmentation of the two-chirps aquare image, using the
gradient based Gabor space geodesic snakes algorithm.

Fig. 16. The squred image segmented by using the active contours
without edge-based algorithm. The parameters (eq. 32) are:µ =
10, λi

+ = 100000, λi
− = 50, 000.

in the case of this approach:

F (c+, c−, C) = µ (length(C)) +
∫

inside(C)

1
N

N∑

i=1

λi
+|ui

0(x, y)− ci
+|2dxdy

+
∫

outside(C)

1
N

N∑

i=1

λi
−|ui

0(x, y)− ci
−|2dxdy,

where C is the contour, the constantsci
+ and ci− that

depend onC are the averages ofui
0 inside and outside

C respectively, andµ ≥ 0 and λi
+, λi− ≥ 0 are

fixed parameters for each channel. The second and third
terms of the above expression are generated under the
assumption that each Gaborian channel is endowed with
a certain mean value for each textured region (inside
the curve and outside the curve). The contribution of
these terms in the evolution equation is depicted in figure
17. Thus, because of the frequency-tilted nature of the
original image, the minimum value of the defined energy
functional is obtained for a falsely segmented image.

The next example is composed of two textures (Fig.
18). The background texture of a brick wall exhibits a
”chirp-like” behavior. Following application of the Gabor
filters, the absolute values of the Gabor channels were
considered as texture features. Then, these texture fea-
tures were submitted to the gaussian Beltrami diffusion
mechanism. Applying the geodesic active contours on
the the diffused Gabor feature space provides a satis-
factory result (Fig. 19), but the active contours without
edges scheme halts away from the boundary (Fig. 20).

Next, we show that the combined approach may
produce better segmentation results than the geodesic
snakes or the edgeless active contours scheme - when
they are independently applied. The first example is
again a simple gray level image, yet, it demonstrates the
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Fig. 17. A function used in the active contours without edges
algorithm. This function represents the contribution of the Gabor
channels to the evolution of the level setΦ.

Fig. 18. An image of a ”chirp-like” brick-wall background and a
Brodatz texture object. The gabor filters used here have four orien-
tations:0, π

4
, π

2
, 3π

4
, six scales:[0.3277, 0.4096, 0.512, 0.64, 0.8, 1],

and a single frequency,0.4. The texture features are the responses
obtained for each Gabor channel.

Fig. 19. The resultant segmentation following the Gabor space active
contours model.

Fig. 20. The resultant segmentation following the active contours
without edges model for the Gabor space.

Fig. 21. A test image which is composed of a bright ring on a
darker background with a tilted illumination plane.

usefulness of applying the Integrated Active Contours
(IAC) model. The image (Fig. 21) is composed of a
bright ring and a darker background. A tilted illumina-
tion plane is added to the image at45 degrees. Thus, the
top left corner is the darkest, and the bottom right corner
is the brightest, even brighter than the ring. This simple
image poses major difficulties to both algorithms. The
geodesic snakes algorithm stops at the outer boundary,
with no detection of the inner boundary (Fig. 22).
The edgeless active contours model divides the image
into two parts which do not correspond to the actual
boundaries (Fig. 23). This is because the gradual change
in gray level values makes it impossible to characterize
the object by one constant value and the background
by another constant value. Application of the combined
active contours model (with and without edges) results
in a good segmentation result, as can be seen in figure
24.

If we test the idea of the combined approach on the
zebra’s image we have used before, we may observe the
contribution of each approach to the integrated scheme.
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Fig. 22. Application of geodesic snakes results in the detection of
the outer boundary only.

Fig. 23. The edgeless active contours model fails to detect the
boundary, and divides the image into two parts which have the most
different mean gray levels.

Fig. 24. Application of the combined approach results in an accurate
detection (bottom image). The curve’s evolution (top left to top right)
represents the combined influence of both mechanisms.

Fig. 25. The segmentation of the zebra using the active contours
without edges approach results in several outliers.

Application of the Chan-Vese algorithm resulted in a
good segmentation, however with a large degree of noise
(Fig 25). Recall that application of the geodesic snakes
mechanism resulted in a much smoother boundary (Fig.
7). The integrated result yields a smooth boundary which
captures the details more accurately (Fig. 26).

We have also tested the algorithms on another natural
image of a leopard lying on the grass. Gabor wavelets,
with 6 scales,[0.9803, 0.9901, 1, 1.01, 1.0201, 1.0303], 4
orientations,[0, π

4 , π
2 , 3π

4 ], and a single frequency0.4 are
applied to the image. The texture features are selected for
this example to be the Gabor responses for each channel.
The resulting segmentation using the geodesic snakes
approach, the active contours without edges approach,
and the integrated approach are shown in figures (27,
28) and (29) respectively. As can be seen, the results are
not satisfactory, and further improvement is desirable.
Clearly, part of the head, and the front pows, are more
similar to the background than to the main texture of the
leopard. The problem is caused because of the existence
of more then one textural region in the object (the
leopard). Still, we would like to present this result to
show that combining both approaches provides better
results. For example, let’s take a closer look on the feet
area. Application of the Gabor-space geodesic snakes to
the leopard image (Fig. 27) fails to accurately detect the
leopard’s feet, as the gradient there is not sharp enough.
We may also see that the edgeless active contours model
provides unsatisfactory results (Fig. 28). However, the
leopard’s feet are better detected. The IAC mechanism
produces the best result, as can be seen in figure 29.
There are only a few outliers, and the detection of the
feet boundaries are improved as can be seen in figure
30.

These are the best results we got for this image. We
cannot say that these are the absolute best results, as
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Fig. 26. The segmentation of the zebra image can be accurate,
smooth and capture details using the integrated approach.

Fig. 27. The segmentation when applying the geodesic active
contours model. There are inaccuracies where the edges are not sharp.

Fig. 28. The segmentation when applying the active contours without
edges model. As can be seen, there are many outliers.

Fig. 29. The combined approach results in a better segmentation,
while producing only a small number of outliers.

Fig. 30. A closer look at the leopard’s feet shows that the combined
approach better detects them (up) than the geodesic snakes alone
(bottom).

the problem involves a large set of parameters (Gabor
filters parameters, geodesic snakes parameters, Chan-
Vese parameters and the weighting of the two approaches
parameters), and each parameter may have a substantial
impact on the final result. However, the point we would
like to stress here is the usefulness of combining the two
conceptually different approaches.

IX. D ISCUSSION

In the introduction we pointed out that there are
several methods to generate texture features, and at
least that many optimization criteria that can be im-
plemented in order to obtain the actual segmentation.
It is difficult to assess the performance of each algo-
rithm, and to pinpoint the right choices in each step,
e.g. the quality of the feature selection, or the quality
of the optimization procedure. Each algorithm seems
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to be suitable for a specific type of textured image
segmentation problem and, most likely, there does not
exist a universal segmentation algorithm that is optimal
for the entire wide spectrum of natural textured images.
It is therefore still desirable to enhance the repertoire
of methods and algorithms available for applications,
and the fittest will survive. However, some rationale
should motivate the development of such algorithms so
that they will not proliferate without real necessity or
purpose. With these boundary conditions in mind, we
presented here an approach based on scaled (i.e. wavelet-
type) and oriented Gabor representation of images, where
the Gaborian filters responses or their maximal values
define the texture features. The analysis is based on the
gradients present in these texture features space. In some
cases, this approach yields better results than approaches
based on some homogeneity criteria like the edge-less
active contours approach. Further, the combined ap-
proach, which combines boundary detection with region
growing algorithms can serve as a more general scheme
for texture segmentation.

In this study we examined a feature set which is
generated by taking the maximum amplitude of the
Gabor coefficients at each pixel location, along with
the scale and orientation for which this maximum value
was obtained. This selection is based on the assump-
tion that maximum values provide adequate information
about textures, as long as the textures are homogenous.
The selection of maximal values provides only partial
information regarding image structure, and in turn, may
generate less than satisfactory segmentation results in
the case of more complex textures. The solution to
this problem may be a better selection of the feature
space, and adding some statistical data, in the spirit of
[17], [22], [36], [51]. A simpler approach to the one
applied here, is to improve the Gabor feature space by
incorporating a Beltrami-based diffusion scheme [43],
[44]. Moreover, when the full set of Gabor responses was
selected, we have used a Gaussian-Beltrami diffusion
scheme to eliminate noise.

The main novelty of this study is in the represen-
tation of texture parameters as the embedding of a
Riemannian surface in a higher dimensional space. This
representation enables the definition of a Riemannian
structure and its implementation in the definition of a
texture edge indicator. This texture edge indicator is
subsequently used in a geodesic active contour algorithm
for segmentation. These ideas and techniques are general
and are applicable to other choices of texture feature
spaces and other multi-channel spaces. The advantage
of this approach over other algorithms was demonstrated
for non-piecewise constant texture images.

Another main contribution of this work is the com-
parison of the geodesic snakes with the edgeless active
contours model for the issue of texture segmentation.
These attitudes are conceptually different. The snakes
mechanism relies on gradients present in the image or
image features and the edgeless approach considers the
image to be a piecewise constant function. The two
approaches were integrated into a unified algorithm in
the work of Kimmel [23]. The proposed energy func-
tional is composed of a geodesic snakes term and a
minimal variance term, which is the Chan-Vese approach
[4]. In this study we generalized the unified algorithm
of Kimmel for texture images. Both algorithms were
independently applied to test images, as well as the
integrated scheme. We have shown that both methods
have their drawbacks: the geodesic snakes may produce
unsatisfactory results when the gradients are not sharp
enough, and the edgeless active contours model fails to
handle intensity tilts in gray level images, as well as
frequency tilts in texture images. The combined approach
which accounts for both the gradients between regions
and region’s homogeneity, may produce better results for
gray level and texture images.
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