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Measures (and probabilities) aside, in this section we concentrate on sigma-
algebras and other systems of sets.

1a Algebra of sets

Algebra of sets is an easy matter. Algebra generated by given sets is de-
scribed explicitly. Closed-and-open subsets of the Cantor set are an algebra
instrumental in understanding the general case.

Let X be a set, 2X = {A : A ⊂ X} the set of all subsets of X (including
X itself). For arbitrary E ⊂ 2X we denote

∼E = {X \ A : A ∈ E} ,
Ed = {A1 ∩ · · · ∩ An : A1, . . . , An ∈ E , n = 0, 1, 2, . . . } ,
Es = {A1 ∪ · · · ∪ An : A1, . . . , An ∈ E , n = 0, 1, 2, . . . } .

(For n = 0 the union is ∅ and the intersection is X.) Clearly, Ed ⊃ E and
Es ⊃ E . Also, Edd = Ed (here Edd = (Ed)d) and Ess = Es. If E is finite then
Ed, Es are finite. If E is countable then Ed, Es are countable.

1a1 Core exercise. Prove that ∼∼E = E ; (∼E)d = ∼(Es); (∼E)s = ∼(Ed).

1a2 Example. X = {0, 1}n, E = {A1, . . . , An} where

Ak = {x ∈ X : x(k) = 1} = {0, 1}k−1 × {1} × {0, 1}n−k for k = 1, . . . , n .

Or equivalently, X = 2{1,...,n}, Ak = {x ∈ X : k ∈ x}.

1a3 Core exercise. Let X, E be as in 1a2. Prove that Ed contains exactly
2n sets.
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1a4 Extra exercise. Let X, E be as in 1a2. For arbitrary A ⊂ X prove
that A ∈ Eds if and only if ∀x, y ∈ X (x ≤ y ∧ x ∈ A =⇒ y ∈ A).

1a5 Extra exercise. Let X, E be as in 1a2. Prove that (E ∪∼E)d contains
exactly 3n + 1 sets.

1a6 Core exercise. Let X, E be as in 1a2. Prove that (E ∪ ∼E)ds = 2X .

Example 1a2 is quite special, but instrumental in understanding the gen-
eral case, as we will see soon.

Given sets X, Y and a map ϕ : X → Y (generally not invertible), we
have the “inverse image” (“pullback”) map Φ = ϕ−1 : 2Y → 2X , Φ(B) =
ϕ−1(B) = {x : ϕ(x) ∈ B}. Further, given F ⊂ 2Y , we get Φ(F) ⊂ 2X ,
Φ(F) = {Φ(B) : B ∈ F} = {ϕ−1(B) : B ∈ F}. On the other hand, given
E ⊂ 2X , we get Φ−1(E) ⊂ 2Y , Φ−1(E) = {B ⊂ Y : Φ(B) ∈ E} = {B ⊂ Y :
ϕ−1(B) ∈ E}.

1a7 Core exercise. Prove that1

Φ(∼F) = ∼(Φ(F)) , Φ(Fd) = (Φ(F))d , Φ(Fs) = (Φ(F))s

whenever ϕ : X → Y and F ⊂ 2Y . (As before, Φ = ϕ−1 : 2Y → 2X .)

Given a finite E ⊂ 2X and its enumeration E = {A1, . . . , An}, we intro-
duce a map ϕ : X → {0, 1}n by

(1a8) ϕ(x) =
(
1A1(x), . . . ,1An(x)

)
;

here 1A(x) = 1 for x ∈ A and 0 for x ∈ X \A. Or, if you like, we may avoid
enumeration of E as follows: ϕ : X → {0, 1}E , ϕ(x)(A) = 1A(x) for x ∈ X,
A ∈ E . Or equivalently, ϕ : X → 2E , ϕ(x) = {A ∈ E : x ∈ A}.

Now let us denote X, E of 1a2 by Xn, En, releasing X, E for the general
case. The map ϕ : X → Xn introduced above gives

E = Φ(En)

(think, why). By 1a7 (applied several times),

(E ∪ ∼E)ds = Φ
(
(En ∪ ∼En)ds

)
;

by 1a6, (En ∪ ∼En)ds = 2Xn ; thus,

(1a9) (E ∪ ∼E)ds = Φ
(
2Xn
)
.

(As before, Φ = ϕ−1 : 2Y → 2X .)

1Likewise, if f : G1 → G2 is a homomorphism of groups then f(A · A) = f(A) · f(A)
for every A ⊂ G1.
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1a10 Definition. A set E ⊂ 2X is an algebra1 (of sets) (on X) if X \ A,
A ∩B and A ∪B belong to E for all A,B ∈ E . In other words, if

∼E ⊂ E , Ed ⊂ E , Es ⊂ E .

(By 1a1, the conditions Ed ⊂ E , Es ⊂ E are equivalent, given ∼E ⊂ E , as
you probably note.)

Two trivial examples: the least algebra {∅, X} and the greatest algebra
2X .

1a11 Core exercise. If ϕ : X → Y and F is an algebra on Y then Φ(F) is
an algebra on X. (As before, Φ = ϕ−1 : 2Y → 2X .)2

Prove it.

By (1a9) and 1a11,

(E ∪ ∼E)ds is an algebra on X

whenever E ⊂ 2X is finite.

1a12 Core exercise. The number of sets in a finite algebra is always of
the form 2k, k = 0, 1, 2, . . . , and every such 2k corresponds to some finite
algebra.3 (Exclude k = 0 if you do not want X to be empty.)

Prove it.

1a13 Core exercise. The map ϕ : X → {0, 1}n given by (1a8) is injective
(that is, one-to-one) if and only if E separates points (it means: whenever
x1, x2 ∈ X differ, there exists A ∈ E that contains exactly one of x1, x2).

Prove it.

1a14 Core exercise. If a finite algebra E separates points then E = 2X

(and X is necessarily finite).
Prove it.

Infinite E boils down to finite E as follows:

(1a15) Ed =
⋃

F⊂E,F is finite

Fd , etc., (E ∪∼E)ds =
⋃

F⊂E,F is finite

(F ∪∼F)ds .

1Or “Boolean algebra of sets”, or “concrete Boolean algebra”, or “field of sets”.
2Likewise, if f : G1 → G2 is a homomorphism of groups and G is a subgroup of G1

then f(G) is a subgroup of G2.
3Not only 22

k

. . .
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1a16 Core exercise. Prove that

(E ∪ ∼E)ds is an algebra on X

whenever E ⊂ 2X (not necessarily finite).

Thus, (E ∪ ∼E)ds is the least algebra containing E , in other words, the
algebra generated by E . A finite set generates a finite algebra; a countable
set generates a countable algebra. We have the general form of a set from
the generated algebra:

(1a17)
I⋃
i=1

Ji⋂
j=1

Ai,j for Ai,j ∈ E ∪ ∼E .

For a countably infinite E = {A1, A2, . . . } we may introduce ϕ : X →
Y = {0, 1}∞ (infinite sequences) by

(1a18) ϕ(x) =
(
1A1(x),1A2(x), . . .

)
,

and still,
(E ∪ ∼E)ds = Φ

(
(F ∪ ∼F)ds

)
where F = {B1, B2, . . . } ⊂ 2Y , Bk = {y ∈ Y : y(k) = 1} (as before,
Φ = ϕ−1 : 2Y → 2X); but now (F ∪∼F)ds is only a small part of 2Y . Indeed,
the former is countable, while the latter is not only uncountable but also
exceeds the cardinality of continuum! Sets of (F∪∼F)ds are called cylindrical
sets. They are exactly the sets “depending on finitely many coordinates each”
(think, why).

In contrast to 1a14, the cylindrical algebra separates points but fails to
contain all sets.

The set {0, 1}∞ is basically the Cantor set C ⊂ [0, 1],

(1a19) {0, 1}∞ 3 y ←→
∞∑
k=1

2y(k)

3k
∈ C .

1a20 Core exercise. The cylindrical algebra on the Cantor set is exactly
the algebra of all clopen (that is, both closed and open) subsets.

Prove it.

For uncountable E we still have the cylindrical algebra on {0, 1}E , but the
latter is not the Cantor set.
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Every algebra of sets is the inverse image of the algebra of cylindrical
sets. In this sense the cylindrical algebra is universal.
In particular, (a) every finite algebra is the inverse image of the algebra
of all subsets on a finite set; (b) every countable algebra is the inverse
image of the algebra of all clopen subsets of the Cantor set.

Universal models are useful but not unavoidable. Do not use them when
solving the next two exercises.

1a21 Core exercise. Prove that

Eds = Esd

whenever E ⊂ 2X .

1a22 Core exercise. Deduce 1a16 from 1a21.

1b Sigma-algebra

Sigma-algebra is no easy matter. Sigma-algebra generated by given sets is
described only implicitly, but still, is tractable.

For arbitrary E ⊂ 2X we denote

Eδ = {A1 ∩ A2 ∩ · · · : A1, A2, · · · ∈ E} ∪ {X} ,
Eσ = {A1 ∪ A2 ∪ · · · : A1, A2, · · · ∈ E} ∪ {∅} .

Clearly, Eδ ⊃ E and Eσ ⊃ E . Also, Eδδ = Eδ, Eσσ = Eσ. And (∼E)δ = ∼(Eσ),
(∼E)σ = ∼(Eδ). If E is finite then Eδ = Ed and Eσ = Es (still finite).

1b1 Core exercise. Prove that Eσd ⊂ Edσ and Eδs ⊂ Esδ.

1b2 Extra exercise. Do the equalities Eσd = Edσ, Eδs = Esδ hold in general,
or not?

1b3 Example. X = {0, 1}∞ (that is, the Cantor set) and E is the algebra of
all cylindrical sets (that is, clopen sets, recall 1a20). Note that E is countable.

1b4 Core exercise. Let X, E be as in 1b3. Prove that for every p ∈ [0, 1]
the set

Ap =
{
x ∈ X :

x(1) + · · ·+ x(n)

n
−−−→
n→∞

p
}

belongs to Eδσδ.

Generally, nothing useful can be said about an uncountable union of (say)
Eδσδ sets. But nevertheless. . .



Tel Aviv University, 2012 Measurability and continuity 6

1b5 Extra exercise. Let X, E and Ap be as in 1b4. Prove that the set
A = ∪p∈[0,1]Ap belongs to Eδσδ.

1b6 Extra exercise. Let X, E be as in 1b3, and A the set of all x ∈ X such
that the series

∞∑
n=1

2x(n)− 1

n

converges. Prove that A belongs to Eδσδ.

It is rather easy to prove that a given set belongs to the corresponding
class. It is much harder to prove that it does not belong to another class.

1b7 Core exercise. Let X, E be as in 1b3. Prove that Eδ is the set of all
closed subsets of the Cantor set, and Eσ is the set of all open subsets of the
Cantor set.

We see that countability of E does not imply countability of Eδ, Eσ.
Sometimes one denotes (for X, E as in 1b3) Eδ = F (closed sets) and

Eσ = G (open sets); thus, Eδσ = Fσ (countable unions of closed sets) and
Eσδ = Gδ (countable intersections of open sets). The symbols Fσ, Gδ are
widely used (not only in the context of the Cantor set).1 Clearly, ∼(Fσ) = Gδ

and ∼(Gδ) = Fσ.
Do not think that (similarly to 1a21) Eδσ = Eσδ; it is not! If A is a dense

Fσ set and its complement B is a dense Gδ set then A cannot be Gδ set,
and B cannot be Fσ set (which follows easily from the famous Baire category
theorem). In particular, a dense countable subset of the Cantor set is always
Fσ and never Gδ.

1b8 Definition. A set E ⊂ 2X is a σ-algebra2 (on X) if X \A, A1∩A2∩ . . .
and A1 ∪ A2 ∪ . . . belong to E for all A,A1, A2, · · · ∈ E , and ∅, X ∈ E . In
other words, if

∼E ⊂ E , Eδ ⊂ E , Eσ ⊂ E .

(Clearly, the conditions Eδ ⊂ E , Eσ ⊂ E are equivalent, given ∼E ⊂ E .)
Two trivial examples: the least algebra {∅, X} and the greatest algebra

2X are also the least σ-algebra and the greatest σ-algebra. Every finite
algebra is a σ-algebra. Every σ-algebra is an algebra.

1The symbols F,G are used more often for individual closed and open sets rather than
the sets of all such sets.

2Probabilists often prefer “σ-field”.
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In contrast to 1a16, (E ∪∼E)δσ is generally not a σ-algebra (even for X, E
of 1b3). In contrast to (1a17), the formula

∞⋃
i=1

∞⋂
j=1

Ai,j for Ai,j ∈ E ∪ ∼E ,

the general form of a set from (E ∪ ∼E)δσ, does not represent a σ-algebra.
As you probably know, a better situation appears when a measure is given

and null sets are neglected; that is, equivalence classes are used rather than
sets. In that framework, for an algebra E , Eδσ = Eσδ becomes a σ-algebra, —
very convenient if you work in Rn with Lebesgue measure. However, in an
infinite-dimensional space we typically have nothing like Lebesgue measure
and, worse, no appropriate class of negligible sets. Rather, we have various
measures that typically are singular to each other.

Back to our framework: what could we mean by a σ-algebra generated
by a set E or, equally well, by an algebra E? It appears that Eδσδσ is still
not a σ-algebra. In order to avoid clumsy notation like Eδσ . . . δσ︸ ︷︷ ︸

100

one may

introduce Σn = Σn(X, E) ⊂ 2X and Πn = Πn(X, E) ⊂ 2X recursively:

(1b9) Σn+1 = (Πn)σ and Πn+1 = (Σn)δ for n = 0, 1, 2, . . .

and Π0 = E , Σ0 = ∼E for a given set E ⊂ 2X satisfying

(1b10) ∼E ⊂ Eσ

(which evidently holds when ∼E = E). Thus,

(1b11)
Σ1 = Eσ, Σ2 = (∼E)δσ, Σ3 = Eσδσ, . . .

Π1 = (∼E)δ, Π2 = Eσδ, Π3 = (∼E)δσδ, . . .

1b12 Core exercise. Prove that ∼Σn = Πn for n = 0, 1, 2, . . .

1b13 Core exercise. Prove that Πn ∪Σn ⊂ Πn+1 ∩Σn+1 for n = 0, 1, 2, . . .

1b14 Core exercise. Prove that (Πn)ds = Πn and (Σn)ds = Σn for n =
2, 3, . . .

(If E is an algebra, these equalities hold also for n = 0, 1, but generally
they do not.)

1b15 Core exercise. Prove that Πn ∩ Σn is an algebra for n = 2, 3, . . .

1b16 Core exercise. Prove that ∪nΠn = ∪nΣn = ∪n(Πn∩Σn) is an algebra.
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It appears that generally (and even for X, E of 1b3, see Sect. 1c) all
these Πn,Σn differ and none of them is a σ-algebra. Moreover, the algebra
∪nΠn = ∪nΣn is not a σ-algebra!

A better situation appears in algebra (recall generated subgroups, linear
subspaces etc.) since an algebraic operation takes finitely many (usually, two)
operands. The problem is that our operation (A1, A2, . . . ) 7→ A1 ∪ A2 ∪ . . .
takes infinitely many operands.

Fortunately, we have a completely different approach.

1b17 Definition. The σ-algebra σ(E) generated by a set E ⊂ 2X is the
intersection of all σ-algebras that contain E .

The intersection of σ-algebras (no matter how many) is a σ-algebra (think,
why); at least one σ-algebra containing E exists (just 2X); thus, the generated
σ-algebra is well-defined. Clearly, σ(E) is the least σ-algebra containing E .

This definition is formally simple, but exploits the set theory quite heavily.
In the huge set 22X we choose the subset of all σ-algebras containing E (have
you a clear idea of this subset?) and intersect them all!

Bad news: we have no useful general form of a set from the generated
σ-algebra. It is usually not difficult to prove that a given set belongs to σ(E)
(when it does), since it usually appears to belong to Πn or Σn for n = 1, 2, 3
(hardly 4). However, it is usually difficult to prove that a given set does not
belong to σ(E) (when it does not). Well, we try to percolate to useful results,
avoiding hard obstacles. . .

1b18 Core exercise. For an uncountable E ,

σ(E) =
⋃

F⊂E,F is countable

σ(F) =
⋃

A1,A2,···∈E

σ(A1, A2, . . . ) .

Prove it.

In the next five exercises ϕ : X → Y and Φ = ϕ−1 : 2Y → 2X . Here are
counterparts of 1a7 and 1a11.

1b19 Core exercise. Prove that

Φ(Fδ) = (Φ(F))δ , Φ(Fσ) = (Φ(F))σ

for all F ⊂ 2Y .

1b20 Core exercise. If F is a σ-algebra on Y then Φ(F) is a σ-algebra on
X.

Prove it.
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1b21 Core exercise. If E is a σ-algebra on X then Φ−1(E) is a σ-algebra
on Y .1

Prove it.

1b22 Core exercise. Prove that Φ
(
σ(F)

)
⊃ σ

(
Φ(F)

)
for all F ⊂ 2Y .

1b23 Core exercise. Prove that Φ
(
σ(F)

)
⊂ σ

(
Φ(F)

)
for all F ⊂ 2Y .

Thus,

(1b24) Φ
(
σ(F)

)
= σ

(
Φ(F)

)
whenever ϕ : X → Y and F ⊂ 2Y . (As before, Φ = ϕ−1 : 2Y → 2X .)

1c Borel sets

Borel subsets of Rd are the most useful sigma-algebra. An infinite sequence
of complexity levels fails to exhaust their hierarchy. The proof of this fact is
explicit but not simple, it involves Cantor’s diagonal argument and coding of
sets by points of the Cantor set.

1c1 Definition. The Borel σ-algebra B(Rd) on Rd is the σ-algebra generated
by open sets. Elements of B(Rd) are called Borel subsets of Rd.

Clearly, an arbitrary finite-dimensional linear space (over R) can be used
instead of Rd.

1c2 Core exercise. For X ⊂ Rd, the set {B∩X : B ∈ B(Rd)} is a σ-algebra
on X generated by the set {G∩X : G open in Rd} of all relatively open sets
in X.

Prove it.

The σ-algebra of 1c2 is called the Borel σ-algebra of X, and denoted
B(X).

1c3 Core exercise. If X is a Borel set in Rd then B(X) = {A ∈ B(Rd) :
A ⊂ X}; otherwise it is not.

Prove it.

1c4 Core exercise. Prove that B(R) is generated by open intervals (a, b)
for rational a, b. (That is, B(R) is equal to the σ-algebra generated by these
intervals.)

1Likewise, if f : G1 → G2 is a homomorphism of groups and G is a subgroup of G2

then f−1(G) is a subgroup of G1.
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1c5 Core exercise. Prove that B(R) is generated by closed intervals.

1c6 Core exercise. Prove that B(R2) is generated by open disks.

1c7 Core exercise. Prove that B(R2) is generated by vertical and horizontal
open strips, (a, b)× R and R× (a, b) for all a, b, a < b.

1c8 Extra exercise. Let A ⊂ R2 be a bounded open neighborhood of the
origin. Prove that B(R2) is generated by {x+ rA : x ∈ R2, r ∈ (0,∞)} (here
x+ rA = {x+ ra : a ∈ A}).

1c9 Extra exercise. Let C be the complex plane and A ⊂ C a set that
has (at least one) interior point and (at least one) exterior point. Prove that
B(C) is contained in the σ-algebra generated by {u+ vA : u, v ∈ C, v 6= 0}.

1c10 Core exercise. Prove that the Borel σ-algebra of the Cantor set
(treated as a subset of R) is generated by clopen sets.

Similarly to (1b9) we introduce Πn = Πn(Rd) and Σn = Σn(Rd) recur-
sively:

(1c11) Σn+1 = (Πn)σ and Πn+1 = (Σn)δ for n = 1, 2, 3, . . .

This time, however, we start with Π1,Σ1 (rather than Π0,Σ0): Σ1 is the set
of all open sets, and Π1 — closed sets. Similarly, for X ⊂ Rd we introduce
Πn(X) and Σn(X) using relatively open sets (G ∩ X) as Σ1 and relatively
closed sets (F ∩X) as Π1. Thus,

(1c12)
Σ1 = G, Σ2 = Fσ, Σ3 = Gδσ, . . .

Π1 = F, Π2 = Gδ, Π3 = Fσδ, . . .

We have
Σ1 ⊂ (Π1)σ = Σ2

(think, why); using it instead of (1b10) we get 1b12–1b14 as before, but for
n = 1, 2, . . . :

(1c13) ∼Σn = Πn, Πn∪Σn ⊂ Πn+1∩Σn+1, (Πn)ds = Πn, (Σn)ds = Σn.

1c14 Extra exercise. For every function R → R, the set of its continuity
points belongs to Π2(R).

Prove it.
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1c15 Core exercise. If X ⊂ Rd1 and ϕ : X → Rd is a continuous map then

Φ
(
Πn(Rd)

)
⊂ Πn(X) , Φ

(
Σn(Rd)

)
⊂ Σn(X) ;

as before, Φ = ϕ−1 : 2Rd → 2X . If, in addition, ϕ is a homeomorphism (of X
to ϕ(X)) then

Φ
(
Πn(Rd)

)
= Πn(X) , Φ

(
Σn(Rd)

)
= Σn(X) .

Prove it.

1c16 Core exercise. If X ⊂ Rd then

Πn(X) = {A ∩X : A ∈ Πn(Rd)} , Σn(X) = {A ∩X : A ∈ Σn(Rd)} .

Prove it.

1c17 Core exercise. If X ⊂ Rd and A ⊂ X then

A ∈ Πn(X) ∧ X ∈ Πm(Rd) =⇒ A ∈ Πmax(m,n)(Rd) ,

and the same for Σ(. . . ).
Prove it.

Treating X = {0, 1}∞ as (a copy of) the Cantor set C (recall (1a19)) we
know that the cylindrical algebra E on {0, 1}∞ is the clopen algebra on C
(recall 1a20). Also, Σ1(X, E) = Eσ = Σ1(C) is the set of all open sets (recall
1b7) whence (by induction)

Πn(X, E) = Πn(C) , Σn(X, E) = Σn(C) for n = 1, 2, . . .

1c18 Theorem (Lebesgue 1905).

Πn(C) 6= Σn(C) for n = 1, 2, . . .

The theorem states that F 6= G (evident), Gδ 6= Fσ (follows easily from
the Baire category theorem), Fσδ 6= Gδσ (did you know?), Gδσδ 6= Fσδσ
(wow!), and so on.

Equivalently,

Πn(X, E) 6= Σn(X, E) for n = 1, 2, . . .

where X = {0, 1}∞ and E is the cylindrical algebra. That is, Eδ 6= Eσ,
Eσδ 6= Eδσ, Eδσδ 6= Eσδσ and so on.
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The proof is a wonderful reincarnation of the famous Cantor’s diagonal
argument.1 Let us recall this argument.

Theorem. It is impossible to map a set X onto the set 2X .

Proof. Let f : X → 2X . We define A ⊂ X by

∀x
(
x ∈ A ⇐⇒ x /∈ f(x)

)
.

It cannot happen that A = f(x0) for some x0 ∈ X, since this would imply

x ∈ f(x0) ⇐⇒ x ∈ A ⇐⇒ x /∈ f(x)

for all x, in particular, for x = x0,

x0 ∈ f(x0) ⇐⇒ x0 /∈ f(x0) ;

a contradiction.

Treating x as a code of the set f(x) we interpret the crucial relation
x /∈ f(x) as

“the set encoded by x does not contain x”.

Keeping this phrase in mind, we’ll encode sets of Σn by points of the Cantor
set.

For now X is arbitrary, and E ⊂ 2X is countable, otherwise arbitrary. We
enumerate it: E = {E1, E2, . . . }.

The general form of a set A ∈ Eσ is, of course, A = A1 ∪ A2 ∪ . . .
where A1, A2, · · · ∈ E . However, we need another general form. We define
ξ1 : {0, 1}∞ → Eσ as follows: for all x ∈ X,

x ∈ ξ1(t) ⇐⇒ ∃n
(
x ∈ En ∧ t(n) = 1

)
.

1c19 Core exercise. Prove that ξ1 maps {0, 1}∞ onto Eσ.

Further we introduce the set {0, 1}∞×∞ = {0, 1}∞2
of all two-dimensional

arrays t of numbers t(m,n) ∈ {0, 1} given for m,n ∈ {1, 2, . . . }. (The
notation∞×∞ instead of {1, 2, . . . }×{1, 2, . . . } is informal but convenient).
We define ξ2 : {0, 1}∞×∞ → Eσδ as follows: for all x ∈ X,

x ∈ ξ2(t) ⇐⇒ ∀m ∃n
(
x ∈ En ∧ t(m,n) = 1

)
.

1c20 Core exercise. Prove that ξ2 maps {0, 1}∞×∞ onto Eσδ.
1More reincarnations: Gödel’s first incompleteness theorem; undecidability of the halt-

ing problem.
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In the same way, ξ3 : {0, 1}∞3 → Eσδσ,

x ∈ ξ3(t) ⇐⇒ ∃l ∀m ∃n
(
x ∈ En ∧ t(l,m, n) = 1

)
,

and so on.
We need a code in {0, 1}∞ rather than {0, 1}∞3

. But this is not a problem:

anyway it is just {0, 1}(a countable set). We choose bijections f2 : {1, 2, . . . }×
{1, 2, . . . } → {1, 2, . . . }, f3 : {1, 2, . . . }3 → {1, 2, . . . } and so on. We treat
t ∈ {0, 1}∞ as the code of the set ξ1(t) ∈ Eσ, but also of the set ξ2(t◦f2) ∈ Eσδ,
and ξ3(t ◦ f3) ∈ Eσδσ and so on. All sets of these classes have codes. We note
that

(1c21)

x ∈ ξ1(t) ⇐⇒ ∃n
(
x ∈ En ∧ t(n) = 1

)
,

x ∈ ξ2(t ◦ f2) ⇐⇒ ∀m ∃n
(
x ∈ En ∧ t(f2(m,n)) = 1

)
,

x ∈ ξ3(t ◦ f3) ⇐⇒ ∃l ∀m ∃n
(
x ∈ En ∧ t(f3(l,m, n)) = 1

)
and so on. The formulas above implement the phrase “the set encoded by t
contains x”.

Now we return to X, E of (the equivalent formulation of) Theorem 1c18:
X = {0, 1}∞ and E is the algebra of all cylindrical sets. The phrase “the set
encoded by x does not contain x” is implemented as follows:

¬∃n
(
x ∈ En ∧ x(n) = 1

)
, for Eσ

¬∀m ∃n
(
x ∈ En ∧ x(f2(m,n)) = 1

)
, for Eσδ

¬∃l ∀m ∃n
(
x ∈ En ∧ x(f3(l,m, n)) = 1

)
for Eσδσ

and so on. (Here “¬” is the negation.)

1c22 Core exercise. Prove that the set A1 ⊂ X defined by

∀x
(
x ∈ A1 ⇐⇒ ¬∃n (x ∈ En ∧ x(n) = 1)

)
belongs to ∼(Eσ).

1c23 Core exercise. Prove that the set A2 ⊂ X defined by

∀x
(
x ∈ A2 ⇐⇒ ¬∀m ∃n (x ∈ En ∧ x(f2(m,n)) = 1)

)
belongs to ∼(Eσδ).

In the same way, the set A3 defined by

∀x
(
x ∈ A3 ⇐⇒ ¬∃l ∀m ∃n (x ∈ En ∧ x(f3(l,m, n)) = 1)

)
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belongs to ∼(Eσδσ); and so on.
Finally, A1 /∈ Eσ, since otherwise A1 = ξ1(t) for some t (all sets have

codes!), and therefore by (1c21), for all x

x ∈ A1 ⇐⇒ x ∈ ξ1(t) ⇐⇒ ∃n
(
x ∈ En ∧ t(n) = 1

)
,

which contradicts the definition of A1 when x = t.
Similarly, A2 /∈ Eσδ, since otherwise A2 = ξ2(t ◦ f2) for some t, and

therefore by (1c21), for all x

x ∈ A2 ⇐⇒ x ∈ ξ2(t ◦ f2) ⇐⇒ ∀m ∃n
(
x ∈ En ∧ t(f2(m,n)) = 1

)
,

which contradicts the definition of A2 when x = t.
In the same way A3 /∈ Eσδσ, and so on.
Theorem 1c18 is thus proved.1

Now we are in position to prove that

(1c24) Πn ∪ Σn $ Πn+1 ∩ Σn+1 .

Denoting the left half of the Cantor set C by C0 and the right half by C1 we
observe that C0, C1 are homeomorphic to C = C0 ]C1. (In terms of {0, 1}∞
it means X0 = {x : x(1) = 0} and X1 = {x : x(1) = 1}.) Thus (recall
1c15) Πn(C0) 6= Σn(C0), Πn(C1) 6= Σn(C1). We take A0 ∈ Πn(C0) \ Σn(C0),
A1 ∈ Σn(C1) \ Πn(C1) and A = A0 ∪ A1. We note that A0, A1 belong to
the algebra Πn+1(C)∩Σn+1(C) (recall 1b15). However, A /∈ Πn(C)∪Σn(C),
which proves (1c24).

The same set A may be treated as a subset of Rd (since C ⊂ R ⊂ Rd).

1c25 Core exercise. Prove that A ∈ Πn+1(Rd) ∩ Σn+1(Rd).

1c26 Core exercise. Prove that A /∈ Πn(Rd) ∪ Σn(Rd).

We see that

(1c27) Πn(Rd) ∪ Σn(Rd) $ Πn+1(Rd) ∩ Σn+1(Rd) for n = 1, 2, . . .

1You may say: no, rather, for every n separately the claim “Πn(X, E) 6= Σn(X, E)” is
proved (and the quantifier complexity of the proof depends on n). We still do not have a
proof of the claim “∀nΠn(X, E) 6= Σn(X, E)”.

If you understand the problem, you should be able to solve it. To this end, define (by

a single definition) the sequence (fn)n of maps fn : X{1,2,... }
2n → X such that

fn(x) = ∩i1 ∪j1 · · · ∩in ∪jnxi1,j1,...,in,jn for x =
(
xi1,j1,...,in,jn

)
i1,j1,...,in,jn .
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and therefore

(1c28) Πn(Rd) $ Πn+1(Rd) , Σn(Rd) $ Σn+1(Rd) .

The same holds for every closed X ⊂ Rd that contains a homeomorphic copy
of the Cantor set. (In fact, every uncountable closed set does.)

Finally we prove that (recall 1b16)

(1c29) the algebra ∪n Σn(C) is not a σ-algebra.

To this end we choose infinitely many disjoint clopen subsets C1, C2, · · · ⊂ C
homeomorphic to C (in terms of X = {0, 1}∞ we may take Xk = {x : x(1) =
· · · = x(k − 1) = 0, x(k) = 1}). Then we choose An ∈ Σn(Cn) \ Σn−1(Cn)
and A = A1 ∪ A2 ∪ . . . Clearly, A ∈

(
∪nΣn(C)

)
σ. However, A /∈ ∪nΣn(C),

since A ∈ Σn(C) (for some n) would imply An+1 = A ∩ Cn+1 ∈ Σn(Cn+1).

1c30 Core exercise. Prove that the algebra ∪nΠn(Rd) = ∪nΣn(Rd) =
∪n
(
Πn(Rd) ∩ Σn(Rd)

)
is not a σ-algebra.

These Πn,Σn are the so-called finite Borel hierarchy. Theorem 1c18 and
its implications (“the hierarchy theorem”) state that the finite Borel hierar-
chy does not collapse.1

1d Measurable spaces, measurable maps

Hopefully you are acquainted with some kinds of spaces (such as Euclidean
spaces, Hilbert spaces, topological and metric spaces, measure spaces), but
measurable spaces will probably surprise you.

1d1 Definition. A measurable space is a pair (X,A) consisting of a set X
and a σ-algebra A on X. Sets belonging to A are called measurable.

Warning. In contrast to measure spaces, in this context (a) no measure
is given; (b) no subset is called negligible (null); (c) measurability of a subset
A ⊂ X means just A ∈ A.2

1This hierarchy can be extended to the (transfinite) Borel hierarchy, indexed by all
countable ordinals, but this is beyond our course. In fact, the hierarchy does not collapse
on a countable ordinal (Lebesgue 1905). The whole Borel σ-algebra is reached only at the
first uncountable ordinal.

2The phrase “measurable space” is sometimes avoided “as in fact many of the most
interesting examples of such objects have no useful measures associated with them” (D.H.
Fremlin, ”Measure theory”, Vol. 1, Sect. 111B).
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1d2 Example. (a) Rd with its Borel σ-algebra; (b) the Cantor set with its
Borel σ-algebra; (c) the set {0, 1}∞ with the σ-algebra generated by cylin-
drical sets.

Let (X,A) and (Y,B) be measurable spaces.

1d3 Definition. A map ϕ : X → Y is called a measurable map from (X,A)
to (Y,B), or just measurable, if ϕ−1(B) ∈ A for every B ∈ B.

1d4 Core exercise. The composition of measurable maps is measurable.
That is, if ϕ is a measurable map from (X,A) to (Y,B) and ψ is a measurable
map from (Y,B) to (Z, C) then x 7→ ψ(ϕ(x)) is a measurable map from (X,A)
to (Z, C).

Prove it.

1d5 Definition. Measurable spaces (X,A) and (Y,B) are called isomorphic
if there exists a bijection ϕ : X → Y such that ϕ and ϕ−1 are measurable
(such ϕ is called an isomorphism).

1d6 Core exercise. Prove that “isomorphic” is an equivalence relation be-
tween measurable spaces.

1d7 Example. Measurable spaces of 1d2(b,c) are evidently isomorphic. In
fact, they are also isomorphic to 1d2(a) (irrespective of the dimension d), but
this is far not evident.

1d8 Core exercise. Let (X,A) and (Y,B) be measurable spaces, and B =
σ(F) (for a given F ⊂ 2Y ). Prove that a map ϕ : X → Y is measurable if
and only if ϕ−1(B) ∈ A for all B ∈ F .

Whenever the σ-algebra B on Y is called the Borel σ-algebra, measurable
maps X → Y are called Borel maps (or Borel measurable maps), as well as
Borel functions (mostly for Y = R).

Whenever X ⊂ Rd, by default X is endowed with its Borel σ-algebra.
Whenever X is at most countable, by default X is endowed with the

σ-algebra 2X .

1d9 Core exercise. If X ⊂ Rd is at most countable then its Borel σ-algebra
is equal to 2X .

Prove it.

1d10 Core exercise. Let (X,A) be a measurable space. Prove that a
function f : X → R is Borel if and only if {x : f(x) ≤ b} ∈ A for all b ∈ R.
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1d11 Core exercise. If X ⊂ Rd1 then every continuous map X → Rd is
Borel.

Prove it.

1d12 Core exercise. If ϕ : X → (0,∞) is a Borel function then also
1
ϕ

: x 7→ 1
ϕ(x)

is a Borel function, and x 7→
(
ϕ(x), 1

ϕ(x)

)
is a Borel map

X → R2.
Prove it.

1d13 Definition. LetX be a set, (Y,B) a measurable space, and ϕ : X → Y .
Then:

(a) The σ-algebra generated by ϕ is σ(ϕ) = Φ(B) = {ϕ−1(B) : B ∈ B}.
(Recall 1b20; as before, Φ = ϕ−1 : 2Y → 2X .)

(b) The σ-algebra generated by s sequence of maps ϕi : X → Y is
σ(ϕ1, ϕ2, . . . ) = σ

(
σ(ϕ1)∪σ(ϕ2)∪. . .

)
= σ

(
Φ1(B)∪Φ2(B)∪. . .

)
= σ

(
{ϕ−1

i (B) :
B ∈ B, i = 1, 2, . . . }

)
.

Likewise, σ(ϕ1, ϕ2, . . . ) is defined when ϕi : X → Yi, Yi being endowed
with Bi. Also, i may run over an arbitrary index set (finite, countable,
uncountable).

Similarly to 1b18, for an uncountable I,

(1d14) σ
(
{ϕi : i ∈ I}

)
=

⋃
i1,i2,···∈I

σ(ϕi1 , ϕi2 , . . . ) .

1d15 Definition. The product of two measurable spaces is a measurable
space

(X,A)× (Y,B) = (X × Y,A× B) ,

whereA×B is the σ-algebra generated by the two projection maps, (x, y) 7→ x
and (x, y) 7→ y.1

That is, A×B = σ
(
{A× Y : A ∈ A} ∪ {X ×B : B ∈ B}

)
= σ

(
{A×B :

A ∈ A, B ∈ B}
)
. By default, X × Y is endowed by A× B.

Likewise, the product of arbitrarily many measurable spaces (Xi,Ai) con-
sists of the set X̃ =

∏
iXi and the σ-algebra Ã generated by all projection

maps pi : X → Xi, pi(x) = x(i).
In particular, taking (Xi,Ai) = (X,A) for all i we get the power, (X̃, Ã) =

(X,A)I .

1d16 Core exercise. The measurable space {0, 1}∞ of 1d2(c) is the same
as the product space {0, 1} × {0, 1} × . . .

Prove it.

1It is often denoted by A⊗ B rather than A× B.
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1d17 Core exercise. Prove that (R,B(R))× (R,B(R)) = (R2,B(R2)).

Similarly, (Rd1 ,B(Rd1))× (Rd2 ,B(Rd2)) = (Rd1+d2 ,B(Rd1+d2)).

1d18 Core exercise. Let (X,A), (Y1,B1) and (Y2,B2) be measurable spaces.
Prove that a map ϕ : X → Y1 × Y2, ϕ(x) =

(
ϕ1(x), ϕ2(x)

)
, is measurable if

and only if ϕ1, ϕ2 are measurable.

The same holds for
∏

i(Yi,Bi).
Now reconsider 1d12. . .

1d19 Core exercise. If ϕ, ψ : X → Rd are Borel maps then ϕ+ψ is a Borel
map. (Here (ϕ+ ψ)(x) = ϕ(x) + ψ(x).)

Prove it.

1d20 Definition. A measurable space (X,A) is separated, if A separates
points, that is,

∀x1, x2 ∈ X
(
x1 6= x2 =⇒ ∃A ∈ A (x1 ∈ A ∧ x2 /∈ A)

)
.

Equivalently,

∀x1, x2 ∈ X
(
∀A ∈ A (x1 ∈ A ⇐⇒ x2 ∈ A) =⇒ x1 = x2

)
.

(See also 1a13.)

1d21 Core exercise. If (Xi,Ai) is separated for every i ∈ I then
∏

i∈I(Xi,Ai)
is separated.

Prove it.

1d22 Core exercise. If X is at most countable and (X,A) is separated
then A = 2X .

Prove it.

Now reconsider 1d9. . .

1d23 Definition. A measurable space (X,A) is countably separated, if A
contains some at most countable set that separates points.

That is,

∀x1, x2 ∈ X
(
∀n (x1 ∈ An ⇐⇒ x2 ∈ An) =⇒ x1 = x2

)
for some A1, A2, · · · ∈ A.
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1d24 Core exercise. If I is at most countable and each (Xi,Ai) is countably
separated then

∏
i∈I(Xi,Ai) is countably separated.

Prove it.

For uncountable I the product σ-algebra is quite weak. By 1d14, it
contains only sets “depending on countably many coordinates each”. More
formally, let (X̃, Ã) =

∏
i∈I(Xi,Ai), then

Ã =
⋃

i1,i2,···∈I

σ(pi1 , pi2 , . . . ) ;

as before, pi : X̃ → Xi are the projection maps.

1d25 Extra exercise. If I is uncountable and X contains more than one
point then (X,A)I is not countably separated.

Prove it.

Thus, “separated” does not imply “countably separated”.

1d26 Extra exercise. In the measurable space [0, 1][0,1] each of the following
sets is not measurable:

∗ all Borel functions [0, 1]→ [0, 1];

∗ all continuous functions [0, 1]→ [0, 1];

∗ all increasing functions [0, 1]→ [0, 1];

∗ all constant functions [0, 1]→ [0, 1];

∗ the zero function [0, 1]→ [0, 1] only.

Prove it.

A larger σ-algebra on [0, 1]I , the so-called Borel σ-algebra, is generated
by all open sets (in the product topology). An open set in [0, 1]I is the union
of open cylindrical sets of the form

{x : x(i1) ∈ (a1, b1), . . . , x(in) ∈ (an, bn)} ;

it is generally not a countable union, and so, an open set need not belong to
the product σ-algebra.

1d27 Extra exercise. Each of the following sets belongs to the Borel
σ-algebra on [0, 1][0,1]:

∗ the zero function [0, 1]→ [0, 1] only;

∗ all constant functions [0, 1]→ [0, 1];

∗ all increasing functions [0, 1]→ [0, 1];
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∗ all continuous functions [0, 1]→ [0, 1].

Prove it.

About all Borel functions [0, 1] → [0, 1], I do not know. (I guess, it does
not belong.)

1d28 Definition. A measurable space (X,A) (as well as its σ-algebra A) is
countably generated, if A = σ(A1, A2, . . . ) for some A1, A2, · · · ∈ A.

Finitely generated σ-algebras are finite (think, why), but countably gen-
erated σ-algebras are generally uncountable.1

1d29 Core exercise. Prove that every subset of Rd (with its Borel σ-algebra)
is a countably generated measurable space.

1d30 Core exercise. If I is at most countable and each (Xi,Ai) is countably
generated then

∏
i∈I(Xi,Ai) is countably generated.

Prove it.

1d31 Extra exercise. If I is uncountable and A 6= {∅, X} then (X,A)I is
not countably generated.

Prove it.

1d32 Core exercise. If the σ-algebra A = σ(A1, A2, . . . ) separates points
then the sequence A1, A2, . . . separates points.

Prove it.

1d33 Definition. A Borel space is a separated, countably generated mea-
surable space.2

1d34 Core exercise. Every Borel space is countably separated.
Prove it.

1d35 Core exercise. (X,A) is countably separated if and only if for some
sub-σ-algebra A1 ⊂ A the measurable space (X,A1) is a Borel space.

Prove it.

Recall the idea of (1a18): ϕ : X → {0, 1}∞,

(1d36) ϕ(x) =
(
1A1(x),1A2(x), . . .

)
.

1In fact, of cardinality not higher than continuum.
2Some authors define a Borel space as just a measurable space, not necessarily separated

and countably generated.
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1d37 Core exercise. A measurable space is countably separated if and only
if it admits a measurable injection (that is, one-to-one map) into {0, 1}∞ (or
the Cantor set).

Prove it.

1d38 Core exercise. A measurable space (X,A) is countably generated if
and only if A is generated by some map X → {0, 1}∞.

Prove it.

1d39 Core exercise. A measurable space (X,A) is a Borel space if and
only if A is generated by some injection into {0, 1}∞.

Prove it.

1d40 Core exercise. A measurable space is a Borel space if and only if it
is isomorphic to a subset of R (with its Borel σ-algebra).

Prove it.

Clearly, R may be replaced with any Rd, as well as with the Cantor set.
(Thus, Rd is isomorphic to a subset of the Cantor set; compare it with 1d7).

It is trivial that every σ-algebra is the union of its countably generated
sub-σ-algebras (since it evidently is the union of its at most four-element
sub-σ-algebras). However, the following fact is worth to note.

1d41 Core exercise. Let (X,A) × (Y,B) = (Z, C), then C is the union of
A1×B1 where A1 runs over all countably generated sub-σ-algebras of A, and
B1 — of B.

Prove it.

1d42 Core exercise. Let (X,A) × (Y,B) = (Z, C), then every C ∈ C is of
the form

C = (ϕ× ψ)−1(E)

for some measurable maps ϕ : A → {0, 1}∞, ψ : B → {0, 1}∞ and some
measurable E ⊂ {0, 1}∞×{0, 1}∞. Here ϕ×ψ : X×Y → {0, 1}∞×{0, 1}∞,
(ϕ× ψ)(x, y) =

(
ϕ(x), ψ(y)

)
.

Prove it.

Clearly, {0, 1}∞ may be replaced with the Cantor set, or R, or any Rd.

Borel subsets of R2 (or of the square of the Cantor set) are a universal
model for measurable sets in the product of two arbitrary measurable
spaces.
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Hints to exercises

1a3: first, try n = 2, 3.

1a6: (E ∪ ∼E)d contains all singletons (single-point sets).

1a7: Φ(B1 ∩B2) = Φ(B1) ∩ Φ(B2).

1a11: use 1a7.

1a12: k is the number of points in ϕ(X) ⊂ {0, 1}n.

1a14: use (1a9) and 1a13.

1a16: ∀A,B ∈ (E ∪ ∼E)ds ∃F [⊂ E , finite]
(
A,B ∈ (F ∪ ∼F)ds

)
.

1a20: given a clopen A ⊂ C, take n such that the distance between A and
C \ A exceeds 3−n.

1a21: open the brackets in (A1 ∪ · · · ∪ Ak) ∩ (B1 ∪ · · · ∪Bl).

1a22: (E ∪ ∼E)dsd = (E ∪ ∼E)sdd = (E ∪ ∼E)sd.

1b1: open the brackets in (A1 ∪ A2 ∪ . . . ) ∩ (B1 ∪B2 ∪ . . . ).
1b4: x ∈ Ap if and only if

∀ε > 0 ∃n ∀m
∣∣∣x(1) + · · ·+ x(n+m)

n+m
− p
∣∣∣ < ε .

1b7: E is a (countable) base of the topology on the Cantor set.

1b12: by induction.

1b13: by induction, using (1b10) and 1b12.

1b14: (Σn−1)δs ⊂ (Σn−1)sδ by 1b1.

1b15: use 1b14 and 1b12.

1b16: use 1b15.

1b18: similar to 1a15.

1b22: Φ(σ(F)) is a σ-algebra containing Φ(F).

1b23: denote E = σ(Φ(F)), then F ⊂ Φ−1(E); σ(F) ⊂ Φ−1(E); Φ(σ(F)) ⊂
E .

1c2: apply (1b24) to the embedding X → Rd, x 7→ x.

1c4: E ⊂ G ⊂ Eσ.

1c5: ∼E ⊂ G ⊂ Eσ.

1c6: E ⊂ G ⊂ Eσ.

1c7: E ⊂ G ⊂ Edσ.

1c10: use 1b7.

1c15: by induction, using 1b19 (and 1a7).
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1c16: use 1c15.

1c17: use 1c16.

1c20: consider Am = {x : ∃n(x ∈ En ∧ t(m,n) = 1)} ∈ Eσ.

1c22: {x : x ∈ En ∧ x(n) = 1} ∈ E for all n.

1c23: {x : x ∈ En ∧ x(f2(m,n)) = 1} ∈ E for all m,n.

1c25: use 1c17.

1c26: use 1c16.

1c30: recall the proof of (1c27).

1d6: use 1d4.

1d8: use 1b21.

1d9: a singleton (that is, single-point set) is closed.

1d10: use 1d8; recall 1c4, 1c5.

1d11: apply 1d8 to open sets.

1d12: use 1d4 and 1d11.

1d16: σ(pk) = σ(Ak), Ak as in 1a2.

1d17: use 1c7.

1d18: use 1d8.

1d19: the map (x, y) 7→ x+ y is continuous, therefore Borel.

1d21: ∀i
(
pi(x1) = pi(x2)

)
=⇒ x1 = x2.

1d22: each singleton is the intersection of some sequence of measurable sets.

1d24: E = ∪ip−1
i (Ei) is countable.

1d29: recall 1c4.

1d30: E = ∪ip−1
i (Ei) is countable.

1d32: {A : x1 ∈ A ⇐⇒ x2 ∈ A} is a σ-algebra (for given x1, x2).

1d34: use 1d32.

1d35: a separating sequence generates such A1.

1d37: recall 1a13.

1d38: (1d36); σ(ϕ) = σ(A1, A2, . . . ).

1d39: use 1d32 and (1d36).

1d40: use 1d39 and 1d29.

1d41: use 1d14.

1d42: use 1d41 and 1d38.
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Fσ, 6
G, 6
Gδ, 6
Πn, 7
Πn(X), 10
Πn(Rd), 10
Φ(F), 2
Φ = ϕ−1, 2
Φ−1(E), 2
Σn, 7
Σn(X), 10
Σn(Rd), 10
σ(ϕ), 17
σ(ϕ1, ϕ2, . . . ), 17
(X,A)× (Y,B), 17
(X,A)I , 17
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