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4a Extrema of a random function

Let µ be a probability measure on the space C2[a, b] of twice continuously dif-
ferentiable functions. Two assumptions on µ are introduced below (similarly
to 3c).

The first assumption: for each x ∈ [a, b] the joint distribution of f(x),
f ′(x), f ′′(x) has a density px;
(4a1)

∫

ϕ(y, y′, y′′)px(y, y
′, y′′) dydy′dy′′ =

∫

C2[a,b]

ϕ(f(x), f ′(x), f ′′(x))µ(df)

for every bounded Borel function ϕ : R
3 → R. (Once again, the function

(x, y, y′, y′′) 7→ px(y, y
′, y′′) on [a, b] × R

3 may be chosen to be measurable.)
The second assumption:

(4a2)

∫∫

[a,b]×C2[a,b]

|f ′′(x)| dxµ(df) <∞ .

Once again, µ can be an arbitrary nondegenerate Gaussian measure on the
(finite-dimensional linear) space of trigonometric (or algebraic) polynomials
of degree n (provided that its dimension is at least 3; the toy model (3a1)
does not fit, but see 4a7 and notes after it).

4a3 Exercise. For every bounded Borel functions ϕ, ψ : R → R and every
f ∈ C2[a, b],

∫

dy′ψ(y′)
∑

x:f ′(x)=y′

ϕ(f(x)) sgn f ′′(x) =

∫ b

a

dxψ(f ′(x))ϕ(f(x))f ′′(x) .

Prove it.
Hint: (3b7) for f ′ and ψ(f ′(·))ϕ(f(·)) instead of f and g.
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4a4 Exercise. For all bounded Borel functions ϕ, ψ : R → R,
∫

dy′ψ(y′) E

∑

x:f ′(x)=y′

ϕ(f(x)) sgn f ′′(x) =

=

∫ b

a

dx

∫∫∫

dydy′dy′′px(y, y
′, y′′)ψ(y′)ϕ(y)y′′ .

Prove it.
Hint: 4a3 and Fubini (and do not forget integrability).

4a5 Exercise. For all bounded Borel functions ϕ : R → R,

E

∑

x:f ′(x)=y′

ϕ(f(x)) sgn f ′′(x) =

∫ b

a

dx

∫

dy ϕ(y)

∫

dy′′ px(y, y
′, y′′)y′′

for almost all y′ ∈ R.
Prove it.

Similarly, one may get (if needed)

E

∑

x:f ′(x)=y′

ϕ(f(x)) =

∫ b

a

dx

∫

dy ϕ(y)

∫

dy′′ px(y, y
′, y′′)|y′′| .

In terms of marginal and conditional densities

px(y, y
′) =

∫

dy′′ px(y, y
′, y′′) , px(y

′′|y, y′) =
px(y, y

′, y′′)

px(y, y′)
,

px(y
′) =

∫

dy px(y, y
′) , px(y|y′) =

px(y, y
′)

px(y′)

and the conditional expectation

E
(

f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

=

∫

dy′′ px(y
′′|y, y′)y′′

we have
∫

dy′′ px(y, y
′, y′′)y′′ = px(y, y

′)E
(

f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

;

4a5 becomes

(4a6) E

∑

x:f ′(x)=y′

ϕ(f(x)) sgn f ′′(x) =

=

∫ b

a

dx px(y
′)

∫

R

dy px(y|y′)ϕ(y)E
(

f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

for almost all y′.
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4a7 Exercise. Prove (4a6) assuming less than (4a1), namely, existence of
the joint density px(y, y

′) of f(x), f ′(x) and the regression function (y, y′) 7→
E

(

f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

(for each x) such that

Eϕ(f(x))ψ(f ′(x))f ′′(x) =

=

∫∫

dydy′ px(y, y
′)ϕ(y)ψ(y′)E

(

f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

for all bounded Borel functions ϕ, ψ : R → R and all x ∈ [a, b].

Now we may apply 4a6 to the toy model (3a1). Here px(y, y
′, y′′) does not

exist, since y′′ = −y always. However, E
(

f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

= −y;
also, both px(y

′) and px(y|y′) is just the standard normal density; we get

E

∑

x:f ′(x)=y′

ϕ(f(x)) sgn f ′′(x) =

=
1

2π

∫ 2π

0

dx e−y′2/2

∫

dy e−y2/2ϕ(y) · (−y) = −e−y′2/2

∫

ye−y2/2ϕ(y) dy ;

for y′ = 0 it means

E

∑

x:f ′(x)=0

ϕ(f(x)) sgn f ′′(x) = −
∫

ye−y2/2ϕ(y) dy .

In fact, f ′(·) vanishes at two points, the minimum and the maximum. Here
f(x) = ±M and f ′′(x) = −f(x), thus

∑

x:f ′(x)=0 ϕ(f(x)) sgn f ′′(x) = ϕ(−M)−
ϕ(M), and the expectation is

∫ ∞
0

(

ϕ(−u) − ϕ(u)
)

fM(u) du; recall (3a5).

4b Gaussian case

Let γ be a (centered) Gaussian measure on C2[a, b] such that for every x ∈
[a, b]

∫

C2[a,b]

|f(x)|2 γ(df) = 1 ,(4b1)

∫

C2[a,b]

|f ′(x)|2 γ(df) = σ2(x) > 0(4b2)

for some σ : [a, b] → (0,∞). We know (recall 3d3) that the function σ(·)
is continuous. Similarly, the function x 7→

∫

|f ′′(x)|2 γ(df) is continuous,
therefore bounded, which ensures (4a2). Also (recall (3d5),

(4b3) px(y, y
′) =

1

2πσ(x)
exp

(

− y2

2
− y′2

2σ2(x)

)



Tel Aviv University, 2006 Gaussian random vectors 41

is the joint density of f(x) and f ′(x).
The joint distribution of f(x), f ′(x), f ′′(x) is a Gaussian measure on R

3

(maybe, degenerate). The normal correlation theorem (recall 1c) gives us a
linear regression function (for each x)

(4b4) (y, y′) 7→ E
(

f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

= A(x)y +B(x)y′ .

By 4a7 we may use (4a6):

(4b5) E

∑

x:f ′(x)=y′

ϕ(f(x)) sgn f ′′(x) =

=
1

2π

∫ b

a

dx
1

σ(x)
exp

(

− y′2

2σ2(x)

)
∫

R

dy e−y2/2ϕ(y)(A(x)y +B(x)y′)

for almost all y′; here ϕ : R → R is an arbitrary bounded Borel function.
The right-hand side of (4b5) is continuous in y′. Similarly to 3d12, in

order to prove (4b5) for all y′ we will prove (assuming continuity of ϕ) that
the left-hand side is also continuous in y′. Similarly to 3d11, it is sufficient
to check continuity of the function1

y′ 7→ 1√
2π

∫

R

du e−u2/2
∑

x:f ′

u
(x)=y′

ϕ(fu(x)) sgn f ′′
u (x) ,

where fu(·) = g(·) + uh(·); g, h ∈ C2[a, b] and h′(x) 6= 0 for all x ∈ [a, b]. To
this end we transform the integral in u into an integral in x:
(4b6)

∫

R

(

dΦ(u)
)

∑

x:f ′

u
(x)=y′

ϕ(fu(x)) sgn f ′′
u (x) = ±

∫ b

a

ϕ
(

fU(x)(x)
)

dΦ(U(x)) ;

here Φ is the cumulative distribution function of N(0, 1); U(x) = (y′ −
g′(x))/h′(x); and the sign is ‘−’ if h′(·) > 0 on [a, b], but ‘+’ if h′(·) < 0
on [a, b]. Clearly, the latter integral is continuous in y′ (assuming continuity
of ϕ). The equality (4b6) follows from (3b7) applied to U(x) instead of f(x)
and ϕ(fU(x)(x))Φ

′(U(x)) instead of g(x):
∫

R

du
∑

x∈U−1(u)

ϕ(fU(x)(x))Φ
′(U(x)) sgnU ′(x) =

∫ b

a

dxU ′(x)ϕ(fU(x)(x))Φ
′(U(x)) ;

taking into account that x ∈ U−1(u) ⇐⇒ f ′
u(x) = y′ we get

∫

R

duΦ′(u)
∑

x:f ′

u
(x)=y′

ϕ(fu(x)) sgnU ′(x) =

∫ b

a

ϕ(fU(x)(x))Φ
′(U(x))U ′(x) dx .

1And in addition, integrability of its supremum in y
′ (running over a bounded interval).
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It remains to note that f ′′
U(x)(x) = −h′(x)U ′(x), which follows from the equal-

ity f ′
U(x)(x) = y′ by differentiation (in x).

Thus, (4b5) holds for all y′, especially, for y′ = 0:
(4b7)

E

∑

x:f ′(x)=0

ϕ(f(x)) sgn f ′′(x) =
1

2π

(
∫ b

a

dx

σ(x)
A(x)

)(
∫

R

dy e−y2/2ϕ(y)y

)

;

here A(x) is defined by the Gaussian regression, E
(

f ′′(x)
∣

∣f(x) = y, f ′(x) =
0
)

= A(x)y. Being proved for bounded continuous ϕ, (4b7) holds for all
bounded Borel functions ϕ, since it is in fact an equality between (finite)
measures,

(4b8) E

∑

x:f ′(x)=0

(

sgn f ′′(x)
)

δf(x) =
1

2π

(
∫ b

a

dx

σ(x)
A(x)

)(
∫

R

dy e−y2/2yδy

)

;

you see, E #{x : f ′(x) = 0} = 1√
2π

E
∫ b

a
|f ′′(x)| dx <∞ by (3d13) and (4a2).

Especially, the case ϕ = 1(y,∞) gives

(4b9) E

∑

x:f ′(x)=0,f(x)>y

sgn f ′′(x) =
1

2π
e−y2/2

∫ b

a

dx

σ(x)
A(x)

for all y ∈ R.

4c Natural parameter

The general case of 4b may be reduced to the special case σ(·) = 1, that is,

(4c1)

∫

C2[a,b]

|f ′(x)|2 γ(df) = 1 for all x,

by a change of variable, xnew =
∫ x

0
σ(x1) dx1. Clearly, the left-hand side of

(4b9) is invariant under such change of variable. Now we assume (4c1).

4c2 Exercise. E
(

f(x)f ′′(x)
)

= −1, that is,

∫

C2[a,b]

f(x)f ′′(x) γ(df) = −1 for all x.

Prove it.
Hint: (f(x)f ′(x))′ = f ′(x)f ′(x) + f(x)f ′′(x); recall (3d4).
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By (3d4) applied to f and also to f ′,

(4c3) E
(

f(x)f ′(x)
)

= 0 and E
(

f ′(x)f ′′(x)
)

= 0 .

We see that the three random variables

(4c4) f(x), f ′(x), f(x) + f ′′(x) are orthogonal.

Therefore E
(

f(x) + f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

= 0, and

(4c5) E
(

f ′′(x)
∣

∣f(x) = y, f ′(x) = y′
)

= −y ;

in terms of (4b4) it means that A(x) = −1, B(x) = 0. Now (4b9) becomes

(4c6) E

∑

x:f ′(x)=0,f(x)>y

sgn f ′′(x) = −b− a

2π
e−y2/2 .

On the other hand, Rice’s formula 3d6 gives

E
(

#f−1(y)
)

=
b− a

π
e−y2/2 ,

and we see that

(4c7) E
(

#f−1(y)
)

= −2 E

∑

x:f ′(x)=0,f(x)>y

sgn f ′′(x) .

Here is a simple explanation of (4c7). First (irrespective of any randomness),
for every f ∈ C2[a, b],1

#f−1(y) + 2
∑

x:f ′(x)=0,f(x)>y

sgn f ′′(x) =

= 1(y,∞)(f(b)) sgn f ′(b) − 1(y,∞)(f(a)) sgn f ′(a)

(think, why), provided that the following degenerate cases are excluded:

f ′(a) = 0 ;

f ′(b) = 0 ;

f ′(x) = f ′′(x) = 0 for some x ∈ [a, b] .

Second, the expectation of the right-hand side vanishes, since f ′(a) is inde-
pendent of f(a) (and the same holds for b).

1The right-hand side disappears on the circle, that is, for 2π-periodic functions re-
stricted to [0, 2π].
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4c8 Exercise. The degenerate cases are excluded for γ-almost all f .
Prove it.
Hint: consider again fu(·) = g(·) + uh(·) for g, h ∈ C2[a, b] and h′(x) 6= 0

for all x ∈ [a, b]; if f ′
u(x) = f ′′

u (x) = 0 for some x then u is a critical value of
−g′(·)/h′(·); use Sard’s theorem.

Note that (4b1) is essential for (4c7).
We see that (4c6) follows easily from Rice’s formula. However, the ap-

proach of Sect. 4 is important in dimension two (and higher).

4d Some integral geometry

Similarly to 3e we consider a curve on Sn−1 = {z ∈ R
n : |z| = 1} parameter-

ized by some [a, b];

Z ∈ C2
(

[a, b],Rn
)

, Z
(

[a, b]
)

⊂ Sn−1 , Z ′(·) 6= 0 .

It leads to a Gaussian random vector in C2[a, b],

f(x) = 〈Z(x), ξ〉 ,

where ξ is distributed γn.
Extrema of f(·) are extrema of the distance between a point of the curve

and the random hyperplane {z ∈ R
n : 〈z, ξ〉 = 0}. The (unsigned) dis-

tance is maximal when f ′(x) = 0 and sgn f(x) sgn f ′′(x) < 0; it is minimal
when f ′(x) = 0 and sgn f(x) sgn f ′′(x) > 0. (Degenerate cases, f ′(x) =
f(x)f ′′(x) = 0, are excluded almost surely, recall 4c8.) Using the natural
parameter we have

E

∑

x:f ′(x)=0

(

− sgn f(x) sgn f ′′(x)
)

= −2 E

∑

x:f ′(x)=0,f(x)>0

sgn f ′′(x) =
b− a

π

by (4c6); and b− a is the length of the curve. Thus,

(4d1)
the mean number of maxima − the mean number of minima

the length of the curve
=

1

π
.

Think, what happens for such a curve:
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