4 Extrema

4a	Extrema of a random function	38
$4\mathbf{b}$	Gaussian case	40
4 c	Natural parameter	42
4 d	Some integral geometry	44

4aExtrema of a random function

Let μ be a probability measure on the space $C^{2}[a, b]$ of twice continuously differentiable functions. Two assumptions on μ are introduced below (similarly to 3c).

The first assumption: for each $x \in [a, b]$ the joint distribution of f(x), f'(x), f''(x) has a density p_x ; (4a1)

$$\int \varphi(y, y', y'') p_x(y, y', y'') \, \mathrm{d}y \, \mathrm{d}y' \, \mathrm{d}y'' = \int_{C^2[a,b]} \varphi(f(x), f'(x), f''(x)) \, \mu(\mathrm{d}f)$$

for every bounded Borel function $\varphi : \mathbb{R}^3 \to \mathbb{R}$. (Once again, the function $(x, y, y', y'') \mapsto p_x(y, y', y'')$ on $[a, b] \times \mathbb{R}^3$ may be chosen to be measurable.)

The second assumption:

(4a2)
$$\iint_{[a,b]\times C^2[a,b]} |f''(x)| \,\mathrm{d}x\,\mu(\mathrm{d}f) < \infty.$$

Once again, μ can be an arbitrary nondegenerate Gaussian measure on the (finite-dimensional linear) space of trigonometric (or algebraic) polynomials of degree n (provided that its dimension is at least 3; the toy model (3a1) does not fit, but see 4a7 and notes after it).

4a3 Exercise. For every bounded Borel functions $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ and every $f \in C^2[a, b],$

$$\int \mathrm{d}y'\psi(y')\sum_{x:f'(x)=y'}\varphi(f(x))\operatorname{sgn} f''(x) = \int_a^b \mathrm{d}x\,\psi(f'(x))\varphi(f(x))f''(x)\,.$$

Prove it.

Hint: (3b7) for f' and $\psi(f'(\cdot))\varphi(f(\cdot))$ instead of f and g.

Tel Aviv University, 2006

4a4 Exercise. For all bounded Borel functions $\varphi, \psi : \mathbb{R} \to \mathbb{R}$,

$$\int dy' \psi(y') \mathbb{E} \sum_{x:f'(x)=y'} \varphi(f(x)) \operatorname{sgn} f''(x) =$$
$$= \int_a^b dx \iiint dy dy' dy'' p_x(y, y', y'') \psi(y') \varphi(y) y''.$$

Prove it.

Hint: 4a3 and Fubini (and do not forget integrability).

4a5 Exercise. For all bounded Borel functions $\varphi : \mathbb{R} \to \mathbb{R}$,

$$\mathbb{E}\sum_{x:f'(x)=y'}\varphi(f(x))\operatorname{sgn} f''(x) = \int_a^b \mathrm{d}x \,\int \mathrm{d}y\,\varphi(y)\int \mathrm{d}y''\,p_x(y,y',y'')y''$$

for almost all $y' \in \mathbb{R}$.

Prove it.

Similarly, one may get (if needed)

$$\mathbb{E}\sum_{x:f'(x)=y'}\varphi(f(x)) = \int_a^b \mathrm{d}x \,\int \mathrm{d}y\,\varphi(y)\int \mathrm{d}y''\,p_x(y,y',y'')|y''|\,.$$

In terms of marginal and conditional densities

$$p_x(y,y') = \int dy'' \, p_x(y,y',y'') \,, \quad p_x(y''|y,y') = \frac{p_x(y,y',y'')}{p_x(y,y')} \,,$$
$$p_x(y') = \int dy \, p_x(y,y') \,, \quad p_x(y|y') = \frac{p_x(y,y')}{p_x(y')}$$

and the conditional expectation

$$\mathbb{E}(f''(x)|f(x) = y, f'(x) = y') = \int dy'' p_x(y''|y, y')y''$$

we have

$$\int dy'' \, p_x(y, y', y'')y'' = p_x(y, y') \mathbb{E}\left(f''(x) \,\Big| \, f(x) = y, f'(x) = y'\right);$$

4a5 becomes

(4a6)
$$\mathbb{E} \sum_{x:f'(x)=y'} \varphi(f(x)) \operatorname{sgn} f''(x) =$$
$$= \int_{a}^{b} \mathrm{d}x \, p_{x}(y') \int_{\mathbb{R}} \mathrm{d}y \, p_{x}(y|y') \varphi(y) \mathbb{E} \left(f''(x) \, \big| \, f(x) = y, \, f'(x) = y' \right)$$

for almost all y'.

4a7 Exercise. Prove (4a6) assuming less than (4a1), namely, existence of the joint density $p_x(y, y')$ of f(x), f'(x) and the regression function $(y, y') \mapsto \mathbb{E}(f''(x) | f(x) = y, f'(x) = y')$ (for each x) such that

$$\mathbb{E} \varphi(f(x))\psi(f'(x))f''(x) =$$

=
$$\iint dy dy' p_x(y, y')\varphi(y)\psi(y')\mathbb{E} \left(f''(x) \, \big| \, f(x) = y, \, f'(x) = y' \right)$$

for all bounded Borel functions $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ and all $x \in [a, b]$.

Now we may apply 4a6 to the toy model (3a1). Here $p_x(y, y', y'')$ does not exist, since y'' = -y always. However, $\mathbb{E}(f''(x)|f(x) = y, f'(x) = y') = -y$; also, both $p_x(y')$ and $p_x(y|y')$ is just the standard normal density; we get

$$\mathbb{E} \sum_{x:f'(x)=y'} \varphi(f(x)) \operatorname{sgn} f''(x) = = \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}x \, \mathrm{e}^{-y'^2/2} \int \mathrm{d}y \, \mathrm{e}^{-y^2/2} \varphi(y) \cdot (-y) = -\mathrm{e}^{-y'^2/2} \int y \mathrm{e}^{-y^2/2} \varphi(y) \, \mathrm{d}y;$$

for y' = 0 it means

$$\mathbb{E}\sum_{x:f'(x)=0}\varphi(f(x))\operatorname{sgn} f''(x) = -\int y \mathrm{e}^{-y^2/2}\varphi(y)\,\mathrm{d}y\,.$$

In fact, $f'(\cdot)$ vanishes at two points, the minimum and the maximum. Here $f(x) = \pm M$ and f''(x) = -f(x), thus $\sum_{x:f'(x)=0} \varphi(f(x)) \operatorname{sgn} f''(x) = \varphi(-M) - \varphi(M)$, and the expectation is $\int_0^\infty (\varphi(-u) - \varphi(u)) f_M(u) \, du$; recall (3a5).

4b Gaussian case

Let γ be a (centered) Gaussian measure on $C^2[a, b]$ such that for every $x \in [a, b]$

(4b1)
$$\int_{C^2[a,b]} |f(x)|^2 \gamma(\mathrm{d}f) = 1,$$

(4b2)
$$\int_{C^2[a,b]} |f'(x)|^2 \gamma(\mathrm{d}f) = \sigma^2(x) > 0$$

for some $\sigma : [a, b] \to (0, \infty)$. We know (recall 3d3) that the function $\sigma(\cdot)$ is continuous. Similarly, the function $x \mapsto \int |f''(x)|^2 \gamma(\mathrm{d}f)$ is continuous, therefore bounded, which ensures (4a2). Also (recall (3d5),

(4b3)
$$p_x(y,y') = \frac{1}{2\pi\sigma(x)} \exp\left(-\frac{y^2}{2} - \frac{y'^2}{2\sigma^2(x)}\right)$$

Tel Aviv University, 2006

is the joint density of f(x) and f'(x).

The joint distribution of f(x), f'(x), f''(x) is a Gaussian measure on \mathbb{R}^3 (maybe, degenerate). The normal correlation theorem (recall 1c) gives us a *linear* regression function (for each x)

(4b4)
$$(y, y') \mapsto \mathbb{E}(f''(x) | f(x) = y, f'(x) = y') = A(x)y + B(x)y'.$$

By 4a7 we may use (4a6):

(4b5)
$$\mathbb{E} \sum_{x:f'(x)=y'} \varphi(f(x)) \operatorname{sgn} f''(x) =$$
$$= \frac{1}{2\pi} \int_a^b \mathrm{d}x \, \frac{1}{\sigma(x)} \exp\left(-\frac{y'^2}{2\sigma^2(x)}\right) \int_{\mathbb{R}} \mathrm{d}y \, \mathrm{e}^{-y^2/2} \varphi(y) (A(x)y + B(x)y')$$

for almost all y'; here $\varphi : \mathbb{R} \to \mathbb{R}$ is an arbitrary bounded Borel function.

The right-hand side of (4b5) is continuous in y'. Similarly to 3d12, in order to prove (4b5) for all y' we will prove (assuming continuity of φ) that the left-hand side is also continuous in y'. Similarly to 3d11, it is sufficient to check continuity of the function¹

$$y' \mapsto \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathrm{d}u \,\mathrm{e}^{-u^2/2} \sum_{x: f'_u(x) = y'} \varphi(f_u(x)) \operatorname{sgn} f''_u(x) \,,$$

where $f_u(\cdot) = g(\cdot) + uh(\cdot)$; $g, h \in C^2[a, b]$ and $h'(x) \neq 0$ for all $x \in [a, b]$. To this end we transform the integral in u into an integral in x: (4b6)

$$\int_{\mathbb{R}} \left(\mathrm{d}\Phi(u) \right) \sum_{x: f'_u(x) = y'} \varphi(f_u(x)) \operatorname{sgn} f''_u(x) = \pm \int_a^b \varphi(f_{U(x)}(x)) \, \mathrm{d}\Phi(U(x));$$

here Φ is the cumulative distribution function of N(0,1); U(x) = (y' - g'(x))/h'(x); and the sign is '-' if $h'(\cdot) > 0$ on [a, b], but '+' if $h'(\cdot) < 0$ on [a, b]. Clearly, the latter integral is continuous in y' (assuming continuity of φ). The equality (4b6) follows from (3b7) applied to U(x) instead of f(x) and $\varphi(f_{U(x)}(x))\Phi'(U(x))$ instead of g(x):

$$\int_{\mathbb{R}} \mathrm{d}u \sum_{x \in U^{-1}(u)} \varphi(f_{U(x)}(x)) \Phi'(U(x)) \operatorname{sgn} U'(x) = \int_{a}^{b} \mathrm{d}x \, U'(x) \varphi(f_{U(x)}(x)) \Phi'(U(x));$$

taking into account that $x \in U^{-1}(u) \iff f'_u(x) = y'$ we get

$$\int_{\mathbb{R}} \mathrm{d}u \, \Phi'(u) \sum_{x: f'_u(x) = y'} \varphi(f_u(x)) \operatorname{sgn} U'(x) = \int_a^b \varphi(f_{U(x)}(x)) \Phi'(U(x)) U'(x) \, \mathrm{d}x \, .$$

¹And in addition, integrability of its supremum in y' (running over a bounded interval).

Tel Aviv University, 2006

It remains to note that $f''_{U(x)}(x) = -h'(x)U'(x)$, which follows from the equality $f'_{U(x)}(x) = y'$ by differentiation (in x).

Thus, (4b5) holds for all y', especially, for y' = 0: (4b7)

$$\mathbb{E}\sum_{x:f'(x)=0}\varphi(f(x))\operatorname{sgn} f''(x) = \frac{1}{2\pi} \left(\int_a^b \frac{\mathrm{d}x}{\sigma(x)} A(x)\right) \left(\int_{\mathbb{R}} \mathrm{d}y \,\mathrm{e}^{-y^2/2}\varphi(y)y\right);$$

here A(x) is defined by the Gaussian regression, $\mathbb{E}(f''(x) | f(x) = y, f'(x) = 0) = A(x)y$. Being proved for bounded continuous φ , (4b7) holds for all bounded Borel functions φ , since it is in fact an equality between (finite) measures,

(4b8)
$$\mathbb{E}\sum_{x:f'(x)=0} \left(\operatorname{sgn} f''(x)\right) \delta_{f(x)} = \frac{1}{2\pi} \left(\int_a^b \frac{\mathrm{d}x}{\sigma(x)} A(x)\right) \left(\int_{\mathbb{R}} \mathrm{d}y \,\mathrm{e}^{-y^2/2} y \delta_y\right);$$

you see, $\mathbb{E} \# \{x : f'(x) = 0\} = \frac{1}{\sqrt{2\pi}} \mathbb{E} \int_a^b |f''(x)| \, dx < \infty$ by (3d13) and (4a2). Especially, the case $\varphi = \mathbf{1}_{(y,\infty)}$ gives

(4b9)
$$\mathbb{E} \sum_{x:f'(x)=0,f(x)>y} \operatorname{sgn} f''(x) = \frac{1}{2\pi} e^{-y^2/2} \int_a^b \frac{\mathrm{d}x}{\sigma(x)} A(x)$$

for all $y \in \mathbb{R}$.

4c Natural parameter

The general case of 4b may be reduced to the special case $\sigma(\cdot) = 1$, that is,

(4c1)
$$\int_{C^2[a,b]} |f'(x)|^2 \gamma(\mathrm{d}f) = 1 \quad \text{for all } x,$$

by a change of variable, $x_{\text{new}} = \int_0^x \sigma(x_1) \, dx_1$. Clearly, the left-hand side of (4b9) is invariant under such change of variable. Now we assume (4c1).

4c2 Exercise. $\mathbb{E}(f(x)f''(x)) = -1$, that is,

$$\int_{C^2[a,b]} f(x) f''(x) \gamma(\mathrm{d}f) = -1 \quad \text{for all } x.$$

Prove it.

Hint:
$$(f(x)f'(x))' = f'(x)f'(x) + f(x)f''(x)$$
; recall (3d4)

(4c3)
$$\mathbb{E}\left(f(x)f'(x)\right) = 0 \quad \text{and} \quad \mathbb{E}\left(f'(x)f''(x)\right) = 0.$$

We see that the three random variables

(4c4)
$$f(x), f'(x), f(x) + f''(x)$$
 are orthogonal.

Therefore $\mathbb{E}(f(x) + f''(x) | f(x) = y, f'(x) = y') = 0$, and

(4c5)
$$\mathbb{E}\left(f''(x) \,\middle|\, f(x) = y, f'(x) = y'\right) = -y;$$

in terms of (4b4) it means that A(x) = -1, B(x) = 0. Now (4b9) becomes

(4c6)
$$\mathbb{E} \sum_{x:f'(x)=0,f(x)>y} \operatorname{sgn} f''(x) = -\frac{b-a}{2\pi} e^{-y^2/2}.$$

On the other hand, Rice's formula 3d6 gives

$$\mathbb{E}\left(\#f^{-1}(y)\right) = \frac{b-a}{\pi} e^{-y^2/2},$$

and we see that

(4c7)
$$\mathbb{E}\left(\#f^{-1}(y)\right) = -2\mathbb{E}\sum_{x:f'(x)=0,f(x)>y}\operatorname{sgn} f''(x).$$

Here is a simple explanation of (4c7). First (irrespective of any randomness), for every $f \in C^2[a, b]$,¹

$$#f^{-1}(y) + 2 \sum_{x:f'(x)=0,f(x)>y} \operatorname{sgn} f''(x) = \\ = \mathbf{1}_{(y,\infty)}(f(b)) \operatorname{sgn} f'(b) - \mathbf{1}_{(y,\infty)}(f(a)) \operatorname{sgn} f'(a)$$

(think, why), provided that the following degenerate cases are excluded:

$$f'(a) = 0;$$

 $f'(b) = 0;$
 $f'(x) = f''(x) = 0$ for some $x \in [a, b].$

Second, the expectation of the right-hand side vanishes, since f'(a) is independent of f(a) (and the same holds for b).

¹The right-hand side disappears on the circle, that is, for 2π -periodic functions restricted to $[0, 2\pi]$.

4c8 Exercise. The degenerate cases are excluded for γ -almost all f. Prove it.

Hint: consider again $f_u(\cdot) = g(\cdot) + uh(\cdot)$ for $g, h \in C^2[a, b]$ and $h'(x) \neq 0$ for all $x \in [a, b]$; if $f'_u(x) = f''_u(x) = 0$ for some x then u is a critical value of $-g'(\cdot)/h'(\cdot)$; use Sard's theorem.

Note that (4b1) is essential for (4c7).

We see that (4c6) follows easily from Rice's formula. However, the approach of Sect. 4 is important in dimension two (and higher).

4d Some integral geometry

Similarly to 3e we consider a curve on $S^{n-1} = \{z \in \mathbb{R}^n : |z| = 1\}$ parameterized by some [a, b];

$$Z \in C^2([a,b],\mathbb{R}^n), \quad Z([a,b]) \subset S^{n-1}, \quad Z'(\cdot) \neq 0.$$

It leads to a Gaussian random vector in $C^{2}[a, b]$,

$$f(x) = \left\langle Z(x), \xi \right\rangle,$$

where ξ is distributed γ^n .

Extrema of $f(\cdot)$ are extrema of the distance between a point of the curve and the random hyperplane $\{z \in \mathbb{R}^n : \langle z, \xi \rangle = 0\}$. The (unsigned) distance is maximal when f'(x) = 0 and $\operatorname{sgn} f(x) \operatorname{sgn} f''(x) < 0$; it is minimal when f'(x) = 0 and $\operatorname{sgn} f(x) \operatorname{sgn} f''(x) > 0$. (Degenerate cases, f'(x) =f(x)f''(x) = 0, are excluded almost surely, recall 4c8.) Using the natural parameter we have

$$\mathbb{E} \sum_{x:f'(x)=0} \left(-\operatorname{sgn} f(x) \operatorname{sgn} f''(x) \right) = -2 \mathbb{E} \sum_{x:f'(x)=0, f(x)>0} \operatorname{sgn} f''(x) = \frac{b-a}{\pi}$$

by (4c6); and b - a is the length of the curve. Thus,

(4d1)
$$\frac{\text{the mean number of maxima} - \text{the mean number of minima}}{\text{the length of the curve}} = \frac{1}{\pi}$$

Think, what happens for such a curve:

