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ABSTRACT. A new approach to the analysis of hash table performance is presented. This approach is based on 
a direct probabilistic analysis, where the underlying probabilities are derived by using the ballot theorem and its 
ramifications. The method is first applied to analyze the performance of the classical (cyclic) linear probing 
scheme, and the results are used to solve an optimal storage allocation problem. A scheme frequently used in 
practice where the table is linear rather than cyclic is then analyzed using the same methodology. 
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1. Introduction 

A random-access  table consists o f  N storage locations 1, 2, 3 . . . . .  N. Records  are added  
to the table f rom t ime to time. Each record is identified by a unique  key, w. A record with 
key w is hashed to s t o r a g e  location h(w), where the hashing funct ion h( . )  is given 
(see [3, 5]). I f  the calculated location h(w) is empty,  the record is stored there. However ,  
since h( . )  is not  one to one, location h(w) may be occupied by another  record. Such an 
occurrence is called a collision. 

Several  methods  for collision resolution are known [1, 3, 6-8, 10]. In an " o p e n "  
addressing system [8], there is a set o f  rules which determines,  for each acceptable  key w, 
a probe sequence of  possible storage locations in which the corresponding record might  be 
stored. The  record is normal ly  stored in the first location, h(w), of  the sequence.  I f  that 
location is occupied,  the second location in the Sequence is tried, and so on, until  an empty  
location is found.  

The  simplest  open addressing scheme, which is known in the l i terature as linear probing 
[3, 8], scans the table sequential ly (in a cyclic manner )  until  an empty  location is found. 
The  search for an empty  location for storing a record with key w is pe r fo rmed  along the 
probe sequence 

(h(w), h(w) + 1, h(w) + 2 . . . . .  N, i, 2 . . . . .  h(w) - I). 

This  scheme has been suggested by Peterson [8] and analyzed by K o n h e i m  and Weiss [4] 
and by Knu th  [3]. 

In this study we present a new approach to the analysis o f  the l inear probing  scheme. 
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Our approach is based on the application of  ballot theorems. An important feature of  the 
analysis is that its methodology is independent of  the circular symmetry of  the addressing 
system. As a result, the method can be further used to analyze the performance of  a linear 
table. 

The structure of  the paper is as follows. Section 2 contains a preliminary discussion of  
the ballot theorem and presents the renumbering technique and the "dual ballot theorem." 
The new approach is introduced in Section 3 and used to analyze the performance 
of  a cyclic table (i.e., the classical linear probing scheme). A problem of optimal 
storage allocation is solved in Section 4. Section 5 concludes the paper with the analysis 
of a linear table. 

2. The Ballot Theorem 

Let (X1, X2 . . . . .  Xp) be a random vector, and let S, = Y.~=~ X~ (n = 1, 2, 3 . . . . .  p). The 
analyses made in this paper require a study of  the distributions of  max,-l.z....p{S, - n} and 
maxn=Lz...,p{n - S,) ,  where X1, X2 . . . . .  Xp are interchangeable. This issue has been studied 
extensively in [9], where the classical ballot theorem was generalized and applied to various 
problems. 

We say that the random variables X1, 3(2 . . . . .  Xp are interchangeable if all the p! 
permutations of  X~, X2 . . . . .  Xp have the same joint distribution. Throughout this section 
(X~, X2 . . . . .  Xp) is an arbitrary vector of  interchangeable random variables taking on 
nonnegative integral values. Such a vector satisfies the classical ballot theorem. 

THEOREM 1 (THE BALLOT THEOREM) 

P { S , < n f o r n =  1,2 ,3  . . . . .  p [ S p = m }  = 1 -  , 

where 

(X) ÷ =- max{X,  0}. 

One of  the numerous proofs of  Theorem 1 (under weaker assumptions) is given in 
[9, p. 101. 

The distribution of  maxn=Lza..p{n - Sn} is given by the following theorem, which is 
proved by Takfics [9, p. 24]. 

THEOREM 2. For k = l, 2, 3 . . . . .  

P k 
P{ max ( n - S , , }  < k }  = 1 - ~ P{Sn = n - k } . - .  

n= 1,2.3,...,p nffik n 

In what follows we often make use of  symmetry arguments based on the interchangea- 
bility of X~, Xz, Xa . . . . .  Xp. The joint distribution of(Xj,, Xj~, Xi~ . . . . .  Xj.) is independent 
of the specific selection off i ,  ./'2, j3 . . . . .  j .  (n _< p), as long as they are all distinct. Since 
(Xj,, Xj~, Xj . . . . . .  Xi.) - (X~, X~, Xa . . . . .  X.),  the probability of  each event which is 
defined in terms of  Xj,, Xj2, Xj~ . . . . .  Xj. may be computed by replacing Xj, (i = !, 2, 
3 . . . . .  n) with Xi. In the sequel we refer to this probability-preserving transformation as 
a renumbering. 

By renumbering (X~,)(2, X3 . . . . .  X.) in a reverse order, we obtain the dual sequence 
(X*, X~', X~', . . . .  X*), where X* = X.+~_j ( j  = i, 2, 3 . . . . .  n). Use of  this simple 
transformation yields Theorem 3, which may be considered as the dual of  the classical 
ballot theorem• 

THEOREM 3 (DUAL BALLOT THEOREM) 

P { S n > _ n f o r n  = 1,2,3  . . . . .  mlSra+l = m }  = ( m +  l)-k 

PROOF. Let (X~', X~', X~, . . . .  X*m+D be the dual sequence of  (X~, 3(2, X3 . . . . .  X,,+~), 
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and let S~* -- ~ - ~  X* = Sm+J -- Sm+~-. for n = 1, 2, 3 . . . . .  m + 1 (S~ -- 0). Use o f  
Theorem 1 for the dual  sequence yields 

(m + I) - t  = P{S*~ < n for n = 1, 2, 3 . . . . .  mlS*+~ = m)  
= P{Sm+I- ,>--m + l - n f o r  n =  i , 2 , 3  . . . . .  mJSm+j = m} 
= P{Sn > n for n = 1, 2, 3 . . . . .  m [ S,,,+l = m}, 

since S* < n is equivalent to Sm+~-, > m - n or S,,+~-,, > m + 1 - n when Sm*+~ = 
S,,,+1 ----- m. Q.E.D. 

3. Analysis o f  Cyclic Linear Probing 

The classical l inear probing scheme has been studied by Konheim and Weiss [4] and by 
Knuth [3]. We introduce our new approach by performing an analysis of  this scheme. 
Under  the linear probing scheme the table is scanned in a cyclic manner along the probe 
sequence (h(w), h(w) + 1 . . . . .  N,  1, 2 . . . . .  h(w) - 1). Nevertheless, the underlying ideas 
of  our analysis do not collapse in the absence of  the circular symmetry of  the above 
addressing system. This fact will become more evident in Section 5 where we perform the 
analysis of  a linear table. 

Consider a circular table containing k records, where k < N. Let Xj be a random variable 
denoting the number  of  records mapped by h( .)  to the j th  location ( j  = I, 2, 3 . . . . .  N). 
.The distribution of  the random vector (X~, 3(2 . . . . .  XN) is multinomial with parameters k 
(= number of  trials) and ( ( l /N) ,  ( I / N )  . . . . .  ( I / N ) )  (= probabilities for success). We 
further define So = 0, and f o r p  = 1, 2, 3 . . . . .  N we let Sp = ~ = 1  X ,  be the cumulative 
number o f  records hashed to the firstp locations. For  the analysis we extend the numbering 
of  storage locations in a cyclic manner, i.e., i f j  ----- j '  (mod N), then b o t h j  a n d j '  represent 
the same location. We also define SN+j = S ,  + Sj and S- j  = S s - i  - SN, so that for a l l j  __< 
j ' ,  the cumulative number  o f  records hashed to locations ( j  + I , j  + 2 . . . . .  j ' )  is Sj, - Sj. 

The records fill some portions of  the (extended) table, which we call strings. We say that 
a string of  length m (m = 1, 2, 3 . . . . .  k) starts at location j ,  i f (see Figure 1): 

(i) location ( j  - 1) is empty; 
(ii) locat ionsj ,  j + l , j  + 2 . . . . .  j +  m - 1 are all occupied; 

(iii) location j + rn is empty. 

This event will be denoted by Ej, m(k), and its probabili ty by Pj.m(k). Once the underlying 
probabilities Pi, m(k) are known, it is possible to analyze the performance of  the table. 

It is easy to see that Ei.~(k) occurs if and only if the following events occur simultaneously: 

(El) Sj+m - Sj-x = m; 
(E2) Sj-l+~ - Sj-l  --> n for n = 1, 2, 3 . . . . .  m; 
(E3) S j - ~ - S j - 1 - , < n  for n =  1 ,2 ,3  . . . . .  N - m - l .  

El implies that exactly m records are hashed to storage locations (j ,  j + 1, j + 2 . . . . .  
j + m). E2 guarantees that all the locations within the string are occupied, whereas E:~ 
implies that location ( j  - 1) remains empty. An essential point to note is that given E2, the 
events E2 and E3 are conditionally independent. This follows since the distribution of  
records among locations (j ,  j + 1, j + 2 . . . . .  j + m) is independent of  the internal record 
distribution among the remaining locations. Hence, 

Py,m(k) = P ( E , ) .  P (E2IE , ) .  P(E~[E,).  (1) 

So far we have not invoked the specific form of  the addressing system. Focusing on the 
cyclic linear probing scheme, the circular symmetry of the system implies that Pj.,,,(k) is 
independent o f j .  Hence, it may be assumed that j = 1, and so, ( )' ..... 

1 ~ " N - m - 1 
P(E~) = P(S,,,+~ = m) = ~- (2) 
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A string of length m = 5 that starts at location j = 4. The shaded areas represent occupied locations. 

Next we compute 

P(E2IEO = P{S, >-- n for n = 1, 2, 3 . . . . .  mlS,,+l = m} = (m + 1) -1 , 

as follows from the dual  ballot theorem (Theorem 3). 
Last, by using the interchangeability of  the X~'s, we obtain 

P ( E a [ E O = P { S _ , < n f o r n =  1 ,2 ,3  . . . . .  N - m -  l lEI}  

= P { S , < n f o r n =  1 ,2 ,3  . . . . .  N - m -  l l S N - , , - l = k - m }  
k - m  N - k - I  

- -  1 
N - m -  1 N - m -  I' 

(3) 

where the probabil i ty is evaluated by using the ballot theorem (Theorem 1). 
Combining our results we obtain 

THEOREM 4. F o r k =  1,2,3 . . . . .  N -  l ; j =  1 ,2 ,3  . . . . .  N ; m =  1 ,2 ,3  . . . . .  k, 

Pj.,,(k) = - ~  • (m + l)m-l(N - m - " N - m - 1 " (4) 

The same result has been obtained by Konheim and Weiss [4] and by Knuth [3]. 
The result of  Theorem 4 may now be applied to analyze the performance of  a circular 

table with N locations, k of  which are occupied. The relevant performance measures are 

(i) D(k), the expected number of  extra probes needed for an unsuccessful search; 
(ii) C(k), the expected number of  extra probes needed for a successful retrieval. 

In both cases, we do not count the initial probe at location h(w). 
It is easily seen that the operation of  record addition is in fact an unsuccessful search 

which is followed by storing the new record, whereas an update in place is composed of  a 
successful search and a store operation. Furthermore,  we have 

1 k-1  
C(k) = -; Y, D(n), (5) 

n ~ O  

when each of  the k records in the table is equally likely to be retrieved. 
The derivation of  D(k) and C(k) from Pj.m(k) has been performed by Knuth [3, 

p. 530]. The result can be formulated as follows. 

THEOREM 5 

(:) D ( k ) = ~ j ~  ° (j+N jl)! 21 for k = 0 ,  1,2, . . . .  N -  1, (6) 

and 

l ~l  ( k -  1) J' 1 for k =  1,2,3, N. (7) 
c (k )  = ~ ,-o J - P  - i . . . .  

In the next section we apply these results to solve a storage allocation problem. 

4. An Optimization Application 

Consider the problem of  allocating storage for a hash table, where the number of  records 
to be registered in the table is not known a priori. For  example, storage is allocated for the 
symbol table of  a compiler before the source code is examined; hence the number of  
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records to be stored in the table is a random variable. Assume that this number has a 
Poisson distribution with mean a; each record in the table is to be retrieved q times on the 
average, and the storage-allocation cost of  each entry is equivalent to the cost of  s probes. 
The objective is to minimize the total expected cost subject to the constraint that the table 
does not overflow with probability of  at least 1 - a (a << 1). 

Let N be the number of  entries allocated for the table. We express the resulting costs in 
terms of  the expected total number of  probes. The storage-allocation cost is converted to 
the equivalent number of  probes, which is s .  N. The cost of  inserting the (n + i)st record 
into the table (n = 0, 1, 2 . . . .  ) is D(n) extra probes. The cost of  q retrievals of  this record 
is q. D(n), since each retrieval follows the same probe sequence scanned when the record 
was inserted. Hence the expected conditional total cost, given that k records have been 
registered in the table, is 

k - I  

s . N + ( q +  i ) .  ~ D ( n ) = s . N + ( q +  l ) . k . C ( k ) ,  
n~O 

which follows from (5). The requirement a << 1 implies that the total expected cost may 
be approximated by 

a k 

f ( N ) ~ s . N + ( q +  1). ~ k . C ( k ) . e  -~ '~ .  
k-o k! 

Using expression (7) for C(k), we derive 

f (N)  = s . N - a ( q 2  + 1) + e-a(q2 + !) k-oZ ki "./.o j ~N ] 

= s . N - a ( q +  1) e - ° ( q +  1) = i = a k 
2 + 2 " ~_ , ( k -  i - j ) r  

= s . N _ a ( q +  l ) + a ( q +  l) ~ ( ~ )  ~ ]  
2 2 "j=o \ . , /  

1 a 2 
= s . N + ~ . ( q +  1) 

(N - a)" 

Nowf(x) = sx + ½(q + l)a2/(x - a) is a convex function which is minimized at 

x * = a  I +  ~/ 2s ] (8) 

so N1, the unconstrained optimal value of  N, is either Ix *] or Ix *] + 1. 
Next, the requirement that the probability oftable overflow is bounded by a is equivalent 

to N >_ N:, where 

N 2  = min nl e -"a 

The constrained optimal value of  N is therefore 

N* = max{Nj, N~). 

For example, if each record is retrieved q = 9 times on the average, and s -- 20, we 
obtain from (8) that x* = 1.5a. When a _> 100 (which is quite ordinary), x* exceeds the 
mean a by at least five standard deviations; hence the probability of  table overflow is 
practically zero, and N* = i.5a. 

5. Analysis of a Linear Table 

The classical (cyclic) linear probing scheme discussed in the previous sections may be 
replaced in real-life applications by a linear table. The linear table consists of  M storage 
locations 1, 2, 3 . . . . .  M, where the hashing function h(.) maps arriving records only to the 
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subset {1, 2, 3 . . . . .  N}, and the last M - N locations form an "overflow area." When a 
record with key w is to be added to the table, it is stored in the first empty location found 
along the probe sequence (h(w), h(w) + 1, h(w) + 2 . . . . .  N, N + I . . . . .  M) .  This addressing 
scheme has the advantage that if the table gets exhausted, it may simply be augmented 
with addit ional "overflow" entries, whereas other hashing schemes (e.g., cyclic linear 
probing) require rehashing of  the records in the table [2]. Other minor advantages are a 
reduction in the number of  page faults in a virtual-storage environment (due to the linear 
scanning scheme) and a somewhat simpler programming. 

On the other hand, a linear table might become exhausted before it is completely full. 
That is, the search for an empty location might be terminated without finding one even 
when the number of  records in the table, k, is lower than the maximum capacity, M. Thus 
the evaluation of  the linear table depends heavily on the probabili ty F(k) that the table is 
exhausted when k records are present. We proceed with the derivation of  this performance 
measure by applying the ballot theorem. 

For  the analysis, we add an imaginary location, the (M + I)st, at the end of  the table. 
We note that the table is exhausted if and only if  this imaginary location is occupied. Thus 
1 - F(k) is the probabil i ty that the (M + l)st location remains empty. This happens if and 
only if SN -- S ,  < M + 1 - n for n = 0, !, 2 . . . . .  N - 1, where S,, is the total number of  
records hashed to the first n locations. Since SN = k, we obtain, for k = 0, 1, 2 . . . . .  M, 

l - F(k) = P { n -  S , <  M + l - k f o r n = 0 ,  1,2 . . . . .  N -  I I S N = k  } 

= P{ max ( n - S , ) < M +  l - k l S N = k } .  
nffi 1,2,3,..., N- I 

Using Theorem 2 we obtain 

N--l M +  1 - k  
F(k) = ~ P { S . = n - ( M  + l - - k ) l S y = k  } 

n E M + l - k  n 

In Figure 2 we illustrate the function -log~o F(k) for a linear table with N = 50, M = 55. " 
Note that F(k) is below 0.01 when the occupancy of  the table does not exceed 60 percent. 

Next we consider the search for an empty location in a linear table which contains k 
records. Let w be the key, which determines the initial probe, and let U ~k~ denote the 
number of  additional probes needed for the search. Our purpose is to derive D(k) = 
E[U~k~]. Since the random variable U ~ is well defined only when the system is not 
exhausted, we assume that M is large enough so that the probabili ty F(k) is negligible. 
Otherwise D(k) depends on the exact way an exhausted table is handled. Our results 
correspond to the case where the table may be extended as required, so D(k) is independent 
of M, and the contribution of  the exhausted case to the total expected cost is obtained 
via F(k). 

Obviously, the definitions of  Ei.m(k ) and Pi.m(k) apply to the linear case as well. We now 
express the performance measure D(k) in terms of  the probabilities Pj.,,(k). Assume that 
the key w is hashed to storage location i = h(w) (i = I, 2, 3 . . . . .  N). If  this location is 
empty, the search is completed and the number of  additional probes is U Ck~ = 0. Otherwise 
storage location i belongs to a string which starts at some loca t ion j  (j_< i). The number of  
additional probes is U ~k~ = r if and only if the string is r + i - j  locations long, where r = 
1, 2, 3 . . . . .  k - (i - j ) .  Hence 

i 
P { U  ~k~ = rlh(w) = i} = ~ Pj.r+,-j(k) for r = 1, 2, 3 . . . . .  k - (i - j ) .  

j=l 

It follows that 

~ 1 r~ i l j~=~ ~ n 
D(k) = r ~. Pj.r+i_Ak)= Pj.,,(k). ~ r. 

i=l N 1 j=l N i n=l . . . . .  { j+n-.rv.]} 
r + i-- j  ~ k 
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FIG. 2. -log]oF(k) for  a l inear table with N ffi 50, M = 55. 

Partitioning the summation over n into two cases, we obtain 

THEOREM 6. The expected number of additional probes in an unsuccessful search is given 
by 

1 N 
D(k) = ~ y~ ,,-,~" n(n + l)Pj,.(k) 

j+n~N 

l N 
+ ~ - ~  Y. (]+ 2n - N ) ( N - ] +  Oej..(k). 0 0 )  

n - - I  
j+n>N 

It remains to derive the underlying probabilities Py.,~(k) for the linear table. For n = 1, 
2, 3 . . . . .  we define.SN+, = SN and S- ,  = So = 0. Then Ey,m(k) ~- E] A E2 A Ea, as defined 
in Section 3. Again, given El, the events E2 and E3 are conditionally independent; hence 
eq. (1) for Py.m(k) holds in this case too. 

The formulas for Pzm(k) are given by 

THEOREM 7. For j =  1,2,3 . . . . .  N ; m =  1,2,3 . . . . .  k, wehave 

(i) i f j + m < N ,  

P/.m(k) = ~ (m+ . ( N - m -  " N - m -  1 

(:) ( )  1 l )m_ 1 _ j ) }  . . . .  ; + - ~  (m+ ~ ( n - j +  1) k - m  ( j _  l ) " - ' ( N - m  
n - j  n 

(ii) i f N < j + m < _ M ,  

ey.m(k) = ~-~ ( ] -  I )  k - "  I J 

[ N----Yl ( m n  n -  ! )  n ' - ' ( N +  l - j - n ) ' ' - " ~ - ' ' ]  • ( N +  l - j ) m - , ~  

where we define 0 ° ~ l, and 0/0 =- O. 
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Flo.  5. D(k) for  a linear and a circular table wi th N = 50. The upper 
graph corresponds to the circular table. 

PROOF 

(i) I f j  + m _< N, then P(El)  and  P(E21 El)  are given by (2) and  (3), respectively. Now, 

P(E31E1) = P{Sj- ;  - Sj-1- .  < n for n = ! , 2 , 3  . . . . .  j - I I S i + m - S j - ,  = m ) .  

Given  that Sj+., - Si-i = m, S/-l  ~ B(k  - m, ( j  - I ) / (N  - m - 1)). By condi t ioning on 
Si-~ we obta in  

rain{j-l, k - m )  

P(E3I E~) = Z P { S j - ~ -  S j - ~ - . < n f o r n =  1 , 2 , 3  . . . . .  j -  I[S./-, = r }  
r=0 

• r . ~ - m - I  1 N - m  2-1 ' 

When  j -  1, obviously P(E3 [ El) = 1. F o r j  = 2, 3, 4 . . . . .  N - m, we obtain,  by r enumber ing  
storage locations (1, 2, 3 . . . . .  j - 1) in a reverse order and  using the ballot theorem, 

P { S j - , - S j - , - . < n f o r n =  1 , 2 , 3  . . . . .  j -  I]Sj-1 = r }  
l" 

= 1 - ~  for r = O ,  1,2 . . . . . .  j -  1. j - !  

Hence, not ing that/,r=0"~min{ j--l. k - m )  ~ r = 0 ~  k - m  k - m  
- ~r- i  , we have 

k - m  l 
P(E.~IE1)= 1 + 

N - m -  I ( N - m -  l) k-'~ 

( ) • Y. ( r - j +  1). k - m  ( j _  i y _ ~ ( N _ m _ j )  ~ . . . . .  . (11) 
r=.i r 

Combin ing  (2), (3), and (! 1) proves the case where.]' + m ~ N. 
(ii) Next consider the case where N < j + m _< M. Now P(E:;IE~) = I - 
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C(k) for a linear and a circular table with N = 50. The upper graph corresponds to the circular table. 

(k - m ) / ( j -  1) for  j >  k - rn + 1, a n d  P(E31E, )  = 0 for  j _ _  < k - rn + 1. By us ing  T h e o -  
r em 2 we ob ta in ,  f o r j  = 1, 2, 3 . . . . .  N - I, 

P(E2IE1) = P (  m a x  ( n - S , ) <  l l & v + l _ j = m }  
n~ l,2,3,...,N-j 

N-j i m n 1 
= l--~,n n - - I  N+i-j 

]'1 ) m--n+ l 

This  resul t  is also val id  f o r j  = N, since t hen  P(Ez[E,)  = 1. Q.E.D.  

COROLLARY. When k < j  + m ~ N, Pj.,~(k) is given by expression (4) o f  the circular case. 

T he  s igni f icance  o f  this  coro l la ry  is tha t  o f f  the  edges o f  the  table,  the  b e h a v i o r  o f  the  
system is s imi la r  to tha t  o f  the  c i rcular  table.  

W e  conc lude  wi th  g raph ic  r ep resen ta t ions  (F igures  3 a n d  4) o f  D(k) a n d  C(k) = 
~,=o D(n). In  these  f igures  we c o m p a r e  the  p e r f o r m a n c e  o f  a l inea r  tab le  wi th  N = ( l / k )  k-I 

50 to tha t  o f  a c i rcu la r  t ab le  wi th  the same  va lue  o f  N. Obvious ly ,  D(K)  (hence  also C(k)) 
is lower  in the  l inea r  case. Th i s  does  not  necessar i ly  imply  tha t  the  l inea r  geome t ry  is m o r e  
efficient,  s ince F(k) also affects  the  f inal  ou tcome .  No te  tha t  whi le  D(k) increases  up  to 
(N  - 1)/2 ( in the  c i rcu la r  case), C(k) r ema ins  c o m p a r a t i v e l y  low. 
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