A New Approach to the Analysis of Linear Probing Schemes

HAIM MENDELSON
University of Rochester, Rochester, New York
AND

URI YECHIALI

Tel-Aviv University, Tel-Aviv, Israel

ABSTRACT. A new approach to the analysis of hash table performance is presented. This approach is based on
a direct probabilistic analysis, where the underlying probabilities are derived by using the ballot theorem and its
ramifications. The method is first applied to analyze the performance of the classical (cyclic) linear probing
scheme, and the results are used to solve an optimal storage allocation problem. A scheme frequently used in
practice where the table is linear rather than cyclic is then analyzed using the same methodology.
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1. Introduction

A random-access table consists of N storage locations 1, 2, 3, ..., N. Records are added
to the table from time to time. Each record is identified by a unique key, w. A record with
key w is hashed to storage location A(w), where the hashing function A(-) is given
(see [3, 5]). If the calculated location h(w) is empty, the record is stored there. However,
since A(-) is not one to one, location k(w) may be occupied by another record. Such an
occurrence is called a collision.

Several methods for collision resolution are known (I, 3, 6-8, 10]. In an “open”
addressing system [8], there is a set of rules which determines, for each acceptable key w,
a probe sequence of possible storage locations in which the corresponding record might be
stored. The record is normally stored in the first location, h(w), of the sequence. If that
location is occupied, the second location in the sequence is tried, and so on, until an empty
location is found.

The simplest open addressing scheme, which is known in the literature as linear probing
[3, 8], scans the table sequentially (in a cyclic manner) until an empty location is found.
The search for an empty location for storing a record with key w is performed along the
probe sequence

(h(w), (W) + LLA(w) + 2, ..., N, 1,2, ..., h(w) = 1).

This scheme has been suggested by Peterson [8] and analyzed by Konheim and Weiss [4]
and by Knuth [3].
In this study we present a new approach to the analysis of the linear probing scheme.
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Our approach is based on the application of ballot theorems. An important feature of the
analysis is that its methodology is independent of the circular symmetry of the addressing
system. As a result, the method can be further used to analyze the performance of a linear
table. .

The structure of the paper is as follows. Section 2 contains a preliminary discussion of
the ballot theorem and presents the renumbering technique and the “dual ballot theorem.”
The new approach is introduced in Section 3 and used to analyze the performance
of a cyclic table (ie., the classical linear probing scheme). A problem of optimal
storage allocation is solved in Section 4. Section 5 concludes the paper with the analysis
of a linear table.

2. The Ballot Theorem

Let (Xy, Xz, ..., Xp) be a random vector, and let S, =Y} X; (n=1,2,3,..., p). The
analyses made in this paper require a study of the distributions of max,-12...,{S» — n} and
MaXp=12..p{n — S»}, where X1, X, . .., X, are interchangeable. This issue has been studied
extensively in [9], where the classical ballot theorem was generalized and applied to various
problems.

We say that the random variables X;, X:, ..., X, are interchangeable if all the p!
permutations of X), X, ..., X, have the same joint distribution. Throughout this section
(X1, Xz, ..., Xp) is an arbitrary vector of interchangeable random variables taking on
nonnegative integral values. Such a vector satisfies the classical ballot theorem.

THEOREM | (THE BALLOT THEOREM)

P{S,.<nforn=1,2,3,...,p|sp=m}=<|_%) ,

where
(X)* = max{X, 0}.

One of the numerous proofs of Theorem 1 (under weaker assumptions) is given in
{9, p. 10].

The distribution of max,-123...,{n — S.} is given by the following theorem, which is
proved by Takacs [9, p. 24].

THEOREM 2. Fork=1,2,3,...,

P{ max {n~S.}<k}=1- i P{Sn=n—k}°§-

n=123,.., n=k

In what follows we often make use of symmetry arguments based on the interchangea-
bility of X, Xz, X3, ..., X,. The joint distribution of (Xj,, Xj,. X, ..., X)) is independent

of the specific selection of ji, jz, ja, ..., ja (n < p), as long as they are all distinct. Since
(Xjp Xjpp Xy s X;)) ~ (X1, X2, Xa, ..., X,), the probability of each event which is
defined in terms of X, X;, X, ..., X; may be computed by replacing X; (i = 1, 2,
3, ..., m) with X;. In the sequel we refer to this probability-preserving transformation as
a renumbering.

By renumbering (X1, Xa, X3, ..., X») in a reverse order, we obtain the dual sequence
(Xt X% X% ..., X}, where X! = X, (j = 1,2, 3, ..., n). Use of this simple

transformation yields Theorem 3, which may be considered as the dual of the classical
ballot theorem.

THEOREM 3 (DUAL BALLOT THEOREM)
P(Saznforn=1,2,3,... ., m|Sns1i=m)=m+ 1)7".
Proor. Let (X1, X% X%, ..., X%+)) be the dual sequence of (X1, X2, Xa, ..., Xm+i)s
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and let $% = Y0e1 X} = Smar ~ Smr1n forn =123, ...,m+ 1(58 = 0). Use of
Theorem 1 for the dual sequence yields

m+ D) '=P{Si<nforn=1,223,...,m|Ska =m)
= P(Smi1-n=m+ 1 —nforn=1,2,3,..., m|Smn+1 = m}
=P(Se=nforn=1,2,3,..., m|Snus1 = m},

since S¥ < n is equivalent to Si+1-n > m — n OF Sps1-n Z m + | — n when St =
Sm+1=m. QE.D.

3. Analysis of Cyclic Linear Probing

The classical linear probing scheme has been studied by Konheim and Weiss [4) and by
Knuth [3]. We introduce our new approach by performing an analysis of this scheme.
Under the linear probing scheme the table is scanned in a cyclic manner along the probe
sequence (A(w), A(w) + 1, ..., N, 1, 2, ..., h(w) — 1). Nevertheless, the underlying ideas
of our analysis do not collapse in the absence of the circular symmetry of the above
addressing system. This fact will become more evident in Section 5 where we perform the
analysis of a linear table.

Consider a circular table containing k records, where k < N. Let X, be a random variable
denoting the number of records mapped by k() to the jth location (j = 1, 2,3, ..., N).
‘The distribution of the random vector (X), X3, . .., Xn) is multinomial with parameters k
(= number of trials) and ((1/N), (1/N), ..., (1/N)) (= probabilities for success). We
further define So = 0, and forp = 1, 2,3, ..., N we let S, =Y%-1 X, be the cumulative
number of records hashed to the first p locations. For the analysis we extend the numbering
of storage locations in a cyclic manner, i.e., if j = j* (mod N), then both j and j' represent
the same location. We also define Sn.,; = S, + S;and S_; = Sv_; — S, so that for all j <
J'» the cumulative number of records hashed to locations (j + 1, j+ 2, ..., ) is Sy — §;.

The records fill some portions of the (extended) table, which we call strings. We say that
a string of length m (m = 1, 2, 3, .. ., k) starts at location j, if (see Figure 1):

(i) location (j — 1) is empty;
(ii) locations j, j+ 1, j+ 2, ..., j+ m ~ [ are all occupied;
(iii) location j + m is empty.

This event will be denoted by E; »(k), and its probability by P;. (k). Once the underlying
probabilities P,.(k) are known, it is possible to analyze the performance of the table.
It is easy to see that E; (k) occurs if and only if the following events occur simultaneously:

(Ey) Sjaem — Sjo1 = m;
(E2) Sj-14n — S,'_1 =n for n=1,2,3,...,m;
(E3) Si1 = Sici-n<on for n=123 ..., N-m—1.

E, implies that exactly m records are hashed to storage locations (4, j+ 1,j + 2, ...,
Jj + m). E; guarantees that all the locations within the string are occupied, whereas Ej
implies that location (j — 1) remains empty. An essential point to note is that given E), the
events E, and E; are conditionally independent. This follows since the distribution of
records among locations (j, j + 1,/ + 2, ..., j + m) is independent of the internal record
distribution among the remaining locations. Hence,

Pim(k) = P(Ex) - P(Es| Er) - P(E3| Eu). (1)

So far we have not invoked the specific form of the addressing system. Focusing on the
cyclic linear probing scheme, the circular symmetry of the system implies that P;,.(k) is
independent of j. Hence, it may be assumed that j = 1, and so,

m k—m
N L == I
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F1G. |. A string of length m = 5 that starts at location j = 4. The shaded areas represent occupied locations.
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Next we compute
P(E2|E\)=P(S.=nforn=1,2,3,...,m|Sps1 =m}) =(m+ 1), 3)
as follows from the dual ballot theorem (Theorem 3).
Last, by using the interchangeability of the X;’s, we obtain
P(Es|E)) = P(S-n<nforn=1,2,3,... ., N-m~ l|E}

=P(Sa<nforn=1,23,...,N—m—1|Sxem = k — m)
-1 k-m N-k-1
N-m-1 N-m-1

where the probability is evaluated by using the ballot theorem (Theorem 1).
Combining our results we obtain
THEOREM 4. Fork=1,2,3, ..., N-1;j=1,2,3,...,m=1,2,3,...,k
1 [k N-k-1
Pim = = . + ™! - - k—m._______.
sm(k) N* <m> (m TN =-m~—1) N —m— 1

The same result has been obtained by Konheim and Weiss [4] and by Knuth [3].
The result of Theorem 4 may now be applied to analyze the performance of a circular
table with N locations, k of which are occupied. The relevant performance measures are

)

(i) D(k), the expected number of extra probes needed for an unsuccessful search;
(ii) C(k), the expected number of extra probes needed for a successful retrieval.

In both cases, we do not count the initial probe at location h(w).

It is easily seen that the operation of record addition is in fact an unsuccessful search
which is followed by storing the new record, whereas an update in place is composed of a
successful search and a store operation. Furthermore, we have

k-1

1
Cky =5 % D) )

when each of the k records in the table is equally likely to be retrieved.

The derivation of D(k) and C(k) from P;.(k) has been performed by Knuth [3,
p- 530]. The result can be formulated as follows.

THEOREM 5
LE NG+ ]
= — L — = = PR -1, 6
Diky 2,—%(1) w3 Jor k=0LZ. N ©)
and
PR k=1t 1
k) =- . —_— - = =123,..., N 7
C(k) 2};)( ; )N’ 5 for k 2,3 N (N

In the next section we apply these results to solve a storage allocation problem.

4. An Optimization Application

Consider the problem of allocating storage for a hash table, where the number of records
to be registered in the table is not known a priori. For example, storage is allocated for the
symbol table of a compiler before the source code is examined; hence the number of
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records to be stored in the table is a random variable. Assume that this number has a
Poisson distribution with mean a; each record in the table is to be retrieved ¢ times on the
average, and the storage-allocation cost of each entry is equivalent to the cost of s probes.
The objective is to minimize the total expected cost subject to the constraint that the table
does not overflow with probability of at least 1 — a (a << 1).

Let N be the number of entries allocated for the table. We express the resulting costs in
terms of the expected total number of probes. The storage-allocation cost is converted to
the equivalent number of probes, which is s - N. The cost of inserting the (n + 1)st record
into the table (n = 0, 1, 2, .. ) is D(n) extra probes. The cost of g retrievals of this record
is ¢ - D(n), since each retrieval follows the same probe sequence scanned when the record
was inserted. Hence the expected conditional total cost, given that k records have been
registered in the table, is

k-1

s N+@+1D)-Y Dn)=s-N+(q+1)-k-Ck),
n=0

which follows from (5). The requirement a << I implies that the total expected cost may
be approximated by
ES k
fN)y=s-N+@+1)-3% k-C(k)-e"‘%.
k=0 .

Using expression (7) for C(k), we derive

a@+1) e (g+1) J kea* *) (k-1\ ]

N) = N — + . . ) —_—

JN) = 2 TR Yk R v
-a x o« k

=s.N—a(q+l)+e (q+l). _l_,. _;_

2 2 o N wfa (k= 1= )

e n_ g+ ag+1) 2z (aY
S N==F—+5 ',Z%(Tv)
2

s~N+-;—-(q+1)-

I

4
(N-a)

Now f(x) = sx + }(g + 1)a*/(x — a) is a convex function which is minimized at

x*=a(l+ q;l), (8)

S

$0 N, the unconstrained optimal value of N, is either [x*) or [x*] + 1.
Next, the requirement that the probability of table overflow is bounded by « is equivalent
to N = N,, where
k

N2 = min {n[ ) e‘“a—<a}.

k=n+1 k'
The constrained optimal value of N is therefore
N* = max{N,, N;}.

For example, if each record is retrieved g = 9 times on the average, and s = 20, we
obtain from (8) that x* = 1.5a. When a = 100 (which is quite ordinary), x* exceeds the
mean g by at least five standard deviations; hence the probability of table overflow is
practically zero, and N* = 1.54.

5. Analysis of a Linear Table

The classjcal (cyclic) linear probing scheme discussed in the previous sections may be
repla'ced in real-life applications by a linear table. The linear table consists of M storage
locations 1,2, 3, ..., M, where the hashing function A(-) maps arriving records only to the



A New Approach to the Analysis of Linear Probing Schemes 479

subset {1, 2, 3, ..., N}, and the last M — N locations form an “overflow area.” When a
record with key w is to be added to the table, it is stored in the first empty location found
along the probe sequence (h(w), h(w) + 1, A(w) +2,..., N, N+ 1,..., M). This addressing
scheme has the advantage that if the table gets exhausted, it may simply be augmented
with additional “overflow” entries, whereas other hashing schemes (e.g., cyclic linear
probing) require rehashing of the records in the table [2]. Other minor advantages are a
reduction in the number of page faults in a virtual-storage environment (due to the linear
scanning scheme) and a somewhat simpler programming.

On the other hand, a linear table might become exhausted before it is completely full.
That is, the search for an empty location might be terminated without finding one even
when the number of records in the table, &, is lower than the maximum capacity, M. Thus
the evaluation of the linear table depends heavily on the probability F(k) that the table is
exhausted when k records are present. We proceed with the derivation of this performance
measure by applying the ballot theorem.

For the analysis, we add an imaginary location, the (M + I)st, at the end of the table.
We note that the table is exhausted if and only if this imaginary location is occupied. Thus
I — F(k) is the probability that the (M + 1)st location remains empty. This happens if and
onlyif Sn— S, <M+ 1~-nforn=0,1,2,..., N— 1, where S, is the total number of
records hashed to the first # locations. Since Sy = k, we obtain, for k=0, 1,2, ..., M,

I~ Fk) = Pln— Sy, <M+ 1—kforn=0,1,2,..., N~ 1|Sy = k)
P{ max (n—S)<M+1-k|Sv=k).
1

n=123,..,N-

Using Theorem 2 we obtain

N1 M+1l—k
F(k) = Z ——P{S,.=n—(M+l—k)|SN=k}
n=M+1-k n
M+1—-k NI k orpere ton
= _—_Nk L2 <M 1= n) nn—l (M+1 kl(N - n)Al 1 . (9)

In Figure 2 we illustrate the function ~log,o F(k) for a linear table with N = 50, M = 55.
Note that F(k) is below 0.01 when the occupancy of the table does not exceed 60 percent.

Next we consider the search for an empty location in a linear table which contains &
records. Let w be the key, which determines the initial probe, and let U'” denote the
number of additional probes needed for the search. Our purpose is to derive D(k) =
E[U™). Since the random variable U is well defined only when the system is not
exhausted, we assume that M is large enough so that the probability F(k) is negligible.
Otherwise D(k) depends on the exact way an exhausted table is handled. Our results
correspond to the case where the table may be extended as required, so D(k) is independent
of M, and the contribution of the exhausted case to the total expected cost is obtained
via F(k).

Obviously, the definitions of E; (k) and P;m(k) apply to the linear case as well. We now
express the performance measure D(k) in terms of the probabilities P;.(k). Assume that
the key w is hashed to storage location i = A(w) (i = 1, 2, 3, ..., N). If this location is
empty, the search is completed and the number of additional probes is U'* = 0. Otherwise
storage location / belongs to a string which starts at some location j (j < i). The number of
additional probes is U’ = r if and only if the string is 7 + i — j locations long, where r =
1,2,3,...,k— (i —j). Hence

PUP =rlhw) =i} = ¥ Pjpeofk)  for r=1,2,3,.... k= (—j)
J=1
It follows that

n

N 1 k i i N &k
D(k) =¥ N XY Pirvifk)= ¥ 2 X Pink)- > r.
i=1 =1  j=1 J=1 n=1 r=max{ j+n—-N.1}
r+i—jsk
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61

51

~log g F (4)

0 10 20 30 40 50 60
&
F16. 2. —logio F(k) for a linear table with N = 50, M = 55.

Partitioning the summation over » into two cases, we obtain

THEOREM 6. The expected number of additional probes in an unsuccessful search is given
by

l N &
D) = m}g El n(n + D)Pja(k)
J+n=N

1 N &
+o= X X (J+ 2= NYN = j+ DPu(k). (10)
2Njf-l n;l
Jjtn>

It remains to derive the underlying probabilities P;.(k) for the linear table. For n = 1,
2,3,...,wedefine Sn+a = Svand S_, = So = 0. Then E, .(k) = E, N E: N E3, as defined
in Section 3. Again, given Ej, the events E; and E; are conditionally independent; hence
eq. (1) for P;(k) holds in this case too.

The formulas for P; (k) are given by

THEOREM 7. Forj=1,2,3,...,Nym=1,2,3,..., k, we have

() fj+m=N,

Pjin(k) = ]—Vl—k (::l) (m+ D" (N=m— 1) M_—_l_

N-m-1
! k o - -1 N k—m—n
+1-V—k(m) (m+ 7S (n =)+ 1) (" n”’) (= DN = m =

(i) ifN<j+m=M,

| k—m\"

AN+ =)= Nﬂ—l " "UN 4+ 1 = j— p)m D
j n=1 N n-— l n j ’

where we define 0° = 1, and 0/0 = 0.
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F16. 3. D(k) for a linear and a circular table with N = 50. The upper
graph corresponds to the circular table.

ng

Proor
(i) If j+ m = N, then P(Ey) and P(£,| E)) are given by (2) and (3), respectively. Now,
P(Ea'E]) = P{Sj-] - Sj-—]_n <nforn= 1,2, 3, N ,j‘- ”Sj+m - Sj-] = m)

Given that Sjv, — S;-1 = m, S;-1 ~ Blk — m, (j — 1)/(N — m — 1)). By conditioning on
S;-1 we obtain
min{ j—~1, k-m}

P(E3|E1)= Z P{Sj_l—S/_l_,,<nforn=l,2,3,...,j—l[Sj_1=r}

=

(=Y (=t N it T
r N-m-1 N—-—m-1 ’

When j = 1, obviously P(E3| E))= 1. Forj=2,3,4,..., N~ m, we obtain, by renumbering

storage locations (1, 2, 3,...,j — 1) in a reverse order and using the ballot theorem,
P{Sj-1— Sjmin<nforn=123,...,j— 1S =r)
r .
_l_j-—l for r=012...,j-L
Hence, noting that Yrigt/="k=m) =Yh-m _ $E-s e have
PENE)= 1 —— " 4 L
N-m~-1 (N-m-§1)""
e ; k- m ; r—1 Nk—m—r
X (r—j+ 1. . G-\ N-—m-) . (1)
r=J

Combining (2), (3), and (11) proves the case where j + m < N.
(ii) Next consider the case where N < j + m = M. Now P(E|E) = | -
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FiG. 4. C(k) for a linear and a circular table with N = 50. The upper graph corresponds to the circular table.

(k= m)/(j— 1)forj>k —m+ 1, and P(Es| E;) = O for j< k — m + 1. By using Theo-
rem 2 we obtain, forj=1,2,3,..., N— 1,

P(E:|E) = P{ max_ (n—Su)<l|Snuy=m)

n=123,.N~j

I—NE__,—I- m n n=1 l_ n m-n+}
Sn\n=1J\N+T1-; N+l—-j

This result is also valid for j = N, since then P(E;|E;) = 1. Q.E.D.

COROLLARY. When k <j+ m= N, P;.(k) is given by expression (4) of the circular case.

The significance of this corollary is that off the edges of the table, the behavior of the
system is similar to that of the circular table.

We conclude with graphic representations (Figures 3 and 4) of D(k) and C(k) =
(1/k) $h=5 D(n). In these figures we compare the performance of a linear table with N =
50 to that of a circular table with the same value of N. Obviously, D(K) (hence also C(k))
is lower in the linear case. This does not necessarily imply that the linear geometry is more
efficient, since F(k) also affects the final outcome. Note that while D(k) increases up to
(N — 1)/2 (in the circular case), C(k) remains comparatively low.
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