
Admission and Routing Control with Partial Information andLimited Bu�ersE. ALTMAN�, R. MARQUEZy and U. YECHIALIzAbstra
tWe study problems of admission and routing 
ontrol for loss systems 
omprised of a 
ontroller and Cdown-stream servers. We fo
us on problems in whi
h 
ontrol a
tions have to be taken with either delayedor with no information on the state of the down-stream servers. We �rst 
onsider a problem of routing intoC servers and 
ompare the performan
e of two poli
ies: a stati
 round-robin poli
y, whi
h does not waitfor the delayed information at a risk of losing 
ustomers at the busy servers, and a Wait poli
y, that avoidslosses at the servers but risks losses at the 
ontroller bu�er. We identify regions in whi
h ea
h of the poli
iesperforms better. We then study the problem with no information on down-stream servers and propose atimer me
hanism to de
ide when to dispat
h an arriving 
ustomer. We optimize the value of the timer'sparameter. Our study is a

ompanied with numeri
al investigations.Keywords: Admission 
ontrol, Routing 
ontrol, Delayed information, Loss systems.1 Introdu
tionIn high speed networks propagation delay of information 
an not be negle
ted with respe
t to transmissiondelays. This is in parti
ular the 
ase in geosatellite satellite networks in whi
h round-trip information delaysare around 250mse
. In addition, large random time varying delays are often in
urred due to queueing.Many network 
ontrol problems (su
h as routing and admission 
ontrol) have therefore to take into a

ountthe information delay. In su
h 
ases we have either to take de
isions without waiting for the delay or evaluatethe impa
t of having to wait for the delays on the system performan
e.In this paper we fo
us on admission and routing problems o

urring in loss systems, in whi
h stateinformation is either delayed or nonavailable. The 
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minimize losses (or equivalently, maximize the throughput).We �rst 
onsider a problem of routing into C servers and 
ompare the performan
e of two poli
ies:1. The stati
 round-robin poli
y, whi
h does not wait till the delayed information on servi
e 
ompletionarrives; it dispat
hes ea
h arriving 
ustomer a

ording to the round-robin poli
y at the risk of loss ofthat 
ustomer at the server, if it has not 
ompleted its servi
e of the previous 
ustomer there.2. The Wait poli
y, whi
h only dispat
hes a job to a server on
e it re
eives the information that the serverhas 
ompleted servi
e. Customers that arrive when the Wait poli
y is used have to queue in a �nitequeueing fa
ility till they are dispat
hed. This poli
y avoids losses at the servers but results in losseswhen a 
ustomer arrives and �nds the queueing fa
ility full.We evaluate the performan
e of both poli
ies and show that for large delays the round robin outperformsthe Wait poli
y, and for low delays the situation is reversed. This suggests the existen
e of a threshold su
hthat for delays larger than the threshold it is better to use the round robin poli
ies, and for delays lowerthan the threshold it is better do use the Wait poli
y. Through an extensive numeri
al investigation, wevalidate the existen
e of su
h a threshold and study its properties.We then study the problem with no information on down-stream servers and propose a timer me
hanismto de
ide when to dispat
h an arriving 
ustomer. We optimize the value of the timer's parameter. Our studyis a

ompanied with numeri
al investigations.The stru
ture of the paper is as follows. We introdu
e in the next se
tion a brief (nonexhaustive) surveyof 
ontrol problems in tele
ommuni
ations with delayed information. We then introdu
e in Se
tion 3 thegeneral model. Then we study in Ssubse
tion 4.1 the performan
e of the Wait poli
y and in Subse
tion 4.2that of the round poli
ies. The 
omparison between the poli
ies and the existen
e of a threshold, obtainednumeri
ally, are the subje
t of Se
tion 5. Finally the timer model is presented, analyzed and optimized inSe
tion 6.2 Related workWe brie
y review work on 
ontrol problems with delayed information in tele
ommuni
ations. Flow 
ontrolwith delayed information has been studied in [4, 5, 10℄ by transforming the problem into an equivalentMDP with full information. The �rst paper has been extended to noisy delayed information in [3℄. Twotypes of 
ow 
ontrol have been studied. The �rst type is a rate-base 
ow 
ontrol, in whi
h the rate oftransmission of pa
kets is dire
tly 
ontrolled. The se
ond type is a window-based 
ow 
ontrol, in whi
h the
ontroller adjusts its window dynami
ally; a window stands for the number of pa
kets that 
an be sent beforea
knowledgements to the sour
e arrive from the destination. Work on rate-based 
ow 
ontrol with delay2



in the framework of linear quadrati
 
ontrol (linear dynami
s and quadrati
 
ost) has appeared in [1℄ andreferen
es therein. The impa
t of delay on window-based 
ow 
ontrol in the framework of Ja
kson networkis analyzed in [7℄. A problem of optimal priority assignment for a

ess to a single 
hannel with delay hasbeen investigated in [2℄. Routing with delayed information has been investigated in [6, 9, 11℄.The model in our paper is 
losely related to that in [11℄ who also 
ompares the performan
e of poli
iesthat wait for information and poli
ies that ignore the information. The framework is however of an in�nitequeue and the performan
e measure studied is expe
ted delays. This is in 
ontrast to our framework in whi
hwe study �nite bu�ers and are interested in maximizing throughputs and minimizing loss probabilities.We �nally mention some works 
ontrol of 
ommuni
ation with delayed information in the 
ase of severalde
entralized 
ontrollers. The referen
e uses a framework known as "delay sharing information", in whi
hthe state spa
e 
an be de
omposed to several parts, ea
h 
orresponding to another 
ontroller. Now ea
h
ontrol has an immediate information on his own part of the state spa
e, but a delayed information onthe parts 
orresponding to other 
ontrollers. In [13℄, a de
entralized 
ontrol in pa
ket swit
hed satellite
ommuni
ation is studied, whereas a de
entralized 
ontrol problem for multia

ess broad
ast networks havebeen studied in [8℄. In both examples, ea
h 
ontroller has to de
ide whether to transmit or not, withoutknowing if pa
kets have arrived in the 
urrent time unit to other nodes. If they did, then pa
kets from othernodes 
ould be s
heduled for transmission at the same time and 
ollisions 
ould o

ur.3 ModelA single 
ontroller a

epts arriving messages (jobs) and dispat
hes them to C down-stream servers.Assumptions:1. Arrivals: The external arrival is Poisson (�) with inter arrival times IA � Exp(�) having Lapla
e-Stieltjes Transform (LST) E[expf�s � IAg℄ =fIA(s).2. The 
ontroller: The 
ontroller has a bu�er of size N
 + 1 (where 0 � N
 � 1) i.e., if N
 = 0, thenonly one job 
an reside in the 
ontroller's bu�er. If there are N
+1 jobs in the 
ontroller's bu�er andarrival o

urs, it is lost.3. The servers: The bu�er of ea
h server is of size Ns + 1. The servi
e time B of ea
h individual job isdistributed Exp(�).4. Information: Information about servi
e 
ompletion rea
hes the 
ontroller only after a random delayV � Exp(
).We assume that all inter-arrival times, servi
e times and information delays are independent.3



We propose below several poli
ies for the 
ontroller and 
ompare the performan
es, under di�erentassumptions on the information delay.4 Model 14.1 The Wait OptionWe assume here that the 
ontroller waits until he re
eives information on servi
e 
ompletion before dispat
h-ing a job (if available) to a server. (In su
h a 
ase there 
ould be at most one job in ea
h server's bu�er.)This leads to the following Markovian model.Due to the delayed information on servi
e 
ompletions, the 
ontroller does not know the real number ofjobs present in the system. We shall adopt here the view that the 
ontroller 
onsiders a job to be \in thesystem" until the information on the departure of that job be
omes known to the 
ontroller. Let X denotethe number of jobs \in the system" and let J denote the number of a
tually operating (servi
ing) servers. Toillustrate the transitions between states 
onsider the 
ase N
 = 0. Assume that there are J = j < C a
tualoperating servers and that the 
ontroller 
onsiders there to be X = n jobs in the system (
learly n � j). Wedenote this situation as state (j; n). When n = C and a new job arrives the job is kept at the 
ontroller'sbu�er and the state be
omes (j; C + 1). At that time there are C � j servers that are free, although thisinformation is not yet available to the 
ontroller. The remaining time till the �rst information on a newserver be
oming free arrives at the 
ontroller is exponentially distributed with parameter (C � j)
. As soonas this information be
omes available, the 
ontroller immediately dispat
hes the job he holds in his bu�er,bringing the state of the system to (j + 1; C). When n < C and a job arrives it is immediately dispat
hedto one of the C � n available servers, bringing the state of the system to (j + 1; n + 1). Finally, when the
ontroller 
ounts n = C + 1, any new arrival is lost.It should be noted that a

ording to this poli
y, there are no losses at the servers' side.Let Pjn be the probability that there are j operating servers and total n jobs "in the system" as 
ountedby the 
ontroller (j � min(n;C); n � C +N
 + 1).The rate-of-transition diagram for N
 = 0 is depi
ted in Figure 1, where the verti
al axis denotes thenumber of operating servers, J , and the horizontal axis depi
ts the total number of jobs \in the system", X .
4
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Balan
e Equations, N
 � 0When N
 � 0, the balan
e equations for the state probabilities Pjn are the following:j = 0 : (1)�P00 = 
P01; n = 0(�+ n
)P0n = (n+ 1)
P0;n+1 + �P1n; 1 � n � C � 1(�+ C
)P0C = �P1C ; n = C(� + C
)P0;n = �P1;n+1 + �P0;n�1; n = C + 1; ::::; C +N
C
P0;C+N
+1 = �P1;C+N
+1 + �P0;C+N
 ; n = C +N
 + 11 � j � C � 1 : (2)(� + j�)Pjj = 
Pj;j+1 + �Pj�1;j�1 n = j(� + (n� j)
 + j�)Pjn = (n+ 1� j)
Pj;n+1 + (j + 1)�Pj+1;n + �Pj�1;n�1 j + 1 � n � C � 1(�+ (C � j)
 + j�)PjC = (j + 1)�Pj+1;C + �Pj�1;C�1 + (C � j + 1)
Pj�1;C+1 n = C(�+ (C � j)
 + j�)Pj;n = (j + 1)�Pj+1;n + �Pj;n�1 + (C � j + 1)
PC�1;n+1 n = C + 1; :::; C +N
((C � j)
 + j�)Pj;C+N
+1 = (j + 1)�Pj+1;C+N
+1 + �Pj;C+N
 n = C +N
 + 1j = C : (3)(�+ C�)PCC = �PC�1;C�1 + 
PC�1;C+1 n = C(�+ C�)PCn = �PC;n�1 + 
PC�1;n+1 n = C + 1; :::; C +N
C�PC;C+N
+1 = �PC;C+N
 n = C +N
 + 1:Now, for this "wait" poli
y of the 
ontroller, whenever there are n = C +N
 + 1 jobs in the system (i.e.the 
ontroller holds N
 + 1 jobs in his bu�er) ea
h new arrival will be lost. Thus, the probability of loss isgiven by Ploss(wait) = CXj=0 Pj;C+N
+1 =: P�;C+N
+1:The mean number of losses per unit time (i.e. loss rate) is�Ploss(wait) = �P�;C+N
+1:A limiting 
ase Suppose 1=
 ! 0. That is, the server obtains information on servi
e 
ompletions with nodelay. The state spa
e 
ollapses to a one dimensional spa
e (that denotes the number of jobs in the system)and the transition diagram, for N
 > 0, is depi
ted in Figure 2.Denoting a = �=�, the balan
e equations are:Pn = 1n!anP0; n = 0; 1; 2; :::; C (4)6
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 = 0 and N
 > 0PC+k = � aC �k PC ; k = 1; 2; :::; N
 + 1 (5)As the probabilities sum to one, we getP�10 = CXn=0 ann! + aCC! N
+1Xk=1 � aC �k :Thus, Ploss(wait) = PC+N
+1 = aCC! � aC �N
+1CXn=0 ann! + aCC! N
+1Xk=1 � aC �kThe expe
ted number of losses per unit time is �Ploss(wait) = �PC+N
+1.4.2 No Wait: The Round Robin Poli
yA

ording to this poli
y the 
ontroller dispat
hes jobs following the Round Robin (RR) me
hanism, that is,arrival number kC + i is sent to server no. i (k = 0; 1; 2; � � �; 1 � i � C). Thus, the inter arrival time to ea
hserver is Erlang(C; �) with mean C=�. We assume that Ns = 0 for ea
h server.The probability of a loss Ploss(RR) at a given server is the probability that the inter-arrival time isshorter than the servi
e time B, i.e.Ploss(RR) = P [Erlang(C; �) < B℄ = � ��+ ��C = [ ~IA(�)℄C7



Thus the expe
ted number of losses per unit time is�Ploss(RR) = �� ��+ ��C :5 Comparison between Wait and RR poli
ies5.1 The extreme 
ases: 
 small and largeFor the limiting 
ase 1=
 ! 0, i.e. when full information is available,Ploss(RR) > Ploss(wait) i� � ��+ ��C = � aa+ 1�C > aCC! � aC �N
+1CXn=0 ann! + aCC! N
+1Xk=1 � aC �k :When N
 = 0 this is equivalent to CXn=0 ann! + aC � aCC! > aC � C! (a+ 1)C ;or to, CXn=0 ann! > aC � C! h(a+ 1)C � aCi (6)
Proposition 5.1 For the limiting 
ase 1=
 ! 0 we have: Ploss(RR) > Ploss(wait) for all C � 1.The proof follows dire
tly from the next two Lemmas.Lemma 5.1 When N
 = 0, Ploss(RR) > Ploss(wait) for all C � 1.Proof. Writing (a + 1)C = PCn=0 �Cn � an, the right hand side of (6) be
omes 1C PCn=1 an(C+1�n)!(n�1)! . Itis now easy to 
he
k that the 
oeÆ
ient of ea
h power of a on the left hand side of (6) is greater than the
orresponding 
oeÆ
ient on the right hand side.Lemma 5.2 Ploss(wait) is monotone de
reasing in N
.
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Proof. Fix a value N
 � 0 and denote X the random variable 
orresponding to the number of 
ustomersin the system. Denote by X 0 the random variable 
orresponding to the number of 
ustomers in anothersystem whi
h di�ers from the original only by the fa
t that N 0
 = N
 + 1. De�ne Y = max(X 0 � 1; 0) andnote that Y and X have the same range of (0; 1; 2; :::; C +N
 + 1). LetrX(0) = 0; rX(n) = P (X = n� 1)=P (X = n); n = 1; 2; 3; :::; C +N
 + 1:We de�ne in the same way rY . Then:rX (n) = 8<: n=a n = 1:::; C;C=a n = C + 1; :::; C +N
 + 1; rY (n) = 8>><>>: 2(1 + a)=a2 n = 1;(n+ 1)=a n = 2:::; C � 1;C=a n = C; :::; C +N
 + 1:It is easy to 
he
k that for all n = 1; 2; :::; N
 + C + 1 we haverX (n) � rY (n):It then follows (see e.g. [12, eq. (4)℄)) that X � Y in the likelihood ratio and in the sto
hasti
 order ratio,whi
h implies that P (X = C +N
 + 1) � P (Y = C +N
 + 1)or equivalently, P (X = C +N
 + 1) � P (X 0 = C +N
 + 2):This establishes the proof.Remark 5.1 If 1=
 !1 then the 
ontroller, if waits, never dispat
hes jobs to the C 
hannels and all lossesare in
urred by the 
ontroller, so Ploss(RR) < Ploss(Wait).
5.2 A threshold poli
y: Numeri
al ResultsHaving seen that in the extreme 
ases RR is better when delays are large and Wait is better for short delays,we 
ould expe
t there to be a threshold 
̂�(�; �) on the delay parameter su
h that RR is better than Waitfor 
 < 
̂�(�; �) and Wait is better than RR for 
 > 
̂�(�; �). The existen
e of su
h a threshold will besupported by our numeri
al investigation. Sin
e we 
an res
ale time (by rede�ning what is a basi
 timeunit), the threshold will be of the form: 
̂�(�; �) = �
�(�=�):Without loss of generality we 
an thus 
hoose � = 1 and 
he
k the dependen
e of 
� on �.9



The next �gures analyze the 
ase of N
 = 0 and � = 1. Using Matlab, we did an exhaustive numeri
alstudy of the performan
e of both RR and Wait poli
ies as a fun
tion of the parameters by solving eq. (1)-(3).We 
onsider the 
ase of two, three and four servers (Fig. 3,4,5 respe
tively).We let 
 (horizontal axis) vary from 0.01 to 10. We take six values of �: 0.1000, 0.3162, 1.0000, 3.1623,10.0000 and 31.6228. The verti
al axis in the �gures 
orresponds to the loss probability, and the horizontalaxis to the value of the parameter 
. For ea
h �xed � there is one pointed horizontal line that gives the lossprobability under the RR poli
y, and there is also a 
urve of the loss probability as a fun
tion of 
 underthe Wait poli
y. We see that for ea
h value of �, the 
urve des
ribing the Wait poli
y interse
ts on
e thehorizontal line des
ribing the RR poli
y. This shows that there is indeed a threshold 
�(�) whi
h is obtainedas the interse
tion point.
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Figure 3: Numeri
al analysis of loss probabilities as a fun
tion of 
 and � for both RR and Wait poli
ies,
 = 2 servers, N
 = 0 and � = 1. The dotted horizontal lines 
orrespond to loss probabilities under the RRpoli
ies with Ploss(RR) = (�=(� + �))
 = (1=(1 + �))2. The 
urved lines 
orrespond to the Wait poli
ies.We further see from the Figures that the threshold is in
reasing in �. The threshold is almost linear onthe log-log s
ale of the �gure. For example, for C = 3 it is approximated by the empiri
al relation:log(Ploss(RR)) = �3:8253� log(
)� 0:9972:If we did not take a log-log s
ale we would see 
learly that the threshold as a fun
tion of � is almost 
onstantfor � in the range of 0.2-4 and its value is 
lose to one.10
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Figure 4: Numeri
al analysis of loss probabilities as a fun
tion of 
 and � for both RR and Wait poli
ies,
 = 3 servers, N
 = 0 and � = 1.6 Model 2: A TimerWe introdu
e the following Timer poli
y:As soon as the 
ontroller dispat
hes a job to a server, he a
tivates a Timer, having a random duration T .We 
onsider the 
ase where the 
ontroller obtains no information on servi
e 
ompletions. The �rst arrivalduring T (if o

urs) is held in the 
ontroller's bu�er and released for servi
e at time T . Subsequent jobswithin T (if any) are lost. If the �rst arrival after a dispat
hing o

urs beyond T , it is sent immediately toone of the servers and a new Timer is a
tivated. Moreover, if a job is dispat
hed to a server and the latteris busy, the job is lost.The problem is to �nd the value (or the distribution) of T so as to minimize the total rate of losses, bothat the 
ontroller's and the servers' side.C = 1 serversWe 
onsider �rst the 
ase C = 1 and assume that the down-stream server may hold only one job, i.e.,11
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Figure 5: Numeri
al analysis of loss probabilities as a fun
tion of 
 and � for both RR and Wait poli
ies,
 = 4 servers, N
 = 0 and � = 1Ns = 0. We further assume that the 
ontroller 
an hold only one job: N
 = 0.Let � be the time between two 
onse
utive dispat
hes of jobs to the server. Let R be the time intervalfrom the moment of dispat
hing till the �rst arrival thereafter o

urs. R is either the full inter-arrival time(if the moment of dispat
hing o

urs immediately upon arrival), or it is the residual Inter-Arrival time (if themoment of dispat
hing o

urs when the timer had expired previously and there was a job in the 
ontroller'sbu�er). In both 
ases, due to the Poisson arrival, R has an exponential distribution with parameter �. Thus,� = max(R; T ).The probability of loss at the server is given byPloss(server) = P (� < B) = ~� (�)where ~� is the Lapla
e-Stieltjes transform of � . Sin
e the rate of arrival to the server is 1=E[� ℄, the rate oflosses at the server's barrier is ~� (�)=E[� ℄. On the other hand, the rate of losses at the 
ontroller's entran
eis �� 1=E[� ℄. The total rate of losses is thus ~�(�)E[� ℄ + �� 1E[� ℄ :12



The throughput is then THP = �� ftotal rate of lossesg = 1� ~� (�)E[� ℄ :We now wish to �nd T that maximizes THP.A Deterministi
 Timer, C = 1.When T is a �xed 
onstant T = T0, thenP (� � t) = 8<: 0 for t < T0;1� exp(��t) for t � T0:Hen
e ~� (�) = Z 10 e��tdP (� � t) = Z 1t=T0 e��t�e��tdt = ��+ �e�(�+�)T0 ;and E[� ℄ = Z 10 [1� P (� � t)℄dt = T0 + 1�e��T0 :So THP = 1� ~�(�)E[� ℄ = 1� ��+�e�(�+�)T0T0 + 1�e��T0 (7)To obtain the maximum throughput, we 
ompute the derivative of THP at zero and obtain the 
ondition��T0 + ��+ �� e�(�+�)T0 + ��+ �e�(2�+�)T0 = 1� e��T0 :One 
an easily see that this equation has a unique �nite solution T0 > 0.An Exponential Timer, C = 1.In 
ase T is exponentially distributed with parameter �. We haveP (� � t) = P (max(T; IA) � t) = P (T � t)P (IA � t) = 1� e��t � e��t + e�(�+�)t:Thus ~�(�) = Z 10 e��tdP (� � t) = ��+ � + �� + � � �+ ��+ � + �;and E[� ℄ = 1� + 1� � 1�+ � = 1� + ��(�+ �) :Hen
e the throughput is given byTHP = 1� ~� (�)E[� ℄ = ��+� � ��+� + �+��+�+�1� + ��(�+�) : (8)13



Note that when there is no timer (� !1) thenlim�!1THP(�) = 11� + 1� :Indeed, the expe
ted interval between two su

essive job-departures equals 1� + 1� sin
e any job sent to theserver during servi
e is lost, so that after a servi
e 
ompletion (having mean 1/�) it takes, on average, 1/�units of time for the next arrival.On the other hand, if � ! 0 then E[� ℄ tends to in�nity and, obviously, the throughput tends to zero.Numeri
al results In Figure 6 we plot the optimal value of the timer T0 and of the exponentially averagetimer value T0 = ��1 as a fun
tion of �. We see that it de
reases in �, and be
omes almost 
onstant for� � �=10. We also depi
t the throughputs obtained under the optimal timer. We 
learly see that thedeterministi
 timer always outperforms the exponential one.
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Figure 6: Optimal threshold value and throughput of the deterministi
 and exponential timers as a fun
tionof �C > 1 serversWhen C > 1, the 
ontroller dispat
hes arriving jobs to the various servers in a 
y
li
 (i.e. Round Robin)fashion. After ea
h dispat
h he a
tivates a Timer T . If an arrival o

urs before T , the 
ontroller keeps it inits bu�er. All subsequent arrivals within T are lost. If there is a job in the 
ontroller's bu�er at time T , it14



is dispat
hed a

ording to the RR poli
y. If not, the �rst arrival thereafter is immediately dispat
hed andthe 
ontroller a
tivates a new Timer.Let � be the time between two 
onse
utive dispat
hes. As before, � = max(R; T ) where R is the timeinterval from a moment of dispat
hing until �rst arrival there-after. Re
all that R is exponentially distributedwith parameter �.The rate of loss at the 
ontroller's entran
e is, as before, �� 1=E[� ℄.The rate of loss at the servers is 
al
ulated as follows. Sin
e servi
e times B are Exponential (�),Ploss(any single server) = P ( CXj=1 �j < B) = [~� (�)℄C :As the rate of arrival to any single sever is 1CE[� ℄ , the total rate of loss for all C servers and the 
ontroller isC[~� (�)℄CCE[� ℄ +��� 1E[� ℄� :The throughput is the external arrival rate, �, minus the total loss rate:THP = 1E[� ℄ � [~� (�)℄CE[� ℄ = 1� [~� (�)℄CE[� ℄ :As examples, for T exponential with parameter � we obtain[~� (�)℄C = � ��+ � + �� + � � �+ ��+ � + ��Cand as before, E[� ℄ = 1� + ��(�+ �)so that THP(exp) = 1� h ��+� + ��+� � �+��+�+�iC1� + ��(�+�) : (9)When C = 1, equation (9) redu
es to (8).For T = T0 deterministi
, we have[~� (�)℄C = � ��+ ��C e�C(�+�)T0 ;and E[� ℄ = T0 + 1�e��T0 ;so THP(deterministi
) = 1� � ��+��Ce�C(�+�)T0T0 + 1�e��T0 : (10)Again, when C = 1 equation (10) redu
es to (7). Also, as for the 
ase C = 1, the optimal value T0 
an be
al
ulated by di�erentiation. 15



Numeri
al results In Figures 7-9 we plot the optimal value of the timer T0 and of the exponentiallyaverage timer value T0 = ��1 as a fun
tion of �, for the 
ases of C = 2 to C = 4 respe
tively. We seethat it de
reases in �, and be
omes almost 
onstant for � � �=10. We also depi
t the throughputs obtainedunder the optimal timer. We see again that the deterministi
 timer always outperforms the exponential one.Without loss of generality, we have 
onsidered only the 
ase of � = 1.
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Figure 7: Optimal threshold value and throughput of the deterministi
 and exponential timers as a fun
tionof �, C = 2For C = 3 and C = 4 it is better not to use a timer in the 
ase of exponentially distributed time: thevalue of T0 = 1=� is 0 for all tested values of �!7 Con
lusionWe have studied in this paper two main aspe
ts of delay that appear in admission and routing 
ontrol. The�rst type is that of the information available to the 
ontroller. To study the relevan
e of the informationafter a delay, we have studied the performan
e of the admission poli
y that wait till the information be
omesavailable in order to take an a
tion (Wait poli
y) and 
ompared it to the one that does not wait to get thatinformation (RR poli
y). We obtained a 
lear threshold on the expe
ted delay above whi
h the RR poli
y16
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Figure 8: Optimal threshold value and throughput of the deterministi
 and exponential timers as a fun
tionof �, C = 3has better performan
e (lower loss probability) and below whi
h the Wait poli
y is superior.We then studied another role of delay, when the delay is itself a 
ontrol a
tion. In absen
e of any infor-mation on the system state, we showed that delaying pa
kets at the input bu�er before routing them to thenetwork results in better performan
e of the system (lower losses). We 
omputed the optimal deterministi
and exponentially distributed delays whi
h minimize the loss rate and maximize the system's throughput.Referen
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