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The divergence theorem sheds light on harmonic functions and differential
forms.

4a Divergence and flux

We return to the case treated before, in the end of Sect. 3b: G ⊂ RN is a
smooth set. Recall the outward unit normal vector nx for x ∈ ∂G.

4a1 Definition. For a continuous F : ∂G→ RN , the (outward) flux of (the
vector field) F through ∂G is ∫

∂G

〈F,n〉 .

(The integral is interpreted according to (2d8).)
If a vector field F on R3 is the velocity field of a fluid, then the flux of

F through a surface is the amount1 of fluid flowing through the surface (per
unit time).2 If the fluid is flowing parallel to the surface then, evidently, the
flux is zero.

We continue similarly to Sect. 3b. Let F ∈ C1(G → RN), with DF
bounded (on G). Recall that, by 3b6, boundedness of DF on G ensures that
F extends to G by continuity (and therefore is bounded). In such cases we
always use this extension. The mapping F̃ : RN \ ∂G→ RN defined by

F̃ (x) =

{
F (x) for x ∈ G,
0 for x /∈ G

1The volume is meant, not the mass. However, these are proportional if the density
(kg/m3) of the matter is constant (which often holds for fluids).

2See also mathinsight.

http://mathinsight.org/surface_integral_vector_field_introduction
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is continuous up to ∂G, and

F̃ (x− 0nx) = F (x) , F̃ (x+ 0nx) = 0 ;

divsng F̃ (x) = −〈F (x),nx〉 .

By Theorem 3e3 (applied to F̃ and K = ∂G),

(4a2)

∫
G

divF =

∫
∂G

〈F,n〉 ,

just the flux. The divergence theorem, formulated below, is thus proved.1

4a3 Theorem (Divergence theorem). Let G ⊂ RN be a smooth set, F ∈
C1(G→ RN), with DF bounded on G. Then the integral of divF over G is
equal to the (outward) flux of F through ∂G.

In particular, if divF = 0, then
∫
∂G
〈F,n〉 = 0.

4a4 Exercise. div(fF ) = f divF + 〈∇f, F 〉 whenever f ∈ C1(G) and F ∈
C1(G→ RN)

Prove it.

Thus, the divergence theorem, applied to fF when f ∈ C1(G) with
bounded ∇f , and F ∈ C1(G → RN) with bounded DF , gives a kind of
integration by parts, similar to (3b12):

(4a5)

∫
G

〈∇f, F 〉 =

∫
∂G

f〈F,n〉 −
∫
G

f divF .

In particular, if divF = 0, then
∫
G
〈∇f, F 〉 =

∫
∂G
f〈F,n〉

Here is a useful special case. We mean by a radial function a function
of the form f : x 7→ g(|x|) where g ∈ C1(0,∞), and by a radial vector field
F : x 7→ g(|x|)x. Clearly, f ∈ C1(RN \ {0}) and F ∈ C1(RN \ {0} → RN).

4a6 Exercise. (a) If f(x) = g(|x|), then ∇f(x) = g′(|x|)
|x| x;

(b) if F (x) = g(|x|)x, then divF (x) = |x|g′(|x|) +Ng(|x|);
(c) if F (x) = g(|x|)x, then the (outward) flux of F through the boundary

of the ball {x : |x| < r} is crNg(r), where c = 2πN/2

Γ(N/2)
is the area of the unit

sphere.
Prove it.2

1Divergence is often explained in terms of sources and sinks (of a moving matter). But
be careful; the flux of a velocity field is the amount (per unit time) as long as “amount”
means “volume”. If by “amount” you mean “mass”, then you need the vector field of
momentum, not velocity; multiply the velocity by the density of the matter. However, the
problem disappears if the density is constant (which often holds for fluids).

2Hint: (b) use (a) and 4a4.
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Taking G = {x : a < |x| < b} and F (x) = g(|x|)x, we see that
∫
G

divF =∫ b
a
crN−1

(
rg′(r)+Ng(r)

)
dr by 4a6(b) and (generalized) 3c8; and on the other

hand,
∫
∂G
〈F,n〉 = crNg(r)|br=a by 4a6(c). Well, d

dr

(
rNg(r)

)
= rN−1

(
rg′(r) +

Ng(r)
)
, as it should be according to (4a2).

Zero gradient is trivial, but zero divergence is not. For a radial vector
field, zero divergence implies that rNg(r) does not depend on r, that is,
g(r) = const

rN
(and indeed, in this case rg′(r) +Ng(r) = 0);

(4a7)

F (x) =
const

|x|N
x ; divF (x) = 0 for x 6= 0 ;∫

∂G

〈F,n〉 = 0 when G 3/ 0 ;

note that the latter equality fails for a ball. The flux through a sphere is

(4a8)

∫
|x|=r
〈F,n〉 = const ·

∫
|x|=1

1 = const · 2πN/2

Γ(N/2)

where ’const’ is as in (4a7). The same holds for arbitrary smooth set G 3 0:

(4a9)

∫
∂G

〈F,n〉 = const · 2πN/2

Γ(N/2)
.

Proof: we take ε > 0 such that {x : |x| ≤ ε} ⊂ G; the set Gε = {x ∈ G :
|x| > ε} is smooth; by (4a7),

∫
∂Gε
〈F,n〉 = 0; and ∂Gε = ∂G ] {x : |x| = ε}.

4b Piecewise smooth case

We want to apply the divergence theorem 4a3 to the open cube G = (0, 1)N ,
but for now we cannot, since the boundary ∂G is not a manifold. Rather,
∂G consists of 2N disjoint cubes of dimension n = N − 1 (“hyperfaces”) and
a finite number1 of cubes of dimensions 0, 1, . . . , n− 1. n=N−1

For example, {1} × (0, 1)n is a hyperface.
Each hyperface is an n-manifold, and has exactly two orientations. Also,

the outward unit normal vector nx is well-defined at every point x of a
hyperface.

For example, nx = e1 for every x ∈ {1} × (0, 1)n.
For a function f on ∂G we define

∫
∂G
f as the sum of integrals over the

2N hyperfaces; that is,

(4b1)

∫
∂G

f =
N∑
i=1

∑
xi=0,1

∫
· · ·
∫

(0,1)n

f(x1, . . . , xN)
∏
j:j 6=i

dxj ,

1In fact, 3N − 1− 2N .
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provided that these integrals are well-defined, of course.
For a vector field F ∈ C(∂G→ RN) we define the flux of F through ∂G

as
∫
∂G
〈F,n〉. Note that

(4b2)

∫
∂G

〈F,n〉 =
N∑
i=1

∑
xi=0,1

(2xi − 1)

∫
· · ·
∫

(0,1)n

Fi(x1, . . . , xN)
∏
j:j 6=i

dxj .

It is surprisingly easy to prove the divergence theorem for the cube. (Just
from scratch; no need to use 4a3, nor 3e3.)

4b3 Proposition (divergence theorem for cube). Let F ∈ C1
(
(0, 1)N →

RN
)
, with DF bounded. Then the integral of divF over (0, 1)N is equal to

the (outward) flux of F through the boundary.

(As before, boundedness of DF ensures that F extends to [0, 1]N by
continuity; recall 3b6.)

Proof.∫ 1

0

D1F1(x1, . . . , xN) dx1 = F1(1, x2, . . . , xN)− F1(0, x2, . . . , xN) =

=
∑
x1=0,1

(2x1 − 1)F1(x1, . . . , xN) ;

∫
· · ·
∫

(0,1)N

D1F1 =
∑
x1=0,1

(2x1 − 1)

∫
· · ·
∫

(0,1)n

F1(x1, . . . , xN) dx2 . . . dxN ;

similarly, for each i = 1, . . . , N ,∫
· · ·
∫

(0,1)N

DiFi =
∑
xi=0,1

(2xi − 1)

∫
· · ·
∫

(0,1)n

Fi
∏
j:j 6=i

dxj ;

it remains to sum over i.

The same holds for every box, of course.
A box is only one example of a bounded regular open set G ⊂ RN such

that ∂G is not an n-manifold and still, the divergence theorem holds as∫
G

divF =
∫
∂G\Z〈F,n〉 for some closed set Z ⊂ ∂G such that ∂G \ Z is an

n-manifold of finite n-dimensional volume. For the cube (or box), ∂G \ Z is
the union of the 2N hyperfaces, and Z is the union of cubes (or boxes) of
smaller (than N − 1) dimensions.
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4b4 Definition. We say1 that the divergence theorem holds for G and
∂G \ Z, if

G ⊂ RN is a bounded regular open set,
Z ⊂ ∂G is a closed set,
∂G \ Z is an n-manifold of finite n-dimensional volume, and∫
G

divF =
∫
∂G\Z〈F,n〉 for all F ∈ C(G → RN) such that F |G ∈

C1(G→ RN) and DF is bounded on G.

4b5 Exercise (product). Let G1 ⊂ RN1 , Z1 ⊂ ∂G1, and G2 ⊂ RN2 ,
Z2 ⊂ ∂G2. If the divergence theorem holds for G1, ∂G1 \ Z1 and for G2,
∂G2 \ Z2, then it holds for G, ∂G \ Z where G = G1 × G2 ⊂ RN1+N2 and
∂G \ Z =

(
(∂G1 \ Z1)×G2

)
]
(
G1 × (∂G2 \ Z2)

)
.

Prove it.2

An N -box is the product of N intervals, of course. Also, a cylinder
{(x, y, z) : x2 + y2 < r2, 0 < z < a} is the product of a disk and an interval.

4c Divergence of gradient: Laplacian

Some (but not all) vector fields are gradients of scalar fields.

4c1 Definition. (a) The Laplacian ∆f of a function f ∈ C2(G) on an open
set G ⊂ Rn is

∆f = div∇f .

(b) f is harmonic, if ∆f = 0.

We have∇f = (D1f, . . . , Dnf), thus, div∇f = D1(D1f)+· · ·+Dn(Dnf);
in this sense,

∆ = D2
1 + · · ·+D2

n =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

,

the so-called Laplace operator, or Laplacian.
Any n-dimensional Euclidean space may be used instead of Rn. Indeed,

the gradient is well-defined in such space, and the divergence is well-defined
even without Euclidean metric.

The divergence theorem 4a3 gives, for a smooth G, the so-called first
Green formula

(4c2)

∫
G

∆f =

∫
∂G

〈∇f,n〉 =

∫
∂G

Dnf ,

1Not a standard terminology.
2Hint: divF = (D1F1 + · · ·+ DN1FN1) + (DN1+1FN1+1 + · · ·+ DN1+N2FN1+N2).
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where
(
Dnf

)
(x) =

(
Dnxf

)
x is the directional derivative of f at x in the

normal direction nx. Here f ∈ C2(G), with bounded second derivatives.
Here is another instance of integration by parts. Let u ∈ C1(G), with

bounded gradient, and v ∈ C2(G), with bounded second derivatives. Apply-
ing (4a5) to f = u and F = ∇v we get

∫
G
〈∇u,∇v〉 =

∫
∂G
u〈∇v,n〉−

∫
G
u∆v,

that is,

(4c3)

∫
G

(u∆v + 〈∇u,∇v〉) =

∫
∂G

〈u∇v,n〉 =

∫
∂G

uDnv ,

the second Green formula. It follows that

(4c4)

∫
G

(u∆v − v∆u) =

∫
∂G

(uDnv − vDnu) ,

the third Green formula; here u, v ∈ C2(G), with bounded second derivatives.
In particular, ∫

∂G

uDnv =

∫
∂G

vDnu for harmonic u, v .

Rewriting (4c4) as

(4c5)

∫
G

u∆v =

∫
G

v∆u−
∫
∂G

vDnu+

∫
∂G

(Dnv)u

we may say that really
∫

(u1lG)∆v =
∫
v∆(u1lG) where ∆(u1lG) consists of

the usual Laplacian (∆u)1lG sitting on G and the singular Laplacian sitting
on ∂G, of two terms, so-called single layer (−Dnu) and double layer uDn.
Why two layers? Because the Laplacian (unlike gradient and divergence)
involves second derivatives.

4c6 Exercise. Consider homogeneous polynomials on R2:

f(x, y) =
m∑
k=0

ckx
kym−k .

For m = 1, 2 and 3 find all harmonic functions among these polynomials.1

4c7 Exercise. On R2,
(a) a function of the form

f(x, y) =
m∑
k=1

cke
akx+bky (ak, bk, ck ∈ R)

1In fact, they are Re (x + iy)m, Im (x + iy)m and their linear combinations.
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is harmonic only if it is constant;
(b) a function of the form

f(x, y) = eax cos by

is harmonic if and only if |a| = |b|.1
Prove it.

Now, what about a radial harmonic function? We seek a radial f such
that ∇f is of zero divergence, that is, ∇f(x) = const

|x|N x (recall (4a7)). By

4a6(a), f(x) = g(|x|) where g′(r)
r

= const
rN

; thus, g(r) = const1
rN−2 + const2 for

N 6= 2. We choose

(4c8) f(x) =
1

|x|N−2
; ∆f(x) = 0 for x 6= 0 .

(This works also for N = 1: f(x) = |x| is harmonic on R \ {0}.) But for
N = 2 we get g′(r) = const

r
; g(r) = const1 · log r + const2; we choose

(4c9) f(x) = − log |x| = log
1

|x|
; ∆f(x) = 0 for x 6= 0 .

The flux of ∇f through a sphere is2∫
|x|=r

Dnf =

{
−(N − 2) 2πN/2

Γ(N/2)
for N 6= 2,

−2π for N = 2;

and, similarly to (4a9), the same holds for every smooth set G 3 0.

4d Laplacian at a singular point

The function g(x) = 1/|x|N−2 is harmonic on RN \{0}, thus, for every f ∈ C2

compactly supported within RN \ {0},∫
g∆f =

∫
f∆g = 0 .

It appears that for f ∈ C2(RN) with a compact support,∫
g∆f = const · f(0) ;

in this sense g has a kind of singular Laplacian at the origin.

1That is, f(x, y) = Re
(
ex+iy

)
.

2const = −(N − 2)const1 = −(N − 2) for N 6= 2, and const = const1 = −1 for N = 2.
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4d1 Lemma. ∫
RN

∆f(x)

|x|N−2
dx = −(N − 2)

2πN/2

Γ(N/2)
f(0)

for every N > 2 and f ∈ C2(RN) with a compact support.

This improper integral converges, since 1/|x|N−2 is improperly integrable

near 0. The coefficient 2πN/2

Γ(N/2)
is the (N − 1)-dimensional volume of the unit

sphere (recall (3c9)).

Proof. For arbitrary ε > 0 we consider the function gε(x) = 1/
(
max(|x|, ε)

)
N−2,

and g(x) = 1/|x|N−2. Clearly,
∫
|gε−g| → 0 (as ε→ 0), and

∫
|gε−g||∆f | →

0, thus,
∫
gε∆f →

∫
g∆f . We take R ∈ (0,∞) such that f(x) = 0 for

|x| ≥ R, introduce smooth sets G1 = {x : |x| < ε}, G2 = {x : ε < |x| < R},
and apply (4c4), taking into account that ∆gε = 0 on G1 and G2:∫

gε∆f =

(∫
G1

+

∫
G2

)
gε∆f =

(∫
∂G1

+

∫
∂G2

)(
gεDnf − fDngε

)
;

however, these Dn must be interpreted differently under
∫
∂G1

and
∫
∂G2

:∫
∂G1

gεDn1f =

∫
|x|=ε

1

εN−2
Dnf ,∫

∂G2

gεDn2f =

∫
|x|=ε

1

εN−2
D−nf

where n is the outward normal of G1 and inward normal of G2; these two
summands cancel each other. Further,

∫
∂G1

fDn1gε =
∫
|x|=ε f · 0 = 0 since gε

is constant on G1; and∫
∂G2

fDn2gε =

∫
|x|=ε

f · N − 2

εN−1
,

since gε(x) = 1/|x|N−2 on G2, and f(x) = 0 when |x| = R. Finally,∫
gε∆f = −(N − 2)

1

εN−1

∫
|x|=ε

f = −(N − 2)
2πN/2

Γ(N/2)
fε ,

where fε is the mean value of f on the ε-sphere. By continuity, fε → f(0) as
ε→ 0; and, as we know,

∫
gε∆f →

∫
g∆f .
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4d2 Remark. For N = 2 the situation is similar:∫
R2

∆f(x) log
1

|x|
dx = −2πf(0)

for every compactly supported f ∈ C2(R2).

When the boundary consists of a hypersurface and an isolated point, we
get a combination of (4c5) and 4d1: a singular point and two layers.

4d3 Remark. Let G ⊂ RN be a smooth set, f ∈ C2(G) with bounded
second derivatives, and 0 ∈ G. Then∫

G

∆f(x)

|x|N−2
dx = −(N − 2)

2πN/2

Γ(N/2)
f(0)−

−
∫
∂G

(
x 7→ f(x)Dn

1

|x|N−2

)
+

∫
∂G

(
x 7→ (Dnf(x))

1

|x|N−2

)
.

The proof is very close to that of 4d1. The case N = 2 is similar to 4d2, of
course.

The case G = {x : |x| < R} is especially interesting. Here ∂G = {x :
|x| = R}; on ∂G,

1

|x|N−2
=

1

RN−2
and Dnx

1

|x|N−2
= −N − 2

RN−1
;

thus,∫
|x|<R

∆f(x)

|x|N−2
dx = −(N−2)

2πN/2

Γ(N/2)
f(0)+

N − 2

RN−1

∫
|·|=R

f+
1

RN−2

∫
|·|=R

Dnf .

Taking into account that
∫
|·|=RDnf =

∫
|·|<R ∆f by (4c2) we get

(N − 2)
2πN/2

Γ(N/2)
f(0) = −

∫
|x|<R

( 1

|x|N−2
− 1

RN−2

)
∆f(x) dx+

N − 2

RN−1

∫
|·|=R

f

for N > 2; and similarly,

2πf(0) = −
∫
|x|<R

(
logR− log |x|

)
∆f(x) dx+

1

R

∫
|·|=R

f

for N = 2. In particular, for a harmonic f ,

f(0) =
Γ(N/2)

2πN/2
1

RN−1

∫
|·|=R

f =

∫
|·|=R f∫
|·|=R 1

for N ≥ 2; the following result is thus proved (and holds also for N = 1,
trivially).
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4d4 Proposition (Mean value property). For every harmonic function on a
ball, with bounded second derivatives, its value at the center of the ball is
equal to its mean value on the boundary of the ball.1

4d5 Remark. Now it is easy to understand why harmonic functions occur in
physics (“the stationary heat equation”). Consider a homogeneous material
solid body (in three dimensions). Fix the temperature on its boundary, and
let the heat flow until a stationary state is reached. Then the temperature
in the interior is a harmonic function (with the given boundary conditions).

4d6 Remark. Can the mean value property be generalized to a non-spherical
boundary? We leave this question to more special courses (PDE, poten-

tial theory). But here is the idea. In 4d3 we may replace
∫
G

∆f(x)
|x|N−2 dx

with
∫
G

(
1

|x|N−2 + g(x)
)

∆f(x) dx where g is a harmonic function satisfying
1

|x|N−2 + g(x) = 0 for all x ∈ ∂G (if we are lucky to have such g). Then

the double layer
∫
∂G

(Dnv)u in (4c5), and the corresponding term in 4d3,
disappears, and we get

(N − 2)
2πN/2

Γ(N/2)
f(0) =

∫
∂G

(
x 7→ f(x)Dn

( 1

|x|N−2
+ g(x)

))
.

4d7 Exercise (Maximum principle for harmonic functions).
Let u be a harmonic function on a connected open setG ⊂ RN . If supx∈G u(x) =
u(x0) for some x0 ∈ G then u is constant.

Prove it.2

It appears that

(4d8) ∆f(x) = 2N lim
ε→0

1

ε2

((
mean of f on {y : |y − x| = ε}

)
− f(x)

)
.

4d9 Exercise. (a) Prove that, for N > 2,

1

R2

∫
|x|<R

( 1

|x|N−2
− 1

RN−2

)
dx does not depend on R;

and for N = 2, 1
R2

∫
|x|<R

(
logR− log |x|

)
dx does not depend on R. (No need

to calculate these integrals.) 3

1In fact, the mean value property is also sufficient for harmonicity, even if differentia-
bility is not assumed.

2Hint: the set {x0 : u(x0) = supx∈G u(x)} is both open and closed in G.
3Hint: change of variable.
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(b) For f of class C2 near the origin, prove that the mean value of f on
{x : |x| = ε} is f(0) + cNε

2∆f(0) + o(ε2) as ε → 0, for some c2, c3, · · · ∈ R
(not dependent on f).

(c) Applying (b) to f(x) = |x|2, find c2, c3, . . . and prove (4d8).

4d10 Exercise. (a) For every f integrable (properly) on {x : |x| < R},∫
|·|<R f∫
|·|<R 1

=

∫ R

0

∫
|·|=r f∫
|·|=r 1

drN

RN
.

(b) For every bounded harmonic function on a ball, its value at the center of
the ball is equal to its mean value on the ball.

Prove it.1

4d11 Proposition. (Liouville’s theorem for harmonic functions)
Every harmonic function RN → [0,∞) is constant.

Proof. For arbitrary x, y ∈ RN and R > 0 we have

f(x) =

∫
|z−x|<R f(z) dz∫
|z−x|<R dz

≤

∫
|z−y|<R+|x−y| f(z) dz∫

|z−x|<R dz
=

=

(
R + |x− y|

R

)N ∫
|z−y|<R+|x−y| f(z) dz∫
|z−y|<R+|x−y| dz

=

(
R + |x− y|

R

)N
f(y) ,

since the R-neighborhood of x is contained in the (R+ |x−y|)-neighborhood
of y. In the limit R→∞ we get f(x) ≤ f(y); similarly, f(y) ≤ f(x).

4e Differential forms of order N − 1

It is easy to generalize the flux, defined by 4a1, as follow.
n=N−1

4e1 Definition. Let M ⊂ RN be an n-manifold,2 F : M → RN a mapping
continuous almost everywhere, and n : M → RN a continuous mapping such
that nx is a unit normal vector to M at x, for each x ∈M . The flux of (the
vector field) F through (the hypersurface) M in the direction n is∫

M

〈F,n〉 .

(The integral is treated as improper, and may converge or diverge.)

1Hint: (a) recall 13c8.
2Necessarily orientable; see 4e9.
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It is not easy to calculate this integral, even if M is single-chart; the
formula is complicated,∫

M

〈F,n〉 =

∫
G

〈F (ψ(u)),nψ(u)〉
√

det(〈(Diψ)u, (Djψ)u〉)i,j du ,

and still, nx should be calculated somehow. Fortunately, there is a better
formula:1 n=N−1

(4e2)

∫
M

〈F,n〉 = ±
∫
G

det
(
F (ψ(u)), (D1ψ)u, . . . , (Dnψ)u

)
du

(and the sign ± will be clarified soon). That is,
∫
M
〈F,n〉 = ±

∫
M
ω, where ω

is the n-form defined by ω(x, h1, . . . , hn) = det
(
F (x), h1, . . . , hn

)
. We have to

understand better this relation between vector fields and differential forms.
Recall two types of integral over an n-manifold:

∗ of an n-form ω,
∫

(M,O)
ω, defined by (2c2) and (2d4);

∗ of a function f ,
∫
M
f , defined by (2d8) and (2d9);

they are related by ∫
M

f =

∫
(M,O)

fµ(M,O) ,

where µ(M,O) is the volume form; that is,
∫
M
f =

∫
(M,O)

ω where ω = fµ(M,O).

Interestingly, every n-form ω on an orientable n-manifold M ⊂ RN is fµ(M,O)

for some f ∈ C(M). This is a consequence of the one-dimensionality2 of the
space of all antisymmetric multilinear n-forms on the tangent space TxM .
We have f(x) = ω(x, e1, . . . , en) for some (therefore, every) orthonormal
basis (e1, . . . , en) of TxM that conforms to Ox. But if ω is defined on the
whole RN (not just on M), it does not lead to a function f on the whole
RN ; indeed, in order to find f(x) we need not just x but also TxM (and its
orientation).

The case n = N is simple: every N -form ω on RN (or on an open subset
of RN) is f det (for some continuous f); here “det” denotes the volume form
on RN ; that is,

(4e3)
ω(x, h1, . . . , hN) = f(x) det(h1, . . . , hN) ;

f(x) = ω(x, e1, . . . , eN) .

1A wonder: the volume form of M is not needed; the volume form of RN (the deter-
minant) is used instead. Why so? Since the flux is the volume of fluid flowing through
the surface (per unit time), as was noted in 4a.

2Recall Sect. 1e and 2c.
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Note that for every open U ⊂ RN ,

(4e4)

∫
U

f det =

∫
U

f(x) dx ;

∫
U

det = v(U) .

We turn to the case n = N − 1.
The space of all antisymmetric multilinear n-forms L on RN is of dimen-

sion
(
N
n

)
= N . Here is a useful linear one-to-one correspondence between

such L and vectors h ∈ RN : n=N−1

∀h1, . . . , hn L(h1, . . . , hn) = det(h, h1, . . . , hn) .

Introducing the cross-product h1 × · · · × hn by1

(4e5) ∀h 〈h, h1 × · · · × hn〉 = det(h, h1, . . . , hn)

(it is a vector orthogonal to h1, . . . , hn), we get

L(h1, . . . , hn) = 〈h, h1 × · · · × hn〉 .

Doing so at every point, we get a linear one-to-one correspondence between
n-forms ω on RN and (continuous) vector fields F on RN :

(4e6) ω(x, h1, . . . , hn) = 〈F (x), h1 × · · · × hn〉 = det(F (x), h1, . . . , hn) .

Similarly, (n− 1)-forms ω on an oriented n-dimensional manifold (M,O) in
RN (not just N − n = 1) are in a linear one-to-one correspondence with
tangent vector fields F on M , that is, F ∈ C(M → RN) such that ∀x ∈
M F (x) ∈ TxM . n=N−1

Let M ⊂ RN be an orientable n-manifold, ω and F as in (4e6). We know
that ω|M = fµ(M,O) for some f . How is f related to F? Given x ∈ M , we
take an orthonormal basis (e1, . . . , en) of TxM , note that e1 × · · · × en = nx
is a unit normal vector to M at x, and

〈F (x),nx〉 = 〈F (x), e1 × · · · × en〉 = ω(x, e1, . . . , en) =

= f(x)µ(M,O)(x, e1, . . . , en) = ±f(x) .

In order to get “+” rather than “±” we need a coordination between the
orientation O and the normal vector nx. Let the basis (e1, . . . , en) of TxM

1For N = 3 the cross-product is a binary operation, but for N > 3 it is not. In
fact, it is possible to define the corresponding associative binary operation (the so-called
exterior product, or wedge product), not on vectors but on the so-called multivectors, see
“Multivector” and “Exterior algebra” in Wikipedia.

http://en.wikipedia.org/wiki/Multivector
http://en.wikipedia.org/wiki/Exterior_algebra
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conform to the orientation Ox (of M at x, or equivalently, of TxM , recall
Sect. 2b), then µ(M,O)(x, e1, . . . , en) = +1. The two unit normal vectors
being ±e1 × · · · × en, we say that nx = e1 × · · · × en conforms to the given
orientation, and get1

〈F (x),nx〉 = f(x) ; ω|M = 〈F,n〉µ(M,O) .

Integrating this over M , we get nothing but the flux! Recall 4e1: the flux of F
through M is

∫
M
〈F,n〉, that is,

∫
(M,O)

〈F,n〉µ(M,O) =
∫

(M,O)
ω|M =

∫
(M,O)

ω.

We get (4e2), and moreover,

(4e7)

∫
M

〈F,n〉 =

∫
(M,O)

ω

for ω of (4e6) and O conforming to n. In particular, when M is single-chart,
we have

(4e8)

∫
M

〈F,n〉 =

∫
G

det
(
F (ψ(u)), (D1ψ)u, . . . , (Dnψ)u

)
du

provided that det(n, D1ψ, . . . , Dnψ) > 0. Necessarily, D1ψ×· · ·×Dnψ = cn
for some c 6= 0 (since both vectors are orthogonal to the tangent space); the
sign of c is the sign in (4e2).

We summarize the situation with the sign.
n=N−1

4e9 Remark. For an n-dimensional manifold M ⊂ RN , the two orientations
Ox at a given point x ∈ M correspond naturally2 to the two unit normal
vectors nx to M at x. Namely, for some (therefore, every) orthonormal basis
e1, . . . , en of TxM that conforms to Ox,

(a) det(nx, e1, . . . , en) = +1;
or, equivalently,

(b) e1 × · · · × en = nx.
Alternatively (and equivalently), for arbitrary (not just orthonormal) basis,

(a′) det(nx, e1, . . . , en) > 0;
(b′) e1 × · · · × en = cnx for some c > 0.

Given a chart (G,ψ) of M around x that conforms to Ox, we may take
ei = (Diψ)ψ−1(x).

Orientations (Ox)x∈M of M correspond naturally to continuous mappings
M 3 x 7→ nx ∈ RN such that for every x ∈ M , nx is a unit normal vector
to M at x. Thus, such mappings exist if and only if M is orientable (and in
this case, there are exactly two of them, provided that M is connected).

1Not unexpectedly, in order to find f(x) we need not just x but also nx.
2Using the orientation of RN given by the determinant; the other orientation of RN

leads to the other correspondence.
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We turn to a smooth set U ⊂ RN . Its boundary ∂U is a hypersurface; the
outward normal vector leads, according to 4e9, to an orientation of ∂U . In
such cases we always use this orientation. Given F ∈ C1(U → RN) with DF
bounded, we may rewrite the divergence theorem 4a3,

∫
U

divF =
∫
∂U
〈F,n〉,

as ∫
U

(divF ) det =

∫
∂U

ω

where ω corresponds to F according to (4e6). Taking into account that every
n-form of class C1 corresponds to some vector field, we conclude.

n=N−1
4e10 Proposition. For every n-form ω of class C1 on RN there exists an
N -form ω′ on RN such that for every smooth set U ⊂ RN ,∫

∂U

ω =

∫
U

ω′ .

4e11 Remark. The same holds in the piecewise smooth case:
∫
∂U\Z ω =∫

U
ω′ provided that the divergence theorem holds for U and ∂U \ Z.

4e12 Example. On R2 consider a vector field F :
(
x
y

)
7→
( F1(x,y)
F2(x,y)

)
and a

curve (1-manifold) covered by a single chart ψ : (a, b)→ R2, ψ(t) =
( ψ1(t)
ψ2(t)

)
.

Using the complicated formula,

nψ(t) =
1√

ψ′21 (t) + ψ′22 (t)

(
ψ′2(t)
−ψ′1(t)

)
; Jψ(t) =

√
ψ′21 (t) + ψ′22 (t) ;

〈F (ψ(t)),nψ(t)〉 =
1
√
. . .

(
F1ψ

′
2 − F2ψ

′
1

)
;

flux =

∫ b

a

〈F (ψ(t)),nψ(t)〉Jψ(t) dt =

∫ b

a

(
F1ψ

′
2 − F2ψ

′
1

)
dt .

Alternatively, using (4e8),

det
(
F (ψ(t)), ψ′(t)

)
=

∣∣∣∣F1 ψ′1
F2 ψ′2

∣∣∣∣ = F1ψ
′
2−F2ψ

′
1 ; flux =

∫ b

a

(
F1ψ

′
2−F2ψ

′
1

)
dt .

4e13 Exercise. Fill in the details in 4e12.

4e14 Example. Continuing 4e12, consider the 1-form ω, ω
((

x
y

)
,
(
dx
dy

))
=

f1(x, y) dx+ f2(x, y) dy; it corresponds to F according to (4e6) when

f1(x, y) dx+ f2(x, y) dy =

∣∣∣∣F1(x, y) dx
F2(x, y) dy

∣∣∣∣ , that is,
f1 = −F2 ,

f2 = F1 .
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In this case,∫
M

ω =

∫ b

a

ω
(
ψ(t), ψ′(t)

)
dt =

∫ b

a

(
f1(ψ(t))ψ′1(t) + f2(ψ(t))ψ′2(t)

)
dt =

=

∫ b

a

(
−F2ψ

′
1 + F1ψ

′
2

)
dt = flux .

4e15 Exercise. Fill in the details in 4e14.

4e16 Remark. Less formally, denoting ψ1(t) and ψ2(t) by just x(t) and y(t)
we have ∫

M

ω =

∫ b

a

(
f1(x(t), y(t))x′(t) + f2(x(t), y(t))y′(t)

)
dt ;

naturally, this is called
∫
M

(f1 dx+ f2 dy).

4e17 Example. Continuing 4e12 and 4e14, we calculate the divergence:

divF = D1F1 +D2F2 = D1f2 −D2f1 ;

thus,

ω′ = (divF ) det = (D1f2 −D2f1) det ;∫
∂U

ω =

∫
U

(D1f2 −D2f1)

for a smooth U ⊂ R2. If ∂U is covered (except for a single point) with a
chart ψ : (a, b)→ R2, ψ(a+) = ψ(b−), then 4e10 gives∫

∂U

(f1 dx+ f2 dy) =

∫
U

(D1f2 −D2f1) .

This is the well-known Green’s theorem; in traditional notation,∮
∂U

(Ldx+M dy) =

∫∫
U

(
∂M

∂x
− ∂L

∂y

)
dxdy .

4e18 Example. The 1-form ω = −y dx+x dy
2

on R2 (mentioned in Sect. 1d)
corresponds to the vector field F

(
x
y

)
= 1

2

(
x
y

)
, that is, F (x) = 1

2
x for x ∈ R2.

Clearly, divF = 1, thus, ω′ = det; by 4e10,∫
∂U

ω = v(U) for every smooth U ⊂ R2 .
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4e19 Example.
The 1-form ω = −y dx+x dy

x2+y2
on R2\{0} (treated in

Sect. 1d) corresponds to the vector field F
(
x
y

)
=

1
x2+y2

(
x
y

)
, that is, F (x) = x

|x|2 for x ∈ R2 \ {0}.
By (4a7), divF = 0 on R2 \ {0}, thus ω′ = 0 on
R2\{0}; by 4e10,

∫
∂U
ω = 0 for every smooth U

such that U 3/ 0. On the other hand, for every
smooth U 3 0 we have

∫
∂U
ω = 2π by (4a9);

compare this fact with Sect. 1d.

Similarly, in R3 the 2-form ω that corresponds to the vector field F (x) =
x
|x|3 satisfies

∫
∂U
ω = 0 whenever U 3/ 0, and

∫
∂U
ω = 4π whenever U 3 0.
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