
Performance Measures for Ordered Lists in Random-Access

Files

HAIM MENDELSON AND URI YECHIALI

Tel Avtv Umverslty, Tel Aviv, Israel

ABSTRACT. A random-access file with N storage locations ~s consmdered. Records are added to the file from time
to tmme A record wroth key ~f ~ ~2 ms hashed to storage location F(,o). A collismon ms resolved by the foUowmg
chaining method' All records hashed to the same locatmon are chained to each other to form an ordered list,
ordered m ascending order of the keys The first record of a list is stored either at location F(~0) or at an alternative
start ff IocaUon F(,o) ms occupied. For thins process the multidimensional ume-dependent generating funcuon is
derived, and the expected values of various state variables are calculated. These values are used to obtain
formulas for the expected number of I/O operations needed for retrieval, addmon, or updating of a record

Two measures of retrieval performance are calculated: (i) The expected number of addiuonal probes needed
to find a record m the file This measure ms uniformly bounded by t. (n) The expected number of addmonal
probes required to dmscover that a record is not in the file. This performance measure IS always smaller than the
first and ms uniformly bounded by I/e.

Addmon of a record consists of three steps. (l) checking that a record with the same key does not exmst in the
file, (2) finding an empty locatmon, and (3) wrmng the record and updating all the pointers revolved The number
of I/O operatmons needed for record addmon depends on the amount of reformation avadable on the occupancy
of the file For various mformatmn levels the relevant performance measures are calculated and compared

KEY WORDS AND PHRASES: hashing, colhslon resolutmon, chammg method, ordered list, multsdlmensmonal
generatmg function, remeval performance

CR CATEGORIES 3.72, 3 74, 4 33, 5.5

1. In troduct ion

Cons ider a random-access file wi th N (equivalent) s torage locat ions 1, 2 N. F ixed
length records are added to the fde f rom t ime to time. Each record is ident i f ied by a key
o~ be longing to a key set ~. Let ~ok (k = 1, 2, 3) deno te the key o f the k th record added
to the file. We assume that o~, o~2, ,o~, . . . is a sequence o f i.i.d, r a n d o m variables wi th an
arbi t rary cont inuous dis tr ibut ion. A record wi th key o~ E ~ is hashed to storage locat ion

F(o~), where the hash ing funct ion F is given (see [2, 3]).
Let F~ ffi F(to~) be the s torage locat ion to wh ich the ith record is mapped . It follows tha t

Fi, F2, F3 is a sequence o f i.i.d, r a n d o m variables. W e assume that the d is t r ibut ion o f
F, (i ffi 1, 2, 3) is un i fo rm over the set o f integers A = (1, 2 N} . A collision occurs
w h e n two dist inct records are hashed to the same location, i.e., w h e n F(,o,) = F(,0~) for ~,~

o ~ .
Several m e thods for coll ision resolut ion are k n o w n [2-6]. In this work we analyze in

detai l the so-called cha in ing method . Accord ing to this me thod , all records m a p p e d to the
same locat ion are cha ined to each o the r to fo rm an o rde red list. The first record o f a list
is s tored e i ther at locat ion F(,o) or, if locat ion F(~0) is occupied, at a r a n d o m l y selected

Permission to copy wmthout fee all or part of this material is granted provided that the copras are not made or
distributed for direct commercml advantage, the ACM copyright notice and the title of the publicatmon and its
date appear, and noUce is graven that copying is by permission of the Associatmn for Computing Machinery. To
copy otherwise, or to repubhsh, requires a fee and/or specific permissmon.
Authors" present addresses. H Mendelson, Graduate School of Management, University of Rochester, Rochester,
NY 14627; U. Yechlah, Department of Statistics, Tel Aviv University, Tel Aviv, lsrael.
© 1979 ACM 0004-5411/79/1000-0654 $00.75

Journal of the AssoclaUon for Compulmg Machinery, Vol 26, No 4, Oclober 1979, pp 654-667

Performance Measures for Ordered Ltsts in Random-Access Files 655

empty location which is termed alternattve start. The records m each list are ordered by
key.

Our aim is to calculate various measures of performance for the chaining method.
Retrieval performance is evaluated via two measures: (i) the expected number o f probes
needed to find a record m the file, and (i0 the expected number of probes required to
discover that a record is not in the file.

Measures of performance for addition of a record are also derived. Record addit ion is
composed of three steps: (1) checking that the key does not exist in the file, (2) finding an
empty locauon, and (3) writing the record and updating all the pointers involved. The
number of I / O operaUons needed for the second step depends on the amount of infor-
mation available on the occupancy of the file. For various reformation levels the relevant
performance measures are calculated and compared.

Updating an existing record consists of two stages: retrieving the record and rewriting it.
Since the locauon of the record remains the same, no pointers have to be changed. Thus,
the expected number of I /O operaUons needed is equal to the expected number of probes
needed to find the record in the file plus 1.

A special case of our general problem has been studied by Johnson [1], who treated the
problem of addressing on secondary keys. He derives an approximate formula for the
expected number of probes for retrieval of a record m the file. An exact formula which is
easdy derived from our general results shows that Johnson's approximation is a good one.

The paper is composed of the following sections. Section 2 describes the chaining
method and defines the underlying stochastic process. In Section 3 we derive the multidi-
mensional Ume-dependent generating function of the process and calculate the moments
of various state variables. In Section 4 we analyze the length of search in an ordered table.
Our results are then used in Section 5 to calculate the retrieval performance measures, and
in Section 6 to analyze the process of record addition.

2. The Chaming Method

Consider a random-access file with N storage locations. Let F : ~ --~ A be the hashing
function. We assume that F is a random variable uniformly distributed over the set A --
{ 1, 2, . . . , N}. Records are added to the file from time to time. Suppose that a record with
key ~0 E f~ is to be added to the file. The record is hashed to storage location F(o~). I f this
locaUon is empty, the record is stored there. I f the storage location is occupied, the record
has to be assigned to some empty location which is randomly selected from the set of
empty locaUons. From symmetry considerations the actual method of assignment is
irrelevant to the future development of the process, since the empty locations are inter-
changeable.

For retrieval purposes it is necessary to keep track of the actual addresses of the records.
All records hashed to the same location are chained to each other to form an ordered hst.
Retrieval of a record requires a search along the list generated by all records mapped by
F to the same location. Once the beginning of the list is found, the required key is searched
along the hst. However, it might require additional effort to determine the beginning of
the list, since the first record hashed to the chain might have found an occupied location
and may have had to be assigned to an alternative address.

We start the process at time ~o ffi 0 with an empty file.
Let 0 < ~1 < r2 < • • • < ~k < • • • be the sequence of arrival instants of records. ~k is the

instant of arrival of the kth record wtth key o0k.
We assume that the interarnval Umes zk - rk-i (k = 1, 2) are independent random

variables and embed the process at instants {Zk + 0}~-o. We say that the system is in stage
(step) k when there are k records in the file. Storage locations are gradually numbered (for
the analysis) along with the development of the process: The location occupied in the kth
step is denoted as the kth storage location. That is, at the kth step k storage locations are
occupied and numbered by the numbers 1, 2 k. Once a number is assigned to a

656 l-l. M E N D E L S O N A N D U. Y E C H I A L I

location, it does not change. Addit ion of records to the file generates lists. We say that a
record with key o~ E f~ belongs to list F(w), where ~e(w) is the number given by our
numbering procedure to the location to which the record is hashed. The records of the
same list are chained to each other by pointers in ascending order of their keys.

List ~e(w) ffi i starts either at location i or at some alternative location j (j # 0. It starts
at location i if the record that initiates the list arrives at instant r, and is hashed to an
empty location. Otherwise, i f the record is hashed to an occupied location, it is assigned to
an alternative location ./, and the list starts at an alternative start j. It follows that two
pointers are required for each occupied location:

(a) A link to the next record m the list, if any, or an mdication ~ that the record is the
last (so far) m the hst.

(b) An address of the alternative start, if any, or O, if none exists.

Addit ion of a record with key w is performed as follows. After i = F(o~) has been
calculated, storage location i is read and checked. I f it is empty, the record is stored there,
with both pointers set to ~ . Otherwise, the list is scanned to find the key with the highest
value that is not greater than w. Suppose the record with this key is stored at locaUonj. I f
this key is equal to w, then the new record is not added to the file. If the key is lower than
w, an empty locaUon ~s selected for the new record and is chained to the hst immediately
following locat ionj . In the special case where to is lower than the key of the first record of
hst i and the list has no alternative start, the first record is displaced to an empty location,
and the added record is stored m location i.

Let X~ k~ be the number of records in the file belonging to list i at the kth step, and let
y~k~ be defined as follows:

y ~ = [1 ff location i ~s occupied by a foreign record at the kth step,
' 10 otherwise,

where a foreign record is one with a key w such that F(o~) # i.
It follows that whenever Y~,~> = l and X~, ~> > 0, list i has an alternattve start. Also, y~0

= 1 implies Y ~ ffi 1 for k > i. The chaining method is best illustrated graphically. A
storage location ~s represented by a rectangle, shown in Figure 1. In Figure 2 we
demonstrate a list (list i, say) with no alternative start m stage k. In this case X} ~ ffi
3, Y ~ ffi 0.

Now consider l i s t j of Figure 2. I f no record has been mapped to l i s t j up to this step (the
kth), then XJ ~ = 0; yet YJ~ = I. Suppose XJ ~ ffi 2; then we get the configuration shown
m Figure 3, for which XI ~' = 3, y~k, ffi O, X~ ~) = 2, Y ~ ffi 1.

3. The Multidimenszonal Time-Dependent Generating Function

Consider the 2N-dimensional stochastic process {(_X ~k), y~k~), k = 0, 1, 2 } where
(X~,~ y~,~) = (X~k~, X~k) X~) , y~k~, y~k~ Y ~). The process ((~f~k), y<k)), k = 0, 1,
2 } is Markovian, but its transition probabilit ies are nonstationary. For each k, we
define the 2N-dimensional generating function

G~h'(z, v) = E(z_6 'k'. v-v'k'), (1)

where z_, _v E R N, z,_ _v _> 0 and, for nonnegative a, b E R N, we define a -bm II,_~a,,.N ~ We
derive a recursive equation for G<~>(~, v).

THEOREM 1. G~k~(z_, v) satisfies the following recursive equation:

G~k+l~(Z, v) = (l /N)vk+l Z, G~k~(z, v)

+ (1 - k/N)zk+lG{k)(;, v_) (k -- 0, 1, 2) (2)

where Gl°)(z, _v) = 1.
PROOF. /~(w~+l) = i (t = 1, 2 k) with probabil i ty 1/N. On the other hand, wk+~

Performance Measures for Ordered Lists in Random-Access Files 657

Pointer to an

elternabve

start

FIG 1

hnk

@
storage Iocabon number

Graphic representaUon of a storage locatmn

(3 (3
i]

FIG 2

\ o
Ltst with no alternattve start

(3

©

©

\ G
J

F~G 3 Lts ts tandj

b e l o n g s to a n o n o c c u p i e d l o c a t i o n - - w h i c h wi l l b e n u m b e r e d as t he (k + l) s t s t o r a g e
l o c a t i o n - - w i t h p r o b a b i l i t y (w.p.) 1 - k / N . T h a t is,

i w p . I / N (i = 1 , 2 , . . . , k) ,
F(~0k+l)= k + 1 w.p. l - k / N .

If/~'(wk+~) = l (l = 1, 2 k), t h e (k + l)s t r e c o r d b e c o m e s a f o r e i g n r e c o r d in l o c a t i o n
v~k+, 1. T h i s r e c o r d b e l o n g s to t he i th list. H e n c e , X~ k÷~) = X~ k) + 1. O n t he k + l, so -h+] =

V(k+x~ = 0 a n d v~k+a~ 1, s ince a n e w l i s t - - l i s t k + l - - o t h e r h a n d , t f P (~k+ l) = k + 1, -k+~ -,k+l =
s ta r t s a t l o c a t i o n k + 1. W e h a v e

k
G~k+D(Z_, _V) = ~ E(~_ s'*+'', v_ r '~*"lP(~k+l) = 0" P(P(ook+i) ---- 0

+ E(~ -x • _v r ' I P(~k+,) = k + l) .P (F (tok+ ,) = k + 1)
k

= ~ E(z -x'~'+-~' • v_ _~"+_~k÷,). 1 / N + E(z-X'k'+- ~k+' • v -Y'")(I -- k / N) ,
i-1

658 H. M E N D E L S O N A N D U. Y E C H I A L I

where e_~ is the unit vector with 1 in the flh place. Since q-~, ffi a:, eq. (2) readily
follows. Q.E.D.

It is interesting to write specifically the generating functions G~k)(~, v) for k ffi 0, 1, 2 and
interpret them. G~°)([, v) ffi 1, since in step 0 the file is empty. G~(~, _v) ffi z~. Indeed, the
first record is assigned--by our numbenng method-- to location I. G~2)([, v) = (l /N)z~v2
+ (l - l /N)zaz2, for the second record is hashed to storage location 1 with probability
I / N and to an empty storage location with probability 1 - I /N .

THEOREM 2. G~k)(z_, v) is a polynomial in {z,}~-i and{v,}tk-1. The maximal power o f z, is
k - i + ! (i = I, 2 k), and that o f v, is i.

PROOF. By induction on k. Q.E.D.
Remark. Theorem 2 represents the following facts:

(i) X~ k) = y~k) = O for i ffi k + l, k + 2 N.
(ii) y~k~ = 0, ! for all i, k.

(iii) X~ ~) _< k - i + 1 for k = 1, 2 N; i = l, 2 k since list i may be augmented
by records only at instants 'b fo r j >_ i.

Given the recursive equation (2), various moments, which will be needed m the sequel,
may be calculated. The first- and second-order moments are given in Corollary 1.

COROLLARY I. For every k = l, 2 N, t ffi 1, 2 k,

E(Y~ ~) -- (i - I) /N,

E(X~ ~)) ffi ! + (k - 2i + I) /N,

E((X[k)) 2) -- (k - i)(3N - 3i + k + I) /N 2 + 1 - (i - I) /N ,

PROOF.
= E(y~k)). (The interpretation is obvious: Y~) is determined at step k ffi i and does not
change thereafter.) Also, using the fact that (O/OVk+I)G~k)(Z_, V) = 0, we have

E(V¢k+l)~ = 0 Gfk+l)(Z, k

which implies eq. 3. In a similar way we derive E(X~kk+~ u) = 1 -- k / N . Now,

0 1
E(X~ k+')) = ~ G'k+"(l, l) = ~ + E(x}k)).

Thus,

(3)

(4)

(5)

E(X~,~ y~k,) _ (k - i)(i - l) /N 2. (6)

Differentiating eq. (2) with respect to v, and putting ~ ffi v = ! , we get E(Y~ k+l))

To get (5), we write
0 2

~ a~"(l '

Substituting eq. (4) in the above yields

Using (3) and the fact that X~ '~ Y~'~ = 0,
k - I

1) ffi Z E (X ,).
Jm I N

(5). Finally,

a 0 G~k+~>(l ' t)

E(X~"Y~k)) + (~) E (Y,')).

we get

(k) (k) _ E(X, Y,) - ~ (i - I) /N 2 = (k - i) (i - 1)IN 2. Q.E.D.

k - I

E(X~ k)) = ~ 1 / N + E(X} '~) ffi (k - i) / N + 1 - (i - I) / N

= 1 + (k - 2 i + I)/N.

Performance Measures for Ordered Lists in Random-Access Files 659

The analysis of various performance measures also requires the calculation of the
moment E[(X} k) + 1)-1]. As it turns out, the calculation of El(X} k~ + 1) -~] may be reduced
to the moments of the binomial distribution given by Lemma 1.

LEMMA 1. Let the random variable J have a binomial distributmn with parameters n
(number of trials) and p (probability for success): J ~ B(n, p). Then

E ~ =/~(n+ 1)' (7)

[1] l - (n + 2) p q " + l - q n.2

E (j + l) (d+2) = - pZ(n+ l) (n+2) ' (8)

and

1] (n + 2) p + q n + 2 - 1

E J ~ j = p 2 (n + l) (n + 2) ' (9)

where q = 1 - p.
Lemma I may be proved either directly or by integrating the generating function of J.
L~MMA2. F o r k = i , i + 1, i + 2

[1] [1] i - I E I l] (10)
E ~ = e 7 ~ + - 7 (J + l) (J + 2) '

where J ~ B(k - i, l /N) .
PROOF. F o r k = i , i + l , l + 2 , . . . , w e h a v e

, fx~" w.p. 1 -- 1iN,
X}k+l) [XI k) + 1 w.p. I /N.

It follows that for each m -- 1, 2, 3, . . . ,

[,]
E = 1 - E N E X ~ k) + m + 1 "

By induction on k we obtain,

E [x~, l+ m] = ;~] (k f i) (IN)' (1-~)'-'-SE[x~o+lm+j].
However, since X~ '~ = 0 or 1,

Hence,

[x,l+m] i.~1 I (i~ /1) 1 E = - + 1 - •
m m - ~ l

1 i - I 1
m + 1 I- N re (m+ 1)

r , , _ , ,] E ~ --,-o J ~ 1 - j ~ 4 L , J N (j + l) (j + 2 ~ '

which is equivalent to (10). Q.E.D.
Combining the results of Lemmas 1 and 2 we obtain, after cancellations,
COROLLARY 2. For k -- i, i + 1, i + 2

p2m(m + I)E[(X~ k) + 1) -1]
= - [1 - (k + l)p] + [1 - (k + l)p][l + mp]q m +p2m(m + l)q% (11)

wherep= I /N, q = l - p = 1 - l /N, a n d m = k - i + 1.
We note that the results given by Corollaries I and 2 may also be derived by using direct

probabilistic arguments.

660 H. MENDELSON AND U. YECHIALI

4. Length of Search in an Ordered List

To prepare for the analysis of the chaining method for random-access addressing, we study
the retrieval performance of ordered lists. This study is needed since the search for a record
with key w is transformed by the hashing function into a sequential search along list
number i = P(o~). We consider an ordered list containing n records (with different keys),
and ignore for a moment the special features originating from our chaining method. The
possible existence of an alternative start and the interaction among lists will be reconsidered
m the following sections.

The (trivial) algorithm for sequential search in an ordered list is given by Knuth [2, p.
396]. It also appears as part of our flowchart in Figure 4. Obviously, ordering the hst does
not improve the performance of a successful search when all the keys in the hst are equally
likely to be requested. The expected length of a search in a list with n records is equal to

(l /n)(l + 2 + 3 + • • • + n) = (n + 1)/2.

Consider now the case of an unsuccessful search. We assume that the keys of records
added to the list, as well as the keys requested in unsuccessful searches, are sampled
independently from an arbttrary continuous distribution H(.). Under these assumptions
we prove

L~MMA 3. The expected number of probes needed for an unsuccessful search in an
ordered list with n different keys is 1 + n/2 - l/(n + 1).

PROOF. Let w, be the key of the ith record added to the list (i = 1, 2 n). The
random variables ~ol, o~2 ~n are i.i.d, with distnbution function H(.). Suppose ~ is the
requested key. By assumption, all ~o, (i ffi 1, 2 n) are distinct from each other and
from o~. This information does not alter their joint distribution, since H(.) is continuous.
Let (~1, ~2, . . . , ~n) be the order statistics of (~ol, ~2 ~n), and set ~o ffi -oo; then
~0 < ~1 < ~ 2 < • • • < ~ n .

I f ~ - i < ~0 < ~ (j ffi 1, 2 n), then the number of probes needed to discover that key
o~ does not exist in the list is j. The probabihty of this event is

P{~- t < ~, ~j > ~} = P { e x a c t l y j - 1 of the keys are lower than o~}

(jnl)(H(co)Y-l(1-H(~o))n-'~-",_

since P{w, < w} ffi H(w) for t ffi 1, 2 n. I f w > ~n, the whole list has to be scanned, so
that the number of probes is n. This happens with probability

P{~n < w} ffi P{all keys < w} ffi (H(~0)) ".

It follows that the number of probes is distributed like m i n { J + 1, n}, where J
~ B(n, H(o~)). Hence, the expected number of probes, given ~, is

1 + n i l (w) - (H(w))". (12)

But, as is well known, H(~o) has a uniform distribution over the interval [0, 1]. Hence, the
expected value of (12) is

n n 1
1 + ~ - - u n d u = l + 2 n + l " Q.E.D.

Remark. It is sometimes customary to facilitate the searching procedure by augmenting
the list with a fict,tious record whose key is "infinite." This increases the expected length
of an unsuccessful search to l + n/2, which is not significantly higher than 1 + n/2 -
I/(n + 1) when n is large. Th,s practice is not used in random-access addressing, since (1)
the chains tend to be short so the loss in performance is considerable, and (2) the extra
records further increase the occupancy of the file.

5. Retrieval Performance Measures

In what follows we incorporate our previous results to derive various performance measures
for the chaining method. We restrict the analysis to input-output (I /O) considerations,

Performance Measures for Ordered Lists in Random-A ccess Files 661

FIG 4

read alternattve

start,

a (--- address of
alternative start

read storage

location hnk (a) ,

a ~ link (a)

L_

Calculate
= ~ (~)

read storage

Iocabon i,

a~-~l

No

I S e q u e n t i a l S e a r c h

No

_.1
Flowchart for retrieval of a record wtth key oa The sequenttal search along hst i Is shown mslde the

broken rectangle

which are frequently dominant in management information systems. In this section we
deal with the costs associated with the retrieval of records; we measure costs by the number
of probes needed for retrieval of a single record. In Section 6 we calculate the costs
recurred by the addition of records to the file.

Consider a retrieval request for a record with key o~ ~ f~, where k records are in the file.
The retrieval procedure may be described by the flowchart in Figure 4. We use the
followmg notation:

a = address of current storage location read,
key(a) = key of record in storage location a,
link(a) ffi address of next record in the list to which a belongs.

Let C(k) be the expected number of probes needed for retrieval of one of the k records
currently stored m the file. We assume that each of the k records is equally likely to be
requested. It follows that the way the records of a list are ordered does not influence
C(k). A record in the file belongs to hst i with probabili ty XI k~/k. The search for a record
in hst i consists of (1) finding the beginning of the hst, which requires y~k~ probes, and (2)
moving along the list until the record is found. Since each record in the list has the same
probabili ty of being requested, the average number of moves ls(X~ k~ + 1)/2. Hence,

k [X~,)(y~k)+Xl2+..._._.~l)
C(k) = ~ E L T] . (13)

662 H. MENDELSON AND U. YECHIALI

Note that when we sum in (13) from 1 to k, we allow for the possibility of empty lists with
X~k) = 0. Since ~ . 1 X[k~ = k, we have t

, . [l]
c(k) = ½ + ~,.~1 E(x:"r~") + ~ E(x~ ,) 2

Substituting from eqs. (6) and (5) yields

1 k 1 k 3N.2_NTk " - 1 c(k) = l - 2 ~ , . X l (; - l) + 2 ~ , X t (k - O 2 + (k i).
I - 1

By algebraic manipulation we finally obtain
THEOREM 3

C(k) = l + (k - 1)(3N + k - 2)/(6N 2) (k = 1, 2 N). (14)

It is seen that C(k) is a monotone increasing convex function of k and, for fixed k, it is
a monotone decreasing convex function of N.

Now suppose a record wah key ~o, which is not in the file, is requested at the kth step.
Let D(k) be the expected number of probes needed to discover that the required key ~s not
there. The key is hashed to an empty location with probability 1 - k / N . In such an event
the number of probes ts one. For each i -- l, 2 k, P(¢o) = i with probability l /N . We
claim that if F(¢o) -- i (i -- l, 2 k), then the expected number of I /O operations is

l
l 05) y~k, + l + ~ x~ k' - + 1"

Two cases have to be considered.

0) If X~ k~ = 0, then (15) reduces to Y~), which must be equal to 1. Indeed, the first
probe suffices to discover that the list Is empty.

(n) If X<, k~ > 0, then Lemma 3 may be invoked to find the expected length of search
along the records belonging to hst :. It requires y~k) additional probes to reach the
beginmng of the hst.

It follows that

(k N) 1 ~ [[1]] l ~ [X ~) I + i] D (k) = 1 - • I + N , . 1 I + E y<k) + 2 X~&) - N , - t E .

Substitution from (3) and (4) yields

k k (k - 1) I ~ E [1]
O(k)= I + T ~ + - - ~ - - - ~ , . 1 ~ .

Using (l l) and the sums

~ 1 _-- ~ (.m l_ l) l
m- i ra (m+ 1) .,-1 m + 1 = 1 k + 1'

k

X q ~ = - q (l - q k) ,
m ~ t

re.ten(m+ 1) =- t J'n'~"l'~ " q k + 1'

we obtain (letting, as in Corollary 2, en = k - i + 1):

E . = - p . [l - (k + l)p]
~=1 + 1

) [+, + [l - (k + l) ?] q - ~ - T j ?

Performance Measures for Ordered Lists in Random-Access Files 663

Slmphfylng, we have

We have thus proved
THEOREM 4

1 E 1 1 kp p (k + 1)
g lsl

D (k) = 2 - ~ 4 2 N - - - 7 - - + ~ l - - - - 1 . 0 6)

In order to obtain the qual i ta t ive properties of D(k), we use the b inomial expansion o f

(1 - (1 / ~ ')) " + ' :

k k (k - 1) N
D(K) = 2 - ~ + 2N 2 t- k +------1

x T ~ 2N z 6N 3 V ,-4 i -

= 1 -t 3N------~-- + (17) ,-z (t + I)N'"

It follows from (17) and from the identity

that

~D(k) = D(k + l) - D(k) = ~ + (18)
,-3 l - 1 (i + I)N '

and

AND(k) = a D (k + 1) - aD(k) = ~ + . (19)
,=3 t 2 (i + I)N'

Since the absolute values of the terms of (17), (18), and (19) are decreasing as t increases,
we have

COROLLARY 3. D(k) is an increasing convex functton o f k and a decreasing convex

function o f N.
In Figure 5 we illustrate the behavior o f C(k) and D(k) for a file with N = 1000 storage

locations.
F r o m Figure 5 it Is evident that C(k) and D(k) possess the fol lowing properties:
COROLLARY 4

(i) C(k) _> O(k), k = l, 2 N.
(ii) C(k) < ~, k = l, 2 N

(m) D(k) < 1 + l /e , k = 1, 2 N.
(Iv) For k << N, C(k) ~ 1 + (I / 2 N) • k.

PROOF. (i) It follows f rom (17) that

D(k) _< 1 + - - - ~ - - • 4N 3

k(k - 1) + k (k - l) (k - 2)

-- 1 + 3N 2 24Na

Suhs tau t ion o f C(k) f rom (14) yields

k - I
C(k) - D(k) ~_ . ~ - (7N - 8) _~ 0.

17

16

15

1 4 '

1 3 ,

12~

11

10
• • • • • • 9 • • •

1 O0 200 300 400 5500 600 700 800 900 1000

664 H. MENDELSON AND U. YECHIALI

Flo. 5 B¢havtor of C(k) and D(k)

(ii) From (14) we have
5 C(k) <_ C(N) = 1 + (N - I)(4N - 2)/(6N 2) < -~.

(iii) Use ofeq . (16) with k = N yields

D(k) <_ D (N) = 2 + ~ l -

It is well known that (1 - 1 /N) N < l/e; hence

2N(N + l) "

2 ~ l 2 N e + N + 1
D(k) < 2 + 1 N + 1 "~ 2N(N + 1)

l 2N(N + 1)+ ((4 / e) - I)N + 1 1
= 2 + - - < 1 + - .

e 2N(N + 1) e

(iv) Rewrite eq. (14) as

k - l (_ l l k 1)
C (k) = 1 + N \ 2 + 6 N 3N "

For k << N, the result follows. Q.E.D.

k

Performance Measures for Ordered Lists in Random-A ccess Flies 665

The above results may be compared with Johnson's work [l]. Johnson treats the problem
of addressing on secondary keys, using an "redirect" chaining method. Since a record's
location is a function of the primary key, a pointer to the beginning of each list is
maintained. In our presentaUon this means that y~k~ ffi 1 for all t _< k. Obviously, this
reduces the dimension and complexity of the problem.

Johnson calculates C(k) using a Polsson approximation with parameter k / N for the
length of each list. He obtains the formula C(k) = 2 + k/2N.

The exact result may be obtained from eq. (13) when y~k~ = 1. Substituting the values
of E(X~ k~) and E((X~k~) 2) from (4) and (5) yields

C(k) = 2 + (k - l) / 2 N . (20)

Comparing eqs. (20) and (14), it is clear that Johnson's method requires more I /O
operations. For k = 1, the difference is one probe; when k approaches N, the dtfference
approaches g.

6. A dditwn of Records

Consider the (k + l)st record arriving at instant ~+1 where there are already k records in
the file. The addition of the record is composed of three stages: (1) checking that the key
Wk+l does not exist in the file, (2) searching for an empty locauon, and (3) storing the
record and updating the relevant pointers. Each of these steps may be analyzed separately.
Yet, there is some information flow from step to step.

First consider the checking procedure. This is simply a search for a record with key
wk+l. If wk+l exists in the file, then either the addition request is rejected, or the existing
record is updated m place. The expected number of reading probes is C(k); an update in
place requires only one additional I / O operation, since no pointers have to be changed. In
either case the addition procedure is terminated.

Now suppose that key wk÷~ does not exist in the file The expected number of probes
needed in this case is D(k). As a by-product of the search, it is known where (and how) the
new record has to be chained in its list. This information is transferred onto the third stage,
where the actual chaining is performed.

Next, we consider the stage of searching for an empty location. Let i = F(tok+l). If storage
location i is empty, the number of I / O operations needed in this step is 0 Otherwise, an
alternatwe location has to be found.

The amount of effort needed to select the alternative location depends on the level of
information available on the occupancy of the file. Three different levels of information
wdl be analyzed:

(I) No mformation. In this case a location is selected randomly among all N locations
in the file. I f the location so selected is empty, the record wdl be stored there. Otherwise,
another similar independent trial is repeated until an empty location is found. Since no
information is gathered during the process it might happen that an occupied location will
be selected more than once. We indicate this information level with the subscript n.

(2) Partial information. Here we keep track of the locations that have been traversed
and found occupied during this addition process. This includes all occupied locations
encountered either during stage (1) or in previous trials of the present stage. These locations
are no longer can&dates for storing the (k + l)st record. This information level will be
indicated by the subscript p.

(3) Full information. With this level of information the addresses of all k occupied
locations are known. (Such information may compactly be maintained in a bit map.) The
subscriptf will indicate this level of information.

Let S(k) be the number of input operations needed for the search until an empty location
is found for the (k + l)st record. For each of the above levels of information, denote the
expected value of S(k) by Ln(k), Lp(k), or Li(k), respectively. We have

666

THEOREM 5.

(0

F o r k = O , 1,2 N - 1,

H. MENDELSON AND U. YECHIALI

k
Ln(k) = N--'--'~' (21)

k + 1 - D(k)
(it) L v (k) - - N + l - k ' (22)

(i/z) Lf (k) = k / N . (23)

PROOF. (1) It IS readily seen that S(k) has a geometric distribution with a probability
for success (= finding an empty location) l - k / N . Hence

k i N k
Ln(k) =

1 - k / N N - k"

(ii) Let V(k, n) be the expected length of a search for an empty location among n
eqmvalent locations, k of which are occupied (k = 0, 1, 2 n - 1). V(k, n) satisfies the
recursive equation

V(k, n) = (! - k / n) . 1 + (k /n) . [1 + V(k - 1, n - 1)],

or

V(k, n) = l + (k / n) V (k - l, n - l). (24)

Note that if a solution of (24) exists, it is unique. It follows by induction on n for each
k - - 0 , ! , 2 n - l t h a t

V(k, n) = (n + l)/(n + 1 - k).

Now if 0:k+l is hashed to an empty location, then S(k) = O. If P(~0k+l) = i (i = 1, 2
k), let U, be the number of probes needed for stage (1) of record addition. Then

N + l - u
E[S(k)lP(o~k+~) -- i, U, = u] = V(k - u, N - u) =

N + l - k "

It follows that

But

hence,

L p (k) = (l _ ~) . O + 1 k I N + I - U ,]
~.,_~ e L . ~ 1 = ~_1

k (N + 1) 1 1 k
- - N (N + I - k) N + l - k ~¢,~E[U,] .

k 1 k
D(k) = 1 - ~ + ..~ E E[U,];

Lp(k) = (k + 1 - D (k)) I (N + I -- k).

(in) Location F(ook÷0 is occupied with probability k / N . Hence

Lf(k) = (1 - k / N) . O + (k / N) . 1 = k / N . Q.E.D.

It is easy to show the following:
COROLLARY 5. Lf(k) <_ Lp(k) <_ Ln(k).
As was expected, the number of I / O operations increases as the level of information

decreases. The improvement obtained by partial information relative to no information is
neghgible when k is not close to N. When k approaches N, both Ln(k) and Lp(k) increase
rapidly while Lf(k) increases only linearly. These facts are seen in Figure 6 for the case of
N = lO00.

We complete the analysis by calculating the number Q(k) of output operations required
for the last stage of record addition--i.e, for storing the record and updating the pointers

Performance Measures for Ordered Lists in Random-Access Files

L(k) I

6 q

44

34

2~

I t~(k)

0 ----

667

0 2;0 5;o 6;o k -
FIG 6 L.(k), Lp(k), and Lf(k)

(all the necessary input operations have been performed in stages (l) and (2)). I f location
F(Wk+l) is empty, all that remains is to write the added record; so Q(k) -- I. Otherwise, let
t =/6(Wk+l) (t = l, 2 k). The new record has to be chained into list i following the last
key with value less than Wk+l.

If a record with such a key exists in the list, it has been located and read in stage (l).
Suppose that record was located in location j . Then link(j) is moved to link(k + l),
hnk(j) is set to point to the new record (at location k + 1), record (k + l) is stored, and
record j is updated. Hence Q(k) = 2.

When Wk+l IS lower than all the keys in list l (if any) and y~k) = i, then the alternative
start pointer of record ~ is moved to link (k + l) and then updated to point to the new
record. Locauons i and k + l are then stored in the file; thus Q(k) = 2.

If Wk+l is lower than all the keys in list i and y~k) = 0 (this implies X~ h) > 0), then record
i is displaced to the new storage location and chained following the added record, which
is stored in location i. Again, Q(k) = 2.

It follows that

{~ w.p. 1 - k / N ,
Q (k) = , w.p. k iN.

Thus, we conclude:
THEOREM 6. E[Q(k)] = 1 + k /N.

REFERENCES

l JOHNSON, L R An indirect chaining method for addressing on secondary keys Comm. ACM 4, 5 (May
1961), 218-222,

2 KNUTH. D E The Art of Computer Programming, Vol 3 Sorting and Searching Addison-Wesley, Reading,
Mass, 1973

3 LUM. V Y . YUEN, P S T . AND DODD. M Key-to-address transform techniques' A fundamental performance
study on large existing formatted files Comm. ACM 14, 4 (April 1971), 228-239

4 MORRIS, R Scatter storage techmques Comm ACM 11, l (Jan 1968), 38--44
5 PETERSON. W W Addressing for random-access storage IBM J Res and Develop I 0957). 130-146
6 VAN DER POOL. J A Opt imum storage allocation for mmal loading of a file IBM J Res and Develop 16

(1972), 579-586

RECEIVED JUNE 1977, REVISED SEPTEMBER 1978

Journal of the Association for Computing Machinery, VoI 26, No 4, October 1979

