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ABSTRACT. A random-access file with N storage locations ~s consmdered. Records are added to the file from time 
to tmme A record wroth key ~f ~ ~2 ms hashed to storage location F(,o). A collismon ms resolved by the foUowmg 
chaining method' All records hashed to the same locatmon are chained to each other to form an ordered list, 
ordered m ascending order of the keys The first record of a list is stored either at location F(~0) or at an alternative 
start ff IocaUon F(,o) ms occupied. For thins process the multidimensional ume-dependent generating funcuon is 
derived, and the expected values of various state variables are calculated. These values are used to obtain 
formulas for the expected number of I/O operations needed for retrieval, addmon, or updating of a record 

Two measures of retrieval performance are calculated: (i) The expected number of addiuonal probes needed 
to find a record m the file This measure ms uniformly bounded by t. (n) The expected number of addmonal 
probes required to dmscover that a record is not in the file. This performance measure IS always smaller than the 
first and ms uniformly bounded by I/e. 

Addmon of a record consists of three steps. (l) checking that a record with the same key does not exmst in the 
file, (2) finding an empty locatmon, and (3) wrmng the record and updating all the pointers revolved The number 
of I/O operatmons needed for record addmon depends on the amount of reformation avadable on the occupancy 
of the file For various mformatmn levels the relevant performance measures are calculated and compared 
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1. In troduct ion 

Cons ider  a random-access  file wi th  N (equivalent)  s torage locat ions 1, 2 . . . . .  N. F ixed  
length  records are added  to the fde  f rom t ime to time. Each  record is ident i f ied by a key 
o~ be longing  to a key set ~.  Let ~ok (k = 1, 2, 3 . . . .  ) deno te  the key o f  the k th  record added  
to the file. We  assume that  o~, o~2, ,o~, . . .  is a sequence  o f  i.i.d, r a n d o m  variables  wi th  an  
arbi t rary  cont inuous  dis tr ibut ion.  A record wi th  key o~ E ~ is hashed  to storage locat ion 

F(o~), where  the hash ing  funct ion F is given (see [2, 3]). 
Let  F~ ffi F(to~) be the  s torage locat ion to wh ich  the ith record is mapped .  It follows tha t  

Fi,  F2, F3 . . . .  is a sequence  o f  i.i.d, r a n d o m  variables. W e  assume that  the d is t r ibut ion o f  
F, (i ffi 1, 2, 3 . . . .  ) is un i fo rm over  the set o f  integers A = (1, 2 . . . . .  N} .  A collision occurs  
w h e n  two dist inct  records are hashed  to the same location,  i.e., w h e n  F(,o,) = F(,0~) for ~,~ 

# o ~ .  
Several  m e thods  for coll ision resolut ion are  k n o w n  [2-6]. In  this work  we analyze in 

detai l  the so-called cha in ing  method .  Accord ing  to this me thod ,  all records  m a p p e d  to the 
same locat ion are cha ined  to each  o the r  to fo rm an o rde red  list. The  first record o f  a list 
is s tored e i ther  at locat ion F(,o) or, if  locat ion F(~0) is occupied,  at a r a n d o m l y  selected 
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empty location which is termed alternattve start. The records m each list are ordered by 
key. 

Our aim is to calculate various measures of  performance for the chaining method. 
Retrieval performance is evaluated via two measures: (i) the expected number  o f  probes 
needed to find a record m the file, and (i0 the expected number of  probes required to 
discover that a record is not in the file. 

Measures of  performance for addition of  a record are also derived. Record addit ion is 
composed of  three steps: (1) checking that the key does not exist in the file, (2) finding an 
empty locauon, and (3) writing the record and updating all the pointers involved. The 
number of  I / O  operaUons needed for the second step depends on the amount  of  infor- 
mation available on the occupancy of  the file. For  various reformation levels the relevant 
performance measures are calculated and compared. 

Updating an existing record consists of  two stages: retrieving the record and rewriting it. 
Since the locauon of  the record remains the same, no pointers have to be changed. Thus, 
the expected number of  I /O  operaUons needed is equal to the expected number of  probes 
needed to find the record in the file plus 1. 

A special case of  our general problem has been studied by Johnson [1], who treated the 
problem of  addressing on secondary keys. He derives an approximate formula for the 
expected number of  probes for retrieval of  a record m the file. An exact formula which is 
easdy derived from our general results shows that Johnson's approximation is a good one. 

The paper is composed of  the following sections. Section 2 describes the chaining 
method and defines the underlying stochastic process. In Section 3 we derive the multidi- 
mensional Ume-dependent generating function of  the process and calculate the moments 
of  various state variables. In Section 4 we analyze the length of  search in an ordered table. 
Our results are then used in Section 5 to calculate the retrieval performance measures, and 
in Section 6 to analyze the process of  record addition. 

2. The Chaming Method 

Consider a random-access file with N storage locations. Let F :  ~ --~ A be the hashing 
function. We assume that F is a random variable uniformly distributed over the set A -- 
{ 1, 2, . . . ,  N}. Records are added to the file from time to time. Suppose that a record with 
key ~0 E f~ is to be added to the file. The record is hashed to storage location F(o~). I f  this 
locaUon is empty, the record is stored there. I f  the storage location is occupied, the record 
has to be assigned to some empty location which is randomly selected from the set of  
empty locaUons. From symmetry considerations the actual method of  assignment is 
irrelevant to the future development of  the process, since the empty locations are inter- 
changeable. 

For  retrieval purposes it is necessary to keep track of  the actual addresses of  the records. 
All records hashed to the same location are chained to each other to form an ordered hst. 
Retrieval of  a record requires a search along the list generated by all records mapped by 
F to the same location. Once the beginning of  the list is found, the required key is searched 
along the hst. However, it might require additional effort to determine the beginning of  
the list, since the first record hashed to the chain might have found an occupied location 
and may have had to be assigned to an alternative address. 

We start the process at time ~o ffi 0 with an empty file. 
Let 0 < ~1 < r2 < • • • < ~k < • • • be the sequence of  arrival instants of  records. ~k is the 

instant of  arrival of  the kth record wtth key o0k. 
We assume that the interarnval Umes zk - rk-i (k = 1, 2 . . . .  ) are independent random 

variables and embed the process at instants {Zk + 0}~-o. We say that the system is in stage 
(step) k when there are k records in the file. Storage locations are gradually numbered (for 
the analysis) along with the development of  the process: The location occupied in the kth 
step is denoted as the kth storage location. That is, at the kth step k storage locations are 
occupied and numbered by the numbers 1, 2 . . . . .  k. Once a number is assigned to a 
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location, it does not change. Addit ion of  records to the file generates lists. We say that a 
record with key o~ E f~ belongs to list F(w), where ~e(w) is the number given by our 
numbering procedure to the location to which the record is hashed. The records of  the 
same list are chained to each other by pointers in ascending order of  their keys. 

List ~e(w) ffi i starts either at location i or at some alternative location j ( j  # 0. It starts 
at location i if  the record that initiates the list arrives at instant r, and is hashed to an 
empty location. Otherwise, i f  the record is hashed to an occupied location, it is assigned to 
an alternative location ./, and the list starts at an alternative start j. It follows that two 
pointers are required for each occupied location: 

(a) A link to the next record m the list, if  any, or an mdication ~ that the record is the 
last (so far) m the hst. 

(b) An address of  the alternative start, if  any, or O, if  none exists. 

Addit ion of  a record with key w is performed as follows. After i = F(o~) has been 
calculated, storage location i is read and checked. I f  it is empty, the record is stored there, 
with both pointers set to ~ .  Otherwise, the list is scanned to find the key with the highest 
value that is not greater than w. Suppose the record with this key is stored at locaUonj.  I f  
this key is equal to w, then the new record is not added to the file. If  the key is lower than 
w, an empty locaUon ~s selected for the new record and is chained to the hst immediately 
following locat ionj .  In the special case where to is lower than the key of  the first record of  
hst i and the list has no alternative start, the first record is displaced to an empty location, 
and the added record is stored m location i. 

Let X~ k~ be the number of  records in the file belonging to list i at the kth step, and let 
y~k~ be defined as follows: 

y ~  = [ 1  ff location i ~s occupied by a foreign record at the kth  step, 
' 10 otherwise, 

where a foreign record is one with a key w such that F(o~) # i. 
It follows that whenever Y~,~> = l and X~, ~> > 0, list i has an alternattve start. Also, y~0 

= 1 implies Y ~  ffi 1 for k > i. The chaining method is best illustrated graphically. A 
storage location ~s represented by a rectangle, shown in Figure 1. In Figure 2 we 
demonstrate a list (list i, say) with no alternative start m stage k. In this case X} ~ ffi 
3, Y ~  ffi 0. 

Now consider l i s t j  of  Figure 2. I f  no record has been mapped to l i s t j  up to this step (the 
kth), then XJ ~ = 0; yet YJ~ = I. Suppose XJ ~ ffi 2; then we get the configuration shown 
m Figure 3, for which XI ~' = 3, y~k, ffi O, X~ ~) = 2, Y ~  ffi 1. 

3. The Multidimenszonal Time-Dependent Generating Function 

Consider the 2N-dimensional stochastic process {(_X ~k), y~k~), k = 0, 1, 2 . . . .  } where 
(X~,~ y~,~) = (X~k~, X~k) . . . . .  X~) ,  y~k~, y~k~ . . . . .  Y ~  ). The process ((~f~k), y<k)), k = 0, 1, 
2 . . . .  } is Markovian, but its transition probabilit ies are nonstationary. For  each k, we 
define the 2N-dimensional generating function 

G~h'(z, v) = E(z_6 'k'. v-v'k'), (1) 

where z_, _v E R N, z,_ _v _> 0 . . . .  and, for nonnegative a, b E R N, we define a -bm II,_~a,,.N ~ We 
derive a recursive equation for G<~>(~, v). 

THEOREM 1. G~k~(z_, v) satisfies the following recursive equation: 

G~k+l~(Z, v) = ( l /N)vk+l  Z, G~k~(z, v) 

+ (1 - k/N)zk+lG{k)(;, v_) (k -- 0, 1, 2 . . . .  ) (2) 

where Gl°)(z, _v) = 1. 
PROOF. /~(w~+l) = i (t = 1, 2 . . . . .  k) with probabil i ty 1/N. On the other hand, wk+~ 
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b e l o n g s  to a n o n o c c u p i e d  l o c a t i o n - - w h i c h  wi l l  b e  n u m b e r e d  as  t he  (k  + l ) s t  s t o r a g e  
l o c a t i o n - - w i t h  p r o b a b i l i t y  (w.p.)  1 - k / N .  T h a t  is, 

i w p .  I / N  ( i =  1 , 2 , . . . , k ) ,  
F(~0k+l )=  k +  1 w.p.  l - k / N .  

If/~'(wk+~) = l (l = 1, 2 . . . . .  k),  t h e  (k + l )s t  r e c o r d  b e c o m e s  a f o r e i g n  r e c o r d  in  l o c a t i o n  
v~k+,  1. T h i s  r e c o r d  b e l o n g s  to  t he  i th  list. H e n c e ,  X~ k÷~) = X~ k) + 1. O n  t he  k + l, so -h+]  = 

V(k+x~ = 0 a n d  v~k+a~ 1, s ince  a n e w  l i s t - - l i s t  k + l - -  o t h e r  h a n d ,  t f  P (~k+ l )  = k + 1, -k+~ -,k+l = 
s ta r t s  a t  l o c a t i o n  k + 1. W e  h a v e  

k 
G~k+D(Z_, _V) = ~ E(~_ s'*+'', v_ r '~*"lP(~k+l  ) = 0" P(P(ook+i) ---- 0 

+ E(~  -x ..... • _v r '  .... I P(~k+,)  = k + l ) .P (F ( tok+ , )  = k + 1) 
k 

= ~ E(z  -x'~'+-~' • v_ _~"+_~k÷,). 1 / N  + E(z-X'k'+- ~k+' • v -Y'")(I -- k / N ) ,  
i-1 



658 H. M E N D E L S O N  A N D  U.  Y E C H I A L I  

where e_~ is the unit vector with 1 in the flh place. Since q-~, ffi a:, eq. (2) readily 
follows. Q.E.D. 

It is interesting to write specifically the generating functions G~k)(~, v) for k ffi 0, 1, 2 and 
interpret them. G~°)([, v) ffi 1, since in step 0 the file is empty. G~(~, _v) ffi z~. Indeed, the 
first record is assigned--by our numbenng method-- to  location I. G~2)([, v) = (l /N)z~v2 
+ (l - l /N)zaz2,  for the second record is hashed to storage location 1 with probability 
I / N  and to an empty storage location with probability 1 - I /N .  

THEOREM 2. G~k)(z_, v) is a polynomial in {z,}~-i and{v,}tk-1. The maximal  power o f  z, is 
k - i + ! (i = I, 2 . . . . .  k), and that o f  v, is i. 

PROOF. By induction on k. Q.E.D. 
Remark. Theorem 2 represents the following facts: 

(i) X~ k) = y~k) = O for i ffi k + l, k + 2 . . . . .  N. 
(ii) y~k~ = 0, ! for all i, k. 

(iii) X~ ~) _< k - i + 1 for k = 1, 2 . . . . .  N; i = l, 2 . . . . .  k since list i may be augmented 
by records only at instants 'b fo r j  >_ i. 

Given the recursive equation (2), various moments, which will be needed m the sequel, 
may be calculated. The first- and second-order moments are given in Corollary 1. 

COROLLARY I. For every k = l, 2 . . . . .  N, t ffi 1, 2 . . . . .  k, 

E(Y~ ~) -- ( i -  I ) /N,  

E(X~ ~)) ffi ! + ( k -  2i + I ) /N,  

E((X[k)) 2) -- (k - i)(3N - 3i + k + I ) /N  2 + 1 - (i - I ) /N ,  

PROOF. 
= E(y~k)). (The interpretation is obvious: Y~) is determined at step k ffi i and does not 
change thereafter.) Also, using the fact that (O/OVk+I)G~k)(Z_, V) = 0, we have 

E(V¢k+l)~ = 0 Gfk+l)(Z, k 

which implies eq. 3. In a similar way we derive E(X~kk+~ u)  = 1 -- k / N .  Now, 

0 1 
E(X~ k+')) = ~ G'k+"(l, l) = ~ + E(x}k)).  

Thus, 

(3) 

(4) 

(5) 

E(X~,~ y~k,) _ (k - i)(i - l ) /N  2. (6) 

Differentiating eq. (2) with respect to v, and putting ~ ffi v = ! ,  we get E(Y~ k+l)) 

To get (5), we write 
0 2 

~ a~"(l ' 

Substituting eq. (4) in the above yields 

Using (3) and the fact that X~ '~ Y~'~ = 0, 
k - I  

1) ffi Z E ( X ,  ). 
Jm I N 

(5). Finally, 

a 0 G~k+~>(l ' t) 

E(X~"Y~k)) + ( ~  ) E (  Y,')). 

we get 

(k) (k) _ E(X,  Y, ) -  ~ ( i -  I ) /N  2 = ( k - i ) ( i -  1)IN 2. Q.E.D. 

k - I  

E(X~ k)) = ~ 1 / N  + E(X} '~) ffi (k  - i ) / N  + 1 - (i - I ) / N  

= 1 + ( k - 2 i +  I)/N. 
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The analysis of various performance measures also requires the calculation of the 
moment E[(X} k) + 1)-1]. As it turns out, the calculation of El(X} k~ + 1) -~] may be reduced 
to the moments of the binomial distribution given by Lemma 1. 

LEMMA 1. Let the random variable J have a binomial distributmn with parameters n 
(number of  trials) and p (probability for  success): J ~ B(n, p). Then 

E ~ =/~(n+ 1)' (7) 

[ 1 ] l - ( n + 2 ) p q " + l - q  n.2 

E ( j +  l ) (d+2)  = -  pZ(n+ l ) (n+2)  ' (8) 

and 

1 ] ( n + 2 ) p + q n + 2 -  1 

E J ~ j =  p 2 ( n + l ) ( n + 2 )  ' (9) 

where q = 1 - p. 
Lemma I may be proved either directly or by integrating the generating function of J. 
L~MMA2. F o r k = i ,  i +  1, i + 2  . . . . .  

[ 1 ] [ 1 ] i - I E I  l ] (10) 
E ~ = e  7 ~  + - 7  ( J + l ) ( J + 2 ) '  

where J ~ B(k - i, l /N) .  
PROOF. F o r k = i ,  i +  l , l + 2 , . . . , w e h a v e  

, fx~" w.p. 1 -- 1iN, 
X}k+l) [XI k) + 1 w.p. I /N.  

It follows that for each m -- 1, 2, 3, . . . ,  

[ , ] 
E = 1 -  E N E X ~ k ) + m +  1 " 

By induction on k we obtain, 

E [x~, l+ m ] = ;~] (k f i) ( IN)' (1-~)'-'-SE[x~o+lm+j]. 
However, since X~ '~ = 0 or 1, 

Hence, 

[x,l+m] i.~1 I ( i~ /1)  1 E = - +  1 -  • 
m m - ~ l  

1 i - I  1 
m +  1 I- N re (m+ 1) 

r ,  , _ ,  , ] E ~ --,-o J ~ 1 -  j ~ 4  L , J N ( j + l ) ( j + 2 ~ '  

which is equivalent to (10). Q.E.D. 
Combining the results of Lemmas 1 and 2 we obtain, after cancellations, 
COROLLARY 2. For k -- i, i + 1, i + 2 . . . .  

p2m(m + I)E[(X~ k) + 1) -1] 
= - [1 - (k + l)p] + [1 - (k + l)p][l + mp]q m +p2m(m + l)q% (11) 

wherep= I /N,  q =  l - p =  1 -  l /N,  a n d m = k - i +  1. 
We note that the results given by Corollaries I and 2 may also be derived by using direct 

probabilistic arguments. 
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4. Length of Search in an Ordered List 

To prepare for the analysis of  the chaining method for random-access addressing, we study 
the retrieval performance of  ordered lists. This study is needed since the search for a record 
with key w is transformed by the hashing function into a sequential search along list 
number i = P(o~). We consider an ordered list containing n records (with different keys), 
and ignore for a moment the special features originating from our chaining method. The 
possible existence of  an alternative start and the interaction among lists will be reconsidered 
m the following sections. 

The (trivial) algorithm for sequential search in an ordered list is given by Knuth [2, p. 
396]. It also appears as part of  our flowchart in Figure 4. Obviously, ordering the hst does 
not improve the performance of  a successful search when all the keys in the hst are equally 
likely to be requested. The expected length of  a search in a list with n records is equal to 

( l /n)( l  + 2 + 3 +  • • • + n ) = ( n +  1)/2. 

Consider now the case of  an unsuccessful search. We assume that the keys of  records 
added to the list, as well as the keys requested in unsuccessful searches, are sampled 
independently from an arbttrary continuous distribution H(.).  Under these assumptions 
we prove 

L~MMA 3. The expected number of probes needed for an unsuccessful search in an 
ordered list with n different keys is 1 + n/2 - l/(n + 1). 

PROOF. Let w, be the key of  the ith record added to the list (i = 1, 2 . . . . .  n). The 
random variables ~ol, o~2 . . . . .  ~n are i.i.d, with distnbution function H(.).  Suppose ~ is the 
requested key. By assumption, all ~o, (i ffi 1, 2 . . . . .  n) are distinct from each other and 
from o~. This information does not alter their joint distribution, since H( . )  is continuous. 
Let (~1, ~2, . . . ,  ~n) be the order statistics of  (~ol, ~2 . . . . .  ~n), and set ~o ffi -oo; then 
~0 < ~1 < ~ 2 <  • • • < ~ n .  

I f ~ - i  < ~0 < ~ ( j  ffi 1, 2 . . . . .  n), then the number of  probes needed to discover that key 
o~ does not exist in the list is j. The probabihty of  this event is 

P{~- t  < ~, ~j > ~} = P { e x a c t l y j -  1 of  the keys are lower than o~} 

(jnl)(H(co)Y-l(1-H(~o))n-'~-",_ 

since P{w, < w} ffi H(w) for t ffi 1, 2 . . . . .  n. I f  w > ~n, the whole list has to be scanned, so 
that the number of  probes is n. This happens with probability 

P{~n < w} ffi P{all keys < w} ffi (H(~0)) ". 

It follows that the number of  probes is distributed like m i n { J  + 1, n}, where J 
~ B(n, H(o~)). Hence, the expected number of  probes, given ~, is 

1 + n i l ( w )  - (H(w))". (12) 

But, as is well known, H(~o) has a uniform distribution over the interval [0, 1]. Hence, the 
expected value of  (12) is 

n n 1 
1 + ~ - -  u n d u = l + 2  n + l "  Q.E.D. 

Remark. It is sometimes customary to facilitate the searching procedure by augmenting 
the list with a fict,tious record whose key is "infinite." This increases the expected length 
of  an unsuccessful search to l + n/2, which is not significantly higher than 1 + n/2 - 
I/(n + 1) when n is large. Th,s practice is not used in random-access addressing, since (1) 
the chains tend to be short so the loss in performance is considerable, and (2) the extra 
records further increase the occupancy of  the file. 

5. Retrieval Performance Measures 

In what follows we incorporate our previous results to derive various performance measures 
for the chaining method. We restrict the analysis to input-output (I /O) considerations, 
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which are frequently dominant  in management information systems. In this section we 
deal with the costs associated with the retrieval of  records; we measure costs by the number 
of  probes needed for retrieval of  a single record. In Section 6 we calculate the costs 
recurred by the addition of  records to the file. 

Consider a retrieval request for a record with key o~ ~ f~, where k records are in the file. 
The retrieval procedure may be described by the flowchart in Figure 4. We use the 
followmg notation: 

a = address of  current storage location read, 
key(a) = key of  record in storage location a, 
link(a) ffi address of  next record in the list to which a belongs. 

Let C(k) be the expected number of  probes needed for retrieval of  one of  the k records 
currently stored m the file. We assume that each of  the k records is equally likely to be 
requested. It follows that the way the records of  a list are ordered does not influence 
C(k). A record in the file belongs to hst i with probabili ty XI k~/k. The search for a record 
in hst i consists of  (1) finding the beginning of  the hst, which requires y~k~ probes, and (2) 
moving along the list until the record is found. Since each record in the list has the same 
probabili ty of  being requested, the average number of  moves ls(X~ k~ + 1)/2. Hence, 

k [X~,)(y~k)+Xl2+..._._.~l) 
C(k) = ~ E L T  ] .  (13) 
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Note that when we sum in (13) from 1 to k, we allow for the possibility of empty lists with 
X~k) = 0. Since ~ . 1  X[ k~ = k, we have t 

, . [  l ] 
c(k) = ½ + ~,.~1 E(x:"r~")  + ~ E(x~ , )  2 

Substituting from eqs. (6) and (5) yields 

1 k 1 k 3N.2_NTk " -  1 c(k) = l - 2 ~ , . X l  ( ; -  l) + 2 ~ , X t  (k - O 2 + (k i). 
I - 1  

By algebraic manipulation we finally obtain 
THEOREM 3 

C(k) = l + (k - 1)(3N + k - 2)/(6N 2) (k = 1, 2 . . . . .  N). (14) 

It is seen that C(k) is a monotone increasing convex function of k and, for fixed k, it is 
a monotone decreasing convex function of N. 

Now suppose a record wah key ~o, which is not in the file, is requested at the kth step. 
Let D(k) be the expected number of probes needed to discover that the required key ~s not 
there. The key is hashed to an empty location with probability 1 - k / N .  In such an event 
the number of probes ts one. For each i -- l, 2 . . . . .  k, P(¢o) = i with probability l /N .  We 
claim that if F(¢o) -- i (i -- l, 2 . . . . .  k), then the expected number of I /O operations is 

l 
l 05) y~k, + l + ~ x~ k' - + 1" 

Two cases have to be considered. 

0) If X~ k~ = 0, then (15) reduces to Y~), which must be equal to 1. Indeed, the first 
probe suffices to discover that the list Is empty. 

(n) If  X<, k~ > 0, then Lemma 3 may be invoked to find the expected length of search 
along the records belonging to hst :. It requires y~k) additional probes to reach the 
beginmng of the hst. 

It follows that 

( k N )  1 ~ [ [ 1 ] ]  l ~ [ X ~ ) I + i ]  D ( k ) =  1 -  • I + N , . 1  I + E y<k) + 2 X~&) - N , - t E  . 

Substitution from (3) and (4) yields 

k k ( k - 1 ) I ~ E [  1 ] 
O(k)= I + T ~ + - - ~ - - - ~ , . 1  ~ . 

Using (l l) and the sums 

~ 1 _-- ~ (.m l_ l ) l 
m- i ra (m+ 1) .,-1 m +  1 = 1 k +  1' 

k 

X q ~ = - q ( l - q k ) ,  
m ~ t  

re.ten(m+ 1) =- t  J'n'~"l'~ " q  k +  1'  

we obtain (letting, as in Corollary 2, en = k - i + 1): 

E . = - p . [ l - ( k +  l)p] 
~=1 + 1 

) [ +, + [ l - ( k + l ) ? ]  q - ~ - T j  ? 
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Slmphfylng,  we have 

We have thus proved 
THEOREM 4 

1 E 1 1 kp p ( k  + 1) 
g lsl 

D ( k ) = 2 - ~ 4  2 N - - - 7 - - + ~  l - - -  - 1 . 0 6 )  

In order to obtain the qual i ta t ive properties of  D(k), we use the b inomial  expansion o f  

(1 - ( 1 / ~ ' ) ) " + ' :  

k k ( k -  1) N 
D(K)  = 2 - ~ + 2N 2 t- k +------1 

x T ~ 2N z 6N 3 V ,-4 i - 

= 1 -t 3N------~-- + (17) ,-z (t + I )N'" 

It follows from (17) and from the identity 

that 

~D(k)  = D(k + l)  - D(k) = ~ + (18) 
,-3 l -  1 ( i +  I )N '  

and 

AND(k) = a D ( k  + 1) - aD(k)  = ~ + . (19) 
,=3 t 2 ( i +  I)N'  

Since the absolute values of  the terms of  (17), (18), and (19) are decreasing as t increases, 
we have 

COROLLARY 3. D(k) is an increasing convex functton o f  k and a decreasing convex 

function o f  N. 
In Figure  5 we illustrate the behavior  o f  C(k) and D(k) for a file with N = 1000 storage 

locations. 
F r o m  Figure  5 it Is evident  that C(k) and D(k) possess the fol lowing properties: 
COROLLARY 4 

(i) C(k) _> O(k), k = l, 2 . . . . .  N. 
(ii) C(k) < ~, k = l, 2 . . . . .  N 

(m) D(k) < 1 + l /e ,  k = 1, 2 . . . .  N. 
(Iv) For k << N, C(k) ~ 1 + ( I / 2 N )  • k. 

PROOF. (i) It follows f rom (17) that 

D(k) _< 1 + - - - ~ - -  • 4N 3 

k(k - 1) + k ( k  - l ) ( k  - 2 )  

-- 1 + 3N 2 24Na 

Suhs tau t ion  o f  C(k) f rom (14) yields 

k - I  
C(k) - D(k) ~_ . ~ -  (7N - 8) _~ 0. 
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Flo. 5 B¢havtor of C(k) and D(k) 

(ii) From (14) we have 
5 C(k) <_ C(N) = 1 + (N - I)(4N - 2)/(6N 2) < -~. 

(iii) Use ofeq .  (16) with k = N yields 

D(k)  <_ D ( N )  = 2 + ~ l - 

It is well known that (1 - 1 /N)  N < l/e;  hence 

2N(N  + l) " 

2 ~ l 2 N e + N +  1 
D(k) < 2 + 1 N +  1 "~ 2N(N + 1) 

l 2N(N + 1)+  ( ( 4 / e ) -  I)N + 1 1 
= 2 + - -  < 1 + - .  

e 2N(N + 1) e 

(iv) Rewrite eq. (14) as 

k - l ( _ l  l k  1 )  
C ( k ) =  1 +  N \ 2  + 6  N 3N " 

For k << N, the result follows. Q.E.D. 

k 
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The above results may be compared with Johnson's work [ l]. Johnson treats the problem 
of addressing on secondary keys, using an "redirect" chaining method. Since a record's 
location is a function of  the primary key, a pointer to the beginning of  each list is 
maintained. In our presentaUon this means that y~k~ ffi 1 for all t _< k. Obviously, this 
reduces the dimension and complexity of  the problem. 

Johnson calculates C(k) using a Polsson approximation with parameter k / N  for the 
length of  each list. He obtains the formula C(k) = 2 + k/2N. 

The exact result may be obtained from eq. (13) when y~k~ = 1. Substituting the values 
of  E(X~ k~) and E((X~k~) 2) from (4) and (5) yields 

C(k) = 2 + (k  - l ) / 2 N .  (20) 

Comparing eqs. (20) and (14), it is clear that Johnson's method requires more I /O  
operations. For k = 1, the difference is one probe; when k approaches N, the dtfference 
approaches g. 

6. A dditwn of Records 

Consider the (k + l)st record arriving at instant ~+1 where there are already k records in 
the file. The addition of  the record is composed of  three stages: (1) checking that the key 
Wk+l does not exist in the file, (2) searching for an empty locauon, and (3) storing the 
record and updating the relevant pointers. Each of  these steps may be analyzed separately. 
Yet, there is some information flow from step to step. 

First consider the checking procedure. This is simply a search for a record with key 
wk+l. If  wk+l exists in the file, then either the addition request is rejected, or the existing 
record is updated m place. The expected number of  reading probes is C(k); an update in 
place requires only one additional I / O  operation, since no pointers have to be changed. In 
either case the addition procedure is terminated. 

Now suppose that key wk÷~ does not exist in the file The expected number of  probes 
needed in this case is D(k). As a by-product of  the search, it is known where (and how) the 
new record has to be chained in its list. This information is transferred onto the third stage, 
where the actual chaining is performed. 

Next, we consider the stage of  searching for an empty location. Let i = F(tok+l). If  storage 
location i is empty, the number of  I / O  operations needed in this step is 0 Otherwise, an 
alternatwe location has to be found. 

The amount of  effort needed to select the alternative location depends on the level of  
information available on the occupancy of  the file. Three different levels of  information 
wdl be analyzed: 

(I) No mformation. In this case a location is selected randomly among all N locations 
in the file. I f  the location so selected is empty, the record wdl be stored there. Otherwise, 
another similar independent trial is repeated until an empty location is found. Since no 
information is gathered during the process it might happen that an occupied location will 
be selected more than once. We indicate this information level with the subscript n. 

(2) Partial information. Here we keep track of  the locations that have been traversed 
and found occupied during this addition process. This includes all occupied locations 
encountered either during stage (1) or in previous trials of  the present stage. These locations 
are no longer can&dates for storing the (k + l)st record. This information level will be 
indicated by the subscript p. 

(3) Full information. With this level of  information the addresses of  all k occupied 
locations are known. (Such information may compactly be maintained in a bit map.) The 
subscriptf  will indicate this level of  information. 

Let S(k) be the number of  input operations needed for the search until an empty location 
is found for the (k + l)st record. For each of  the above levels of  information, denote the 
expected value of S(k) by Ln(k), Lp(k), or Li(k), respectively. We have 
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THEOREM 5. 

(0 

F o r k = O ,  1,2 . . . . .  N -  1, 

H. MENDELSON AND U. YECHIALI 

k 
Ln(k) = N--'--'~' (21) 

k + 1 - D(k)  
(it) L v ( k ) - -  N + l - k  ' (22) 

(i/z) Lf (k )  = k / N .  (23) 

PROOF. (1) It IS readily seen that S(k)  has a geometric distribution with a probability 
for success (= finding an empty location) l - k / N .  Hence 

k i N  k 
Ln(k) = 

1 - k / N  N -  k" 

(ii) Let V(k, n) be the expected length of  a search for an empty location among n 
eqmvalent locations, k of  which are occupied (k = 0, 1, 2 . . . . .  n - 1). V(k, n) satisfies the 
recursive equation 

V(k, n) = (! - k / n ) .  1 + (k /n ) . [1  + V(k - 1, n - 1)], 

or 

V(k, n) = l + ( k / n ) V ( k  - l, n - l). (24) 

Note that if a solution of  (24) exists, it is unique. It follows by induction on n for each 
k - - 0 ,  ! , 2  . . . . .  n -  l t h a t  

V(k, n) = (n + l)/(n + 1 - k). 

Now if 0:k+l is hashed to an empty location, then S(k)  = O. If  P(~0k+l) = i (i = 1, 2 . . . . .  
k), let U, be the number of  probes needed for stage (1) of  record addition. Then 

N + l - u  
E[S(k)lP(o~k+~) -- i, U, = u] = V(k - u, N - u) = 

N + l - k "  

It follows that 

But  

hence, 

L p ( k ) = ( l _ ~ ) . O +  1 k I N + I - U , ]  
~.,_~ e L . ~  1 = ~_1 

k ( N  + 1) 1 1 k 
- - N ( N + I - k )  N + l - k  ~¢,~E[U, ] .  

k 1 k 
D(k) = 1 - ~ + ..~ E E[  U,]; 

Lp(k) = (k + 1 - D ( k ) ) I ( N  + I -- k). 

(in) Location F(ook÷0 is occupied with probability k / N .  Hence 

Lf(k)  = (1 - k / N ) . O  + ( k / N ) .  1 = k / N .  Q.E.D. 

It is easy to show the following: 
COROLLARY 5. Lf(k)  <_ Lp(k) <_ Ln(k). 
As was expected, the number of  I / O  operations increases as the level of  information 

decreases. The improvement obtained by partial information relative to no information is 
neghgible when k is not close to N. When k approaches N, both Ln(k) and Lp(k) increase 
rapidly while Lf(k)  increases only linearly. These facts are seen in Figure 6 for the case of  
N =  lO00. 

We complete the analysis by calculating the number Q(k) of  output operations required 
for the last stage of  record addition--i.e, for storing the record and updating the pointers 
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FIG 6 L.(k), Lp(k), and Lf(k) 

(all the necessary input operations have been performed in stages ( l )  and (2)). I f  location 
F(Wk+l) is empty, all that remains is to write the added record; so Q(k) -- I. Otherwise, let 
t =/6(Wk+l) (t = l, 2 . . . . .  k). The new record has to be chained into list i following the last 
key with value less than Wk+l. 

If  a record with such a key exists in the list, it has been located and read in stage (l).  
Suppose that record was located in location j .  Then link(j) is moved to link(k + l), 
hnk(j) is set to point to the new record (at location k + 1), record (k + l) is stored, and 
record j is updated. Hence Q(k) = 2. 

When Wk+l IS lower than all the keys in list l (if any) and y~k) = i, then the alternative 
start pointer of  record ~ is moved to link (k + l) and then updated to point to the new 
record. Locauons i and k + l are then stored in the file; thus Q(k) = 2. 

If  Wk+l is lower than all the keys in list i and y~k) = 0 (this implies X~ h) > 0), then record 
i is displaced to the new storage location and chained following the added record, which 
is stored in location i. Again, Q(k) = 2. 

It follows that 

{~ w.p. 1 - k / N ,  
Q ( k ) = ,  w.p. k iN.  

Thus, we conclude: 
THEOREM 6. E[Q(k)] = 1 + k /N.  
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