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3a Constrained optimization

One of the most brilliant and well-known achievements of differential
calculus is the collection of recipes it provides for finding the extrema
of functions. . . . Frequently a situation that is more complicated and
from the practical point of view even more interesting arises, in which
one seeks an extremum of a function under certain constraints . . . 1

Let Z ⊂ Rn be a set, f : Z → R a function, and x0 ∈ Z a point. We say
that x0 is a local maximum point of f on Z, if f(x) ≤ f(x0) for all x ∈ Z
near x0. (A local minimum point is defined similarly.)

In particular, if Z = g−1
(
{0}
)

= {x : g(x) = 0} for a given g : Rn → Rm,
a local maximum point of f on Z is called a local maximum point of f
subject to the constraint g(·) = 0. That is, subject to g1(·) = · · · = gm(·) = 0
where

(
g1(x), . . . , gm(x)

)
= g(x). “Extremum” means either maximum or

minimum, of course.

3a1 Theorem. Assume that x0 ∈ Rn, 1 ≤ m ≤ n−1, functions f, g1, . . . , gm :
Rn → R are continuously differentiable near x0, g1(x0) = · · · = gm(x0) = 0,
and the vectors ∇g1(x0), . . . ,∇gm(x0) are linearly independent. If x0 is a
local constrained extremum point of f subject to g1(·) = · · · = gm(·) = 0,
then there exist λ1, . . . , λm ∈ R such that

∇f(x0) = λ1∇g1(x0) + · · ·+ λm∇gm(x0) .

1Quoted from: Zorich, Sect. 8.7.3a, p. 527.
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The numbers λ1, . . . , λm are called Lagrange multipliers.
A physicist could say: in equilibrium, the driving force is neutralized by

constraints reaction forces.
In practice, seeking local constrained extrema of f on Z = g−1

(
{0}
)

one
solves (that is, finds all solutions of) a system of m+ n equations

g1(x) = · · · = gm(x) = 0 , (m equations)

∇f(x) = λ1∇g1(x) + · · ·+ λm∇gm(x) (n equations)

for m+ n variables

λ1, . . . , λm , (m variables)

x . (n variables)

For each solution (λ1, . . . , λm, x) one ignores λ1, . . . , λm and checks f(x).1

In addition, one checks f(x) for all points x that violate the conditions of
3a1; that is, ∇g1(x), . . . ,∇gm(x) are linearly dependent, or f, g1, . . . , gm fail
to be continuously differentiable near x.

If the set Z is not compact, one checks all relevant limits of f .
If all that is feasible (which is not guaranteed!), one finally obtains the

infimum and supremum of f on Z.
More formally: supx∈Z f(x) = limk f(xk) ∈ (−∞,+∞] for some x1, x2, · · · ∈

Z. Choosing a subsequence we ensure either xk → x for some x ∈ Z or
|xk| → ∞. In the case x ∈ Z the point x must violate conditions of 3a1.
That is enough if Z is compact. Otherwise, if Z is bounded and not closed,
the case x ∈ Z \ Z must be examined. And if Z is unbounded, the case
|xk| → ∞ must be examined.

In order to prove Th. 3a1 we first generalize Th. 2c3 as follows (recall
2a9).

3a2 Theorem. Let f : Rn → Rm be continuously differentiable near 0,
f(0) = 0, and (Df)0 = A : Rn → Rm be onto. Then f is open at 0.

Proof. We take an m-dimensional subspace E ⊂ Rn such that A|E is an
invertible mapping from E onto Rm (this is possible, as explained in Sect. 2a,
Item “linear algebra”). Then

(
D(f |E)

)
0 = A|E is invertible; by Th. 2b1,2

f |E is a local diffeomorphism, and therefore,3 open at 0. It follows that f is
open at 0.

1Being ignored in this framework, (λ1, . . . , λm) are of interest in another framework,
see Sect. 3e.

2Choosing a basis in E we turn it to a copy of Rm. Or, alternatively, E may be chosen
to be spanned by some m out of the n standard basis vectors of Rn.

3Use 2a7(a), as in the proof of 2c3.
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Proof of Theorem 3a1. WLOG, the extremum is maximum, x0 = 0 and
f(0) = 0. Assume the contrary: ∇f(0) is not a linear combination
of ∇g1(0), . . . ,∇gm(0). Then vectors ∇g1(0), . . . ,∇gm(0),∇f(0) are lin-
early independent. These vectors being the rows of (Dϕ)0, where ϕ(x) =(
g1(x), . . . , gm(x), f(x)

)
, we see that (Dϕ)0 : Rn → Rm+1 is onto.1 By

Th. 3a2, ϕ is open at 0.
We take a neighborhood U ⊂ Rn of 0 such that f(x) ≤ f(x0) for all

x ∈ U ∩ Z (where Z = g−1
(
{0}
)
), note that ϕ(U) is a neighborhood of 0 in

Rm+1, and therefore ϕ(U) contains (0, . . . , 0, ε) for ε > 0 small enough. That
is, ϕ(x) = (0, . . . , 0, ε) for some x ∈ U . Then x ∈ Z and f(x) > f(0), which
is a contradiction.

Theorem 3a1, formulated in terms of gradients, involves a Euclidean met-
ric on Rn. However, it is easy to reformulate it for vector spaces (with no
given metric), to be invariant under arbitrary change of basis (not just or-
thonormal), as follows.

Assume that V is an n-dimensional vector space, x0 ∈ V , 1 ≤ m ≤
n−1, functions f, g1, . . . , gm : V → R are continuously differentiable near x0,
g1(x0) = · · · = gm(x0) = 0, and the linear functions (Dg1)x0 , . . . , (Dgm)x0 :
V → R are linearly independent. If x0 is a local constrained extremum point
of f subject to g1(·) = · · · = gm(·) = 0, then there exist λ1, . . . , λm ∈ R such
that

(Df)x0 = λ1(Dg1)x0 + · · ·+ λm(Dgm)x0 .

3b Example: arithmetic, geometric, harmonic, and more
general means

Here is an isoperimetric inequality for triangles ∆ on the plane:

area(∆) ≤ 1

12
√

3

(
perimeter(∆)

)
2 ,

and equality is attained for equilateral triangles and only for them. In other
words, among all triangles with the given perimeter, the equilateral one has
the largest area.2

1Recall Sect. 2a, Item “linear algebra”.
2Generally, area(G) ≤ 1

4π

(
perimeter(G)

)
2 for any G on the plane, and equality is

attained for disks only. This is a famous deep fact. But I do not give an exact formulation
(nor a proof, of course).
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The proof is based on Heron’s formula for the area A of a triangle whose
side lengths are x, y, z (and perimeter L = x+ y + z):

A2 =
L

2

(
L

2
− x
)(

L

2
− y
)(

L

2
− z
)
.

The sum of the three positive1 numbers L
2
− x, L

2
− y, L

2
− z is fixed (equal

to 3L
2
−L = L

2
); their product is claimed to be maximal when these numbers

are equal (to L/6), and then A2 = L
2

(
L
6

)
3 = L4

24·33 ; A = L2

22·3
√
3
.

More generally, max{x1 . . . xn : x1, . . . , xn ≥ 0, x1 + · · · + xn = c} is
reached for x1 = · · · = xn = c/n and is equal to (c/n)n. Equivalently,
max{(x1 . . . xn)1/n : x1, . . . , xn ≥ 0, (x1 + · · · + xn)/n = c} is reached for
x1 = · · · = xn = c and is equal to c, which is the well-known inequality for
geometric mean and arithmetic mean,

(3b1) (x1 . . . xn)1/n ≤ 1

n
(x1+· · ·+xn) for n = 1, 2, . . . and x1, . . . , xn ≥ 0 .

It follows easily from concavity of the logarithm: the set A = {(x, y) : x ∈
(0,∞), y ≤ lnx} is convex, therefore the convex combination

(
1
n
(x1 + · · · +

xn), 1
n
(lnx1 + · · ·+ lnxn)

)
of points (x1, lnx1), . . . , (xn, lnxn) ∈ A belongs to

A, which gives (3b1). And still, it is worth to exercise Lagrange multipliers.

3b2 Exercise. Prove (3b1) via Lagrange multipliers.

By the way, the harmonic mean h defined by 1
h

= 1
n

(
1
x1

+ · · ·+ 1
xn

)
satisfies

h ≤ (x1 . . . xn)1/n; just apply (3b1) to 1
x1
, . . . , 1

xn
.

More generally, the Hölder mean (called also power mean) with exponent
p ∈ (−∞, 0) ∪ (0,∞) is

Mp(x1, . . . , xn) =

(
xp1 + · · ·+ xpn

n

)1/p

for x1, . . . , xn > 0 .

In particular, M1 is the arithmetic mean and M−1 is the harmonic mean. For
p→ 0 L’Hôpital’s rule gives

ln lim
p→0

Mp((x1, . . . , xn) = lim
p→0

1

p
ln
xp1 + · · ·+ xpn

n
=

= lim
p→0

xp1 lnx1 + · · ·+ xpn lnxn
xp1 + · · ·+ xpn

=
lnx1 + · · ·+ lnxn

n
= ln(x1 . . . xn)1/n ;

1 L
2 − x = x+y+z

2 − x = y+z−x
2 > 0 by the triangle inequality.
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accordingly, one defines

M0(x1, . . . , xn) = (x1 . . . xn)1/n ,

and observes that M−1(x1, . . . , xn) ≤ M0(x1, . . . , xn) ≤ M1(x1, . . . , xn). For
p→ +∞ we have

1

n
max(xp1, . . . , x

p
n) ≤ xp1 + · · ·+ xpn

n
≤ max(xp1, . . . , x

p
n) ,

therefore Mp(x1, . . . , xn)→ max(x1, . . . , xn); one writes

M+∞(x1, . . . , xn) = max(x1, . . . , xn) ; M−∞(x1, . . . , xn) = min(x1, . . . , xn)

(the latter being similar to the former) and observes that M−∞(x1, . . . , xn) ≤
M−1(x1, . . . , xn) ≤ M0(x1, . . . , xn) ≤ M1(x1, . . . , xn) ≤ M+∞(x1, . . . , xn).
That is interesting! Maybe Mp ≤Mq whenever p ≤ q?

We treat Mp as a function on (0,∞)n ⊂ Rn and calculate its gradient
∇Mp, or rather, the direction of the vector ∇Mp; indeed, we only need to
know when two vectors ∇Mp, ∇Mq are linearly dependent, that is, collinear
(denote it q ). We have ∇Mp q ∇Mp

p q ∇(nMp
p ) q (xp−11 , . . . , xp−1n ) for p 6=

0; however, this result holds for p = 0 as well, since ∇M0 q ∇ lnM0 q
(x−11 , . . . , x−1n ). Thus, ∇Mp, ∇Mq are collinear if and only if

xq−1
1

xp−1
1

= · · · =

xq−1
n

xp−1
n

, that is, xq−p1 = · · · = xq−pn , or just x1 = · · · = xn. In this case, evidently,

Mp = Mq. Does it prove that Mp ≤Mq always? Not yet. Functions Mp,Mq

are continuously differentiable on the open set G = (0,∞)n, and on the set
Zp = {x ∈ G : Mp(x) = 1}1 the conditions of 3a1 are violated at one point
(1, . . . , 1) only. This could not happen on a compact Zp! Surely Zp is not
compact, and we must examine Zp \ Zp and/or ∞.

Case 1: 0 < p < q <∞. The set Zp is bounded, since max(x1, . . . , xn) ≤
(xp1 + · · · + xpn)1/p = n1/pMp(x1, . . . , xn) = n1/p, but not closed.2 Functions
Mp,Mq are continuous on G = [0,∞)n. Maybe the (global) minimum of Mq

on Zp = {x ∈ G : Mp(x) = 1} is reached at some x ∈ Zp \ Zp? In this case
at least one coordinate of x vanishes. We use induction in n. For n = 1,
Mp(x) = x = Mq(x). Having Mp ≤Mq in dimension n− 1 we get (assuming

1No need to consider Mp(x) = c, since Mp(λx) = λMp(x) for all λ ∈ (0,∞) and all p,

thus
Mq(λx)
Mp(λx)

does not depend on λ.
2For example, the point (n1/p, 0, . . . , 0) belongs to Zp \ Zp.
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xn = 0)

Mq(x)

Mp(x)
=

(
1
n
(xq1 + · · ·+ xqn−1 + 0q)

)1/q
(

1
n
(xp1 + · · ·+ xpn−1 + 0p)

)1/p =

=
( n

n− 1

) 1
p
− 1
q

(
1

n−1(xq1 + · · ·+ xqn−1)
)1/q

(
1

n−1(xp1 + · · ·+ xpn−1)
)1/p ≥ ( n

n− 1

) 1
p
− 1
q
> 1 ,

therefore Mq > Mp on Zp \ Zp.
Case 2: 0 = p < q <∞. Follows from Case 1 via the limiting procedure

p→ 0+.
Case 3: −∞ < p < q < 0. Follows from Case 1 applied to 1/x1, . . . , 1//xn,

since

1/M−p(x
−1
1 , . . . , x−1n ) =

(xp1 + · · ·+ xpn
n

)1/p
= Mp(x1, . . . , xn) ;

Mp(x1, . . . , xn) = 1/M−p(x
−1
1 , . . . , x−1n ) ≤ 1/M−q(x

−1
1 , . . . , x−1n ) = Mq(x1, . . . , xn) .

Case 4: −∞ < p < q = 0. Follows from Case 3 via the limiting
procedure q → 0−.

Case 5: −∞ < p < 0 < q < ∞. Follows from Cases 2 and 4: Mp ≤
M0 ≤Mq.

So, Mp ≤Mq whenever p ≤ q.
Some practical advice.

The system of m + n equations proposed in Sect. 3a is only one way of
finding local constrained extrema. Not necessarily the simplest way.

No need to find ∇f when f(·) = ϕ(g(·)); just find ∇g and note that ∇f
is collinear to ∇g.

In many cases there are alternatives to the Lagrange method. For exam-
ple, we could replace inf{Mq(x) : Mp(x) = 1} with inf

{Mq(x)

Mp(x)
: M1(x) = 1

}
,

substitute xn = n−(x1+· · ·+xn−1) and optimize in x1, . . . , xn−1 without con-
straints. Alternatively we could use convexity of the function t 7→ tq/p, that
is, convexity of the set A = {(t, u) : t ∈ (0,∞), u ≥ tq/p}. The convex combi-
nation

(
1
n
(xp1 + · · ·+xpn), 1

n
(xq1 + · · ·+xqn)

)
of points (xp1, x

q
1), . . . , (x

p
n, x

q
n) ∈ A

belongs to A, which gives
(
1
n
(xp1 + · · · + xpn)

)
q/p ≤ 1

n
(xq1 + · · · + xqn), that is,

Mp ≤Mq. Moreover, the same applies to weighted mean

Mp,w(x) = (xp1w1 + · · ·+ xpnwn)1/p
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for given w1, . . . , wn ≥ 0 satisfying w1+· · ·+wn = 1. In particular, M1,w(x) ≤
Mp,w(x) for p ≥ 1, that is, x1w1 + · · · + xnwn ≤ (xp1w1 + · · · + xpnwn)1/p.

Substituting xi = aib
−q/p
i and wi = bqi where q is such that 1

p
+ 1

q
= 1 we have∑

i aib
−q/p
i bqi ≤

(∑
i a

p
i b
−q
i bqi

)
1/p, that is,

∑
i aibi ≤ (

∑
i a

p
i )

1/p provided that∑
i b
q
i = 1. This leads easily to the Hölder’s inequality∣∣∣∑

i

xiyi

∣∣∣ ≤ (∑
i

|xi|p
)1/p(∑

i

|yi|q
)1/q

for p, q ∈ (1,∞), 1
p
+ 1

q
= 1, and arbitrary xi, yi ∈ R. The right-hand side may

be rewritten as nMp(|x|)Mq(|y|), admitting p, q ∈ [1,∞]. Note the special
cases p = q = 2 and p = 1, q =∞.

However, the shown way to this inequality is rather tricky.

3b3 Exercise. Given a1, . . . , an > 0, maximize a1x1 + · · · + anxn on {x ∈
[0,∞)n : xp1 + · · · + xpn = 1} using the Lagrange method.1 Deduce Hölder’s
inequality.

Hölder’s inequality persists in the case of countably many variables xi
and yi. If two series

∑
|xi|p and

∑
|yi|q converge (and 1

p
+ 1

q
= 1), then the

series
∑
xiyi also converges (and the inequality holds).

3b4 Exercise. Given a, b, c, k > 0, find the maximum of the function f(x, y, z) =
xaybzc where x, y, z ∈ [0,∞) and xk + yk + zk = 1.

3b5 Exercise. Find the maximum of y over all points (x, y) ∈ R2 that
satisfy the equation x2 + xy + y2 = 27.

3c Example: Three points on a spheroid

We consider an ellipsoid of revolution (in other words, spheroid)

x2 + y2 + αz2 = 1

for some α ∈ (0, 1) ∪ (1,∞), and three points P,Q,R on this surface. We
want to maximize |PQ|2 + |QR|2 + |RP |2.

We’ll see that the maximum is reached when P,Q,R are situated either
in the horizontal plane z = 0 or the vertical plane y = 0 (or another vertical
plane through the origin; they all are equivalent due to symmetry). Thus, the
three-dimensional problem boils down to a pair of two-dimensional problems
(not to be solved here).

1Hint: induction in n is needed again.
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We introduce 9 coordinates,

P = (x1, y1, z1) , Q = (x2, y2, z2) , R = (x3, y3, z3)

and 4 functions f, g1, g2, g3 : R9 → R of these coordinates,

f(x1, . . . , z3) =(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

+(x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2

+(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2 ;

g1(x1, . . . , z3) =x21 + y21 + αz21 − 1 ,

g2(x1, . . . , z3) =x22 + y22 + αz22 − 1 ,

g3(x1, . . . , z3) =x23 + y23 + αz23 − 1 .

We use the approach of Sect. 3a with n = 9, m = 3. The functions f, g1, g2, g3
are continuously differentiable on R9. The set Z = Zg1,g2,g3 ⊂ R9 is compact.
The gradients of g1, g2, g3 do not vanish on Z (check it) and are linearly
independent (and moreover, orthogonal).

We introduce Lagrange multipliers λ1, λ2, λ3 corresponding to g1, g2, g3
and consider a system of m + n = 12 equations for 12 unknowns. The first
three equations are

x21 + y21 + αz21 = 1 , x22 + y22 + αz22 = 1 , x23 + y23 + αz23 = 1 .

Now, the partial derivatives. We have

∂f

∂x1
= 2(x1 − x2)− 2(x3 − x1) = 4x1 − 2x2 − 2x3 ,

which is convenient to write as 6x1 − 2(x1 + x2 + x3); similarly,

∂f

∂xk
= 6xk − 2(x1 + x2 + x3) ,

∂f

∂yk
= 6yk − 2(y1 + y2 + y3) ,

∂f

∂zk
= 6zk − 2(z1 + z2 + z3)

for k = 1, 2, 3. Also,

∂gk
∂xk

= 2xk ,
∂gk
∂yk

= 2yk ,
∂gk
∂zk

= 2αzk ;
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other partial derivatives vanish. We get 9 more equations:

6xk − 2(x1 + x2 + x3) = λk · 2xk ,
6yk − 2(y1 + y2 + y3) = λk · 2yk ,
6zk − 2(z1 + z2 + z3) = λk · 2αzk

for k = 1, 2, 3. That is,

(3− λk)xk = x1 + x2 + x3 ,

(3− λk)yk = y1 + y2 + y3 ,

(3− αλk)zk = z1 + z2 + z3 .

We note that

(x1 + x2 + x3)yk = (3− λk)xkyk = (y1 + y2 + y3)xk

for k = 1, 2, 3.
Case 1: x1 + x2 + x3 6= 0 or y1 + y2 + y3 6= 0.
Then P,Q,R are situated on the vertical plane {(x, y, z) : (x1+x2+x3)y =

(y1 + y2 + y3)x}.
Case 2: x1 + x2 + x3 = y1 + y2 + y3 = 0 and (λ1, λ2, λ3) 6= (3, 3, 3).
If λ1 6= 3 then x1 = y1 = 0; the three vectors (x1, y1), (x2, y2), (x3, y3) ∈ R2

(of zero sum!) are collinear; therefore P,Q,R are situated on a vertical plane
(again). The same holds if λ2 6= 3 or λ3 6= 3.

Case 3: x1 + x2 + x3 = y1 + y2 + y3 = 0 and λ1 = λ2 = λ3 = 3.
Then z1 = z2 = z3 = z1+z2+z3

3−3α (since α 6= 0), therefore z1 = z2 = z3 = 0;
P,Q,R are situated on the horizontal plane {(x, y, z) : z = 0}.

Another practical advice.

If Lagrange method does not solve a problem to the end, it may still give
a useful information. Combine it with other methods as needed.

3c1 Exercise. 1

Let a, b ∈ Rn be linearly independent, |a| = 5, |b| = 10.
Functions ϕa, ϕb on the sphere S1(0) = {x : |x| = 1} ⊂
Rn are defined as follows: ϕa(x) is the angular diameter
of the sphere S1(a) = {y : |y − a| = 1} viewed from x;
similarly, ϕb(x) is the angular diameter of S1(b) from x.

x
ϕa(x)a

Prove that every point of local extremum of the function ϕa +ϕb on S1(0) is
some linear combination of a, b.2

1Exam of 26.01.14, Question 2.
2Hint: show that sin 1

2ϕa(x) = 1/|x− a|; use the gradient.
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3d Example: Singular value decomposition

3d1 Proposition. Every linear operator from one finite-dimensional Eu-
clidean vector space to another sends some orthonormal basis of the first
space into an orthogonal system in the second space.

This is called the Singular Value Decomposition.1 It may be reformulated
as follows.

3d2 Proposition. Every linear operator from an n-dimensional Euclidean
vector space to an m-dimensional Euclidean vector space has a diagonal m×n
matrix in some pair of orthonormal bases.

m < n m = n

m > n

In particular, this holds for every linear operator Rn → Rn. It does not
mean that every matrix is diagonalizable! Two bases give much more freedom
than one basis.

Do you think this is unrelated to constrained optimization? Wait a little.
Prop. 3d1 will be derived from Prop. 3d3 below.

3d3 Proposition. Every finite-dimensional vector space endowed with two
Euclidean metrics contains a basis orthonormal in the first metric and or-
thogonal in the second metric.

Proof. Let an n-dimensional vector space V be endowed with two Euclidean
metrics. It means, two norms |·| and |·|1 corresponding to two inner products
〈·, ·〉 and 〈·, ·〉1 by |x|2 = 〈x, x〉 and |x|21 = 〈x, x〉1. We denote by E the
Euclidean space (V, | · |) and define a mapping A : E → E by

∀x, y ∈ E 〈x, y〉1 = 〈Ax, y〉 ;

it is well-defined, since the linear form 〈x, ·〉1, as every linear form, is 〈a, ·〉
for some a ∈ E. It is easy to see that A is a linear operator, symmetric in
the sense that

∀x, y ∈ E 〈Ax, y〉 = 〈x,Ay〉 .
1See: Todd Will, ”Introduction to the Singular Value Decomposition”,

http://websites.uwlax.edu/twill/svd/ Quote:
The Singular Value Decomposition (SVD) is a topic rarely reached in undergraduate

linear algebra courses and often skipped over in graduate courses.
Consequently relatively few mathematicians are familiar with what M.I.T. Professor

Gilbert Strang calls ”absolutely a high point of linear algebra.”

http://websites.uwlax.edu/twill/svd/
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We want to maximize | · |21 on the sphere S = {x ∈ E : |x| = 1}. We have1

∇|x|2 = 2x , ∇|x|21 = 2Ax

by 1d1(a), or just by a very simple calculation:

|x+ h|2 = |x|2 + 〈x, h〉+ 〈h, x〉+ |h|2 = |x|2 + 2〈x, h〉+ o(|h|) ,
|x+ h|21 = |x|21 + 〈x, h〉1 + 〈h, x〉1 + |h|21 = |x|21 + 2〈Ax, h〉+ o(|h|) .

These two gradients are collinear if and only if ∃λ Ax = λx; it means, x is
an eigenvector of A, and λ is the eigenvalue. Now we could use well-known
results of linear algebra, but here is the analytic way.

By compactness, | · |21 reaches its maximum on S; by Theorem 3a1, a
maximizer is an eigenvector. Existence of an eigenvector is thus proved.
Denote it by en, and the eigenvalue by λn.

If x ⊥ en then Ax ⊥ en due to symmetry of A: 〈Ax, en〉 = 〈x,Aen〉 =
〈x, λnen〉 = λn〈x, en〉 = 0. We consider a hyperplane (that is, (n− 1)-dimen-
sional subspace)

En−1 = {x ∈ E : x ⊥ en}

and the restricted operator

An−1 : En−1 → En−1 , An−1x = Ax for x ∈ En−1 .

The Euclidean space En−1 is endowed with two Euclidean metrics | · | and
| · |1 (restricted to En−1), and 〈x, y〉1 = 〈An−1x, y〉 for x, y ∈ En−1.

Now we use induction in n. The case n = 1 is trivial. The claim for n− 1
applied to En−1 gives a basis (e1, . . . , en−1) of En−1 orthonormal in | · | and
orthogonal in | · |1. Thus, (e1, . . . , en−1, en) is a basis of E. We normalize en
to |en| = 1; now this basis is orthonormal in | · |. It is also orthogonal in | · |1,
since 〈ek, en〉1 = 〈Aek, en〉 = 0 for k = 1, . . . , n− 1.

3d4 Remark. Positivity of the quadratic form x 7→ |x|21 = 〈x, x〉1 was not
used. The same holds for arbitrary quadratic form on a Euclidean space. (In
contrast, positivity of | · |2 was used.)

Proof of Prop. 3d1. We have two Euclidean spaces E,E2 and a linear oper-
ator T : E → E2. First, assume in addition that T is one-to-one. Then T
induces a second Euclidean metric on E:

|x|1 = |Tx| ; 〈x, y〉1 = 〈Tx, Ty〉
1All gradients are taken in E = (V, | · |), not (V, | · |1)!
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(of course, |Tx| is the norm in E2). Prop. 3d3 gives an orthonormal basis
(e1, . . . , en) of E, orthogonal in the second metric: 〈ek, el〉1 = 0 for k 6= l.
That is, 〈Tek, T el〉 = 0, which shows that (Te1, . . . , T en) is an orthogonal
system in E2.

If T is not one-to-one, the same argument applies due to Remark 3d4.1

Prop. 3d2 follows immediately, and gives a diagonal matrix. Its diagonal
elements can be made ≥ 0 (changing signs of basis vectors as needed) and
decreasing (renumbering basis vectors as needed); this way one gets the so-
called singular values of the given operator T . They depend on T only, not on
the choice of the pair of bases,2,3 and are the square roots of the eigenvalues
of the operator A = T ∗T . The highest singular value is the operator norm
‖T‖ of T (think, why). The lowest singular value (if not 0) is 1/‖T−1‖.

3e Sensitivity of optimum to parameters

When using a mathematical model one often bothers about sensitivity4 of
the result (the output of the model) to the assumptions (the input). Here is
one of such questions.5

What happens if the restrictions g1(x) = · · · = gm(x) = 0 are replaced
with g1(x) = c1, . . . , gm(x) = cm?

Assume that the system of m+ n equations

g1(x) = c1, . . . , gm(x) = cm , (m equations)

∇f(x) = λ1∇g1(x) + · · ·+ λm∇gm(x) (n equations)

for (λ, x) ∈ Rm × Rn has a solution (λ(c), x(c)) for all c ∈ Rm near 0, and
the mapping c 7→ x(c) is differentiable at 0. Then, by the chain rule,

∂

∂ck

∣∣∣
c=0
f(x(c)) =

〈
∇f(x(0)),

∂

∂ck

∣∣∣
c=0
x(c)

〉
for k = 1, . . . ,m .

On the other hand,

∇f(x(0)) = λ1(0)∇g1(x(0)) + · · ·+ λm(0)∇gm(x(0))

1Alternatively, define |x|21 = |Tx|2 + |x|2, 〈x, y〉1 = 〈Tx, Ty〉+ 〈x, y〉.
2The only freedom in this choice (in addition to sign change and renumbering) is,

rotation within each eigenspace of dimension > 1 (if any).
3On the space of operators, the Schatten norm is ‖T‖p =

(
|s1|p+ · · ·+ |sn|p

)
1/p where

s1, . . . , sn are the singular values of T (and 1 ≤ p ≤ ∞).
4Closely related ideas: stability, robustness; uncertainty; elasticity, . . .
5A more general one: g1(x, c1) = 0, . . . , gm(x, cm) = 0.
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and 〈
∇g1(x(0)),

∂

∂ck

∣∣∣
c=0
x(c)

〉
=

∂

∂ck

∣∣∣
c=0
g1(x(c)) =

{
1, if k = 1,

0, otherwise

(since g1(x(c)) = c1). The same holds for g2, . . . , gm. Therefore

∂

∂ck

∣∣∣
c=0
f(x(c)) = λk(0) .

It means that λk = λk(0) is the sensitivity of the critical value to the level
ck of the constraint gk(x) = ck. That is,

f(x(c)) = f(x(0)) + λ1(0)c1 + · · ·+ λm(0)cm + o(|c|) .

Does it mean that

(3e1) sup
Zc

f = sup
Z0

f + λ1(0)c1 + · · ·+ λm(0)cm + o(|c|)

where Zc = {x : g1(x) = c1, . . . , gm(x) = cm}? Not necessarily, for sev-
eral reasons (possible non-compactness, non-differentiability, greater or equal
value at another critical point when c = 0). But if supZc f = f(x(c)) for all
c near 0 then (3e1) holds.1

3f Manifolds in Rn

Everyone knows what a curve is, until he has studied
enough mathematics. . . Felix Klein2

Image: (CC) Jonathan Johanson,
http://cliptic.wordpress.com

By a manifold (to be defined soon) we mean a differential k-dimensional
submanifold of Rn, of class C1, without boundary.3 It is also called “k-di-
mensional smooth surface in Rn” or “k-dimensional submanifold on Rn”,4 or
“smooth manifold in Rn”5 etc.

1See also Sect. 13.2 in book: J. Cooper, “Working analysis”, Elsevier 2005.
2Quoted from: Hubbard, Sect. 3.1 “Manifolds”.
3‘Generally, “smooth” means “as many times differentiable as is relevant to the prob-

lem at hand. . . . (Some authors use “smooth” to mean C∞: “infinitely many times
differentiable”. For our purposes this is overkill.)’ Hubbard, Sect. 3.1, p. 293–294.

4Zorich Sect. 8.7.1.
5Hubbard Sect. 3.1.
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Several equivalent definitions of a manifold are used: via equations;1 via
diffeomorphisms;2 via graphs of mappings;3 and via parametrizations (so-
called charts, to be treated in Analysis-4).

3f1 Theorem. The following conditions on a set M ⊂ Rn, a point x0 ∈ M
and a number k ∈ {1, 2, . . . , n− 1} are equivalent:

(a) there exists a mapping f : Rn → Rn−k, continuously differentiable
near x0, such that (Df)x0 = A : Rn → Rn−k is onto, and

x ∈M ⇐⇒ f(x) = f(x0) for all x near x0 ;

(b) there exists a local diffeomorphism ϕ near x0 such that

x ∈M ⇐⇒ ϕ(x) ∈ Rk × {0n−k} for all x near x0 ;

(c) there exists a permutation (i1, . . . , in) of {1, . . . , n} and a mapping
g : Rk → Rn−k, continuously differentiable near (x0,i1 , . . . , x0,ik), such that

x ∈M ⇐⇒ g(xi1 , . . . , xik) = (xik+1
, . . . , xin) for all x near x0 .

Proof. First, WLOG, x0 = 0 (as usual).
Second, the three conditions are insensitive to permutations of the n

coordinates of x.4 Indeed, in (a) we may change the order of arguments of f
as needed; in (b) we may change the order of arguments of ϕ as needed; and
in (c) we may change the permutation (i1, . . . , in) as needed.

(a)=⇒(c): WLOG, f(0) = 0 and A = (B C ) with B = Rk → Rn−k,
C : Rn−k → Rn−k, C invertible (using the fact that rankA = n−k). Theorem
2b3 (for n and n − k in place of n and m) gives g : Rk → Rn−k such that
g(x1, . . . , xk) = (xk+1, . . . , xn) ⇐⇒ f(x1, . . . , xn) = 0 ⇐⇒ x ∈ M , which
gives (c) for (i1, . . . , in) = (1, . . . , n).

(c)=⇒(b): WLOG, (i1, . . . , in) = (1, . . . , n). Similarly to the proof of
2b3=⇒2b1 (in Sect. 2a) we define ϕ by ϕ(u, v) =

(
u, g(u) − v

)
for u ∈ Rk

and v ∈ Rn−k; then ϕ(u, v) ∈ Rk × {0n−k} ⇐⇒ ϕ(u, v) = (u, 0) ⇐⇒
g(u) = v ⇐⇒ x ∈M .

(b)=⇒(a): we define f(x) = (yk+1, . . . , yn) whenever ϕ(x) = (y1, . . . , yn);
then f(0) = 0 and f(x) = 0 ⇐⇒ ϕ(x) ∈ Rk × {0n−k} ⇐⇒ x ∈M .

3f2 Definition. A nonempty set M ⊂ Rn is a k-dimensional manifold, if
the equivalent conditions 3f1(a,b,c) hold for every x0 ∈M .

1Fleming; also Hubbard, Th. 3.1.10.
2Lang, Zorich.
3Hubbard.
4I mean, coordinates of x, not of f(x) or ϕ(x).
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We may say that M is a k-manifold near x0 when 3f1(a,b,c) hold for M ,
x0 and k. Accordingly, M is a k-manifold when it is a k-manifold near every
point (of M).

3f3 Exercise. Let ϕ : Rn → Rn be a diffeomorphism, and M ⊂ Rn.
(a) If M is a k-manifold near x0, then its image ϕ(M) is a k-manifold

near ϕ(x0);
(b) M is a k-manifold if and only if ϕ(M) is a k-manifold.

Prove it.

This applies, in particular, to shifts, rotations, and all invertible affine
transformations of Rn.

3f4 Exercise. Let M1,M2 ⊂ Rn be k-dimensional manifolds, and M =
M1 ∪M2.

(a) If M1∩M2 = ∅ and M1∩M2 = ∅, then M is a k-dimensional manifold.
Prove it.

(b) It can happen that M1 ∩ M2 = ∅ but M is not a k-dimensional
manifold. Give a counterexample.

3f5 Exercise. Let 0 < m < n, and g1, . . . , gm ∈ C1(Rn → R) be such that
the vectors ∇g1(x), . . . ,∇gm(x) are linearly independent for every x ∈ M
where M = {x : g1(x) = · · · = gm(x) = 0}. Then M is a (n−m)-dimensional
manifold.

Prove it.

3f6 Exercise. Which of the following subsets of R2 are 1-dimensional man-
ifolds? Prove your answers, both affirmative and negative.

∗ M1 = R× {0};
∗ M2 = [0, 1]× {0};
∗ M3 = (0, 1)× {0};
∗ M4 = {(0, 0)};
∗ M5 = R× {0, 1};
∗ M6 = R× Z;

∗ M7 = R× {1, 1
2
, 1
3
, . . . };

∗ M8 = M7 ∪M1.

3f7 Example. The sphere S = {x ∈ Rn : |x| = 1} is a (n− 1)-dimensional
manifold (by 3f5 for m = 1 and g(x) = |x|2 − 1).

Alternatively, we may prove that S is a manifold around just one point,
say, e1 = (1, 0, . . . , 0), and then use rotation invariance: U(S) = S for every
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linear isometry U : Rn → Rn, and each x ∈ S is Ue1 for some U ;1 use 3f3(a).
Near e1 the equality x1 =

√
1− x22 − · · · − x2n gives 3f1(c).

3f8 Example. 2 Consider the set M of all 3× 3 matrices A of the form

A =

a2 ab ac
ba b2 bc
ca cb c2

 for a, b, c ∈ R , a2 + b2 + c2 = 1 .

These are orthogonal projections to one-dimensional subspaces of R3, that
is, straight lines through the origin. Note that each line contains two points
of the sphere S = {(a, b, c) ∈ R : a2 + b2 + c2 = 1}, which gives a 2-to-1
mapping S →M . We treat M as a subset of the six-dimensional space of all
symmetric 3× 3 matrices.

The set M is invariant under transformations A 7→ UAU−1 where U
runs over all orthogonal matrices (linear isometries); these are linear trans-
formations of the six-dimensional space of matrices. If A corresponds to
x = (a, b, c) then UAU−1 corresponds to Ux. For arbitrary A,B ∈ M there
exists U such that UAU−1 = B (“transitive action”).

Thus, M looks the same around all its points (“homogeneous space”). In
order to prove that M is a 2-manifold (in R6) it is sufficient to prove this
near a single point of M , say,

A1 =

1 0 0
0 0 0
0 0 0

 ∈M ,

that corresponds to (a, b, c) = (1, 0, 0) (but also (−1, 0, 0), of course). For
(a, b, c)→ (1, 0, 0) we have in the linear approximationa2 ab ac

ba b2 bc
ca cb c2

 ≈
1 0 0

0 0 0
0 0 0

+

0 b c
b 0 0
c 0 0


(think, why). Thus, in the linear approximation all elements of A are func-
tions of two of them. Returning to the nonlinear situation we want to express
a2, b2, c2 and bc in terms of ab and ac (locally, for (a, b, c) near (1, 0, 0)). We

1Since x is the first vector of some orthogonal basis.
2The projective plane in disguise.
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have

(ab)2 + (ac)2 = a2(b2 + c2) = a2(1− a2) ;

a2 = 1
2

+
√

1
4
− (ab)2 − (ac)2 ;

b2 =
(ab)2

1
2

+
√
. . .

; c2 =
(ac)2

1
2

+
√
. . .

; bc =
(ab)(ac)
1
2

+
√
. . .

;

thus, M is a 2-manifold near A1 according to 3f1(c).1

Interestingly, the part of M that corresponds to a spherical zone (sym-
metrical, around the equator), say a2+b2+c2 = 1, |c| < 1/2, is homeomorphic
to the Möbius strip2 (without the edge),

M = {h(s, θ) : s ∈ (−1, 1), θ ∈ [0, 2π]} ,

h(s, θ) =

( (R+rs cos θ
2
) cos θ

(R+rs cos θ
2
) sin θ

rs sin θ
2

)
,

for given R > r > 0. You see, a straight segment on the x, z plane rotates
by θ/2 (around the y axis) and at the same time it rotates (in the three
dimensions) by θ around the z axis.

A point h(s, θ) of the Möbius strip corresponds to the point(√
1− 1

4
s2 cos 1

2
θ,
√

1− 1
4
s2 sin 1

2
θ, 1

2
s
)

on the sphere S, and the corresponding point of M . (Think, what happens
for θ = 2π.)

The rest of M is homeomorphic to a disk (not two disks), and this disk
is glued to the Möbius strip in a way unthinkable in three dimensions.3

1It is easy to check that, locally, every matrix that satisfies these equations belongs to
M .

2Images from Wikipedia, “Möbius strip”.
3Dimension 6 can be reduced to dimension 4 by taking only (a2 − b2, ab, ac, bc), see

“Real projective plane” in Wikipedia.

http://en.wikipedia.org/wiki/Mobius_strip
http://en.wikipedia.org/wiki/Real_projective_plane#Embedding_into_4-dimensional_space
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