## 4 Extrema

4a Extrema of a random function ..... 38
4b Gaussian case ..... 40
4c Natural parameter ..... 42
4d Some integral geometry ..... 44

## 4a Extrema of a random function

Let $\mu$ be a probability measure on the space $C^{2}[a, b]$ of twice continuously differentiable functions. Two assumptions on $\mu$ are introduced below (similarly to 3 c ).

The first assumption: for each $x \in[a, b]$ the joint distribution of $f(x)$, $f^{\prime}(x), f^{\prime \prime}(x)$ has a density $p_{x}$; (4a1)

$$
\int \varphi\left(y, y^{\prime}, y^{\prime \prime}\right) p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right) \mathrm{d} y \mathrm{~d} y^{\prime} \mathrm{d} y^{\prime \prime}=\int_{C^{2}[a, b]} \varphi\left(f(x), f^{\prime}(x), f^{\prime \prime}(x)\right) \mu(\mathrm{d} f)
$$

for every bounded Borel function $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$. (Once again, the function $\left(x, y, y^{\prime}, y^{\prime \prime}\right) \mapsto p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right)$ on $[a, b] \times \mathbb{R}^{3}$ may be chosen to be measurable.)

The second assumption:

$$
\begin{equation*}
\iint_{[a, b] \times C^{2}[a, b]}\left|f^{\prime \prime}(x)\right| \mathrm{d} x \mu(\mathrm{~d} f)<\infty . \tag{4a2}
\end{equation*}
$$

Once again, $\mu$ can be an arbitrary nondegenerate Gaussian measure on the (finite-dimensional linear) space of trigonometric (or algebraic) polynomials of degree $n$ (provided that its dimension is at least 3; the toy model (3a1) does not fit, but see $4 a 7$ and notes after it).

4a3 Exercise. For every bounded Borel functions $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ and every $f \in C^{2}[a, b]$,

$$
\int \mathrm{d} y^{\prime} \psi\left(y^{\prime}\right) \sum_{x: f^{\prime}(x)=y^{\prime}} \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)=\int_{a}^{b} \mathrm{~d} x \psi\left(f^{\prime}(x)\right) \varphi(f(x)) f^{\prime \prime}(x)
$$

Prove it.
Hint: (3b7) for $f^{\prime}$ and $\psi\left(f^{\prime}(\cdot)\right) \varphi(f(\cdot))$ instead of $f$ and $g$.

4a4 Exercise. For all bounded Borel functions $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\int \mathrm{d} y^{\prime} \psi\left(y^{\prime}\right) \mathbb{E} \sum_{x: f^{\prime}(x)=y^{\prime}} & \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)= \\
& =\int_{a}^{b} \mathrm{~d} x \iiint \mathrm{~d} y \mathrm{~d} y^{\prime} \mathrm{d} y^{\prime \prime} p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right) \psi\left(y^{\prime}\right) \varphi(y) y^{\prime \prime}
\end{aligned}
$$

Prove it.
Hint: 4 a 3 and Fubini (and do not forget integrability).
4a5 Exercise. For all bounded Borel functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E} \sum_{x: f^{\prime}(x)=y^{\prime}} \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)=\int_{a}^{b} \mathrm{~d} x \int \mathrm{~d} y \varphi(y) \int \mathrm{d} y^{\prime \prime} p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right) y^{\prime \prime}
$$

for almost all $y^{\prime} \in \mathbb{R}$.
Prove it.
Similarly, one may get (if needed)

$$
\mathbb{E} \sum_{x: f^{\prime}(x)=y^{\prime}} \varphi(f(x))=\int_{a}^{b} \mathrm{~d} x \int \mathrm{~d} y \varphi(y) \int \mathrm{d} y^{\prime \prime} p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right)\left|y^{\prime \prime}\right|
$$

In terms of marginal and conditional densities

$$
\begin{array}{cl}
p_{x}\left(y, y^{\prime}\right)=\int \mathrm{d} y^{\prime \prime} p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right), & p_{x}\left(y^{\prime \prime} \mid y, y^{\prime}\right)=\frac{p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right)}{p_{x}\left(y, y^{\prime}\right)} \\
p_{x}\left(y^{\prime}\right)=\int \mathrm{d} y p_{x}\left(y, y^{\prime}\right), & p_{x}\left(y \mid y^{\prime}\right)=\frac{p_{x}\left(y, y^{\prime}\right)}{p_{x}\left(y^{\prime}\right)}
\end{array}
$$

and the conditional expectation

$$
\mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)=\int \mathrm{d} y^{\prime \prime} p_{x}\left(y^{\prime \prime} \mid y, y^{\prime}\right) y^{\prime \prime}
$$

we have

$$
\int \mathrm{d} y^{\prime \prime} p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right) y^{\prime \prime}=p_{x}\left(y, y^{\prime}\right) \mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)
$$

$4 \mathrm{a5}$ becomes
(4a6) $\mathbb{E} \sum_{x: f^{\prime}(x)=y^{\prime}} \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)=$

$$
=\int_{a}^{b} \mathrm{~d} x p_{x}\left(y^{\prime}\right) \int_{\mathbb{R}} \mathrm{d} y p_{x}\left(y \mid y^{\prime}\right) \varphi(y) \mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)
$$

for almost all $y^{\prime}$.

4a7 Exercise. Prove (4a6) assuming less than (4a1), namely, existence of the joint density $p_{x}\left(y, y^{\prime}\right)$ of $f(x), f^{\prime}(x)$ and the regression function $\left(y, y^{\prime}\right) \mapsto$ $\mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)$ (for each $\left.x\right)$ such that

$$
\begin{aligned}
& \mathbb{E} \varphi(f(x)) \psi\left(f^{\prime}(x)\right) f^{\prime \prime}(x)= \\
& \quad=\iint \mathrm{d} y \mathrm{~d} y^{\prime} p_{x}\left(y, y^{\prime}\right) \varphi(y) \psi\left(y^{\prime}\right) \mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)
\end{aligned}
$$

for all bounded Borel functions $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ and all $x \in[a, b]$.
Now we may apply 4a6 to the toy model (3a1). Here $p_{x}\left(y, y^{\prime}, y^{\prime \prime}\right)$ does not exist, since $y^{\prime \prime}=-y$ always. However, $\mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)=-y$; also, both $p_{x}\left(y^{\prime}\right)$ and $p_{x}\left(y \mid y^{\prime}\right)$ is just the standard normal density; we get

$$
\begin{aligned}
& \mathbb{E} \sum_{x: f^{\prime}(x)=y^{\prime}} \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)= \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} x \mathrm{e}^{-y^{\prime 2} / 2} \int \mathrm{~d} y \mathrm{e}^{-y^{2} / 2} \varphi(y) \cdot(-y)=-\mathrm{e}^{-y^{\prime 2} / 2} \int y \mathrm{e}^{-y^{2} / 2} \varphi(y) \mathrm{d} y
\end{aligned}
$$

for $y^{\prime}=0$ it means

$$
\mathbb{E} \sum_{x: f^{\prime}(x)=0} \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)=-\int y \mathrm{e}^{-y^{2} / 2} \varphi(y) \mathrm{d} y
$$

In fact, $f^{\prime}(\cdot)$ vanishes at two points, the minimum and the maximum. Here $f(x)= \pm M$ and $f^{\prime \prime}(x)=-f(x)$, thus $\sum_{x: f^{\prime}(x)=0} \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)=\varphi(-M)-$ $\varphi(M)$, and the expectation is $\int_{0}^{\infty}(\varphi(-u)-\varphi(u)) f_{M}(u) \mathrm{d} u$; recall (3a5).

## 4b Gaussian case

Let $\gamma$ be a (centered) Gaussian measure on $C^{2}[a, b]$ such that for every $x \in$ $[a, b]$

$$
\begin{gather*}
\int_{C^{2}[a, b]}|f(x)|^{2} \gamma(\mathrm{~d} f)=1,  \tag{4b1}\\
\int_{C^{2}[a, b]}\left|f^{\prime}(x)\right|^{2} \gamma(\mathrm{~d} f)=\sigma^{2}(x)>0 \tag{4b2}
\end{gather*}
$$

for some $\sigma:[a, b] \rightarrow(0, \infty)$. We know (recall 3d3) that the function $\sigma(\cdot)$ is continuous. Similarly, the function $x \mapsto \int\left|f^{\prime \prime}(x)\right|^{2} \gamma(\mathrm{~d} f)$ is continuous, therefore bounded, which ensures (4a2). Also (recall (3d5),

$$
\begin{equation*}
p_{x}\left(y, y^{\prime}\right)=\frac{1}{2 \pi \sigma(x)} \exp \left(-\frac{y^{2}}{2}-\frac{y^{\prime 2}}{2 \sigma^{2}(x)}\right) \tag{4b3}
\end{equation*}
$$

is the joint density of $f(x)$ and $f^{\prime}(x)$.
The joint distribution of $f(x), f^{\prime}(x), f^{\prime \prime}(x)$ is a Gaussian measure on $\mathbb{R}^{3}$ (maybe, degenerate). The normal correlation theorem (recall 1c) gives us a linear regression function (for each $x$ )

$$
\begin{equation*}
\left(y, y^{\prime}\right) \mapsto \mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)=A(x) y+B(x) y^{\prime} \tag{4b4}
\end{equation*}
$$

By 4a7 we may use (4a6):

$$
\begin{align*}
& \mathbb{E} \sum_{x: f^{\prime}(x)=y^{\prime}} \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)=  \tag{4b5}\\
= & \frac{1}{2 \pi} \int_{a}^{b} \mathrm{~d} x \frac{1}{\sigma(x)} \exp \left(-\frac{y^{\prime 2}}{2 \sigma^{2}(x)}\right) \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-y^{2} / 2} \varphi(y)\left(A(x) y+B(x) y^{\prime}\right)
\end{align*}
$$

for almost all $y^{\prime}$; here $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is an arbitrary bounded Borel function.
The right-hand side of (4b5) is continuous in $y^{\prime}$. Similarly to 3 d 12 , in order to prove (4b5) for all $y^{\prime}$ we will prove (assuming continuity of $\varphi$ ) that the left-hand side is also continuous in $y^{\prime}$. Similarly to 3 d 11 , it is sufficient to check continuity of the function ${ }^{1}$

$$
y^{\prime} \mapsto \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} u \mathrm{e}^{-u^{2} / 2} \sum_{x: f_{u}^{\prime}(x)=y^{\prime}} \varphi\left(f_{u}(x)\right) \operatorname{sgn} f_{u}^{\prime \prime}(x),
$$

where $f_{u}(\cdot)=g(\cdot)+u h(\cdot) ; g, h \in C^{2}[a, b]$ and $h^{\prime}(x) \neq 0$ for all $x \in[a, b]$. To this end we transform the integral in $u$ into an integral in $x$ :
(4b6)

$$
\int_{\mathbb{R}}(\mathrm{d} \Phi(u)) \sum_{x: f_{u}^{\prime}(x)=y^{\prime}} \varphi\left(f_{u}(x)\right) \operatorname{sgn} f_{u}^{\prime \prime}(x)= \pm \int_{a}^{b} \varphi\left(f_{U(x)}(x)\right) \mathrm{d} \Phi(U(x))
$$

here $\Phi$ is the cumulative distribution function of $\mathrm{N}(0,1) ; U(x)=\left(y^{\prime}-\right.$ $\left.g^{\prime}(x)\right) / h^{\prime}(x)$; and the sign is ' - ' if $h^{\prime}(\cdot)>0$ on $[a, b]$, but ' + ' if $h^{\prime}(\cdot)<0$ on $[a, b]$. Clearly, the latter integral is continuous in $y^{\prime}$ (assuming continuity of $\varphi$ ). The equality (4b6) follows from (3b7) applied to $U(x)$ instead of $f(x)$ and $\varphi\left(f_{U(x)}(x)\right) \Phi^{\prime}(U(x))$ instead of $g(x)$ :
$\int_{\mathbb{R}} \mathrm{d} u \sum_{x \in U^{-1}(u)} \varphi\left(f_{U(x)}(x)\right) \Phi^{\prime}(U(x)) \operatorname{sgn} U^{\prime}(x)=\int_{a}^{b} \mathrm{~d} x U^{\prime}(x) \varphi\left(f_{U(x)}(x)\right) \Phi^{\prime}(U(x)) ;$
taking into account that $x \in U^{-1}(u) \quad \Longleftrightarrow \quad f_{u}^{\prime}(x)=y^{\prime}$ we get

$$
\int_{\mathbb{R}} \mathrm{d} u \Phi^{\prime}(u) \sum_{x: f_{u}^{\prime}(x)=y^{\prime}} \varphi\left(f_{u}(x)\right) \operatorname{sgn} U^{\prime}(x)=\int_{a}^{b} \varphi\left(f_{U(x)}(x)\right) \Phi^{\prime}(U(x)) U^{\prime}(x) \mathrm{d} x
$$

[^0]It remains to note that $f_{U(x)}^{\prime \prime}(x)=-h^{\prime}(x) U^{\prime}(x)$, which follows from the equality $f_{U(x)}^{\prime}(x)=y^{\prime}$ by differentiation (in $\left.x\right)$.

Thus, (4b5) holds for all $y^{\prime}$, especially, for $y^{\prime}=0$ :

$$
\begin{equation*}
\mathbb{E} \sum_{x: f^{\prime}(x)=0} \varphi(f(x)) \operatorname{sgn} f^{\prime \prime}(x)=\frac{1}{2 \pi}\left(\int_{a}^{b} \frac{\mathrm{~d} x}{\sigma(x)} A(x)\right)\left(\int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-y^{2} / 2} \varphi(y) y\right) \tag{4b7}
\end{equation*}
$$

here $A(x)$ is defined by the Gaussian regression, $\mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=\right.$ $0)=A(x) y$. Being proved for bounded continuous $\varphi$, (4b7) holds for all bounded Borel functions $\varphi$, since it is in fact an equality between (finite) measures,

$$
\begin{equation*}
\text { 8) } \mathbb{E} \sum_{x: f^{\prime}(x)=0}\left(\operatorname{sgn} f^{\prime \prime}(x)\right) \delta_{f(x)}=\frac{1}{2 \pi}\left(\int_{a}^{b} \frac{\mathrm{~d} x}{\sigma(x)} A(x)\right)\left(\int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-y^{2} / 2} y \delta_{y}\right) \text {; } \tag{4b8}
\end{equation*}
$$

you see, $\mathbb{E} \#\left\{x: f^{\prime}(x)=0\right\}=\frac{1}{\sqrt{2 \pi}} \mathbb{E} \int_{a}^{b}\left|f^{\prime \prime}(x)\right| \mathrm{d} x<\infty$ by (3d13) and (4a2).
Especially, the case $\varphi=\mathbf{1}_{(y, \infty)}$ gives

$$
\begin{equation*}
\mathbb{E} \sum_{x: f^{\prime}(x)=0, f(x)>y} \operatorname{sgn} f^{\prime \prime}(x)=\frac{1}{2 \pi} \mathrm{e}^{-y^{2} / 2} \int_{a}^{b} \frac{\mathrm{~d} x}{\sigma(x)} A(x) \tag{4b9}
\end{equation*}
$$

for all $y \in \mathbb{R}$.

## 4c Natural parameter

The general case of 4 b may be reduced to the special case $\sigma(\cdot)=1$, that is,

$$
\begin{equation*}
\int_{C^{2}[a, b]}\left|f^{\prime}(x)\right|^{2} \gamma(\mathrm{~d} f)=1 \quad \text { for all } x \tag{4c1}
\end{equation*}
$$

by a change of variable, $x_{\text {new }}=\int_{0}^{x} \sigma\left(x_{1}\right) \mathrm{d} x_{1}$. Clearly, the left-hand side of (4b9) is invariant under such change of variable. Now we assume (4c1).

4c2 Exercise. $\mathbb{E}\left(f(x) f^{\prime \prime}(x)\right)=-1$, that is,

$$
\int_{C^{2}[a, b]} f(x) f^{\prime \prime}(x) \gamma(\mathrm{d} f)=-1 \quad \text { for all } x
$$

Prove it.
Hint: $\left(f(x) f^{\prime}(x)\right)^{\prime}=f^{\prime}(x) f^{\prime}(x)+f(x) f^{\prime \prime}(x)$; recall (3d4).

By (3d4) applied to $f$ and also to $f^{\prime}$,

$$
\begin{equation*}
\mathbb{E}\left(f(x) f^{\prime}(x)\right)=0 \quad \text { and } \quad \mathbb{E}\left(f^{\prime}(x) f^{\prime \prime}(x)\right)=0 \tag{4c3}
\end{equation*}
$$

We see that the three random variables

$$
\begin{equation*}
f(x), f^{\prime}(x), f(x)+f^{\prime \prime}(x) \text { are orthogonal. } \tag{4c4}
\end{equation*}
$$

Therefore $\mathbb{E}\left(f(x)+f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)=0$, and

$$
\begin{equation*}
\mathbb{E}\left(f^{\prime \prime}(x) \mid f(x)=y, f^{\prime}(x)=y^{\prime}\right)=-y \tag{4c5}
\end{equation*}
$$

in terms of (4b4) it means that $A(x)=-1, B(x)=0$. Now (4b9) becomes

$$
\begin{equation*}
\mathbb{E} \sum_{x: f^{\prime}(x)=0, f(x)>y} \operatorname{sgn} f^{\prime \prime}(x)=-\frac{b-a}{2 \pi} \mathrm{e}^{-y^{2} / 2} \tag{4c6}
\end{equation*}
$$

On the other hand, Rice's formula 3d6 gives

$$
\mathbb{E}\left(\# f^{-1}(y)\right)=\frac{b-a}{\pi} \mathrm{e}^{-y^{2} / 2}
$$

and we see that

$$
\begin{equation*}
\mathbb{E}\left(\# f^{-1}(y)\right)=-2 \mathbb{E} \sum_{x: f^{\prime}(x)=0, f(x)>y} \operatorname{sgn} f^{\prime \prime}(x) \tag{4c7}
\end{equation*}
$$

Here is a simple explanation of (4c7). First (irrespective of any randomness), for every $f \in C^{2}[a, b],{ }^{1}$

$$
\begin{aligned}
\# f^{-1}(y)+2 \sum_{x: f^{\prime}(x)=0, f(x)>y} & \operatorname{sgn} f^{\prime \prime}(x)= \\
& =\mathbf{1}_{(y, \infty)}(f(b)) \operatorname{sgn} f^{\prime}(b)-\mathbf{1}_{(y, \infty)}(f(a)) \operatorname{sgn} f^{\prime}(a)
\end{aligned}
$$

(think, why), provided that the following degenerate cases are excluded:

$$
\begin{gathered}
f^{\prime}(a)=0 \\
f^{\prime}(b)=0 \\
f^{\prime}(x)=f^{\prime \prime}(x)=0 \quad \text { for some } x \in[a, b]
\end{gathered}
$$

Second, the expectation of the right-hand side vanishes, since $f^{\prime}(a)$ is independent of $f(a)$ (and the same holds for $b$ ).

[^1]4c8 Exercise. The degenerate cases are excluded for $\gamma$-almost all $f$.
Prove it.
Hint: consider again $f_{u}(\cdot)=g(\cdot)+u h(\cdot)$ for $g, h \in C^{2}[a, b]$ and $h^{\prime}(x) \neq 0$ for all $x \in[a, b]$; if $f_{u}^{\prime}(x)=f_{u}^{\prime \prime}(x)=0$ for some $x$ then $u$ is a critical value of $-g^{\prime}(\cdot) / h^{\prime}(\cdot)$; use Sard's theorem.

Note that (4b1) is essential for (4c7).
We see that (4c6i) follows easily from Rice's formula. However, the approach of Sect. 4 is important in dimension two (and higher).

## 4d Some integral geometry

Similarly to 3 e we consider a curve on $S^{n-1}=\left\{z \in \mathbb{R}^{n}:|z|=1\right\}$ parameterized by some $[a, b]$;

$$
Z \in C^{2}\left([a, b], \mathbb{R}^{n}\right), \quad Z([a, b]) \subset S^{n-1}, \quad Z^{\prime}(\cdot) \neq 0
$$

It leads to a Gaussian random vector in $C^{2}[a, b]$,

$$
f(x)=\langle Z(x), \xi\rangle
$$

where $\xi$ is distributed $\gamma^{n}$.
Extrema of $f(\cdot)$ are extrema of the distance between a point of the curve and the random hyperplane $\left\{z \in \mathbb{R}^{n}:\langle z, \xi\rangle=0\right\}$. The (unsigned) distance is maximal when $f^{\prime}(x)=0$ and $\operatorname{sgn} f(x) \operatorname{sgn} f^{\prime \prime}(x)<0$; it is minimal when $f^{\prime}(x)=0$ and $\operatorname{sgn} f(x) \operatorname{sgn} f^{\prime \prime}(x)>0$. (Degenerate cases, $f^{\prime}(x)=$ $f(x) f^{\prime \prime}(x)=0$, are excluded almost surely, recall 4c8) Using the natural parameter we have

$$
\mathbb{E} \sum_{x: f^{\prime}(x)=0}\left(-\operatorname{sgn} f(x) \operatorname{sgn} f^{\prime \prime}(x)\right)=-2 \mathbb{E} \sum_{x: f^{\prime}(x)=0, f(x)>0} \operatorname{sgn} f^{\prime \prime}(x)=\frac{b-a}{\pi}
$$

by (4c6); and $b-a$ is the length of the curve. Thus,

$$
\begin{equation*}
\frac{\text { the mean number of maxima }- \text { the mean number of minima }}{\text { the length of the curve }}=\frac{1}{\pi} . \tag{4d1}
\end{equation*}
$$

Think, what happens for such a curve:



[^0]:    ${ }^{1}$ And in addition, integrability of its supremum in $y^{\prime}$ (running over a bounded interval).

[^1]:    ${ }^{1}$ The right-hand side disappears on the circle, that is, for $2 \pi$-periodic functions restricted to $[0,2 \pi]$.

