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OPTIMAL ENTERING RULES FOR A CUSTOMER WITH 
WAIT OPTION AT AN M/G/ 1 QUEUE* 

AVISHAI MANDELBAUMt AND URI YECHIALIt 

A "smart" customer arrives at an M/G/ 1 queue. While every other arrival joins the system 
unconditionally, our customer is allowed to choose among three alternatives: (i) he may Enter 
the queue and stay 'there until his service is completed, (ii) he may Leave the system right 
away, or (iii) he may Wait outside the queue. If he Enters or Leaves the system, his decision is 
final and no further actions are taken. If he chooses to Wait, he makes a new decision at the 
next service completion where he may, again, select one of the three options: Enter, Leave, or 
Wait. 

For a linear cost structure we show that for any n-period horizon (0 < n < oo) the 
individual customer's optimal strategy is a 3-region (possibly degenerate) policy by which he 
Enters a small queue, Leaves a large one and Waits when the queue is of an intermediate size. 
We also give a necessary and sufficient condition for the Wait option to exist. 

The special M/M/1 queue is further analyzed by allowing the Waiting customer to make 
decisions at instants of customers' arrivals as well as at instants of service completion. In this 
case, too, the optimality of the 3-region policy is derived and the "smart" customer dichotomy 
is recognized as the Gambler's Ruin problem. 

Computational procedures are developed and numerical results are presented for commonly 
used service time distributions. 
(QUEUES; OPTIMAL JOINING RULES) 

1. Introduction 

The subject of this paper is a single "smart" customer seeking self-optimization in an 
M/G/1 queueing system. Upon arrival our customer is made aware of the current 
state of the system and the monetary reward he will attain through completion of 
service. While all other customers join the queue unconditionally, our customer may 
choose between three alternatives: he may Enter the queue or Leave the system right 
away (which are the two standard alternatives used in previous models such as 
Yechiali [7], Adiri and Yechiali [1], Stidham [5], and others) or he may Wait outside 
the queue, monitor the system and defer his final decision-as to whether to Enter the 
queue or to Leave-to a later stage. While monitoring the development of the system, 
he reconsiders his status at each service completion, at which time he can again choose 
between the three alternatives-Enter, Leave, or Wait. Once he decides to Enter or to 
Leave, his decision is irrevocable and no further actions are taken. 

There is a different cost for standing in line and waiting out of it. The decision of the 
customer is based on his concrete cost-benefit analysis and he reaches his conclusion 
on the basis of his narrow self-interest. 

In contrast to exponential-service models, when dealing with general service time, 
we have to consider two phases of decisions. The first is the decision upon arrival. It 
depends on the number of customers queueing as well as on the outstanding service 
time of the customer being served (in [3] we derive an explicit formula for the 
conditional expectation of this outstanding service time given the number of customers 
present). If the customer chooses the "Waiting outside the queue" option, the second 
phase initiates and actions are then taken each time a service is completed. These 
actions depend on the queue size only. 

*Accepted by Marcel F. Neuts, former Departmental Editor; received October 1, 1979. This paper has 
been with the authors 14 months for 3 revisions. 
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The analysis is developed as follows: In ?2 we present the model. Optimal strategies 
for Phase II are studied in ?3 and shown to be of a 3-region type for both the finite 
and infinite horizons; that is, it is best for our customer to Enter small queues, Leave 
large ones and Wait if the queue is of an intermediate size. We obtain a necessary and 
sufficient condition under which it is best to exercise the Wait option, thus strictly 
improving upon policies with only Enter or Leave options. In addition, we derive a 
sufficient condition so that our customer can afford to be "polite" and still remain a 
"smart" one; that is, as long as he waits he can allow everyone else to be served before 
him and still maintain optimality. 

The overall decision process is formulated in ?4. In ?5 the M/M/ 1 queue is studied 
where decisions are taken both at instants of arrival and departure. Here the problem 
converts to the Gambler's Ruin problem where the search for the parameters of the 
optimal policy reduces to a minimization problem of a function of two variables, 
unimodal in each variable. Computational procedures are decribed in ?6, and numeri- 
cal results are presented in ?7. 

2. The Model 

We consider a FIFO regime, stationary M/GI/ 1 queue with Poisson arrivals at rate 
X, i.i.d. service times having finite mean 1/, and traffic intensity p = X/I < 1. 

We are interested in a single individual customer, X, whose objective is to minimize 
his expected total cost. Upon arrival, customer X is facing Phase I of his decision 
process. At this stage he is willing to take one of three actions: 

E: to Enter the queue (as all other customers do unconditionally), and incur 
queueing time losses at a rate of A > 0 monetary units per unit of time so as to gain a 
reward g upon his service completion, 

L: to Leave the system and incur a penalty / > 0, or 
W: to Wait outside the queue until the next service completion and then recalculate 

whether to Enter, Leave, or Wait. 
While in the waiting stage, X incurs waiting time losses at a rate of B > 0. 

If actions E or L are taken-Phase I and the entire decision process terminate. If 
option W is exercised, the decision process moves to Phase II. While in Phase II, 
actions are taken after each service completion. The same options-E, L or W-are 
available. When the decision is W-Phase II continues. As soon as decision E or L is 
taken-the phase and the entire process terminate. 

3. Analysis of Phase II 

We formulate the decision process in Phase II as a (semi) Markov Decision Process 
(MDP). We follow some of the notations of Ross [4, p. 119]. 

The state space is {0, 1, 2 ... }, the number of customers observed by X at instants 
of service completion. 

If the process is in state i and action a is taken then 

P,(a) = transition probability to statej 

and 

C(i, a) = expected one-step cost. 

We say that the MDP goes to the absorbing state ox when either E or L is chosen. 
Without loss of generality we ignore the waiting losses incurred by X while being 
served. We assume that g> - / which is equivalent to saying that F is optimal at state 
i=0. 
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The nonzero transition probabilities for i > 1 are 

Pi,o(E) = Pi,.(L) = 1 (1 < i < ox), 

Pyj(W) = aj-i+l (I < i < xo; i-1 I <j < x0), 
) 

where ak f fJ e-Xt(Xt)k/k! dG(t) (O < k < ox) is the probability of k arrivals during a 
service period. 

The expected one-step costs are: 

C(i,L)=l (Ii <oo), 

C(i,E) = (i/l)A - g (O i < ox), 

C(i, W) = BIA (I < i < xo),() 

C(oo,a) = 0 (a = E, W,L). 

Let Uj(i) be the value of an optimal policy for the n-period horizon starting from 
state i. That is to say, either E or L action must be taken within n steps. 

We have 

U0(i) = min{ --A - g,l } 

and for 0 < n < x0, 

Un +l(?) = -9 

Un+ l(i) = mint A A-g, + 
E 

ak Un I- + k), l (I < i < xo). 

We now transform the MDP model into an equivalent Negative Dynamic Program- 
ming (NDP) model (Strauch [6], Ross [4, p. 135]). We need this transformation since 
under the MDP the costs are unbounded and take both positive and negative values. 

We let 

Vn(i) = (Un(i) + g)y/A4 

f = (l + g),u/A and c = B/A. 

This is the same as increasing the terminal cost by g (making the reward 0) and 
choosing as unit of cost the cost of lining up for one mean service time (= A /,). 

The NDP process has the same transition probabilities as in (1) and the following 
non-negative one-step expected costs 

C(i,L)=f (1 i<oo), 

C(i,E)=i (0<i<oo), 

C(i, W)= c (I <i < x), 

C(oo,a) = 0 (a = E, W,L). 

In terms of the Vn(i), (3) takes the form 

VO(i) = min{i, f }, 

Vn+1{0} =0 (0 < n < o), (6) 

Vn+1(i) = min( i, C + 
O 

a, V.(i- 1 + k), f (1 < i < xc). 
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Equations (6) can be extended to hold true for the infinite horizon case as a 
consequence of standard NDP results. Namely, letting V,,(i)_ V(i) we have 

THEOREM 1 (Infinite Horizon). (i) An optimal policy exists and the optimal cost 
function V(i) satisfies 

V(O) = 0, (7) 

V(i) =min(i, c + E ak V('- I+ k),f) (I <i < x). 
k=O 

(ii) The stationary policy which takes the action minimizing the right-hand side of (7) is 
an optimal policy. 

REMARK. (i) In case of ties we postulate the following transitive relation: L is 
preferable to E which is preferable to W. 

Our aim now is to show that for both finite and infinite horizons the optimal policy 
of an individual customer is a 3-region policy as follows: 

For any n-period horizon (0 < n < ox) there exist natural numbers sn and tn 
(sn < tn < oX) such that if the queue size i is not greater than Sn the optimal action is E; 
if i > tn the optimal action is L, and if sn < i < tn the optimal action is W. 

We establish these facts by the method of successive approximation using the 
following theorem: 

THEOREM 2. For i > 0, limno Vn(i) = V(i). The convergence is monotone. 

PROOF. Vn(i) > Vn+I(i) > V(i) (n > 0) since what can be achieved in n steps could 
clearly be achieved in n + 1 or more. Hence, 3 limnooVn(i) > V(i). For n = ox, let Ti 
be the random time at which an optimal policy stops starting from i. Then, following 
the same lines as in Ross [4, p. 136, Theorem 6.13], we derive 

0 < Vn(i) - V(i) < P(T1 > n)(f- c). 

Since Ti is bounded by the time it takes the queue to empty (i busy periods) then 
E(T1) < i/(l - P) < ox. Thus, limn o0P(Tj > n) = 0, which completes the proof. 

LEMMA 3. For i > 0, n > 0 
(i) 0 < Vn(i) 6 Vn(i + 1) < Vn(i) + 1, 
(ii) 0 < V(i) < V(i + 1) < V(i) + min{ 1, c/(1 - p)}. 

PROOF. (i) The nonnegativity of Vn (i) is obvious. The rest follows from (6) using 
induction on n. 

(ii) Passing to limit in (i) results in 0 < V(i) < V(i + 1) < V(i) + 1. In addition, the 
expected number of service completions that it takes to get from i + 1 to i is 1/(1 - p). 
If at state i + 1 X waits until the system reaches state i and then applies the optimal 
policy his expected loss is c/(1 - p) + V(i), which proves (ii). 

We now characterize the structure of the optimal policies. For reasons of conve- 
nience we assume that f is an integer. All our qualitative results stay true for an 
aribtrary f except for somewhat more tedious calculations. 

Denote by gj(i) the optimal action when in state i and there are (at most) n steps to 
go. The sequence of mappings {(, g,i, ... , j} defines an optimal nonrandomized 
policy. An infinite-horizon optimal stationary policy where go = = .l = will 
be abbreviated to 7ro. 
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We also introduce a special notation to denote 3-region policies. For any integers s, t 
satisfying t -s > 1 define a mapping 7T(s, t): (0, I.... } -X {E, W,L} by 

[E, 0 0 i < s, 
77(s,t)(i) ={W, s< i< t, 

LL, i > t. 

Note that in light of part (ii) of Theorem 1 and the remark following it, we have, for 
0 < n < oo and i > 0, 

Vn(i) = f iff T,, (i) = L, 

if Vn(i) <f then Vn(i) =i iff 7Tn(i) = E, 

Vn(i) < mint i, f } ff qTn(i) = W. 

LEMMA 4. For 0 < n < oo, 
(a) If Tn (i) = L then q7Tn(i + j) = L for j > 1 
(b) If gn(i) = E then 7n(i -j) = Efor 0 < j] i. 
(c) If rn (i) = W then 7Tn+j(i) = W for j > 1. 
(d) There always exists an L-state. 
In particular 7n (f + n) = L for n < xc. 
(e) There exist sn and tn sn + 1 < tn < ?c, such that gTn = 7r(s,2, tn). That is to say, 'g,, is 

a 3-region policy. 
(f) 06 tn+2 - tn 6 1. 

PROOF. (a) From Lemma 3(i) and from the optimality equations (6), f > VJ (i + j) 
> Vn(i) =f. 

(b) Again, from (6) and Lemma 3, i - 1 > Vn(i - 1) > V,2(i) - 1 = i - 1. Iterating 
results in (b). 

(c) 7Tn(i) = W iff min(i, f} > Vn(i), and VJ,(i) > Vn+j(i). Hence (c). 
(d) First let n = oc. Suppose there are no L-states. Since g.(i) #& E for i > f, there 

exists a maximal E state, say s,O, and %o,(i) = W for i > so, + 1. Starting with state 
soo + k there must be at least k service completions before X joins the queue. Thus 
V(s,o + k) > c * k + soo with k as large as we please. This contradicts V(sO, + k) < f 
and implies (d) for n = cc. 

Now let n < cc. Suppose V"(i) =f for some i. Then f < i < i + 1. Using (a), 
C + Ek=OakVn (i + k) = c + Ek=Oak * f= c +f >f. Hence Vn+1(i + 1)=f. That is, 
VZl(i) =f=> Vn+1(i + 1) = f 

Starting with Vo (f) = f, we have, gn (f + n) = L for n > 0. 
(e) The 3-region structure follows from (a) and (b). The existence of an E-state 

follows from 'lo(o) = E. Finally, tn < oo by (d). 
(f) As in (d), Vn(tn) =f==> Vn+I(tn + 1) = f. Hence, tn+l 6 tn + 1. tn+I > t,, since 

7T (tn-1) = E implies that n +I1(t,2 - 1) is either E or W, and if n (tn- 1) = W then 

7Tn + I(tn -1) = Wby(c). 
Lemma 4 establishes that an optimal policy is a 3-region policy. However, the 

3-region policy may degenerate to a simple 2-region policy where it is never optimal to 
exercise the W option. We now find the conditions under which a nondegenerate 
3-region policy strictly improves the 2-region policy (with only the E and L options) 
assumed in all previous individual optimization studies. 

For 0 < n < oo denote the set of states for which the decision is E, W or L by E, 
Wn and Ln, respectively. That is, 

En= ?r-1(EF); W,n = 7T-1( W); Ln = qn () 
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Note that W1 = 0 implies V1 = V0, which implies that go-77- 77, and 
hence W., = 0. On the other hand, W1 #/ 0 implies gj(i) = W for some i, which 
implies gcji) = W (by Lemma 4(c)) and hence W O =0. Therefore, WOO = 0 iff 
W, = 0. 

It is reasonable to assume that when c is large enough there are no W-states (clearly 
this is the case when c > f), and if c is small enough there are no E-states except for 0. 
We claim 

THEOREM 5. (a) WcO=4 iff c > ao. 
(b) If c < I-p then Ec = {0}. 

PROOF. (a) It suffices to establish the conditions for W, #/ 0. From (d) and (a) of 
Lemma 4, VI(f + j) = f for j > 1. (Recall that f is an integer.) Since W, # 0 implies 
that f E WI, it is enough to check state f. VI(f) = min{f, c + a0(f- 1) + (1 - ao)f, 
f} = min{f, f + c - ao, f}. Hence, 771(f) = W iff c - ao < 0. 

(b) For i > 1 we have c + E jOakV(i-1 +k) C+ k0ak(i 1 +k)=i- 
[(1 - p) - c] < i since E'=Okak = p. Hence, W is always preferable to E. 

REMARK. Using the notation of the Markovian model one could have expected 
that B < A would guarantee the existence of states where W is the optimal action. 
Nevertheless, part (a) of Theorem 5 implies that there are cases where c < 1 and still it 
is never optimal to wait. In the sequel we show that for the M/M/1 queue, where 
decisions are taken both at instants of arrival and service completion, the condition 
c < 1 will indeed guarantee the existence of optimal W-states. 

Part (b) of Theorem 5 tells X that when c < 1 - p he can afford being a 'polite' 
customer and still remain a "smart" one: as long as he waits he can allow everyone 
else to be served before him and still maintain optimality. 

To summarize, for an optimal policy to have 3 nondegenerate regions (nonde- 
generate E-region must include states other than 0), it is necessary that c belongs to the 
interval [1 - p,ao). Note that 1 - ao = Ek'Iak I Eklkak = p. 

In Lemma 4(d) a sequence of upper bounds on the maximal W-state was established 
for the finite horizon problem. We now derive an upper bound on the number of 
W-states of an optimal policy g,.. We accomplish this by deriving a lower bound on 
V(i + 1)- V(i),i E Woo. 

Suppose 77C. = 7T(s, t) for some s < t. Let m = t - s - 1 and suppose m > 1. That is, 
WOO #/ 0 which is equivalent to c < ao by Theorem 5. 

The vector (V(s + 1), . . . , V(s + m)) solves the equations V(s +j) = c + 

aOV(s +j-1) +* + am_j+IV(s + m) + (1-ao- am +)f, 1 j m, 
where V(s)= s. 

Let xj = f-V(s +j) for 0 < 1 m. Backward induction onj proves that x;-x 
> c/ao for 0 1 j mn-1. Summing these m inequalities we get x0 - x, > m c/ao, 
or m < ao/c[V(s + m) - s] < ao/c[f- s]. Since c < ao we have established the fol- 
lowing: 

THEOREM 6. If 7 oo = 7 (s t,, mt 0 = t 00-s 00 - 1, m in > 1, then 

(a) moo < a 
(f-Soo) 

(b) to < 
ao f + 1. a00 

Theorem 6 also gives rise to a computational procedure that identifies an optimal 
stationary 3-region policy when searching through only a finite set of candidates (see 
?6). 
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We emphasize that all our results are applicable to any model with transition 
probabilities (1) and cost structure (2) or (5), where the sequence {a }) need not be of 
the specific form of the M/GI/1 model. We summarize the results in a general 
framework which will be used later. 

THEOREM 7. Consider a Markov decision process with state space {0, 1, . . ., x ) and 
an action space {E, W, L}. Suppose the transition probabilities are as in (1) and the cost 
structure as in (2) or (5), where, in addition, 0 < aO < 1 and p = E 3Okak k 1. 

Then there exist two sequences of integers { sn } = { tn } n=o that satisfy: 
(a) gn = g (sn, tn) for 0 < n < ox. (n = ox applies to the case of a stationary nonran- 

domized 3-region policy.) 
(b) so f- 1; to= f. 
(c) 0 < tn +I - tn < 1 for n > 0. 
(d) 0 < sO? 6 < s, < so = f-1 < f = to < t, < * < too < oo. 
(e) If c < 1 - p then sOO = 0 ("smart" customer can afford being "polite"). 
(f) c > aO iff tI-ss = I iff too-s - = 1 (ie., so =s 50, to= t1=* 

- to and there are no W-states). 
(g) When c < ao, too + scc(ao/c - 1) < (ao/c)f + 1. 

4. Analysis of Phase I 

The analysis of Phase I differs from that of Phase II as it depends on the 
outstanding service time, R, of the customer being served when X arrives and finds 
i > 1 customers in the system. We denote this state by i. 

We develop recursive formulae from which the optimal decision at instant of arrival 
can be obtained. 

For i > 1, j > 0, let 

Ri = E (R| I) =0 xdP { R < xli} Di =Ril(IIA), 

00x (Xx)'i A 

by =jeA j! dP {R < xli }. 

R, is the expected outstanding service time if there are i customers upon arrival, and Di 
is Ri normalized with respect to the regular expected service time. b, is the probability 
thatj customers will join the queue during the remaining service time, R, had X seen i 
upon arrival. 

The optimal cost function for instants of arrival satisfies 

V(A) = O, 

V(i) = min{ D + i-1, Di; c + E by V(i-I + j), f1 
j=O 

where V(i) is the optimal cost function for Phase II. 
If { pi)} 0 denotes the stationary distribution of the M/GI/ 1 Markov chain (po 
1- p) it is shown in [3] that 

1-Pp (PO + +Pi) i> 1 (8) 

p Pi 

and that 

(a0pi)by + (api- I)bi - 1,j + * + (aip- Ip)b 1 

= pa>i pa>i_ +* *+Pi-ak+1. (9) 
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The following is a procedure to calculate the optimal policy at instants of arrival, 
assuming {aj)}]? 0 and p are given. (See [3] for recursive formulae of aj in various 
M/GI/ 1 models.) 

Step 1. Calculate { V(i)}) ? by successive approximation via V (i) (Theorem 2). As 
shown in ?3 the optimal policy at instants of service completion is a 3-region policy, 
say, 77 (s00 too). 

Step 2. (a) Calculate (po, PI' P..): 

Po= 1-p, 

pI= (Po -poao), 
ao 

In.Pi 1 Poai- I Pkai-k 2 < i < tcx. 
=ao r1 ri k= lJ 

(b) Calculate (DO,D1, ... ,j: 

Do= 1, 

D 
P 1 _ iP 

I< < o) Di= _ , ?i?toj. 
Pi 

(c) Starting with b= a>+ I/(l - ao), 0 < j < to - 1, calculate row by row the half 
matrix (using (9)). 

bo bl, . .. b lSto- 

b20 b2I . . . b2,tm 2 

btc - 1,o bt -1 I, 

bto, Co / 

Step 3. The optimal cost function is 

V(A) = O, 

r ~~~~too-i+l to-+ 

V(i)=min Di +i- l,cDi + bikV( -I+ k) + I1- E bik f, f 
t ~~~~k=O k=O) 

(1 < i < to). 

Numerical results for various queueing models are presented in ?7. We note that in 
all our calculations the optimal policies are found to be of the 3-region type not only 
for Phase II (as derived analytically) but for Phase I as well. This is probably due to 
the monotone failure rate property of the service distributions considered. The prob- 
lem of deriving conditions under which a 3-region policy is optimal at Phase I remains 
open. 

5. The M/M/1 Model-Full Control 

In this section we study the M/M/1 model. Applying results (8) and (9) with 
Pi= (1 - p)pi, i> 1, and aj = pJ/((1 + py j), > 0, we get 
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This is expected due to the memoryless property of the exponential service time. As 
a result we state: 

THEOREM 8. When service time is exponential, the optimal decision at instants of 
service completion is also optimal at the instant of arrival. 

The assumption of exponential service time facilitates the analysis considerably. 
Moreover, it enables us to analyze the M/M/1 queue when decisions may be taken 
both at instants of arrival and service completion. That is, X is allowed to make a 
decision any time the system changes its state. His first decision is made upon arrival. 
When taking the W option, X may reconsider his status any time a customer either 
joins or leaves the queue. 

Formulating the queueing process as a semi-Markov process (Ross [4, p. 105]), we 
have: 

Pi,.(E) = Pi,.(L) = 1, 

X/(X + A), j = i + 1, 

Pij(W) - A /(X+ i), j= i- 1, i > 1, (10) 

10, otherwise. 

We concentrate in the sequel on the infinite horizon case. Using the original cost 
structure, the optimal cost function satisfies: 

U(o) = g, 

U(i) =mini .A _g,B. B 1 + IL U(i-1) + X U(i+ 1),1}, >1 1. 
A X + t X+t,L X+ t L 

Transforming to the NDP notation gives, for V(i) = (U(i) + g)[/A, 

IV(o) = O, 

|V(i) = min i i,c + E a-j V(i - I + j), f ) i> (1) j=0 

where 

Jf ( + g) A J 

B IL =c I c B 
A 1+ c A+ 

c 
' A _ 

aO + = - +p' a2=A+K=l+p; a1Ia3 a4= =0. 

Calculating -= Zj7 0Jaj = 2 X/(X + y) we see that < K 1 iff p < 1, so, the conditions 
of Theorem 7 are met. Since c < a- iff c < 1 and c < 1 - - iff c < 1 - p, we get: 

THEOREM 9. In a stationary M/M/ 1 model (p < 1) where decisions are made both at 
instants of customer arrival and service completion, the optimal policy 7T (infinite horizon) 
satisfies: 

(a) 7T = 7T(s O, t,O) for some s 0, t 0 (t -, - s? 1), 
(b) there are no W-states iff c > 1 (B > A), 
(c) if c < 1- p, 0 is the only F-state. 
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We describe now a procedure to calculate the optimal policy in this particular 
M/M/1 model. We assume that c < 1. Since, otherwise, an optimal procedure has no 
W-states and the solution is trivial. 

The procedure is based on the observation that any 3-region policy g(s,t) with 
t - s > 2 can be regarded as a Gambler's Ruin Problem (Feller [2, pp. 344, 348]), with 
the following parameters: 

q = probability of a failure (- 1) =a- 

p = probability of a success (+ 1) = a2. (P < q), 

The game continues as long as X takes the W-option (the system remains between 
states s and t): "Winning" is defined as taking the L-option at t. 

"Losing" is considered as taking the E-option at s. 
Denote by m = t - s - 1 the number of W-states. We use the well-known results: 

P1,L = [ (Leaving at Starting at - 1 (q/Pp)' 
state t states+ i J 1-(q/p)m+ 1 

Pi,E = p Entering at Starting at Pi_ L 
1.state s state s +i 

Ti = expected number of decisions, starting from s + i, until 
a final decision (E or L) is taken 

T. = i- _ m + I . (qlp)' 
q - P q- 1 _1(q_p)n+_1 

If we denote by V(i, s, m) the cost function of the policy 7T(s, s + m + 1) then 

V(i,s,m) S WPi-s,E +f Pi-s,L + c * Ti-s' s + 1 6i < t- 1 = s + m 

or 

i, 0<i6s, 
f, i?s+m+1, 

____ ____ * 1~ ~~pi-s 

V(i,s,m)= s(1 pz) +i l p i-p pI.S 

pm+l [ p) c] 

We use the upper limit for m (Theorem 6) and the relation (a0/c) f =f/c and 
define a finite set 

r {(s,m)1l < m < , max[O, f- ml s < min[f, I-m]} 

to which the pair (s,,, mO,) that defines an optimal policy, must belong. 
Thus V(i) = min(S,m)r E V(i, s, m), and the problem of finding the optimal cost 

function reduces to a minimization problem of a function of two variables (s, m). 
We add a few observations to improve the minimization procedure: 
(1) The procedure is applied only if c < 1, otherwise an optimal policy has only two 

regions: WOO = 0. 
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(2) Fixing i and s (i > s + 1, s <f) it is enough to find an m (i - s < m < 
(f - s)/c) that minimizes the function +(m) defined by 

1(m)= pm+l[ ) c (m+ 1)]. 

o(m) is easily proved to be unimodal, so starting with m = i - s, we increase m until 
the first m satisfying o(m + 1) > +(m) which is the one we need. 

(3) Our computational experience shows that an optimal policy is characterized by a 
unique pair (s, m) which minimizes V(i, s, m) for i = f. (f must be a W-state if there are 
any.) 

(4) If c < 1 - p we know that state 0 is the only E-state. The problem reduces to 
minimization of a unimodal function with a single variable m, (s = 0). 

6. A Search Procedure for the Calculation of Vn (i) }j1=0 

One way to calculate Vn (i)}) = is by successive approximation as indicated in Step 
1 of ?4. Another method is to extend the search procedure for the M/M/ 1 model, 
described in ?5, and apply it to the general model as follows: 

We regard any stationary 3-region policy as a random walk on {0, 1,2, ... } with 
absorbing regions S = {O, 1, . . . s} and T= {t,t + 1, . . . } (Feller [2, p. 363]). The 
transition probabilities from any state z are given by 

Pz,z+k = ak+1 , k = -1,O, 1,25.... 

Suppose X starts in state i and pays c monetary units per step till absorption takes 
place. If absorbed at S he pays s units. If absorbed at T he pays f. The expected cost 
then is exactly the cost function V(i, s, m) associated with 7r(s, t) (m = t - s - 1). 

The vector (V(s + i,s, m), . .. , V(t - i,s, m)) is a solution to the following set of 
equations, with (xl, ... , Xm) being the unknowns: 

IX = c + aos + alxl + + anxm + (-ao- * -am)f 

X2= c + aox, + + am-xm + (ao - '' am-)f (12) 

Xm = c + aoxm-l + alxm + (1 - ao - al)f. 

Searching through the set 

r = ~7(s,m)I1 < m < 
a 

f, max[0, f - m] < s < min[fi aof-m1} 

while solving (12) for any candidate policy, is guaranteed to result in identifying the 
values of an optimal policy. 

We add a few comments concerning the solution of (12): 
Let Im be the unit matrix of order m. 
Let Mm be the matrix of order m defined by 

a, a2 ... am 

aO a, ... aml 

0 ao ... am-2 
MM= 

0 ... ao a, 

In order to solve (12) the matrix ['in- Mm] must be inverted. 
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Since p,,-I = ao > 1 - p > 0, the matrix [In - Mm] has an inverse (Feller [2, p. 
364]). Thus (12) has a unique solution. We also note that if in Mm, aj > 0 for allj > 0 
(which is usually the case in the M/GI/ 1 model) then a result for Minkowski- 
Leontieff matrices (see details in [3]) guarantees that the solution is positive. 

Inversion of matrices is a costly operation. The following lemma, proved in [3], can 
be used for the calculation of [I, Mj - 1, without actually doing any inversion. We 
emphasize that the search procedure requires the inversion of [I, - Mm] for 1 < m 
< (ao/c)f. 

LEMMA 10. Let 

Zm = (-am+, - 
Sam. . a2), 

Y m = (050 .. 0 - a0)5 m >1 

Define inductively the following sequence of matrices: 

E Er Em1+ y Em Em1 z] 

[ O O ] ~(I- a,)- ymEmz' _ YmEm 

then Em =[Im-MMm]-1 for m > 1. 

7. Numeric Results 

We present some numerical results (Tables 1-5) for the following queueing models: 
M/M/l, M/Ek/1 (k = 2), M/D/1 and M/Gamma (0.5)/1. In all models p = 0.8, 
c = 0.234 and f = 7.0. In each table optimal values of the cost function Vn (i) are given, 
where Theorem 2 is applied to obtain the values of Vo,(i). The last row in each table 
consists of the optimal values, Vn(i), for Phase I, the calculation of which is described 
in ?4 and [3]. As for Phase II, since Vn(i) = f whenever 7n (i) = L, and Vn(i)= i 
whenever 7Tn(i) = E (0 < n < xo), we indicate the action (L or E) rather than the cost 
value Vn (i) when appropriate, so that only those values of Vn (i) correspond to the 
W-regions are presented. Observe that in each table the W-states form a pyramid-type 
region in the middle of the table-as was derived analytically in Lemma 4 and 
Theorem 7. 

Tables 1-4 are for the case when decisions in Phase II are taken at instants of 
service completion (??2-4). Table 5 corresponds to the M/M/ 1 queue where decisions 
are taken both at instants of arrival and departure (?5). 

TABLE 1 

The M/M/1 Queue 

i 0 1 2 3 4 5 6 7 8 9 10 

VO(i) E . . . . . E L . . L 

V1(i) E . . . E 4.96 5.88 6.68 L . L 

V2(i) E . . E 3.99 4.93 5.79 6.53 L . L 

V3(i) E . E 3.97 4.89 5.73 6.45 6.97 L L 
V5(i) E . E E 3.95 4.84 5.65 6.35 6.87 L L 

V(i) E . E 2.96 3.87 4.72 5.48 6.14 6.68 L L 
VO(i) 0 1 2 2.96 3.87 4.72 5.48 6.14 6.68 7.00 7.00 

The ValUeS Of PhaSe I and PhaSe II are identiCal-See TheOrem 8. 
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TABLE 2 

The M/E2/1 Queue 

i 0 1 2 3 4 5 6 7 8 9 10 

VO(i) E . . . . . E L . . L 

V1(i) E . . . E E 5.92 6.72 L . L 

V4(i) E . . E E 4.94 5.79 6.50 7.00 L L 

VW(i) E . . E 3.97 4.86 5.67 6.34 6.86 L L 

Voo(i) 0 0.79 1.75 2.74 3.71 4.63 5.46 6.17 6.73 7.00 7.00 

TABLE 3 

The M/D/1 Queue 

i 0 1 2 3 4 5 6 7 8 9 10 

VO(i) E . . . . . E L . . L 

V1(i) E . . . . E 5.98 6.78 L . L 
V4(i) E . . . E E 5.89 6.62 L . L 

V.(i) E . . . E 4.97 5.84 6.56 L . L 

Voo(i) 0 0.57 1.48 2.47 3.46 4.46 5.39 6.19 6.79 7.00 7.00 

TABLE 4 

The M/Gamma (0.5)/1 Queue 

i 0 1 2 3 4 5 6 7 8 9 10 

VO(i) E . . . . . E L. . L 

V1(i) E . E 2.99 3.96 4.90 5.80 6.61 L . L 

V2(i) E E E 2.97 3.92 4.83 5.67 6.42 6.99 L L 

V5(i) E E 1.97 2.92 3.82 4.67 5.45 6.14 6.70 L L 

V8(i) E 0.99 1.95 2.87 3.75 4.58 5.33 6.00 6.56 6.98 L 

V.W(i E 0.96 1.88 2.76 3.60 4.38 5.10 5.74 6.30 6.75 L 

V.(i) 0 1.32 2.31 3.20 4.02 4.78 5.46 6.06 6.57 6.97 7.00 

Note that here Voo(i) > V.(i) as Gamma (0.5) is a DFR distribution. 

TABLE 5 

The M/M/1 Queue-Decisions at Arrivals and Service Completions 

i 0 1 2 3 4 5 6 7 8 9 10 

VO(i) E . . . . . E L . . L 

V1(i) E . . . . . E 6.57 L . L 

V2(i) E . . . . E 5.83 6.57 6.89 L L 

V3(i) E . . . E 4.94 5.83 6.43 6.89 L L 

V4(i) E . . E 3.99 4.94 5.74 6.43 6.81 L L 

V9(i) E . E E 3.96 4.83 5.62 6.25 6.73 6.98 L 

V34(i) E E E 2.96 3.86 4.69 5.44 6.07 6.57 6.89 L 

V.(i) E E 1.99 2.95 3.84 4.67 5.41 6.04 6.54 6.88 L 

V.W(i 0 1.00 1.99 2.95 3.84 4.67 5.41 6.04 6.54 6.88 7.00 

As expected, there is a strict improvement in the cost function VOO(.) when compared with Table 1. 



OPTIMAL ENTERING RULES 187 

References 
1. ADIRI, I. AND YECHIALI, U., "Optimal Priority-Purchasing and Pricing Decisions in Nonmonopoly and 

Monopoly Queues," Oper. Res., Vol. 22 (1974), pp. 105 1-1066. 
2. FELLER, W., An Introduction to Probability Theory and Its Applications, Wiley International Edition, 3rd 

Edition, Volume 1 (1950). 
3. MANDELBAUM, A. AND YECHIALI, U., "Individual Optimization in the M/GI/ 1 Queue," Technical 

Report, Department of Statistics, Tel Aviv University (September 1969). 
4. Ross, M.S., Applied Probability Models with Optimization Applications, Holden-Day, 1970. 
5. STIDHAM, S., "Socially and Individually Optimal Control of Arrivals to a GI/M/1 Queue," Management 

Sci., Vol. 24 (1978), pp. 1598-1610. 
6. STRAUCH, R.E., "Negative Dynamic Programming," Ann. Math. Statist., Vol. 37 (1966), pp. 871-890. 
7. YECHIALI, U., "On Optimal Balking Rules and Toll Charges in the GI/M/1 Queueing Process," Oper. 

Res., Vol. 19 (1971), pp. 349-370. 


	Article Contents
	p. 174
	p. 175
	p. 176
	p. 177
	p. 178
	p. 179
	p. 180
	p. 181
	p. 182
	p. 183
	p. 184
	p. 185
	p. 186
	p. 187

	Issue Table of Contents
	Management Science, Vol. 29, No. 2 (Feb., 1983), pp. 151-271
	Front Matter
	State of the Art
	Encoding Subjective Probabilities: A Psychological and Psychometric Review [pp.  151 - 173]

	Optimal Entering Rules for a Customer with Wait Option at an M/G/1 Queue [pp.  174 - 187]
	A Transportation Type Aggregate Production Model with Backordering [pp.  188 - 199]
	A 0-1 Model for Solving the Corrugator Trim Problem [pp.  200 - 209]
	Project Appraisal Methodology: Market Penetration Elements [pp.  210 - 224]
	A Diverting Structure's Effects on a River Flow Time Series [pp.  225 - 236]
	Rolling Horizon Procedures for the Facilities in Series Inventory Model with Nested Schedules [pp.  237 - 249]
	Connectedness in Multiple Linear Fractional Programming [pp.  250 - 255]
	Notes
	Revising Forecasts of Accounting Earnings: A Comparison with the Box-Jenkins Method [pp.  256 - 263]
	Learning Effects in Economic Lot Sizing [pp.  264 - 269]

	New Books
	Back Matter [pp.  270 - 271]



