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According to the second law of thermodynamics, disorder, once
created, is almost impossible to destroy.1

5a Maxwell’s demon

The first thought experiment in which mention is made of infor-
mation as a parameter with physical significance and linked with
entropy is Maxwell’s demon concept . . . introduced . . . in a letter
. . . on 1867.2

A question of evident practical and theoretical importance: is it possible
to convert thermal energy into mechanical energy, having only one (hot)
reservoir?

Maxwell’s demon . . . passes “hot” molecules into one half of the
cylinder, and “cold” molecules in the other half by the opening
and closing of a microscopic door in the wall dividing a gas cylin-
der into two halves.3

Is it necessarily a supernatural demon able to violate physical laws? Or
can it be material? We do not try to make it practical, just possible in
principle.

The question becomes easier if we replace a ‘serial’ demon with a ‘parallel’
one, and a gas with a spin system. A demon measures all spins simultane-
ously, and sorts them: all (−1) spins to the left, all (+1) spins to the right.
Two nearly equal spin systems at (extremely) different temperatures appear,

1S. Lloyd and W.H. Zurek, “Algorithmic treatment of the spin-echo effect”, Journal of
Statistical Physics 62:3/4, 819–839 (1991); see page 819.

2A. Moue, K. Masavetas, H. Karayianni, “Maxwell’s demon: thermodynamics of in-
formation gaining and information processing”, in: Proc. HERMCA-2005 (7th Hellenic
European Conference on Computer Mathematics and its Applications); see page 1.

3Moue et al., page 1.
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and so, mechanical energy can be extracted (as in Sect. 4e). No cold reservoir
is needed. Really? No; there is a catch.

First, a digression. It may seem that at every instant we observe the
whole world simultaneously. This illusion appears because the speed of light
is very large (in our everyday units).1

Similarly, it may seem that our mental decisions are not thermodynamic.
Of course, our brains consume energy and produce heat, but our decisions
do not. This illusion appears because the Boltzmann constant is very small
(in our everyday units).2

If the demon is material then its phase space must carry a measure, and
its dynamics must be invertible and measure preserving, unless the demon
interacts with the environment, in which case the joint dynamics must be
invertible and measure preserving. Also the energy must be preserved.

It cannot happen that the system ‘the demon and the spins’ passes from
an arbitrary spin configuration to a sorted one unless a trace remains inside
the demon or outside it. Accordingly, something like a cold reservoir must
exist inside or outside the demon.

Let us assume that the demon is discrete (like a spin system), determin-
istic (like a computer), and its energy is negligible.3 It was believed (‘the
von Neumann–Landauer limit’) that any computer must dissipate at least
kBT · ln 2 of heat per any irreversible bit operation (such as ‘and’), but for-
tunately this is not the case. The so-called reversible computing4 is a way to
design any computer in such a way that it does not dissipate energy.5 Thus
we may treat any one-to-one transformation of the demon’s phase state as
a feasible dynamics.6 The same holds for the product phase state of the
‘demon and spins’ system and energy preserving one-to-one transformations.
Moreover, a transformation not preserving energy can be used if the demon
can transfer mechanical energy from/to its environment as needed. Thus,
the demon need not sort the spins, it can just turn all the spins to (−1) and
release their energy as work. The only problem is, to be one-to-one.

For every state X = (x1, . . . , xn) ∈ {−1, 1}n of the spin system there
exists a one-to-one transformation fX : {−1, 1}n → {−1, 1}n such that
fX(X) = −1l = (−1, . . . ,−1), the ground state (of least energy). Such a
demon is an oracle: it knows the spin configuration beforehand! A material

1299 792 458 m/s (exactly).
21.38 · 10−23 J/K.
3The general case leads to similar conclusions.
4See ‘Reversible computing’ in Wikipedia.
5Or rather, the dissipation can be made arbitrarily small. The result of the computation

leaves the computer, and the computer returns to its initial state.
6Computability is not an issue.
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demon is assumed to have no such abilities.
It may happen that f(X) = −1l just by chance, but such a lucky demon

is of no use. With a small probability the given spin configuration is already
sorted, and so, mechanical energy can be extracted, with no demon. Such
miracles of exponentially small probability are of no interest.

Dealing with a system of n spins we may imagine a demon with a memory
of n bits. What is the distinction between the spin system and the memory?
Two distinctions: energy and relaxation. For the spin system, the energy is
proportional to the sum of the spins; for the memory, the energy is zero, and
relaxation does not happen. Here is a very simple model of relaxation for the
spin system: just a random perturbation of the spins, applied every short
time, independently. The spins are volatile (only their sum is constant); the
memory is reliable.

Denoting the spins (at a given instant) by X = (x1, . . . , xn) ∈ {−1, 1}n
and the demon’s memory by Y = (y1, . . . , yn) ∈ {−1, 1}n we introduce for
example the transformation

(5a1) (X, Y ) 7→ (X,XY ) ,

that is, yk := xkyk. It is one-to-one (think, why). Let initially Y0 = 1l,
then after the transformation we get Y1 = X0. The demon measures the
microscopic state of the spin system and remembers it. The spin system is
not affected. However, it is quickly randomized by relaxation.

From demon’s viewpoint, immediately after the measurement the mi-
crostate of the spins is known, no more random. Thus, its entropy is zero,
and all its energy is mechanical. Work can be extracted, but this should be
made quickly, before the relaxation. Well, demons can be very swift.

Here is even simpler one-to-one transformation:

(X, Y ) 7→ (−Y,X) .

Let initially Y0 = 1l, then after the transformation we get X1 = −1l and
Y1 = X0; all the heat is converted into work, and the initial spin array is
remembered by the demon. The entropy of the spin system is decreased
dramatically. Not for nothing, however: doing so, the initially powerful
demon becomes powerless! Some resource is spent.

Is the array Y0 = 1l special? No, it is not. For every y ∈ {−1, 1}n we
may take fy : (X, Y ) 7→ (−yY,X), then fy(X, y) = (−1l, X). Then, is the
demon with Y1 in its memory really powerless? Yes, it is. Not because Y1 is
itself worse than 1l, but because Y1 depends on X0. In order to apply fY1 the
demon must be an oracle.
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We may imagine a programmable demon whose transformation is not
hard-wired. But then a second demon, after reprogramming the first demon,
becomes powerless.

If a cold reservoir is available, the demon can use it. Let Z2 = −1l be
the state of a spin system at zero (that is, +0) temperature, and Y2 = Y1
the state of demon’s memory (the obsolete information). The one-to-one
transformation

(Z, Y ) 7→ (Y,−Z)

gives Y3 = 1l and Z3 = Y2. The demon is powerful again; the obsolete
information is dumped into the cold reservoir;1 the latter is thus heated;
some mechanical energy is taken by the demon and wasted into heat.

After all, the demonic cycle is similar to the thermodynamic cycle treated
in Sect. 4d, 4e. Some thermal energy together with some entropy is received
from the hot reservoir; the entropy together with a part of the energy is sent
to the cold reservoir; the rest of the energy is converted into work.

Everyone knows the important role of observers in quantum theory: a
measurement influences the object. The role of observers in statistical physics
is less evident, but still important. Here, a measurement need not influence
the object, but there is another problem: a measurement increases the en-
tropy of the observer! A human observer gets no more than several bits
of information; the corresponding entropy, several times kB, is practically
negligible. However, a demon observer can drain the object of all entropy.

For us humans the distinction between mechanical and thermal energy is
important. Thus, we should not take demon’s viewpoint. Even if a demon
knows everything, still, we do not. For us the state of demon’s memory is
random, and has a (quite large) informational entropy.

The informational entropy of the combined system ‘demon and spins’ is
invariant under all one-to-one transformations.2 What about thermodynamic
entropy? It is controversial, whether this notion is applicable to demon’s
memory, or not. Let us agree that it is not. Then we may say that a demon
can convert the thermodynamic entropy of spins (or something else) to the
informational entropy of itself, and conversely. Still, it cannot change the
total entropy.3

1There, it will be quickly destroyed by relaxation, which is of no importance.
2Clearly,

∑
x,y p(x, y) ln p(x, y) =

∑
x,y p(f(x, y)) ln p(f(x, y)) for every one-to-one f .

And more generally, if f : Ω→ Ω is an invertible transformation preserving a measure µ,
and ν is a probability measure on Ω absolutely continuous w.r.t. µ, then f sends ν into
a measure ν1 of the same differential entropy: Hµ(ν1) = Hµ(ν), since dν1

dµ (f(·)) = dν
dµ (·).

A non-invertible measure preserving transformation can increase entropy, which cannot
happen when µ is a counting measure.

3Relaxation can increase the total entropy; this point is somewhat moot, like the very
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Note that the informational entropy of the ‘demon and spins’ system is
not at all the sum of entropies, unless the two are independent (recall 3e5). In
contrast, thermodynamics treats entropy as additive, since relaxation makes
(interacting) subsystems nearly independent.

Conversions between thermodynamic and informational entropy are treated
by the so-called thermodynamics of computation.

5b Gibbs’ paradox

But the increase of entropy due to the mixing of given volumes of
the gases at a given temperature and pressure would be indepen-
dent of the degree of similarity or dissimilarity between them.1

It has always been believed that the Gibbs’ Paradox embodied
profound thought. That it was intimately linked up with some-
thing so important and completely new could hardly have been
foreseen.2

The importance of one-to-one transformations (Sect. 5a) implies impor-
tance of one-to-one correspondence between physical microstates and the
mathematical objects that describe them. Till now, Ωn was used as the
phase space of an n-particle system. This is correct for a system of n pair-
wise distinguishable (‘numbered’) particles. Anyway, each function of the
form f (n) (‘macroscopic observable’), being invariant under the permutation
group Sn (that acts on Ωn by measure preserving transformations), may be
treated as a function on the quotient space Ωn

sym = Ωn/Sn of orbits. The quo-
tient measure µn

sym on Ωn
sym makes the natural projection Ωn → Ωn

sym measure

preserving. The distribution of f (n) on (Ωn, µn) is equal to the distribution
of the corresponding function on (Ωn

sym, µ
n
sym). This is why till now we were

able to use (Ωn, µn) successfully. However, troubles will appear soon.
When µ is nonatomic, Ωn

sym may be treated as the set of all n-point subsets
of Ω. Or equivalently, of measures on Ω consisting of n atoms of mass 1 each.
When µ is atomic, elements of Ωn

sym cannot be treated as subsets of Ω, but
still can be treated as measures on Ω consisting of atoms of integral masses,
with the total mass n.

As usual, a discrete model is easier to understand. Thus, imagine first
a container V of just two points, and n particles in V (many particles may

idea of relaxation.
1W. Gibbs, ‘On the equilibrium of heterogeneous substances’, 1878.
2E. Schrödinger, ‘Statistical thermodynamics’, Cambridge, 1948.
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occupy the same place). Or equivalently we may imagine n spins. If the par-
ticles are distinguishable then we have |Ωn| = 2n possible states. A demon
can use this system (if at zero temperature) for dumping n bits of obsolete
information. Now imagine that the particles are indistinguishable; then we
have only |Ωn

sym| = n+ 1 possible states;1 a demon cannot dump n bits, nor
even n/100 bits to this system. Indistinguishability has dramatic thermody-
namic consequences!

According to Sections 3 and 4, the ideal gas (with zero potential) has the
entropy n(lnV − 3

2
ln β+ const).2 Two independent portions of the gas, each

of n particles, in disjoint containers of volume V each, at equal temperatures,
have the total entropy 2n(lnV − 3

2
ln β+ const). However, a single portion of

2n particles in a volume 2V has another entropy 2n(ln 2V − 3
2

ln β + const)
larger by 2n ln 2. Why? What is the distinction between “n in V plus n in
V ” and “2n in 2V ”?

The momentum subsystem, contributing −3
2

ln β + const (per particle),
is not guilty. The coordinate subsystem, contributing lnV (per particle), is
guilty. Thus we concentrate on coordinates.

We may embed Vn
1 ×Vn

2 into (V1 ∪V2)2n by
(
(q′1, . . . , q

′
n), (q′′1 , . . . , q

′′
n)
)
7→

(q′1, . . . , q
′
n, q
′′
1 , . . . , q

′′
n). The image is less than (V1 ∪ V2)2n for two reasons.

First, it contains only states with exactly n particles in V1. This is an event
of probability 2−2n

(
2n
n

)
∼ 1/

√
πn = exp o(n). Second, it contains only states

such that the n particles situated in V1 have the numbers 1, . . . , n. Here
we have an event of probability 1/

(
2n
n

)
∼
√
πn 2−2n = exp

(
−2n ln 2 + o(n)

)
responsible for the extra summand 2n ln 2 in the entropy.

In other words: given a microstate of 2n numbered particles in V =
V1 ] V2, we may consider 2n bits of information; the k-th bit shows whether
the k-th particle is in V1 or V2. This bit array is quickly randomized by
relaxation. Let us insert a thin partition between V1 and V2 (that is, increase
the potential near the boundary between them to a high value). Now the
bit array is frozen, no more subject to relaxation. The seamingly innocent
partition is in some sense demonic! It effectively creates a memory3 of 2n
bits, measures some aspect of the microstate of the gas, and stores the result
in the memory. Thus, it converts the entropy 2n ln 2 from thermodynamic
to informational.

You may wonder, how does the partition influence ‘practical’ thermody-
namics of the gas, related to heat engines, pumps etc. The answer is, no
influence. What matters is the derivative of the entropy in the temperature.

1The state k ∈ {0, 1, . . . , n} is of µnsym-measure
(
n
k

)
.

2In fact, const = ln(2πem).
3Read-only memory, if you like.
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The extra summand 2n ln 2 is rather harmless, since it does not depend on
the temperature.

Can particles be distinguishable? Well, a not-so-large organic molecule
can easily carry, say, 100 bits of constant information (like a short DNA seg-
ment), which is more than enough for having 1023 pairwise distinct molecules.
However, atoms and small molecules are indistinguishable1 according to
quantum theory. Thus, statistical physics usually deals with indistinguish-
able particles.

A coordinate microstate of n indistinguishable particles is a point of Vn
sym;

the relevant measure on Vn
sym is not µn

sym but (1/n!)µn
sym (which is again a

classical approximation to something quantal; however, you can get the same
idea very simply by discretizing V). Thus, the entropy is not n lnV = lnV n

but

ln(V n/n!) = n lnV − n lnn+ n+ o(n) = n
(

ln
V

n
+ 1
)

+ o(n) .

For 2n particles in the volume 2V we get now

2n
(

ln
2V

2n
+ 1
)

+ o(n) ;

dividing the container in two (and putting n particles into each part) we get

2 · n
(

ln
V

n
+ 1
)

+ o(n) ;

just the same! The partition is no more demonic.
Assume now that V1 contains n particles of one type, and V2 contains

n particles of another type (say, atoms of argon and krypton). When the
partition is removed, the gases mix, and the entropy increases by 2n ln 2,
from 2 · n

(
ln V

n
+ 1
)

to 2 · n
(
ln 2V

n
+ 1
)

(ignoring o(n)), since the phase state
changes from (V1)nsym × (V2)nsym to Vn

sym × Vn
sym, V = V1 ] V2.

The extra entropy is equal to 0 if the gases are identical, and 2n ln 2 if
the gases are different, no matter how much (and in what aspect) different!
This is Gibbs’ paradox.

Can we use this effect as a universal, infinitely sensitive distinction detec-
tor? No, we cannot, since we have no universal device for measuring entropy.
(Recall, the extra summand not dependent on the temperature does not
manifest itself in thermodynamic cycles.)

The quantum theory reveals something new about the notions ‘identical’
and ‘different’. Any classical distinction means orthogonal state vectors and

1Or have a small choice of states.



Tel Aviv University, 2010 Large deviations, entropy and statistical physics 54

can be amplified without bound by a measuring device. But a very small
distinction is no more classical; it means a nontrivial angle between state
vectors, and cannot be amplified (not even a little).1 It leads to an extra
summand in entropy that is less than 2n ln 2 and depends continuously on
the distinction (the angle).2

Still, some questions remain. Can we check whether two given particles
are of the same type or not? Several quantum numbers, such as ‘flavour’,
‘strangeness’, ‘charm’ are well-known. Maybe another one, call it ‘stupidity’,
is still unknown. Then the entropy of a gas may differ substantially from
what we believe it is. But on the other hand, should we add the extra
entropy even if ‘stupidity’ plays absolutely no role in interactions of these
particles with each other or anything else?

Imagine that ‘stupidity’ takes on two values. Then it is another array of
bits. If it is subject to relaxation then its entropy is thermodynamic, oth-
erwise informational. But anyway, if ‘stupidity’ interacts with other degrees
of freedom then it belongs to what we call the gas; otherwise it is rather a
closed physical system disconnected from the gas and our apparata, and so,
its entropy is irrelevant.

It may happen that ‘stupidity’ interacts with other degrees of freedom,
but slowly. Then it is effectively a separate system on short times, but a
part of the gas on long times. Compare it to the (possibly negative) spin
temperature mentioned in Sect. 4c.

Amazingly, quantum theory proposes a universal way to check whether
two given particles are of the same type or not; this test reveals ‘stupidity’
even if we have no idea of it.3, 4 However, this argument is hardly relevant
to entropy.

1“Some authors have asserted, without feeling further comment to be necessary or
useful, that two particles are either the same or they are different. Others, following
von Neumann (1955) and Schrödinger (1950, 1952), have used the overlap of wavefunc-
tions representing two quantum states as a continuous measure of indistinguishability.”
A.M. Lesk, “On the Gibbs paradox: what does indistinguishability really mean?”, J. Phys.
A: Math. Gen. 13 (1980), L111–L114; see pp. L111–L112.

2“He showed explicitly that the entropy change varies continuously from 0 to 2R ln 2
as the overlap decreases from unity to 0 (Klein 1948, 1959).” Lesk, p. L112.

3See “Hanbury Brown and Twiss effect” in Wikipedia.
4There is an element of convention in regarding particles as distinguishable or indistin-

guishable”. Lesk, page L112.
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5c Spin echo

In the spin-echo effect, the disorder of the spins first increases,
then decreases dramatically.1

A macroscopic portion of paraffin, solid at room temperature, contains
(among other microscopic degrees of freedom) nuclear spins. Initially most
spins are (−1), which manifests itself by a macroscopic magnetic field. The
field decays after ∼ 10−5 sec because the spins interact with the environment.
After 0.001 sec an apparatus influences the spins by a carefully adjusted ra-
dio frequency pulse. Still, no magnetic field. But after another 0.001 sec,
amazingly, the magnetic field reappears suddenly, lasts for ∼ 10−5 sec and
decays again. This phenomenon is called the spin echo.2

Spin echo seems to refute irreversibility of relaxation and increase of en-
tropy. However, a closer look reveals the following.

In a liquid paraffin, molecules walk at random (which is called self-
diffusion). If the paraffin cools and solidifies, a random configuration of
molecules freezes. Molecules oscillate but do not walk.3 Their configuration
is no more subject to relaxation. Thus, a part of the thermodynamic entropy
of the liquid paraffin turns into informational entropy of the solid paraffin.4

On the first 0.001 sec of the experiment, the spins measure some of the
frozen degrees of freedom,5 which is similar to (5a1):

(X, Y ) 7→ (X,XY ) ; (X, 1l) 7→ (X,X) ,

where X is the bit array of the frozen information (read-only memory, if you
like), and Y is the array of nuclear spins; we may treat Y as a (read-write)
memory, since its relaxation time is ∼ 0.01 sec. The informational entropy
of X is n ln 2; the informational entropy of (X,X) is still n ln 2, not 2n ln 2.

On the last 0.001 sec of the experiment the measurement is undone:

(X, Y ) 7→ (X,XY ) ; (X,X) 7→ (X, 1l) .

The informational entropy is n ln 2, still. The total entropy never decreases,
if treated appropriately.

1Lloyd and Zurek, page 838.
2This description is rather a caricature. In fact, the spins are quantal; their state is

a point of a three-dimensional ball (rather than [−1, 1]); the apparatus generates a static
magnetic field and more than one radio frequency pulse; etc. See “Spin echo” in Wikipedia,
and Sect. III(H) in the famous article: E.L. Hahn, “Spin echoes”, Phys. Rev. 80:4 (1950),
580–594.

3Sometimes they jump, but rarely.
4So-called frozen (or quenched) disorder; see “Quenched disorder” in Wikipedia.
5Namely, magnetic field at the nuclei, due to neighbour molecules.
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