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ABSTRACT
The performance of a Transmission Control Protocol (TCP)
for a system with N connections sharing a common Active
Queue Management (AQM) is analyzed for both Additive-
Increase Multiplicative-Decrease (AIMD) and Multiplicative-
Increase Multiplicative-Decrease (MIMD) control mechanisms,
where reduction signals follow either a cyclic or a proba-
bilistic polling-type procedure. The Laplace-Stieltjes Trans-
forms (LST) of the transmission rate of each connection at
a polling instant, as well as at an arbitrary moment, are de-
rived. Explicit results are calculated for the mean rate and
(in contrast to most polling models) for its second moment.
The analysis of the probabilistic MIMD models uses trans-
formations yielding a system’s law of motion equivalent to
that of an M/G/1 queue with bulk service.

Keywords
TCP, AIMD, MIMD, Cyclic Polling, Probabilistic Polling,
M/G/1 Bulk Service

1. INTRODUCTION
We analyze the performance of TCP, the widely-used trans-

mission protocol of the Internet [9]. TCP is a reliable window-
based flow control protocol where the window is increased
until a packet loss is detected. TCP modeling has been
studied extensively in the literature (see, e.g., [1], [2], [8]
and references there). Many authors have been interested
in the performance of several parallel TCP connections, see
[4], [7], [12]. In some cases the parallel connections may
correspond to one single transfer which is split into several
connections. We assume that the connections are subject to
loss events triggered by congestion caused by exogenous traf-
fic. We assume that the losses are independent of the rate
of the connections. This has been validated through mea-
surements in [2] on long connections (i.e., having long round
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trip time), but turns out not to be realistic for short con-
nections. Once a congestion event occurs, the AQM reacts
to it by marking or dropping a packet of some connection.
When using AQM, one can fully control which connection
will be the one to loose a packet when a congestion event
occurs. We shall propose and analyze two different policies
for assigning the losses to TCP connections.

Consider N connections sharing a common AQM. Each
of the N connections increases its transmission rate until it
gets a congestion signal. A source (connection) receiving a
congestion signal reduces instantaneously its rate, and then
resumes increasing it. The other sources continue in increas-
ing their transmission rates. This continues until the next
congestion signaling event. Thus, each connection has two
modes of operation: One during which the transmission rate
grows, and one where it is reduced. Upon the receipt of a
reduction signal at time t, the source that receives the sig-
nal reduces its sending rate Xt to βXt, where 0 < β < 1 is
a constant. Such a reduction is termed Multiplicative De-
crease. In absence of marking, each connection increases its
sending rate. We distinguish between two methods of rate
increase (i) Additive Increase, such that at time s > t the
transmission rate is Xs = Xt + α(s − t), where α > 0 is
a constant, and (ii) Multiplicative Increase, where at time

s > t, Xs = Xt · eγ(s−t), where γ > 0 is a constant. We
thus have two transmission methods: (i) Additive Increase
Multiplicative Decrease (AIMD), and (ii) Multiplicative In-
crease Multiplicative Decrease (MIMD). We assume that the
marking process does not depend on the transmission rates
of the sources. We introduce two signaling strategies, which
determine the choice of connection that has to reduce its
transmission rate: (i) The ”Cyclic One Strategy” where the
order of connections to which the signals are sent is cyclic,
1, 2, . . . , N − 1, N, 1, 2, . . . and (ii) The ”Probabilistic One
Strategy” where the choice of the connection to decrease its
rate is done probabilistically, where after reducing connec-
tion i, the next connection to be chosen is j with probability
pj ,

∑N
j=1 pj = 1. We analyze the different TCP systems

using polling systems methods. Polling systems, in which a
single server visits (according to some scheduling procedure)
and serves (according to some service discipline) N separate
queues, have been studied extensively in the literature ([10],
[13], [6] and references there). In this paper the stationary
behavior of the system is analyzed. In our model, TCP is
not represented at packet level, but rather via direct fluid
equations that describe the transmission rates for the set of



connections.
The paper is structured as follows. In section 2, the AIMD

mechanism is analyzed for both the cyclic one (section 2.1)
and the probabilistic one (section 2.2) polling strategies.
The MIMD mechanism is tackled in section 3 where the
probabilistic polling scheme is studied in section 3.1 and the
cyclic one is examined in section 3.2. Similarities between
the last two polling schemes are drawn.

Notation: For a continuous random variable X, we de-
note its mean by E[X] = x, its second moment by E[X2] =

x(2), and its LST by X̃(·).

2. AIMD

2.1 Cyclic One Strategy
Under a ”Cyclic One Strategy” system signals occur ran-

domly in time and are directed in a cyclic manner between
the connections: 1, 2, . . . , N . We call an instant where a re-
duction signal occurs a ”polling instant”, we refer to a cycle
of connection i as the time since connection i was polled
until its next polling instant. Let Xj

i denote the transmis-
sion rate at connection j (j = 1, 2, . . . , N) at the instant
when the server decides to reduce the transmission rate at
connection i (i = 1, 2, . . . , N). Xi = (X1

i , X
2
i , . . . , X

N
i ) is

the state of the system at that instant. Let the random
variable Ui denote the time between the instant of the sig-
nal that causes the server to reduce the transmission rate of
connection i and the one that causes the i+ 1st connection
to reduce its transmission rate. All Ui’s are independent,
identically distributed as a generic random variable U . The
transmission rate of connection i is continuously growing at
a rate αi. When the server polls connection i, the transmis-
sion rate decreases by a factor of βi. Thus, the evolution of
the stationary transmission rates of the system at a ”polling
instant” is given by

Xj
i+1 =

{
Xj
i + αjUi if j 6= i

βiX
i
i + αiUi if j = i.

(1)

That is, the transmission rate of connection j at a polling
instant of connection i + 1 (j 6= i) is composed of: (i) the
transmission rate of connection j at a polling instant of con-
nection i, and (ii) the growth of the transmission rate at
that connection during the time between the two signals. In
the case where i = j the transmission rate of connection i
is composed as before, except that the transmission rate of
connection i just after its polling instant is βiX

i
i .

Define the multidimensional LST Li(θ) of the state of the
system at a polling instant of connection i (i = 1, 2, . . . , N).
This transform is given by

Li(θ) = Li(θ1, . . . , θi−1, θi, θi+1, . . . , θN ) = E[e−
∑N

j=1 θjX
j
i ].
(2)

Then, for i = 1, 2, . . . , N , using the fact that Ui and Xj
i are

independent, we obtain Li+1(θ) in terms of Li(·), namely,
for i = 1, 2, . . . , N ,

Li+1(θ) = E[e−
∑N

j=1 θjX
j
i+1 ]

= E[e−
∑N

j=1 θjαjUi ]E[e
−
∑N
j=1
j 6=i

θjX
j
i

e−θiβiX
i
i ]

= Li(θ1, . . . , θi−1, βiθi, θi+1, . . . , θN ) · Ũ(

N∑
j=1

θjαj).

(3)

Equations (3) are now used to derive moments of the vari-
ables Xj

i .

Transmission Rate at Reduction Instants: Moments
The mean transmission rate, fi(j) , E[Xj

i ], at connection
j when the server polls connection i is given by

fi(j) , E[Xj
i ] = −∂Li(θ)

∂θj

∣∣∣
θ=0

. (4)

This leads to the following N2 linear equations,

fi+1(j) =

{
fi(j) + αju if j 6= i
βifi(i) + αiu if j = i.

(5)

Clearly, equation (5) can also be obtained directly by taking
expectation over (1).
The solution of (5) is given by

fi(j) =


αjNu

1−βj
− αj(j − i)u j > i

αiNu
1−βi

j = i
αjNu

1−βj
− αj(N − (i− j))u j < i.

(6)

Denoting by C the cycle time, the explanation of (6) is as
follows: since in stationary state, fi(i) = βifi(i) + αiE[C],
where clearly E[C] = Nu, then

fi(i) =
αiNu

1− βi
. (7)

Regarding the case where j > i, fi(j) equals fj(j)−(j−i)αju
since the mean time until the next polling of connection j
is (j − i)u, and during that time connection j increases its
rate by αj(j− i)u to the value of fj(j) (the case where j < i
is explained in the same manner).
The second and mixed moments of the Xj

i are given by

fi(j, k) , E[Xj
iX

k
i ] =

∂2Li(θ)

∂θj∂θk

∣∣∣
θ=0

. (8)

Differentiating (3) with respect to θj and θk, we get the
following N3 linear equations,

fi+1(j, k) = αjufi(k) + αjαku
(2) + αkufi(j) + fi(j, k)

k, j 6= i,
(9)

fi+1(i, j) = αjβiufi(i) + αjαiu
(2) + αiufi(j) + βifi(i, j)

j 6= i,

(10)

fi+1(i, i) = αiβiufi(i) + α2
iu

(2) + αiβiufi(i) + β2
i fi(i, i).

(11)

As opposed to most gated and the exhaustive polling regimes
(see, e.g., [10] and [6]), computing the second moment of Xi

i

can be done explicitly since the cycle time is independent
of the transmission rate at any of these connections. Define

Xi
i
(k)

as the transmission rate of connection i at the kth
cycle, then we have

Xi
i
(k+1)

= βiX
i
i
(k)

+ αiC, (12)

where C =
∑N
j=1 Ui, meaning that at the beginning of a

cycle, Xi
i
(k)

is reduced by a factor of βi and then it grows



linearly at a rate of αi. Define X̃
(k)
i (s) = E[e−sX

i
i
(k)

]. As

Xi
i
(k)

and C are independent

X̃
(k+1)
i (s) = E[e−sX

i
i
(k+1)

] = E[e−s(βiX
i
i
(k)

+αiC)]

= X̃
(k)
i (βis)C̃(αis).

(13)

By iterating we have

X̃
(k+1)
i (s) = X̃

(1)
i (βki s)

k∏
j=0

C̃(αiβ
j
i s). (14)

When k →∞ we have limk→∞ X̃
(1)
i (βki s) = 1 then

X̃i(s) =

∞∏
j=0

C̃(αiβ
j
i s). (15)

From (15) (and the fact that E[C2] = Nu(2) +N(N − 1)u2)
we get

E[(Xi
i )

2] =
1

1− β2
i

[
2βiα

2
iN

2u2

1− βi
+ α2

i (Nu
(2) +N(N − 1)u2)

]
.

(16)

Throughput of Connection i
Let Li be the transmission rate at connection i at an ar-
bitrary moment, and let Li(t) be the transmission rate at
connection i at time t within the current cycle. The LST of
Li is calculated by dividing the expected area of the func-
tion e−sLi(t) over an arbitrary cycle, by the expected cycle
time. That is,

L̃i(s) = E[e−sLi ] =
E[
∫ C
0
e−sLi(t)dt]

E[C]
. (17)

Figure 1: Transmission rate during a cycle.

Figure 1 shows the transmission rate at connection i dur-
ing a full cycle, then

L̃i(s) =
E[
∫ C
0
e−s(βiX

i
i+αit)dt]

E[C]
=
X̃i(βis)(1− C̃(αis))

sαiE[C]
.

(18)
By taking derivative of (18) we get

E[Li] = βiE[Xi
i ]+αi

E[C2]

2E[C]
=
βiαiNu

1− βi
+
αiu

(2)

2u
+
αi(N − 1)u

2
.

(19)

That is, the mean transmission rate is the sum of the rate
just after the polling instant (βiE[Xi

i ]) and of the accumu-

lated rate during the mean residual time of a cycle (αi
E[C2]
2E[C]

).

The total throughput of the system is given by

N∑
i=1

E[Li] = Nu

N∑
i=1

( βiαi
1− βi

)
+
u(2)

2u

N∑
i=1

αi+
(N − 1)u

2

N∑
i=1

αi.

(20)

2.2 Probabilistic One Strategy
Under the ”Probabilistic One Strategy” when the server

gets a signal it decides to reduce the transmission rate to
one connection, but the choice of the connection to decrease
its rate is done probabilistically. Let pi be the probability
that the signal is sent to connection i, (i = 1, . . . , N), where∑N
i=1 pi = 1. Let X

(n)
i denote the transmission rate at con-

nection i just before the nth reduction (polling) instant. We

assume that X
(n)
i converges to Xi when n → ∞. Let U

denote the time between two successive polling instants.
The transmission rate of connection i is continuously grow-
ing at a rate αi. When the server polls connection i with
probability pi, the transmission rate decreases by a factor of
βi. Hence the evolution of the state of the system (trans-
mission rate) is given by

X
(n+1)
i =

{
X

(n)
i + αiU w.p 1− pi

βiX
(n)
i + αiU w.p pi.

(21)

To calculate the LST of the transmission rate at polling in-
stant, L(θ1, . . . , θN ), we express Ln+1(θ1, . . . , θN ) in terms
of Ln(θ1, . . . , θN ). This is done by conditioning on the spe-
cific connection being chosen at the nth reduction signal,

Ln+1(θ1, . . . , θi−1, θi, θi+1, . . . , θN |Ai) = E[e−
∑N

j=1 θjX
(n)
j |Ai]

= E[e
−
∑N
j=1
j 6=i

θj(X
(n)
j +αjU)

e−θiβiX
(n)
i −θiαiU ]

= Ln(θ1, . . . , θi−1, βiθi, θi+1, . . . , θN ) · Ũ(

N∑
j=1

θjαj),

(22)

where Ai is the event that connection i was polled at the
previous (in this case, the nth) polling instant.
By unconditioning (22) and letting n approaching infinity
we obtain

L(θ1, . . . , θN ) = Ũ(

N∑
j=1

θjαj)

·
(
p1L(β1θ1, . . . , , θN ) + · · ·+ piL(θ1, . . . , θi−1, βiθi, θi+1, . . . , θN )

+ · · ·+ pNL(θ1, . . . , βNθN )
)
.

(23)

Transmission Rate at Reduction Instants: Moments
The moments of Xi are derived from (23) (or directly from
(21)),

E[Xi] = −∂L(θ1, . . . , θN )

∂θi

∣∣∣
θ=0

=
αiu

pi(1− βi)
. (24)

For the special case where pi = 1
N

, we find that (24) is
equal to the equivalent expression for fi(i) in the ”Cyclic
One Strategy” system (see equation (6)).



Unlike many other polling systems in this model we can
derive explicit expressions for the second (mixed) moments
in a non-identical connections case

E[X2
i ] =

α2
i (u

(2) − 2u2)

pi(1− βi)(1 + βi)
+

2α2
iu

2

p2
i (1− βi)2(1 + βi)

, (25)

E[XiXj ] = αiαj
( (u(2) − 2u2)

pi(1− βi) + pj(1− βj)

+
u2

pi(1− βi)pj(1− βj)

)
j 6= i,

(26)

and

Cov(Xi, Xj) =
αiαj(u

(2) − 2u2)

pi(1− βi) + pj(1− βj)
j 6= i. (27)

Throughput of Connection i
Let Ci denote the time between two successive polling in-
stants to connection i. Then

Ci =

Ti∑
j=1

Uj , (28)

where all Uj ’s are distributed as U, and Ti is the number of
polling instants between two successive polling to connection
i, and is distributed geometrically with parameter pi. Hence,

E[Ci] = E[Ti]u =
u

pi
, (29)

E[C2
i ] = E[(

Ti∑
i=1

Ui)
2] = ETi [E[(

Ti∑
i=1

Ui)
2|Ti]]

= ETi [E[(U1 + · · ·+ UTi)2]

= E[TiU
2
1 + Ti(Ti − 1)U1U2]

= E[Ti]u
(2) + (E[T 2

i ]− E[Ti])u
2

=
u(2)

pi
+ (

2

p2
i

− 2

pi
)u2 =

u(2)

pi
+

2(1− pi)u2

p2
i

.

(30)

Let Li be a random variable denoting the transmission rate
at connection i at arbitrary times. Using the same analysis
as in the previous section we get

L̃i(s) =
E[
∫ Ci

0
e−s(βiXi+αit)dt]

E[Ci]
=
X̃i(βis)(1− C̃i(αis))

sαiE[Ci]
,

(31)

where X̃i(s) = L(0, . . . , 0, s, 0, . . . , 0). Hence,

E[Li] = βiE[Xi]+αi
E[C2

i ]

2E[Ci]
=

αiβiu

pi(1− βi)
+αi

(u(2)

2u
+

(1− pi)u
pi

)
.

(32)
When pi = 1

N

E[Li|prob] =
αiβiNu

1− βi
+ αi

(u(2)

2u
+ (N − 1)u

)
= E[Li|cyclic] +

αi(N − 1)u

2
,

(33)

we get that for connection i, the difference between the mean
transmission rate of the ”Probabilistic One Strategy” and

that of the ”Cycle One Strategy” is αi(N−1)u
2

. This phe-
nomenon can be better understood when looking at Figure 1:
if the time intervals between rate reductions are less regular
(i.e., probabilistic vs. cyclic), then the area under the graph

(between two consecutive reduction instants) increases.
Summing (32) for all i gives the mean total throughput of
the system

N∑
i=1

E[Li] =

N∑
i=1

(
αiβiu

pi(1− βi)
+αi

(u(2)

2u
+

(1− pi)u
pi

))
. (34)

In the case where for all i pi = 1
N

, the mean overall through-
put under the ”Probabilistic One Strategy” is larger than

that of the ”Cycle One Strategy”by the amount (N−1)u
2

∑N
i=1 αi.

Optimal values of pi
By using Lagrange Multipliers we get the optimal values of
pi that maximize equation (34), denoted p∗i , as

p∗i =

√
1−βi
αi∑N

j=1

√
1−βj

αj

. (35)

3. MIMD

3.1 Probabilistic One Strategy
Our approach will be based on showing that a logarithmic

transformation applied to the transmission rate process re-
sults in a process that has the same evolution as the queue
size in an M/G/1 bulk queue. The LST of the equivalent
queueing process thus obtained provides the moments of the
transmission rate of the connections. The transmission rate
of connection i grows continuously, exponentially by eγi , and
when the server decides to reduce the rate of connection i,
it is decreased by a factor of βi (0 < βi < 1). We consider
a probabilistic polling strategy. As in the previous section,

X
(n)
i denotes the transmission rate at connection i just be-

fore the nth polling instant, and U (n) is the time between
the nth and the n + 1st polling instants (all U (n) are dis-
tributed as a general random variable U). Altman et al. [3]
analyzed a similar model where a connection is multiplica-

tive increased by a constant factor i.e., X
(n+1)
i = αiX

(n)
i

(αi > 1), whereas in our model X
(n+1)
i is increased by a

function of U (n). The evolution of the state of the system is
given by

X
(n+1)
i =

{
X

(n)
i eγiU

(n)
w.p 1− pi

βiX
(n)
i eγiU

(n)
w.p pi.

(36)

We assume that the transmission rate is bounded below by
a value of one. Altman et al. [3] showed the importance of
the bounded value, hence (36) turns into

X
(n+1)
i =

{
X

(n)
i eγiU

(n)
w.p 1− pi

max(βiX
(n)
i , 1)eγiU

(n)
w.p pi.

(37)

In order to evaluate the moments of Xi, we take the loga-
rithm of equation (37);

logX
(n+1)
i =

{
logX

(n)
i + γiU

(n) w.p 1− pi
max(logX

(n)
i + log βi, 0) + γiU

(n) w.p pi.

(38)
Dividing equation (38) by − log βi > 0 and using the substi-



tution Yi = logXi
− log βi

, we obtain

Y
(n+1)
i =

{
Y

(n)
i + γi

− log βi
U (n) w.p 1− pi

max(Y
(n)
i − 1, 0) + γi

− log βi
U (n) w.p pi.

(39)

Define T
(n)
i = γi

− log βi
U (n), T

(n)
i is a non-negative random

variable, T
(n)
i and Y

(n)
i are independent random variables.

Then from equation (39) we obtain

Y
(n+1)
i =

{
Y

(n)
i + T

(n)
i w.p 1− pi

max(Y
(n)
i − 1, 0) + T

(n)
i w.p pi.

(40)

If T
(n)
i is an integer than equation (40) has the same form

as the equation describing the number of customers in an
M/G/1 queue just after the nth service (of length U), or a
vacation period, where when the server finishes a service (or
a vacation) period it serves the next customer with prob-
ability pi, or takes a vacation of length U with probabil-

ity 1 − pi. T
(n)
i is the number of new arrivals during the

length of time U . Let’s assume that T
(n)
i is a fraction of

an integer w. Hence T
(n)
i can have the following values

(0, 1
w
, 2
w
, . . . , w−1

w
, 1, w+1

w
, . . . ,∞). Define Q

(n)
i = w · Y (n)

i

and M
(n)
i = w · T (n)

i . Then,

Q
(n+1)
i =

{
Q

(n)
i +M

(n)
i w.p 1− pi

max(Q
(n)
i − w, 0) +M

(n)
i w.p pi.

(41)

Q
(n)
i is an integer, thus Q

(n)
i can be modeled as a discrete

state space Markov chain. The last equation is actually the
law of motion for the M/G/1 queue with bulk service of
batch size w (see [5]) where upon finishing a service the
server chooses whether to serve the next bulk or take a va-
cation. The probability generating function (PGF) of Qi is
obtained from the law of motion (41) using the following

E[zQ
(n+1)
i ] = (1− pi)E[zQ

(n)
i +M

(n)
i ]

· pi
(
E[zQ

(n+1)
i |Q(n)

i > 0]P (Q
(n)
i > 0)

+ E[zQ
(n+1)
i |Q(n)

i = 0]P (Q
(n)
i = 0)

)
.

(42)

Recall that Q
(n)
i and M

(n)
i are independent random vari-

ables. Then from (42) we obtain, when Q
(n)
i → Qi,

Q̂i(z) =
piM̂i(z)

∑w−1
j=0 π

(j)
i (zw − zj)

zw − M̂i(z)
(
(1− pi)zw + pi

) , (43)

where π
(j)
i is the probability that Qi = j. The expression for

Q̂i(z) contains w unknowns parameters π
(0)
i , π

(1)
i , . . . , π

(w−1)
i .

To determine these we use the following equality

w−1∑
j=0

π
(j)
i (zw − zj) = (z − 1)

w−1∑
j=0

v
(j)
i zj , (44)

where v
(j)
i =

∑j
k=0 π

(k)
i (see pp. 33 in [11]). Hence, we write

Q̂i(z) =
piM̂i(z)(z − 1)

∑w−1
j=0 v

(j)
i zj

zw − M̂i(z)
(
(1− pi)zw + pi

) . (45)

Now, Q̂i(1) = 1 implies

w−1∑
j=0

v
(j)
i = w − mi

pi
, (46)

which is meaningful if and only if mi
pi

< w (or equivalently

ti < pi). That is, the mean number of arrivals between two
consecutive visits to queue i, namely mi

pi
, must be smaller

than the bulk service amount w.
Assuming equation (45) to be an analytic function in the
disk z : |z| ≤ 1 + δ implies that the numerator is zero when-
ever the denominator vanishes in z : |z| ≤ 1 + δ. That is,
the numerator and the denominator of (45) have exactly
the same number of roots in the above disk. Let’s state
Rouché’s theorem.

Theorem 1. If f(z) and g(z) are analytic functions of z
inside and on a closed contour C, and also if |g(z)| < |f(z)|
on C, then f(z) and f(z) + g(z) have the same number of
zeros inside C.

Define g(z) = M̂i(z)
(
(1 − pi)zw + pi

)
, f(z) = zw. Because

g(1) = f(1) = 1 and g′(1) = mi + w(1 − pi) < w = f ′(1),
we have for sufficiently small δ > 0, g(1 + δ) < f(1 + δ).
Consider all z with |z| = 1 + δ, then

|g(z)| = |M̂i(z)| · |(1− pi)zw + pi|

≤
∞∑
j=0

P (Mi = j)|z|j ·
(
(1− pi)|z|w + pi

)
= g(1 + δ)

< f(1 + δ) = |f(z)|,
(47)

where the first inequality is due to the triangle inequality.
Hence |g(z)| < |f(z)|, and by Rouché’s theorem we know

that zw − M̂i(z)
(
(1 − pi)zw + pi

)
has the same number of

zeros as zw, i.e., w roots in the disk z : |z| ≤ 1 + δ, for ev-
ery sufficiently small δ > 0. Let these roots be denoted by
z1, z2, . . . , zw−1 and zw = 1. Since the PGF Q̂i(z) is analytic
within the region |z| ≤ 1, the numerator of (45) should van-

ish at each of the roots. It follows that
∑w−1
j=0 v

(j)
i zj should

vanish at z1, z2, . . . , zw−1. We thus have the following w− 1
equations

w−1∑
j=0

v
(j)
i zjk = 0 (k = 1, 2, . . . , w − 1). (48)

Using the w− 1 equations of (48) together with (46) we get

w−1∑
j=0

v
(j)
i zj = (w − mi

pi
)

w−1∏
j=1

z − zj
1− zj

. (49)

Hence,

Q̂i(z) =
M̂i(z)(z − 1)(piw −m)

zw − M̂i(z)
(
(1− pi)zw + pi

) w−1∏
j=1

z − zj
1− zj

. (50)

Finally, the moments of Xi can be obtain using Q̂i(z). At
steady state we have

Xi = β−Yi
i . (51)

Therefore, the kth moment of Xi can be obtain as follows

E[Xk
i ] = E[β−kYi

i ] = E[β
− k

w
Qi

i ] = Q̂i(β
− k

w
i ). (52)



The kth moment of Xi is finite as long as β
− k

w
i is smaller

than the smallest root of the denominator of (45) which is
larger than 1.

3.2 Cyclic One Strategy
The analysis of the ”Cyclic One Strategy” follow a direc-

tion similar to that of the ”Probabilistic One Strategy”. Let

Xj
i and Xi

i
(n)

be defined as section 2.1. Hence, the evolution
of the state of the system is given by

Xj
i+1 =

{
Xj
i · e

γjUi if j 6= i
max(βiX

i
i , 1) · eγiUi if j = i,

(53)

or

Xi
i
(n+1)

= max(βiX
i
i
(n)
, 1)eγiC

(n)
i , (54)

where C
(n)
i is the cycle time between the nth polling instant

of channel i to the n + 1st polling instant of that channel.

Clearly C
(n)
i =

∑N
j=1 Uj . Using the substitution Y

(n+1)
i =

logXi
i
(n)

− log βi
as in the previous section, we get

Y
(n+1)
i = max(Y

(n)
i − 1, 0) +

γi
− log βi

C
(n)
i . (55)

Defining T
(n)
i = γi

− log βi
C

(n)
i , and assuming that T

(n)
i is

a fraction of an integer w, we can transform the evolu-
tion equation (55) to the same evolution of an M/G/1 bulk
queue, with bulk service w

Q
(n+1)
i =

{
Q

(n)
i − w +Mi if Q

(n)
i > w

Mi if Q
(n)
i ≤ w,

(56)

where Q
(n)
i = w · Y (n)

i and M
(n)
i = w · T (n)

i are integers
random variables. Then, from (56), the PGF of Qi is

Q̂i(z) =
M̂i(z)

∑w−1
j=0 π

(j)
i (zw − zj)

zw − M̂i(z)
, (57)

and by using Rouché’s theorem as in the previous section,
we obtain (see [5])

Q̂i(z) =
M̂i(z)(z − 1)(w −mi)

zw − M̂i(z)

w−1∏
j=1

z − zj
1− zj

. (58)

Notice the similarity between equations (50) and (58) (sub-
stituting pi = 1 in (50) yields (58)) except for Mi which is
defined differently in both schemes. The kth moment of Xi

i

is obtained, as in equation (52), by

E[Xi
i
k
] = Q̂i(β

− k
w

i ). (59)

4. CONCLUSIONS
This paper analyzes a polling-type procedures of a TCP

mechanism for a system with N connections sharing a com-
mon AQM. Both the AIMD and MIMD schemes are studied
for the cyclic and the probabilistic polling policies. LST,
mean and (explicit value for the) second moment of the
transmission rate of each connection are derived and over-
all mean throughput is calculated. For the analysis of the
MIMD scheme, an analogy to M/G/1 queue with bulk ser-
vice is utilized and enables the complete analysis of the sys-
tem.
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