
Admission and Routing Control with Partial Information andLimited Bu�ersE. ALTMAN�, R. MARQUEZy and U. YECHIALIzAbstratWe study problems of admission and routing ontrol for loss systems omprised of a ontroller and Cdown-stream servers. We fous on problems in whih ontrol ations have to be taken with either delayedor with no information on the state of the down-stream servers. We �rst onsider a problem of routing intoC servers and ompare the performane of two poliies: a stati round-robin poliy, whih does not waitfor the delayed information at a risk of losing ustomers at the busy servers, and a Wait poliy, that avoidslosses at the servers but risks losses at the ontroller bu�er. We identify regions in whih eah of the poliiesperforms better. We then study the problem with no information on down-stream servers and propose atimer mehanism to deide when to dispath an arriving ustomer. We optimize the value of the timer'sparameter. Our study is aompanied with numerial investigations.Keywords: Admission ontrol, Routing ontrol, Delayed information, Loss systems.1 IntrodutionIn high speed networks propagation delay of information an not be negleted with respet to transmissiondelays. This is in partiular the ase in geosatellite satellite networks in whih round-trip information delaysare around 250mse. In addition, large random time varying delays are often inurred due to queueing.Many network ontrol problems (suh as routing and admission ontrol) have therefore to take into aountthe information delay. In suh ases we have either to take deisions without waiting for the delay or evaluatethe impat of having to wait for the delays on the system performane.In this paper we fous on admission and routing problems ourring in loss systems, in whih stateinformation is either delayed or nonavailable. The ommon objetives in the problems that we pose is to�INRIA, 2004 route des Luioles, B.P. 93, 06902 Sophia Antipolis, Frane, also with CESIMO, Universidad de Los Andes,M�erida, Venezuela (altman�sophia.inria.fr)yFaultad de Ingenieria, Universidad de Los Andes, M�erida, Venezuela (marquez�ula.ve)zDepartment of Statistis and Operations Researh, Shool of Mathematial Sienes, Tel Aviv University, Tel Aviv 69978,Israel (uriy�post.tau.a.il) 1



minimize losses (or equivalently, maximize the throughput).We �rst onsider a problem of routing into C servers and ompare the performane of two poliies:1. The stati round-robin poliy, whih does not wait till the delayed information on servie ompletionarrives; it dispathes eah arriving ustomer aording to the round-robin poliy at the risk of loss ofthat ustomer at the server, if it has not ompleted its servie of the previous ustomer there.2. The Wait poliy, whih only dispathes a job to a server one it reeives the information that the serverhas ompleted servie. Customers that arrive when the Wait poliy is used have to queue in a �nitequeueing faility till they are dispathed. This poliy avoids losses at the servers but results in losseswhen a ustomer arrives and �nds the queueing faility full.We evaluate the performane of both poliies and show that for large delays the round robin outperformsthe Wait poliy, and for low delays the situation is reversed. This suggests the existene of a threshold suhthat for delays larger than the threshold it is better to use the round robin poliies, and for delays lowerthan the threshold it is better do use the Wait poliy. Through an extensive numerial investigation, wevalidate the existene of suh a threshold and study its properties.We then study the problem with no information on down-stream servers and propose a timer mehanismto deide when to dispath an arriving ustomer. We optimize the value of the timer's parameter. Our studyis aompanied with numerial investigations.The struture of the paper is as follows. We introdue in the next setion a brief (nonexhaustive) surveyof ontrol problems in teleommuniations with delayed information. We then introdue in Setion 3 thegeneral model. Then we study in Ssubsetion 4.1 the performane of the Wait poliy and in Subsetion 4.2that of the round poliies. The omparison between the poliies and the existene of a threshold, obtainednumerially, are the subjet of Setion 5. Finally the timer model is presented, analyzed and optimized inSetion 6.2 Related workWe briey review work on ontrol problems with delayed information in teleommuniations. Flow ontrolwith delayed information has been studied in [4, 5, 10℄ by transforming the problem into an equivalentMDP with full information. The �rst paper has been extended to noisy delayed information in [3℄. Twotypes of ow ontrol have been studied. The �rst type is a rate-base ow ontrol, in whih the rate oftransmission of pakets is diretly ontrolled. The seond type is a window-based ow ontrol, in whih theontroller adjusts its window dynamially; a window stands for the number of pakets that an be sent beforeaknowledgements to the soure arrive from the destination. Work on rate-based ow ontrol with delay2



in the framework of linear quadrati ontrol (linear dynamis and quadrati ost) has appeared in [1℄ andreferenes therein. The impat of delay on window-based ow ontrol in the framework of Jakson networkis analyzed in [7℄. A problem of optimal priority assignment for aess to a single hannel with delay hasbeen investigated in [2℄. Routing with delayed information has been investigated in [6, 9, 11℄.The model in our paper is losely related to that in [11℄ who also ompares the performane of poliiesthat wait for information and poliies that ignore the information. The framework is however of an in�nitequeue and the performane measure studied is expeted delays. This is in ontrast to our framework in whihwe study �nite bu�ers and are interested in maximizing throughputs and minimizing loss probabilities.We �nally mention some works ontrol of ommuniation with delayed information in the ase of severaldeentralized ontrollers. The referene uses a framework known as "delay sharing information", in whihthe state spae an be deomposed to several parts, eah orresponding to another ontroller. Now eahontrol has an immediate information on his own part of the state spae, but a delayed information onthe parts orresponding to other ontrollers. In [13℄, a deentralized ontrol in paket swithed satelliteommuniation is studied, whereas a deentralized ontrol problem for multiaess broadast networks havebeen studied in [8℄. In both examples, eah ontroller has to deide whether to transmit or not, withoutknowing if pakets have arrived in the urrent time unit to other nodes. If they did, then pakets from othernodes ould be sheduled for transmission at the same time and ollisions ould our.3 ModelA single ontroller aepts arriving messages (jobs) and dispathes them to C down-stream servers.Assumptions:1. Arrivals: The external arrival is Poisson (�) with inter arrival times IA � Exp(�) having Laplae-Stieltjes Transform (LST) E[expf�s � IAg℄ =fIA(s).2. The ontroller: The ontroller has a bu�er of size N + 1 (where 0 � N � 1) i.e., if N = 0, thenonly one job an reside in the ontroller's bu�er. If there are N+1 jobs in the ontroller's bu�er andarrival ours, it is lost.3. The servers: The bu�er of eah server is of size Ns + 1. The servie time B of eah individual job isdistributed Exp(�).4. Information: Information about servie ompletion reahes the ontroller only after a random delayV � Exp().We assume that all inter-arrival times, servie times and information delays are independent.3



We propose below several poliies for the ontroller and ompare the performanes, under di�erentassumptions on the information delay.4 Model 14.1 The Wait OptionWe assume here that the ontroller waits until he reeives information on servie ompletion before dispath-ing a job (if available) to a server. (In suh a ase there ould be at most one job in eah server's bu�er.)This leads to the following Markovian model.Due to the delayed information on servie ompletions, the ontroller does not know the real number ofjobs present in the system. We shall adopt here the view that the ontroller onsiders a job to be \in thesystem" until the information on the departure of that job beomes known to the ontroller. Let X denotethe number of jobs \in the system" and let J denote the number of atually operating (serviing) servers. Toillustrate the transitions between states onsider the ase N = 0. Assume that there are J = j < C atualoperating servers and that the ontroller onsiders there to be X = n jobs in the system (learly n � j). Wedenote this situation as state (j; n). When n = C and a new job arrives the job is kept at the ontroller'sbu�er and the state beomes (j; C + 1). At that time there are C � j servers that are free, although thisinformation is not yet available to the ontroller. The remaining time till the �rst information on a newserver beoming free arrives at the ontroller is exponentially distributed with parameter (C � j). As soonas this information beomes available, the ontroller immediately dispathes the job he holds in his bu�er,bringing the state of the system to (j + 1; C). When n < C and a job arrives it is immediately dispathedto one of the C � n available servers, bringing the state of the system to (j + 1; n + 1). Finally, when theontroller ounts n = C + 1, any new arrival is lost.It should be noted that aording to this poliy, there are no losses at the servers' side.Let Pjn be the probability that there are j operating servers and total n jobs "in the system" as ountedby the ontroller (j � min(n;C); n � C +N + 1).The rate-of-transition diagram for N = 0 is depited in Figure 1, where the vertial axis denotes thenumber of operating servers, J , and the horizontal axis depits the total number of jobs \in the system", X .
4



d���� � d���� �d?���� � d?���� � d?���� �
d?���� �

d� -� d��I?
d��I?d��I?

d� -?�
d� -?� d��I?

d?���� �a aa a aaa aa a aa a aa
a aaaaa aaa aaa

aaaaaaaaa
aaa

a aaa aa
aaa
aaa

d d d
d d dd d

dd
d

d

da aa a aa
��� ?��� ?���

���� ���� ��I?���� � -?

?-?
?���

?���

� -?� �
� � � �� � �

�C�
�

�

�

C�
j� j� j�

2� 2� 2� 2� 2�
 

 2

(C � j)

C C(C � 1)(C � 2)
(C � 1)�(C � 1)�(C � 1)�

(C � 1)(C � 2)(C � 3) (C � 1)(C � 2)� � � �
(C � j)(C � j � 1)j� = n�

(n � 2)(n� 1)n
210 1 2 C + 1

C

C � 1 Cn = j

j
J

0

C � 1

XFigure 1: Transition rate diagram for N = 0

5



Balane Equations, N � 0When N � 0, the balane equations for the state probabilities Pjn are the following:j = 0 : (1)�P00 = P01; n = 0(�+ n)P0n = (n+ 1)P0;n+1 + �P1n; 1 � n � C � 1(�+ C)P0C = �P1C ; n = C(� + C)P0;n = �P1;n+1 + �P0;n�1; n = C + 1; ::::; C +NCP0;C+N+1 = �P1;C+N+1 + �P0;C+N ; n = C +N + 11 � j � C � 1 : (2)(� + j�)Pjj = Pj;j+1 + �Pj�1;j�1 n = j(� + (n� j) + j�)Pjn = (n+ 1� j)Pj;n+1 + (j + 1)�Pj+1;n + �Pj�1;n�1 j + 1 � n � C � 1(�+ (C � j) + j�)PjC = (j + 1)�Pj+1;C + �Pj�1;C�1 + (C � j + 1)Pj�1;C+1 n = C(�+ (C � j) + j�)Pj;n = (j + 1)�Pj+1;n + �Pj;n�1 + (C � j + 1)PC�1;n+1 n = C + 1; :::; C +N((C � j) + j�)Pj;C+N+1 = (j + 1)�Pj+1;C+N+1 + �Pj;C+N n = C +N + 1j = C : (3)(�+ C�)PCC = �PC�1;C�1 + PC�1;C+1 n = C(�+ C�)PCn = �PC;n�1 + PC�1;n+1 n = C + 1; :::; C +NC�PC;C+N+1 = �PC;C+N n = C +N + 1:Now, for this "wait" poliy of the ontroller, whenever there are n = C +N + 1 jobs in the system (i.e.the ontroller holds N + 1 jobs in his bu�er) eah new arrival will be lost. Thus, the probability of loss isgiven by Ploss(wait) = CXj=0 Pj;C+N+1 =: P�;C+N+1:The mean number of losses per unit time (i.e. loss rate) is�Ploss(wait) = �P�;C+N+1:A limiting ase Suppose 1= ! 0. That is, the server obtains information on servie ompletions with nodelay. The state spae ollapses to a one dimensional spae (that denotes the number of jobs in the system)and the transition diagram, for N > 0, is depited in Figure 2.Denoting a = �=�, the balane equations are:Pn = 1n!anP0; n = 0; 1; 2; :::; C (4)6
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Figure 2: Transition rate diagram for 1= = 0 and N > 0PC+k = � aC �k PC ; k = 1; 2; :::; N + 1 (5)As the probabilities sum to one, we getP�10 = CXn=0 ann! + aCC! N+1Xk=1 � aC �k :Thus, Ploss(wait) = PC+N+1 = aCC! � aC �N+1CXn=0 ann! + aCC! N+1Xk=1 � aC �kThe expeted number of losses per unit time is �Ploss(wait) = �PC+N+1.4.2 No Wait: The Round Robin PoliyAording to this poliy the ontroller dispathes jobs following the Round Robin (RR) mehanism, that is,arrival number kC + i is sent to server no. i (k = 0; 1; 2; � � �; 1 � i � C). Thus, the inter arrival time to eahserver is Erlang(C; �) with mean C=�. We assume that Ns = 0 for eah server.The probability of a loss Ploss(RR) at a given server is the probability that the inter-arrival time isshorter than the servie time B, i.e.Ploss(RR) = P [Erlang(C; �) < B℄ = � ��+ ��C = [ ~IA(�)℄C7



Thus the expeted number of losses per unit time is�Ploss(RR) = �� ��+ ��C :5 Comparison between Wait and RR poliies5.1 The extreme ases:  small and largeFor the limiting ase 1= ! 0, i.e. when full information is available,Ploss(RR) > Ploss(wait) i� � ��+ ��C = � aa+ 1�C > aCC! � aC �N+1CXn=0 ann! + aCC! N+1Xk=1 � aC �k :When N = 0 this is equivalent to CXn=0 ann! + aC � aCC! > aC � C! (a+ 1)C ;or to, CXn=0 ann! > aC � C! h(a+ 1)C � aCi (6)
Proposition 5.1 For the limiting ase 1= ! 0 we have: Ploss(RR) > Ploss(wait) for all C � 1.The proof follows diretly from the next two Lemmas.Lemma 5.1 When N = 0, Ploss(RR) > Ploss(wait) for all C � 1.Proof. Writing (a + 1)C = PCn=0 �Cn � an, the right hand side of (6) beomes 1C PCn=1 an(C+1�n)!(n�1)! . Itis now easy to hek that the oeÆient of eah power of a on the left hand side of (6) is greater than theorresponding oeÆient on the right hand side.Lemma 5.2 Ploss(wait) is monotone dereasing in N.
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Proof. Fix a value N � 0 and denote X the random variable orresponding to the number of ustomersin the system. Denote by X 0 the random variable orresponding to the number of ustomers in anothersystem whih di�ers from the original only by the fat that N 0 = N + 1. De�ne Y = max(X 0 � 1; 0) andnote that Y and X have the same range of (0; 1; 2; :::; C +N + 1). LetrX(0) = 0; rX(n) = P (X = n� 1)=P (X = n); n = 1; 2; 3; :::; C +N + 1:We de�ne in the same way rY . Then:rX (n) = 8<: n=a n = 1:::; C;C=a n = C + 1; :::; C +N + 1; rY (n) = 8>><>>: 2(1 + a)=a2 n = 1;(n+ 1)=a n = 2:::; C � 1;C=a n = C; :::; C +N + 1:It is easy to hek that for all n = 1; 2; :::; N + C + 1 we haverX (n) � rY (n):It then follows (see e.g. [12, eq. (4)℄)) that X � Y in the likelihood ratio and in the stohasti order ratio,whih implies that P (X = C +N + 1) � P (Y = C +N + 1)or equivalently, P (X = C +N + 1) � P (X 0 = C +N + 2):This establishes the proof.Remark 5.1 If 1= !1 then the ontroller, if waits, never dispathes jobs to the C hannels and all lossesare inurred by the ontroller, so Ploss(RR) < Ploss(Wait).
5.2 A threshold poliy: Numerial ResultsHaving seen that in the extreme ases RR is better when delays are large and Wait is better for short delays,we ould expet there to be a threshold ̂�(�; �) on the delay parameter suh that RR is better than Waitfor  < ̂�(�; �) and Wait is better than RR for  > ̂�(�; �). The existene of suh a threshold will besupported by our numerial investigation. Sine we an resale time (by rede�ning what is a basi timeunit), the threshold will be of the form: ̂�(�; �) = ��(�=�):Without loss of generality we an thus hoose � = 1 and hek the dependene of � on �.9



The next �gures analyze the ase of N = 0 and � = 1. Using Matlab, we did an exhaustive numerialstudy of the performane of both RR and Wait poliies as a funtion of the parameters by solving eq. (1)-(3).We onsider the ase of two, three and four servers (Fig. 3,4,5 respetively).We let  (horizontal axis) vary from 0.01 to 10. We take six values of �: 0.1000, 0.3162, 1.0000, 3.1623,10.0000 and 31.6228. The vertial axis in the �gures orresponds to the loss probability, and the horizontalaxis to the value of the parameter . For eah �xed � there is one pointed horizontal line that gives the lossprobability under the RR poliy, and there is also a urve of the loss probability as a funtion of  underthe Wait poliy. We see that for eah value of �, the urve desribing the Wait poliy intersets one thehorizontal line desribing the RR poliy. This shows that there is indeed a threshold �(�) whih is obtainedas the intersetion point.
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Figure 3: Numerial analysis of loss probabilities as a funtion of  and � for both RR and Wait poliies, = 2 servers, N = 0 and � = 1. The dotted horizontal lines orrespond to loss probabilities under the RRpoliies with Ploss(RR) = (�=(� + �)) = (1=(1 + �))2. The urved lines orrespond to the Wait poliies.We further see from the Figures that the threshold is inreasing in �. The threshold is almost linear onthe log-log sale of the �gure. For example, for C = 3 it is approximated by the empirial relation:log(Ploss(RR)) = �3:8253� log()� 0:9972:If we did not take a log-log sale we would see learly that the threshold as a funtion of � is almost onstantfor � in the range of 0.2-4 and its value is lose to one.10
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Figure 4: Numerial analysis of loss probabilities as a funtion of  and � for both RR and Wait poliies, = 3 servers, N = 0 and � = 1.6 Model 2: A TimerWe introdue the following Timer poliy:As soon as the ontroller dispathes a job to a server, he ativates a Timer, having a random duration T .We onsider the ase where the ontroller obtains no information on servie ompletions. The �rst arrivalduring T (if ours) is held in the ontroller's bu�er and released for servie at time T . Subsequent jobswithin T (if any) are lost. If the �rst arrival after a dispathing ours beyond T , it is sent immediately toone of the servers and a new Timer is ativated. Moreover, if a job is dispathed to a server and the latteris busy, the job is lost.The problem is to �nd the value (or the distribution) of T so as to minimize the total rate of losses, bothat the ontroller's and the servers' side.C = 1 serversWe onsider �rst the ase C = 1 and assume that the down-stream server may hold only one job, i.e.,11
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The throughput is then THP = �� ftotal rate of lossesg = 1� ~� (�)E[� ℄ :We now wish to �nd T that maximizes THP.A Deterministi Timer, C = 1.When T is a �xed onstant T = T0, thenP (� � t) = 8<: 0 for t < T0;1� exp(��t) for t � T0:Hene ~� (�) = Z 10 e��tdP (� � t) = Z 1t=T0 e��t�e��tdt = ��+ �e�(�+�)T0 ;and E[� ℄ = Z 10 [1� P (� � t)℄dt = T0 + 1�e��T0 :So THP = 1� ~�(�)E[� ℄ = 1� ��+�e�(�+�)T0T0 + 1�e��T0 (7)To obtain the maximum throughput, we ompute the derivative of THP at zero and obtain the ondition��T0 + ��+ �� e�(�+�)T0 + ��+ �e�(2�+�)T0 = 1� e��T0 :One an easily see that this equation has a unique �nite solution T0 > 0.An Exponential Timer, C = 1.In ase T is exponentially distributed with parameter �. We haveP (� � t) = P (max(T; IA) � t) = P (T � t)P (IA � t) = 1� e��t � e��t + e�(�+�)t:Thus ~�(�) = Z 10 e��tdP (� � t) = ��+ � + �� + � � �+ ��+ � + �;and E[� ℄ = 1� + 1� � 1�+ � = 1� + ��(�+ �) :Hene the throughput is given byTHP = 1� ~� (�)E[� ℄ = ��+� � ��+� + �+��+�+�1� + ��(�+�) : (8)13



Note that when there is no timer (� !1) thenlim�!1THP(�) = 11� + 1� :Indeed, the expeted interval between two suessive job-departures equals 1� + 1� sine any job sent to theserver during servie is lost, so that after a servie ompletion (having mean 1/�) it takes, on average, 1/�units of time for the next arrival.On the other hand, if � ! 0 then E[� ℄ tends to in�nity and, obviously, the throughput tends to zero.Numerial results In Figure 6 we plot the optimal value of the timer T0 and of the exponentially averagetimer value T0 = ��1 as a funtion of �. We see that it dereases in �, and beomes almost onstant for� � �=10. We also depit the throughputs obtained under the optimal timer. We learly see that thedeterministi timer always outperforms the exponential one.
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is dispathed aording to the RR poliy. If not, the �rst arrival thereafter is immediately dispathed andthe ontroller ativates a new Timer.Let � be the time between two onseutive dispathes. As before, � = max(R; T ) where R is the timeinterval from a moment of dispathing until �rst arrival there-after. Reall that R is exponentially distributedwith parameter �.The rate of loss at the ontroller's entrane is, as before, �� 1=E[� ℄.The rate of loss at the servers is alulated as follows. Sine servie times B are Exponential (�),Ploss(any single server) = P ( CXj=1 �j < B) = [~� (�)℄C :As the rate of arrival to any single sever is 1CE[� ℄ , the total rate of loss for all C servers and the ontroller isC[~� (�)℄CCE[� ℄ +��� 1E[� ℄� :The throughput is the external arrival rate, �, minus the total loss rate:THP = 1E[� ℄ � [~� (�)℄CE[� ℄ = 1� [~� (�)℄CE[� ℄ :As examples, for T exponential with parameter � we obtain[~� (�)℄C = � ��+ � + �� + � � �+ ��+ � + ��Cand as before, E[� ℄ = 1� + ��(�+ �)so that THP(exp) = 1� h ��+� + ��+� � �+��+�+�iC1� + ��(�+�) : (9)When C = 1, equation (9) redues to (8).For T = T0 deterministi, we have[~� (�)℄C = � ��+ ��C e�C(�+�)T0 ;and E[� ℄ = T0 + 1�e��T0 ;so THP(deterministi) = 1� � ��+��Ce�C(�+�)T0T0 + 1�e��T0 : (10)Again, when C = 1 equation (10) redues to (7). Also, as for the ase C = 1, the optimal value T0 an bealulated by di�erentiation. 15



Numerial results In Figures 7-9 we plot the optimal value of the timer T0 and of the exponentiallyaverage timer value T0 = ��1 as a funtion of �, for the ases of C = 2 to C = 4 respetively. We seethat it dereases in �, and beomes almost onstant for � � �=10. We also depit the throughputs obtainedunder the optimal timer. We see again that the deterministi timer always outperforms the exponential one.Without loss of generality, we have onsidered only the ase of � = 1.
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Figure 7: Optimal threshold value and throughput of the deterministi and exponential timers as a funtionof �, C = 2For C = 3 and C = 4 it is better not to use a timer in the ase of exponentially distributed time: thevalue of T0 = 1=� is 0 for all tested values of �!7 ConlusionWe have studied in this paper two main aspets of delay that appear in admission and routing ontrol. The�rst type is that of the information available to the ontroller. To study the relevane of the informationafter a delay, we have studied the performane of the admission poliy that wait till the information beomesavailable in order to take an ation (Wait poliy) and ompared it to the one that does not wait to get thatinformation (RR poliy). We obtained a lear threshold on the expeted delay above whih the RR poliy16
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Figure 8: Optimal threshold value and throughput of the deterministi and exponential timers as a funtionof �, C = 3has better performane (lower loss probability) and below whih the Wait poliy is superior.We then studied another role of delay, when the delay is itself a ontrol ation. In absene of any infor-mation on the system state, we showed that delaying pakets at the input bu�er before routing them to thenetwork results in better performane of the system (lower losses). We omputed the optimal deterministiand exponentially distributed delays whih minimize the loss rate and maximize the system's throughput.Referenes[1℄ E. Altman, T. Ba�sar and R. Srikant, \Congestion ontrol as a stohasti ontrol problem with ationdelays", Automatia speial issue on Control issues in teleommuniation networks, pp. 1937-1950, De.1999.[2℄ E. Altman, D. Kofman and U. Yehiali, \Disrete time queues with delayed information", QueueingSystems 19, pp. 361-376, 1995. 17
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