
This article was downloaded by:[Tel Aviv University]
On: 28 May 2008
Access Details: [subscription number 792067691]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Stochastic Models
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597301

Multi-Server Queues with Intermediate Buffer and
Delayed Information on Service Completions
V. Kitsio a; U. Yechiali a
a Department of Statistics and Operations Research, School of Mathematical
Sciences, Tel-Aviv University, Tel-Aviv, Israel

Online Publication Date: 01 April 2008

To cite this Article: Kitsio, V. and Yechiali, U. (2008) 'Multi-Server Queues with
Intermediate Buffer and Delayed Information on Service Completions', Stochastic
Models, 24:2, 212 — 245

To link to this article: DOI: 10.1080/15326340802007364
URL: http://dx.doi.org/10.1080/15326340802007364

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597301
http://dx.doi.org/10.1080/15326340802007364
http://www.informaworld.com/terms-and-conditions-of-access.pdf

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Stochastic Models, 24:212–245, 2008
Copyright © Taylor & Francis Group, LLC
ISSN: 1532-6349 print/1532-4214 online
DOI: 10.1080/15326340802007364

MULTI-SERVER QUEUES WITH INTERMEDIATE BUFFER
AND DELAYED INFORMATION ON SERVICE COMPLETIONS

V. Kitsio and U. Yechiali

Department of Statistics and Operations Research, School of Mathematical Sciences,
Tel-Aviv University, Tel-Aviv, Israel

� A controller with an unlimited buffer receives messages to be dispatched to c servers
downstream in the network. However, the queue sizes at the individual servers are not known
exactly, since information on each service completion reaches the controller only after some
random delay. The controller can dispatch messages as soon as they arrive, in a cyclic manner,
to the c servers. Alternatively, s/he can wait until full information is gained and dispatch a
waiting message to a server only when s/he is sure that the server is free. Another strategy is
to maintain a limited intermediate buffer in front of the servers, and forward messages to this
buffer when information on service completion reaches the controller. If a server completes a job
and the intermediate buffer is non-empty, it starts serving a job from this buffer with no delay.

Such situations are common in many real life processes (such as passport control
procedures, or at large waiting rooms in public offices) where customers wait, in front of c
servers, to be served. A customer walks (=delay) to the next idle server when s/he sees her/his
“waiting number” flashing on the screen.

We analyze this model when the underlying process is the M/M/c queue and the
information delay is exponential. We use both: i) probability generating functions of the
multi-dimensional state space to calculate the boundary probabilities, and ii) matrix geometric
approach to derive the stability condition of the system. We show that the intermediate buffer
scheme reduces queue sizes and waiting times. Numerical examples are presented.

Keywords Delayed information; Intermediate buffers; Multi-server queues.

Mathematics Subject Classification Primary 60K25; Secondary 60M20, 90B22.

1. INTRODUCTION

The goal of this work is to construct, analyze and solve a model for
reducing servers (and customers) idle (and waiting) times in multi-server

Received May 2005; Accepted October 2007
Address correspondence to V. Kitsio, Department of Statistics and Operations Research, School

of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; E-mail: vkitsio@mlm.iai.co.il

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 213

queues with delayed information on service completion. This model
extends previous works (Refs.[1,3]) by introducing an intermediate buffer
between the controller and the servers. In general, analysis and control
of queuing system with delayed information, either on service completion
or on arrivals, are complex issues that have been studied very little in the
literature. These issues are critical in high-speed networks where routing
decisions have to be made based on delayed information on the actual
state of down stream nodes. The lack of full information makes the
problem of optimal routing of jobs extremely difficult.

The “delayed information” phenomenon is also common to many real
life situations at large waiting rooms in public offices where a “delay” is
equivalent to the time it takes for a customer to walk from her/his seating
location to the server’s window.

Another practical example for intermediate buffer is the loading
process of a certain commodity on trucks in time of a relatively high load.
A fleet of trucks is waiting outside the warehouse and in order to save time,
a few trucks wait near the loading platform.

Consider a network with c parallel channels (servers) and a single
controller. Variable-length messages (jobs) arrive randomly, and the
controller has to route them to the various channels. If the controller
has full information on the state of each server, then holding a central
common buffer for all queues and assigning a job to a server as soon as the
latter becomes available, is the best policy in terms of minimizing queue
lengths and waiting times. However, if the information about the actual
state of each queue reaches the controller only after some considerable
delay, then the problem of optimal management of the queue becomes
much more complex.

Suppose, indeed, that the information about each service completion
reaches the controller only after some random delay. To improve the
performance of such systems we consider a finite-size intermediate buffer
in front of the servers, such that, whenever a service is completed, a waiting
job in this buffer can enter service with no further delay. In this case,
if there are jobs in the intermediate buffer, a server can start serving
immediately without waiting for the controller to dispatch a job (which
will be done only after the delay time). In such a way the server’s idle
time, as well as customers sojourn times, are reduced. A server will be
idle only in the event when the intermediate buffer is empty. Clearly, if
the intermediate buffer size becomes unlimited, the model reduces to a
regular c -server.

The underlying queueing model in this work is the M/M/c queue,
where the information on each service completion reaches the controller
only after exponentially distributed time. In Litvak and Yechiali[3] two
routing policies by the controller were studied: (i) the controller
dispatches jobs as soon as they arrive, in a round-robin mechanism, to the

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

214 Kitsio and Yechiali

various down-stream servers, without knowledge of the actual queue size in
front of each server. This implies that the controller maintains no buffer
and all buffers are in front of the servers. (ii) the controller holds all
arriving jobs in its buffer and dispatches a job to a server only when the
information about service completion by that server reaches the controller.
It has been shown in Litvak and Yechiali[3] that the former policy is better
if the mean delay on service completion is greater than some (calculated)
threshold, and vise versa. We propose in this work an improvement on the
above policies by introducing an intermediate buffer in front of the group
of servers and show, by a numerical example (based on our analytical
results) that this policy leads to a significant improvement.

The structure of the work is as follows: in Section 2 we present
the general description of the model, along with a set of assumptions,
definitions and notation used throughout the work. In Section 3 we
analyze the model with only a single server. We derive closed-form
expressions for the so called “boundary” probabilities determining the
probability generating functions (PGFs) of the system states. In addition,
we directly derive the stability condition of the system. Furthermore, we
use a Matrix-Analytic method to derive the same stability condition. In
Section 4 we study the two-server case and present a numerical example,
showing the reduction in the mean queue size (compared to the result
in Ref.[3]). In Section 5 we analyze the general model with c ≥ 2 servers.
The stability condition is derived by using matrix–geometric analysis. A
relationship to a machine-repair problem is indicated.

2. THE MODEL

Consider an M/M/c -type queue with Poisson arrival rate �, exponential
service times with parameter �, and a controller with an unlimited
buffer. However, in contrast to a regular M/M/c queue, the information
on each service completion reaches the controller only after some
random duration, exponentially distributed with parameter �. There is an
intermediate buffer of size c in front of the c servers. When the controller
gets the (delayed) information that a service has been completed, and
there are less than c waiting customers in the intermediate buffer, s/he
dispatches a waiting customer (if any) from its buffer to the intermediate
buffer. When a server completes service of customer and the intermediate
buffer is non-empty, it starts serving one of the customers there with
no further delay. We denote such a system by M (�)/intermediate : M (�) +
M (�)/c � As indicated in the Introduction, the purpose of having an
intermediate buffer is to reduce the idle time of the servers so as to
reduce queue sizes and customers waiting times. We define the state of the
system as a triplet (N , J ,X) where N denotes the number of customers
waiting in the controller’s overall buffer, X counts the combined number

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 215

FIGURE 1 M/M/1-type queue with an intermediate buffer of size = 1.

of customers in intermediate buffer or in service, and J denotes the total
number of customers ‘satellite’, i.e. customers whose service has already
been completed, but this information hasn’t reached the controller yet.

The system is depicted in Figure 1.

3. THE SINGLE SERVER CASE

We start our analysis with the single server M/M/1-type queue with
an intermediate buffer of size c = 1. This implies the following: x = 0
denotes an idle server; x = 1 indicates that the server is busy giving service;
when x = 2, one customer is being served and another is waiting in the
intermediate buffer. Note, that the controller always knows the sum X +
J ≤ 2, but without precise knowledge of the specific values of X or J .

3.1. Balance Equations

Investigating the structure of the transition rate diagram (Figure 2) we
see that, for each n ≥ 0, the 3 states for which x + j = 2 (namely, (n, 2, 0),
(n, 1, 1) and (n, 0, 2)) repeat themselves. The states, (0, 0, 0), (0, 0, 1) and
(0, 1, 0) together with the state (0, 2, 0) are different and denoted as
“boundary states”.

Let Pn,j ,x = Prob(N = n, J = j ,X = x), n = 0, 1, 2, 3, � � � ; j = 0, 1, 2; x =
0, 1, 2. Then, for each value of N = n, the set of balance equations is the
following:

For n = 0, the equations involving the first 3 boundary states are
given by

�P0,0,0 = �P0,1,0 (j = x = 0),

(� + �)P0,0,1 = �P0,0,0 + �P0,1,1 (j = 0, x = 1),

(� + �)P0,1,0 = �P0,0,1 + 2�P0,2,0 (j = 1, x = 0)�

(3.1-1)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

216 Kitsio and Yechiali

FIGURE 2 Transition rate diagram for the single server case.

For n = 0 and j + x = 2,

(� + 2�)P0,2,0 = �P0,1,1 (j = 2, x = 0),

(� + � + �)P0,1,1 = �P0,1,0 + �P0,0,2 + 2�P1,2,0 (j = 1, x = 1),

(� + �)P0,0,2 = �P0,0,1 + �P1,1,1 (j = 0, x = 2)�

(3.1-2)

In general, for N = n ≥ 1 (where j + x = 2),

(� + 2�)Pn,2,0 = �Pn−1,2,0 + �Pn,1,1 (j = 2, x = 0),

(� + � + �)Pn,1,1 = �Pn−1,1,1 + �Pn,0,2 + 2�Pn+1,2,0 (j = 1, x = 1),

(� + �)Pn,0,2 = �Pn−1,0,2 + �Pn+1,1,1 (j = 0, x = 2)�

(3.1-3)

3.2. Partial Generation Functions

For each level of the satellite customers J = 0, 1, 2 we define the
corresponding (partial) generating function (PGF) as follows:

G0(z) = (P0,0,0 + P0,0,1)z0 +
∞∑
n=0

Pn,0,2zn , (3.2-1)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 217

G1(z) = P0,1,0z0 +
∞∑
n=0

Pn,1,1zn , (3.2-2)

G2(z) =
∞∑
n=0

Pn,2,0zn � (3.2-3)

Now, from the balance equations, for j = 2, we obtain

(� + 2�)
∞∑
n=0

Pn,2,0zn = �z
∞∑
n=0

Pn,2,0zn + �

∞∑
n=0

Pn,1,1zn , (3.2-4)

implying that

�G1(z) − (�(1 − z) + 2�)G2(z) = �P0,1,0� (3.2-5)

Similarly, when j = 1, we get

(� + � + �)z
∞∑
n=0

Pn,1,1zn = �z2
∞∑
n=0

Pn,1,1zn + �z
∞∑
n=0

Pn,0,2zn

+ 2�
∞∑
n=0

Pn,2,0zn − 2�P0,2,0 + �zP0,1,0� (3.2-6)

That is,

− �zG0(z) + (�(1 − z) + � + �)zG1(z) − 2�G2(z)

= (� + � + �)zP0,1,0 − �z2P0,1,0 − �z(P0,0,0 + P0,0,1) − 2�P0,2,0 + �zP0,1,0�

(3.2-7)

Finally, for j = 0,

(� + �)z
∞∑
n=0

Pn,0,2zn = �z2
∞∑
n=0

Pn,0,2zn + �

∞∑
n=0

Pn,1,1zn − �P0,1,1 + �zP0,0,1,

(3.2-8)

leading to

(�(1 − z) + �)zG0(z) − �G1(z)

= (�(1 − z) + �)z(P0,0,0 + P0,0,1) + �zP0,0,1 − �(P0,1,0 + P0,1,1)� (3.2-9)

Equations (3.2-5), (3.2-7) and (3.2-9) define a set of linear equations
with unknowns G0(z), G1(z) and G2(z), depending on the 3 “boundary”

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

218 Kitsio and Yechiali

probabilities as well as the probabilities P0,2,0 and P0,1,1. Knowledge of these
probabilities fully determines the PGFs.

We proceed now to calculate the above five probabilities.
Consider the state where j + x = 2. Then for every j = 0, 1, 2 we

defined, respectively, the following probabilities:

P0 ≡
∞∑
n=0

Pn,0,2, P1 ≡
∞∑
n=0

Pn,1,1, P2 ≡
∞∑
n=0

Pn,2,0� (3.2-10)

Clearly, the sum of those “total” probabilities and the 3 “boundary”
probabilities equals 1.

That is,

P0 + P1 + P2 + P0,0,0 + P0,0,1 + P0,1,0 = 1� (3.2-11)

We now have 8 unknown probabilities: the 6 probabilities appearing in
equation (3.2-11) together with P0,2,0 and P0,1,1.

We’ll create a set of 8 independent linear equations in those 8
unknowns probabilities.

We use a “diagonal” cut in Figure 2 between the states n and n + 1,
where j + x = 2, to get

�(Pn,2,0 + Pn,1,1 + Pn,0,2) = 2�Pn+1,2,0 + �Pn+1,1,1 (n = 0, 1, 2, � � �)� (3.2-12)

Summing over n we obtain

�(P2 + P1 + P0) = 2�P2 + �P1 − 2�P0,2,0 − �P0,1,1� (3.2-13)

Now “cutting” between levels J = 1 and J = 2 we get

2�P2 = �P1� (3.2-14)

Similarly, “cutting” between levels J = 0 and J = 1 yields

�P0,1,0 + �P1 = �P0,0,1 + �P0� (3.2-15)

Clearly, equations (3.2-14) and (3.2-15) can be directly obtained by setting
z = 1 in equations (3.2-5) and (3.2-7), respectively.

Equations (3.2-11), (3.2-13), (3.2-14) and (3.2-15) together with
the 3 boundary equations defined in (3.1-1) and the equation (� +
2�)P0,2,0 = �P0,1,1 comprise a set of 8 equations in the probabilities
P0,P1,P2,P0,0,0,P0,0,1,P0,1,0,P0,2,0 and P0,1,1.

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 219

3.3. Explicit Solution

Using the 2 equations from (3.1-1) for which j + x = 1, together with
equation (3.2-11), and substituting in (3.2-13), we get, after some algebra,

2�P2 + �P1 = � − 2�P0,0,0 + �P0,1,0 = � − �P0,1,0, (3.3-1)

where the last step follows by using the first equation of (3.1-1).
Now, substituting equation (3.2-14) in (3.3-1) we get

P1 = � − �P0,1,0

� + �
and (3.3-2)

P2 = �(� − �P0,1,0)

2�(� + �)
� (3.3-3)

Substituting the value of P1 from (3.3-2) into (3.2-15) yields

P0 = �� − �(� + �)P0,0,1 + ��P0,1,0

�(� + �)
� (3.3-4)

Substituting (3.3-2), (3.3-3), (3.3-4) in (3.2-11) and using �P0,0,0 = �P0,1,0

we get

P0,0,0 = 2�(� + �)(� − �) − ��2

��2�(� + �) + �(� + 2�)�
(3.3-5)

and

P0,1,0 = ��2�(� + �)(� − �) − ��2�

���2�(� + �) + �(� + 2�)�
� (3.3-6)

It remains to find P0,0,1.
Using the equation from (3.1-2) for which j = 2, x = 0, and

substituting in (3.1-1) for j = 1, x = 0, we get

�P0,0,1 = (� + �)P0,1,0 − 2��P0,1,1

� + 2�
� (3.3-7)

Using the equation from (3.1-1) for which j = 0, x = 1, and substituting in
(3.3-7) we obtain

�P0,0,1 = (� + �)P0,1,0 − 2�(� + �)P0,0,1 − �P0,0,0

� + 2�
� (3.3-8)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

220 Kitsio and Yechiali

Now, substituting the equation �P0,0,0 = �P0,1,0 in (3.3-8) we get, after some
algebra,

P0,0,1 = P0,1,0(�
2 + 3�� + 2�� + 2�2)
�(3� + 2� + 2�)

� (3.3-9)

Finally, substituting (3.3-6) in (3.3-9) we obtain

P0,0,1 = ��2�(� + �)(� − �) − ��2�(�2 + 3�� + 2�� + 2�2)
�2��2�(� + �) + �(� + 2�)�(3� + 2� + 2�)

� (3.3-10)

Clearly, the values of P1,P2, and P0 are now explicitly derived from
(3.3-2), (3.3-3) and (3.3-4).

Finally, P0,2,0 and P0,1,1 are obtained from the 2 boundary equations
(3.1-1) for which j + x = 1.

The above “direct” solution holds only for the single server case. For
models with c > 1 servers we need a more elaborate approach, which we
present in the next section.

3.4. Matrix Representation

The set of equations (3.2-5), (3.2-7) and (3.2-9) can be represented in
a matrix form as

(�(1 − z) + �)z −� 0
−�z (�(1 − z) + � + �)z −2�
0 � −(�(1 − z) + 2�)

×

G0(z)
G1(z)
G2(z)

 =

b0(z)
b1(z)
b2(z)

 , (3.4-1)

i.e., A(z)G(z) = b(z), where G(z) = (G0(z),G1(z),G2(z))T and b(z) =
(b0(z), b1(z), b2(z))T are column vectors for which

b0(z) = (�(1 − z) + �)z(P0,0,0 + P0,0,1) − �zP0,0,1 − �(P0,1,0 + P0,1,1), (3.4-2)

b1(z) = (� + � + �)zP0,1,0 − �z2P0,1,0

− �z(P0,0,0 + P0,0,1) − 2�P0,2,0 + �zP0,1,0, (3.4-3)

where b2(z) = �P0,1,0� (3.4-4)

The PGFs Gj(z), j = 0, 1, 2, are positive and bounded for 0 ≤ z ≤ 1.
By Cramer’s rule

Gj(z) = |Aj(z)|
|A(z)| , (3.4-5)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 221

where Aj(z) is obtained from A(z) by replacing the j th column with the
vector b(z).

After tedious calculations of the various determinants involved we
derive explicit solution for the PGF’s in terms of the probabilities P0,0,0,
P0,0,1, P0,1,0 and the expressions b0(z), b1(z), b2(z). The results are the
following:

G0(z) =
�2b2(z)(1 − z) + �(� + �)b2(z) + 2��b2(z)

+2��2P 0,1,0 − 2��2(P0,0,0 + P0,0,1)

−��� + �3z(1 − z)2 + �2�z(1 − z)

+
2��2z(P0,0,0 + P0,0,1) − 2��2P0,0,1 + ��(� + � + �)P0,1,0

−�2�P0,1,0 − ���(P0,0,0 + P0,0,1)

�2z(� + �)(1 − z) + ��(� + �)z
(3.4-6)

+ �2�P0,1,0 − 2��(�(1 − z) + �)(P0,0,0 + P0,0,1) − 2���P0,0,1

2�2�z(1 − z) + 2��(� + �)z − 2��(� + �)
�

G1(z) = −2��b0(z) + ��b2(z) + �2(1 − z)b1(z) + ��b1(z) + 2��b1(z)
−��� + �3z(1 − z)2 + �2�z(1 − z) + �2z(� + �)(1 − z)

+ 2����z(P0,0,0 + P0,0,1 + P0,1,0) − (� + � + �)P0,1,0 − �P0,0,1�

��(� + �)z + 2�2�z(1 − z) + 2��(� + �)z − 2��(� + �)
� (3.4-7)

G2(z) = ��b1(z) − b0(z)z�2(1 − z) − �b0(z)z(� + �) − ��b0(z)z + ��b0(z)
−��� + �3z(1 − z)2 + �2�z(1 − z) + �2z(� + �)(1 − z)

+ �2b0(z) + �2��z(P0,0,0 + P0,0,1 + P0,1,0) − (� + � + �)P0,1,0 − �P0,0,1�

��(� + �)z + 2�2�z(1 − z) + 2��(� + �)z − 2��(� + �)
�

(3.4-8)

Note that |A(z)| is a polynomial of degree 5. Nevertheless, it can be shown
that in the interval z ∈ [0, 1], |A(z)| = 0 only for z = 0 and z = 1. This is in
fact the reason why we were able to obtain a direct explicit solution for the
above-unknown probabilities. The case with c > 1 will require finding the
roots of |A(z)| = 0.

3.5. E [J],E[X] and Stability Condition
for the Single Server Model

The marginal distribution of J is derived as follows:

For J = 0,

P (J = 0) = G0(1) = P0,0,0 + P0,0,1 +
∞∑
n=0

Pn,0,2 = P0,0,0 + P0,0,1 + P0�

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

222 Kitsio and Yechiali

Using (3.3-4), (3.3-5) and (3.3-10) we derive P (J = 0):

G0(1) = �P0,0,0(�(� + �) − 2�(� + �))

��2 + 2�(� + �)(� − �)
= 2�(� + �) − �(� + �)

2�(� + �) + 2�� + ��
� (3.5-1)

For J = 1,

P (J = 1) = G1(1) = P0,1,0 +
∞∑
n=0

Pn,1,1 = P0,1,0 + P1�

Utilizing (3.3-6) and (3.3-2) yields

G1(1) = �P0,1,0(�� − 2�(� + �))

��2 + 2�(� + �)(� − �)
= �(2�(� + �) − ��)

�(2�(� + �) + 2�� + ��)
� (3.5-2)

Finally, for J = 2,P (J = 2) = G2(1) = ∑∞
n=0 Pn,2,0 = P2. Substituting

(3.3-6) in (3.3-3) we obtain the value of P (J = 2):

G2(1) = −��P0,1,0(� + �)

��2 + 2�(� + �)(� − �)
= �2(� + �)

�(2�(� + �) + 2�� + ��)
� (3.5-3)

Clearly, E [J] = ∑2
j=0 jP (J = j).

The distribution of X is derived with the aid of Figure 2. Examining
the state points there, we readily write

P (X = 0) = P (J = 2) + P0,0,0 + P0,1,0,

P (X = 1) = P (J = 1) − P0,1,0 + P0,0,1, (3.5-4)

P (X = 2) = P (J = 0) − P0,0,0 − P0,0,1�

Clearly, 1 = ∑2
x=0 P (X = x) = ∑2

j=0 P (J = j).
Finally, E(X) = ∑2

x=1 xP (X = x).
Next we derive the stability condition for the system.
Since G2(1) > 0 we must have

��2 + 2�(� + �)(� − �) < 0� (3.5-5)

This implies, from (3.5-3), that

�P0,1,0(�� − 2�(� + �)) < 0 (3.5-6)

and, from (3.5-2),

�P0,0,0(�(� + �) − 2�(� + �)) < 0� (3.5-7)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 223

Since P0,1,0 > 0, equation (3.5-5) implies that

2�(� + �) − �� > 0� (3.5-8)

Similarly, from (3.5-6),

2�(� + �) − �(� + �) > 0� (3.5-9)

Clearly, (3.5-8) implies (3.5-7).
We now show that condition (3.5-4) implies condition (3.5-8).
From (3.5-4) it follows that � < � and 2�(� + �) > ��2

�−�
.

The last inequalities leads to (3.5-8) since

2�(� + �) − �(� + �) >
��2

� − �
− �(� + �) = �3

� − �
> 0�

That is, the condition for stability is

2�(� + �)(� − �) − ��2 > 0� (3.5-10)

Define � = �
�
and � = �

�
. Then, from (3.5-9), by dividing by �3, we get, after

some calculations,

� < 1 − 1
1 + 2� + 2�2

= 1 − 1

1 + 2 �

�
+ 2

(
�

�

)2 � (3.5-11)

That is, � < � is in sufficient for stability.
For the case when � → ∞, i.e. 1

�
→ 0 (no delay), the above condition

reduces to the usual M/M/1 stability condition � = �
�
< 1.

Moreover, if � → ∞, then P0,1,0 → 0. That is, there is never a
satellite customer. Also, P0,0,0 → �−�

�
= 1 − �

�
and P0,0,1 → �(1 − �), giving

the fraction of idle time and the probability of a single customer present,
respectively, in the regular M/M/1 queue.

In case � → ∞, X → 0 and the system converges to a M/M/2-type
queue with arrival rate � and ‘service’ rate �. The non-zero states are (0, 0,
0), (0, 1, 0) and (n, 2, 0) for n ≥ 0.

A straight calculation of the M/M/2 queue leads to P0,0,0 = 2�−�

2�+�
= 1−�

1+�

for � = �
2� .

In the case where the mean delay gets large, it is clear that the
intermediate buffer will be empty most of the time and the controller’s
queue will behave close to a M/G/1 (M/G/c) queue with service time
equal to the sum of 1

�
+ 1

�
. Suppose � = 	� with 	 < 1. Then the stability

condition is � < 1 − 1
1+2	+2	2 ≡
. Clearly,
 → 0 when 	 → 0, implying that

the system becomes unstable for any positive �.

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

224 Kitsio and Yechiali

3.6. A Matrix–Geometric Approach

The QBD queing system with intermediate buffer and delayed
information can also be analyzed via Neuts’s matrix–geometric approach.
We define a two-dimensional continuous-time Markov chain with
state space (n, (j , x)). We arrange the states in the following order:
�(0, (0, 0)), (0, (1, 0)), (0, (0, 1))�, � � � , �(n, (2, 0)), (n, (1, 1)), (n, (0, 2))�,
where n = 0, 1, 2, � � � This order yields a block-diagonal transition matrix
(see Chap. 6, in Latouche and Ramaswami[4]), as follows:

Q =

B B0 0 0 � � �

A2 A1 A0 0 � � �

0 A2 A1 A0 � � �

0 0 A2 A1 � � �
���

���
���

��� ·

,

where each block is of dimension 3 × 3, and

B =

−� 0 �

� −(� + �) 0
0 � −(� + �)

 , B0 =

0 0 0
0 � 0
0 0 �

 , A2 =

0 2� 0
0 0 �
0 0 0

 ,

A1 =

−(� + 2�) 0 0

� −(� + � + �) 0
0 � −(� + �)

 , A0 =

� 0 0
0 � 0
0 0 �

 �

The stability condition for such a system is given in Neuts[5] as

�A2e > �A0e , (3.6-1)

where e is the unit column vector, � is the stationary probability vector of
the matrix

A = A2 + A1 + A0 =

−2� 2� 0

� −(� + �) �
0 � −�

 , and � = (�0, �1, �2)�

The vector � satisfies {
�A = 0,

�0 + �1 + �2 = 1�
(3.6-2)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 225

It then follows that, setting � = �

�
,

�0 = 1
s
, �1 = 2�

s
, �2 = 2�2

s
and s = 1 + 2� + 2�2� (3.6-3)

Now, �A2e = �(2�0 + �1), �A0e = �. Substituting this expression into
(3.6-1), the stability condition is � < 2�(1+�)

1+2�+2�2 .
Dividing by � and setting � = �

�
leads to

� <
2� + 2�2

1 + 2� + 2�2
= 1 − 1

1 + 2� + 2�2
� (3.6-4)

Indeed, condition (3.6-4) is nothing but condition (3.5-11).

4. THE CASE c = 2

In this section we analyze the two-server M/M/2-type queue with
intermediate buffer of size c = 2.

The model is depicted in Figure 3.
Again, the state space is �N , J ,X � with the following interpretation:
x = 0 denotes idle servers; x = 1 indicates that only one server is busy;

x = 2 indicates that both servers are busy; when x = 3, two customers
are being served and another is waiting in the intermediate buffer; when
x = 4, two customers are being served and two are waiting. Note, that
the controller only knows the sum X + J ≤ 4, without having a precise
knowledge of the specific values of X or J .

A transition-rate diagram is depicted in Figure 4.

FIGURE 3 A two-server model with intermediate buffer of size = 2.

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

226 Kitsio and Yechiali

FIGURE 4 Transition-rate diagram for the two-server case.

4.1. Balance Equation

Investigating the structure of the transition-rate diagram we
see that, for each n ≥ 0, the 5 states for which x + j = 4 (namely,
(n, 0, 4), (n, 1, 3), (n, 2, 2), (n, 3, 1), (n, 4, 0)) repeat themselves. The
10 states (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0), (0, 1, 1), (0, 1,
2), (0, 2, 0), (0, 2, 1) and (0, 3, 0) are different. Together with (0, 4, 0)
are denoted as ‘boundary states’.

Let Pn,j ,x = Prob(N = n, J = j ,X = x),

n = 0, 1, 2, 3 � � � ; j = 0, 1, 2, 3, 4; x = 0, 1, 2, 3, 4�

Then, for each value of N (N = 0, 1, 2, � � � ,n, � � �), the set of balance
equations is the following:

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 227

For n = 0, the equations for the first 10 boundary states satisfy

�P0,0,0 = �P0,1,0 j = x = 0,

(� + �)P0,0,1 = �P0,0,0 + �P0,1,1 j = 0, x = 1,

(� + 2�)P0,0,2 = �P0,0,1 + �P0,1,2 j = 0, x = 2,

(� + 2�)P0,0,3 = �P0,0,2 + �P0,1,3 j = 0, x = 3,

(� + �)P0,1,0 = �P0,0,1 + 2�P0,2,0 j = 1, x = 0,

(� + � + �)P0,1,1 = �P0,1,0 + 2�P0,0,2 + 2�P0,2,1 j = x = 1,

(� + 2� + �)P0,1,2 = �P0,1,1 + 2�P0,0,3 + 2�P0,2,2 j = 1, x = 2,

(� + 2�)P0,2,0 = �P0,1,1 + 3�P0,3,0 j = 2, x = 0,

(� + � + 2�)P0,2,1 = �P0,2,0 + 2�P0,1,2 + 3�P0,3,1 j = 2, x = 1,

(� + 3�)P0,3,0 = �P0,2,1 + 4�P0,4,0 j = 3, x = 0�

(4.1-1)

Note that all equations in (4.1-1) include only probabilities for which n =
0 in both sides of each equation. Such property holds also fore the last

equation in the following set (4.1-2).

For n = 0 and j + x = 4,

(� + 2�)P0,0,4 = �P0,0,3 + �P1,1,3 j = 0, x = 4,

(� + 2� + �)P0,1,3 = �P0,1,2 + 2�P0,0,4 + 2�P1,2,2 j = 1, x = 3,

(� + 2� + 2�)P0,2,2 = �P0,2,1 + 2�P0,1,3 + 3�P1,3,1 j = x = 2,

(� + � + 3�)P0,3,1 = �P0,3,0 + 2�P0,2,2 + 4�P1,4,0 j = 3, x = 1,

(� + 4�)P0,4,0 = �P0,3,1 j = 4, x = 0�

(4.1-2)

In general, for N = n ≥ 1 (where j + x = 4),

(� + 2�)Pn,0,4 = �Pn−1,0,4 + �Pn+1,1,3 j = 0, x = 4,

(� + 2� + �)Pn,1,3 = �Pn−1,1,3 + 2�Pn,0,4 + 2�Pn+1,2,2 j = 1, x = 3,

(� + 2� + 2�)Pn,2,2 = �Pn−1,2,2 + 2�Pn,1,3 + 3�Pn+1,3,1 j = x = 2,

(� + � + 3�)Pn,3,1 = �Pn−1,3,1 + 2�Pn,2,2 + 4�Pn+1,4,0 j = 3, x = 1,

(� + 4�)Pn,4,0 = �Pn−1,4,0 + �Pn,3,1 j = 4, x = 0�
(4.1-3)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

228 Kitsio and Yechiali

4.2. Partial General Functions

For each level of the satellite customers J = 0, 1, 2, 3, 4, we define the
corresponding (partial) generating function (PGF) as follows:

G0(z) = P0,0,0 + P0,0,1 + P0,0,2 + P0,0,3 +
∞∑
n=0

Pn,0,4zn � (4.2-1)

G1(z) = P0,1,0 + P0,1,1 + P0,1,2 +
∞∑
n=0

Pn,1,3zn � (4.2-2)

G2(z) = P0,2,0 + P0,2,1 +
∞∑
n=0

Pn,2,2zn � (4.2-3)

G3(z) = P0,3,0 +
∞∑
n=0

Pn,3,1zn � (4.2-4)

G4(z) =
∞∑
n=0

Pn,4,0zn � (4.2-5)

Now, for j = 0 and x = 4, we obtain from the balance equations

(� + 2�)
∞∑
n=0

Pn,0,4zn = �P0,0,3 + �

∞∑
n=0

Pn,0,4zn+1 + �

z

∞∑
n=0

Pn,1,3zn � (4.2-6)

This implies

z(�(1 − z) + 2�)G0(z) − �G1(z)

= z(P0,0,0 + P0,0,1 + P0,0,2 + P0,0,3)(�(1 − z) + 2�)

+ �zP0,0,3 − �(P0,1,0 + P0,1,1 + P0,1,2 + P0,1,3)� (4.2-7)

Similarly, when j = 1 and x = 3, we get

(� + 2� + �)

∞∑
n=0

Pn,1,3zn

= �P0,1,2 + �

∞∑
n=0

Pn,1,3zn+1 + 2�
∞∑
n=0

Pn,0,4zn + 2�
∞∑
n=1

Pn,2,2zn−1� (4.2-8)

That is,

−2�zG0(z) + (�(1 − z) + 2� + �)zG1(z) − 2�G2(z)

= z(P0,1,0 + P0,1,1 + P0,1,2)(�(1 − z) + 2� + �) + �zP0,1,2

− 2�z(P0,0,0 + P0,0,1 + P0,0,2 + P0,0,3) − 2�(P0,2,0 + P0,2,1 + P0,2,2)� (4.2-9)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 229

When j = 2 and x = 2, we obtain

(� + 2� + 2�)
∞∑
n=0

Pn,2,2zn

= �P0,2,1 + �

∞∑
n=0

Pn,2,2zn+1 + 2�
∞∑
n=0

Pn,1,3zn + 3�
∞∑
n=1

Pn,3,1zn−1� (4.2-10)

The above leads to

−2�zG1(z) + (�(1 − z) + 2� + 2�)zG2(z) − 3�G3(z)

= z(P0,2,0 + P0,2,1)(�(1 − z) + 2� + 2�) + �zP0,2,1

− 2�z(P0,1,0 + P0,1,1 + P0,1,2) − 3�(P0,3,0 + P0,3,1)� (4.2-11)

When j = 3 and x = 1, we get

(� + 2� + 3�)
∞∑
n=0

Pn,3,1zn

= �P0,3,0 + �

∞∑
n=0

Pn,3,1zn+1 + 2�
∞∑
n=0

Pn,2,2zn + 4�
∞∑
n=1

Pn,4,0zn−1, (4.2-12)

leading to

−2�zG2(z) + (�(1 − z) + � + 3�)zG3(z) − 4�G4(z)

= zP0,3,0(�(1 − z) + � + 3�) + �zP0,3,0

− 2�z(P0,2,0 + P0,2,1) − 4�P0,4,0� (4.2-13)

Finally, for j = 4, we obtain

(� + 4�)
∞∑
n=0

Pn,4,0zn = �

∞∑
n=0

Pn,4,0zn+1 + �

∞∑
n=0

Pn,3,1zn � (4.2-14)

That is,

−�G3(z) + (�(1 − z) + 4�)G4(z) = −�P0,3,0� (4.2-15)

Equations (4.2-7), (4.2-9), (4.2-11), (4.2-13) and (4.2-15) define a set
of linear equations with unknowns G0(z), G1(z), G2(z), G3(z) and G4(z),
depending on the 11 boundary probabilities as well as on the probabilities
P0,1,3, P0,2,2 and P0,3,1. Knowledge of these 14 probabilities fully determines
the PGFs.

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

230 Kitsio and Yechiali

However, we have only 11 equations in those 14 probabilities: 10
equations are given by the set (4.1-1) and the 11th by the 5th equation in
(4.1-2).

In order to solve for the unknown probabilities we proceed, similarly
to Sections 3.2 and 3.3, as follows:

It can be shown that repeating the ‘cutting’ method used successfully
in Sections 3.2 and 3.3 yields only 17 equations with 19 unknown
probabilities, implying that a closed form result is un-attainable for the case
of c ≥ 2 servers, when using this method. We therefore turn to utilize the
set of 5 equations derived for the PGFs Gj(z) for j = 0, 1, 2, 3, 4.

4.3. Matrix Representation

Considering the right-hand side of (4.2-7) we define

b0(z) = z(P0,0,0 + P0,0,1 + P0,0,2 + P0,0,3)(�(1 − z) + 2�)

+ �zP0,0,3 − �(P0,1,0 + P0,1,1 + P0,1,2 + P0,1,3)� (4.3-1)

Using (4.2-9) we define

b1(z) = z(P0,1,0 + P0,1,1 + P0,1,2)(�(1 − z) + 2� + �) − 2�(P0,2,0 + P0,2,1 + P0,2,2)

+ �zP0,1,2 − 2�z(P0,0,0 + P0,0,1 + P0,0,2 + P0,0,3)� (4.3-2)

From (4.2-11) we have

b2(z) = z(P0,2,0 + P0,2,1)(�(1 − z) + 2� + 2�) − 3�(P0,3,0 + P0,3,1)

+ �zP0,2,1 − 2�z(P0,1,0 + P0,1,1 + P0,1,2)� (4.3-3)

From (4.2-13)

b3(z) = zP0,3,0(�(1 − z) + � + 3�) + �zP0,3,0 − 2�z(P0,2,0 + P0,2,1) − 4�P0,4,0�
(4.3-4)

Finally, from (4.2-15)

b4(z) = −�P0,3,0� (4.3-5)

Combining equations (4.2-7), (4.2-9), (4.2-11), (4.2-13) and (4.2-15) with
(4.3-1) to (4.3-5), we obtain the following system of linear equations in the

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 231

unknowns Gj(z):

z(�(1 − z) + 2�)G0(z) − �G1(z) = b0(z),

−2�zG0(z) + (�(1 − z) + 2� + �)zG1(z) − 2�G2(z) = b1(z),

−2�zG1(z) + (�(1 − z) + 2� + 2�)zG2(z) − 3�G3(z) = b2(z),

−2�zG2(z) + (�(1 − z) + � + 3�)zG3(z) − 4�G4(z) = b3(z),

−�G3(z) + (�(1 − z) + 4�)G4(z) = b4(z)�

(4.3-6)

For compactness we set

a0(z) = �(1 − z) + 2�, (4.3-7)

a1(z) = �(1 − z) + 2� + �, (4.3-8)

a2(z) = �(1 − z) + 2� + 2�, (4.3-9)

a3(z) = �(1 − z) + � + 3�, (4.3-10)

a4(z) = �(1 − z) + 4�� (4.3-11)

The system (4.3-6) can now be presented in a matrix form, similarly to
(3.4-1), as

za0(z) −� 0 0 0
−2�z za1(z) −2� 0 0
0 −2�z za2(z) −3� 0
0 0 −2�z za3(z) −4�
0 0 0 −� a4(z)

G0(z)
G1(z)
G2(z)
G3(z)
G4(z)

 =

b0(z)
b1(z)
b2(z)
b3(z)
b4(z)

 � (4.3-12)

Define

A(z) =

za0(z) −� 0 0 0
−2�z za1(z) −2� 0 0
0 −2�z za2(z) −3� 0
0 0 −2�z za3(z) −4�
0 0 0 −� a4(z)

 � (4.3-13)

Then (4.3-12) is written as A(z)G(z) = b(z), where G(z) and b(z) are each
a 5-dimensinal column vector. By Cramer’s rule we can write

Gj(z) = |Aj(z)|
|A(z)| for j = 0, 1, 2, 3, 4, (4.3-14)

where, as before, Aj(z) is obtained from A(z) by replacing the j th column
by b(z).

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

232 Kitsio and Yechiali

Therefore, if there exists z0 ∈ [0, 1] such that |A(z0)| = 0, then |A0(z0)|,
|A1(z0)|, |A2(z0)|, |A3(z0)| and |A4(z0)| must equal 0 as well.

A very tedious determinant’s calculations, together with an interlacing
analysis of the roots of

|A(z)| shows that there exists a unique solution z0 ∈ (0, 1)

for which |A(z0)|= 0 (4.3-15)

(see also Section 5 where c > 2).
Hence, |Aj(z0)| = 0 yields an additional equation in the unknown

probabilities. Note that, the equations |Aj(z0)|= 0, j = 0, 1, 2, 3, 4, are
linearly dependent (Levy and Yechiali [2]), and therefore yield only one
equation.

Going back to |A(z)|, it can be shown that |A(z)| = (1 − z)z2D(z),
(4.3-16)

where D(z) is the following polynom of degree 6 (calculated with the aid
of Maple8).

D(z) = − 20�2�3z3 + 20�2�3z2 + 8��4z2 − 32�4�z + 18�3�2z4 − 7�4�z5

+ 35�3�2z4 − 48��4z − 144�3�2z − 21�4�z3 + 24��4z2 + 50�2�3z2

− 160�2�3z + 7�4�z2 + 36��2�2 − 70�3�2z3 + 18�3�2z2 + 35�3�2z2

− 30�4�z3 + 30�4�z4 − 50�2�3z3 + 21�4�z4 + 10�4�z2 − 36�3�2z3

− 10�4�z5 − 4�5z5 − 4�5z3 + 48�3�2 + 64�2�3 + 6�5z4 + �5z6 + �5z2

− 138�3��z3 − 132�2�2�z3 − 174�2��2z3 + 61�3��z4 + 280��2�2z2

+ 116��3�z2 + 198�2�2�z2 + 262�2��2z2 + 180���3z2 + 93�3��z2

− 268��2�2z − 84��3�z − 66�2�2�z − 88�2��2z − 132���3z − 16�3��z�

(4.3-17)

Clearly, |A(z)| has a root at z = 1 and double roots at z = 0. Therefore,
according to (4.3-14), there exist polynoms Dj(z), j = 0, 1, 2, 3, 4,
satisfying

|Aj(z)| = (1 − z)z2Dj(z)� (4.3-18)

Considering |A0(z)|, we write A1
0(z) = |A0(z)|

z(1−z) = zD0(z). Now, for z = 0,
zD0(z) = 0, so that A1

0(z)|z=0= 0. Calculating A1
0(z), it follows that A

1
0(0) = 0

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 233

if and only if the following condition holds:

− 21��P0,3,1 − 3�2P0,3,1 − 12��P0,2,1 + 3�2P0,3,0 − 4��P0,2,1

− 3��P0,3,1 + 10��P0,2,2 + 8�2P0,2,2 − 8�2P0,1,3 + 12�2P0,1,3

+ 24�2P0,2,2 − 12��P0,0,3 − 12��P0,1,2 + 32��P0,2,2 = 0� (4.3-19)

Clearly, result (4.3-19) gives another equation in the unknown
probabilities.

4.4. Solving the Model

We now have 13 equations in the 14 unknown probabilities, where
10 equations are given by the set (4.1-1); the 11th is the 5th equation in
(4.1-2) where n = 0, j = 4 and x = 0; the 12th is given by (4.3-19); and the
13th is |Aj(z0)| = 0. Adding the ‘total probability’ equation

∑4
j=0 Gj(1) = 1,

where Gj(1) = |Aj (1)|
|A(1)| , we have a set of 14 linear equations as follows:

�P0,0,0 = �P0,1,0,

(� + �)P0,0,1 = �P0,0,0 + �P0,0,1,

(� + 2�)P0,0,2 = �P0,0,1 + �P0,1,2,

(� + 2�)P0,0,3 = �P0,0,2 + �P0,1,3,

(� + �)P0,1,0 = �P0,0,1 + 2�P0,2,0,

(� + � + �)P0,1,1 = �P0,1,0 + 2�P0,0,2 + 2�P0,2,1,

(� + 2� + �)P0,1,2 = �P0,1,1 + 2�P0,0,3 + 2�P0,2,2,

(� + 2�)P0,2,0 = �P0,1,1 + 3�P0,3,0,

(� + � + 2�)P0,2,1 = �P0,2,0 + 2�P0,1,2 + 3�P0,3,1,

(� + 3�)P0,3,0 = �P0,2,1 + 4�P0,4,0,

(� + 4�)P0,4,0 = �P0,3,1,

−21��P0,3,1 − 3�2P0,3,1 − 12��P0,2,1 + 3�2P0,3,0 − 4��P0,2,1

− 3��P0,3,1 + 10��P0,2,2,

+8�2P0,2,2 − 8�2P0,1,3 + 12�2P0,1,3 + 24�2P0,2,2 − 12��P0,0,3

−12��P0,1,2 + 32��P0,2,2 = 0,

|A0(z0)|= 0,

1
|A(1)|

[4∑
j=0

|Aj(1)|
]

= 1�

(4.4-1)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

234 Kitsio and Yechiali

Note that |A(1)| contains only parameters (see (4.3-13)) while the |Aj(1)|
determinants contain the unknown probabilities appearing in the first
11 equations in (4.4-1).

4.5. A Matrix–Geometric Representation

Similarly to Section 3.6 the stability condition is �A2e > �A0e . The
matrix A is given by

A =

−4� 4� 0 0 0
� −(� + 3�) 3� 0 0
0 2� −(2� + 2�) 2� 0
0 0 2� −(2� + �) �
0 0 0 2� −2�

 �

The stationary vector � is given by

�0 = 1
M

, �1 = 4�
M

, �2 = 6�2

M
, �3 = 6�3

M
, �4 = 3�4

M
, where

M = 1 + 4� + 6�2 + 6�3 + 3�4�

Then the stability condition �A2e > �A0e results in

� < �(4�0 + 3�1 + 2�2 + �3) = �(4 + 12� + 12�2 + 6�3)

M
� (4.5-1)

4.6. Numerical Example

We take � = 1, � = 1, � = 2 (which satisfy (4.5-1)).
Substituting the above values in (4.3-17) yields

z6 − 31z5 + 367z4 − 2507z3 + 5420z2 − 5500z + 848 = 0� (4.6-1)

Solving equation (4.4-3) by using Maple8 gives 6 roots:

z0 = 0�1859203482, z1 = 1�983296038, z2 = 4�504664998,

z3 = 6�386321371, z4 = 8�249933184, z5 = 9�6898606� (4.6-2)

Substituting z0 = 0�1859203482 in the next to last equation of the system
(4.4-1), we obtain the set of equations leading to the following explicit
solution:

P0,0,0 = 0�2011092708, P0,0,1 = 0�2013286358, P0,1,0 = 0�1005546354,

P0,1,1 = 0�1007740004, P0,0,2 = 0�1009616386, P0,1,2 = 0�05077814,

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 235

P0,2,1 = 0�02515452226, P0,2,0 = 0�0250838176, P0,0,3 = 0�05074499283,

P0,1,3 = 0�02563666995, P0,3,1 = 0�00404783935, P0,3,0 = 0�0041075146,

P0,4,0 = 0�0004497599277, P0,2,2 = 0�0129066784� (4.6-3)

Substituting (4.4-5) in (4.3-21) and using Gj(z) = Dj (z)

D(z) (see (4.3-16) and
(4.3-18)) we get G0(1) = 0�6019, G1(1) = 0�3040, G2(1) = 0�0800, G3(1) =
0�0130, G4(1) = 0�0011.

Clearly,
4∑

j=0

Gj(1) = 1� (4.6-4)

The above yields the expected number of satellite customers

E [J] =
4∑

j=0

jGj(1) = 0�5064� (4.6-5)

Let I denote the number of customers in the intermediate buffer.
Then (Figure 2),

E(I) = 1(P0,0,3 + G1(1) − P0,1,0 − P0,1,1 − P0,1,2)

+ 2(G0(1) − P0,0,0 − P0,0,1 − P0,0,2 − P0,0,3)�

This follows since, when X = 3 (X = 4) only one (two) customer(s) stay(s)
in the intermediate buffer.

Thus, using (4.4-5) and (4.4-6) we get

E(I) = 0�1981509� (4.6-6)

The expected number of jobs in the controller’s buffer is given by

E(N) =
4∑

j=0

E [N |J = j]P (J = j)�

Since E [N |J = j] =
d
dz (Gj(z))|z=1

Gj(1)
, we have

E [N] =
4∑

j=0

d
dz

(Gj(z))|z=1= 0�143�

Thus, the total number of waiting jobs, either in the controller’s buffer
or in the intermediate buffer, is E [Lq] = 0�143 + 0�198 = 0�341.

This numerical example demonstrates the reduction in the mean queue
size accomplished by our ‘intermediate buffer’ model, as compared to the

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

236 Kitsio and Yechiali

system analyzed in Litvak and Yechiali [3], where no intermediate buffer is
used. Using the same values for the parameters �, � and �, and applying
the equation for the mean queue size E [Lq] given there (page 156), we get
E [Lq = 1�49. (Litvak and Yechiali [3]) Clearly, this last value is much larger
than 0.341.

5. THE c-SERVER MODEL

In this section we analyze the c–server M/M/c -type queue with
intermediate buffer of size = c . The model is depicted in Figure 5.

Again, the state space is �N , J ,X � with the following interpretation:
x = 0 denotes that all servers are idle; 1 ≤ x ≤ c indicates that exactly

x servers are busy.
When x = c + k, c customers are being served and another k customers

are waiting, k = 1, 2, � � � , c . Note, that the controller only knows the sum
X + J ≤ 2c without having a precise knowledge of the specific values of X
or J .

Transition-rate diagrams for N = 0 and for N = n (n = 1, 2, 3, � � �) are
depicted in Figures 6 and 7, respectively.

FIGURE 5 A c -server model with intermediate buffer of size = c .

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 237

5.1. Balance Equations

Define Pn,j ,x = Probability (N = n, J = j ,X = x), where n = 0, � � �∞,
j = 0, � � � 2c , x = 0, � � � , 2c .

For each value of N (N = 0, 1, 2, � � � ,n, � � �) we write, for J +X ≤ 2c−1,
the set of corresponding balance equations, as follows. Consider Figure 6,
then

�P0,0,0 = �P0,1,0,

(� + �)P0,0,1 = �P0,0,0 + �P0,1,1,

(� + 2�)P0,0,2 = �P0,0,1 + �P0,1,2,

(� + c�)P0,0,c = �P0,0,c−1 + �P0,1,c ,

(� + c�)P0,0,c+1 = �P0,0,c + �P0,1,c+1, J = 0,N = 0

(� + c�)P0,0,2c−1 = �P0,0,2c−2 + �P0,1,2c−1� 0 ≤ X ≤ 2c − 1

(5.1-1)

(� + �)P0,1,0 = �P0,0,1 + 2�P0,2,0,
(� + � + �)P0,1,1 = �P0,1,0 + 2�P0,0,2 + 2�P0,2,1,

(� + 2� + �)P0,1,2 = �P0,1,1 + 3�P0,0,3 + 2�P0,2,2,

(� + c� + �)P0,1,c = �P0,1,c−1 + c�P0,0,c+1 + 2�P0,2,c , J = 1,N = 0

(� + c� + �)P0,1,c+1 = �P0,1,c + c�P0,0,c+2 + 2�P0,2,c+1, 0 ≤ X ≤ 2c − 2

(� + c� + �)P0,1,2c−2 = �P0,1,2c−3 + c�P0,0,2c−1 + 2�P0,2,2c−2�
(5.1-2)

FIGURE 6 Transition-rate diagram for the c -server case, N = 0.

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

238 Kitsio and Yechiali

(� + c�)P0,c ,0 = �P0,c−1,1 + (c + 1)�P0,c+1,0,

(� + � + c�)P0,c ,1 = �P0,c ,0 + 2�P0,c−1,2 + (c + 1)�P0,c+1,1,

(� + 2� + c�)P0,j ,2 = �P0,c ,1 + 3�P0,c−1,3

+ (c + 1)�P0,c+1,2, J = c ,N = 0

(� + (c − 1)� + c�)P0,c ,c−1 = �P0,c ,c−2 + c�P0,c−1,c

+ (c + 1)�P0,c+1,c−1� 0 ≤ X ≤ c − 1
(5.1-3)

(� + (2c − 2)�)P0,2c−2,0 = �P0,2c−3,1

+ (2c − 1)�P0,2c−1,0, J = 2c − 2,N = 0

(� + � + (2c − 2)�)P0,2c−2,1 = �P0,2c−2,0

+ 2�P0,2c−3,2 + (2c − 1)�P0,2c−1,1� 0 ≤ X ≤ 1

(5.1-4)

(�+(2c−1)�)P0,2c−1,0 = �P0,2c−2,1+2c�P0,2c ,0� J = 2c−1,N = 0,X = 0
(5.1-5)

The points on the ‘diagonal’ where N = 0, J + X = 2c yield the following:

(� + c�)P0,0,2c = �P0,0,2c−1 + �P1,1,2c−1, J + X = 2c ,

(� + c� + �)P0,1,2c−1 = �P0,1,2c−2 + c�P0,0,2c + 2�P1,2,2c−2, N = 0

(� + 2c�)P0,2c ,0 = �P0,2c−1,1�

(5.1-6)

We define the set (5.1-1)–(5.1-5) together with the last equation of (5.1-6)
as the “boundary equations”.

Consider now Figure 7. For N = n ≥ 1 we have

(� + c�)Pn,0,2c = �Pn−1,0,2c + �Pn+1,1,2c−1,

(� + c� + �)Pn,1,2c−1 = �Pn−1,1,2c−1 + c�Pn,0,2c + 2�Pn+1,2,2c−2,

(� + c� + 2�)Pn,2,2c−2 = �Pn−1,2,2c−2 + c�Pn,1,2c−1

+ 3�Pn+1,3,2c−3, J + X = 2c ,

(� + c� + c�)Pn,c ,c = �Pn−1,c ,c + c�Pn,c−1,c+1

+ (c + 1)�Pn+1,c+1,c−1, N = n,

(� + (c − 1)� + (c + 1)�)Pn,c+1,c−1 = �Pn−1,c+1,c−1 + c�Pn,c ,c

+ (c + 2)�Pn+1,c+2,c−2, n = 1, 2, 3, � � �

(�+2�+(2c−2)�)Pn,2c−2,2 = �Pn−1,2c−2,2+3�Pn,2c−3,3+(2c−1)�Pn+1,2c−1,1,

(� + � + (2c − 1)�)Pn,2c−1,1 = �Pn−1,2c−1,1 + 2�Pn,2c−2,2 + 2c�Pn+1,2c ,0,

(� + 2c�)Pn,2c ,0 = �Pn−1,2c ,0 + �Pn,2c−1,1�

(5.1-7)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 239

FIGURE 7 Transition-rate diagram for the c -server case, N = n > 0.

5.2. Partial Generating Functions

For each level of the satellite customers J = 0, 1, 2, � � � , 2c , we define
the corresponding (partial) generating function (PGF) as follows:

G0(z) =
2c−1∑
x=0

P0,0,x +
∞∑
n=0

Pn,0,2c zn ,

G1(z) =
2c−2∑
x=0

P0,1,x +
∞∑
n=0

Pn,1,2c−1zn ,

Gc(z) =
c−1∑
x=0

P0,c ,x +
∞∑
n=0

Pn,c ,c zn ,

G2c(z) =
∞∑
n=0

Pn,2c ,0zn �

(5.2-1)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

240 Kitsio and Yechiali

To illustrate how one obtains the set of equations relating the Gj(z) to each
other we take j = c . We write

(� + c� + c�)P0,c ,c = �P0,c ,c−1 + c�P0,c−1,c+1

+ (c + 1)�P1,c+1,c−1 from (5�1-6),

(� + c� + c�)P1,c ,c z = �P0,c ,c z + c�P1,c−1,c+1z
+ (c + 1)�P2,c+1,c−1z from (5�1-7),n = 1,

(� + c� + c�)P2,c ,c z2 = �P1,c ,c z2 + c�P2,c−1,c+1z2

+ (c + 1)�P3,c+1,c−1z2 from (5�1-7),n = 2,

(� + c� + c�)Pn,c ,c zn = �Pn−1,c ,c zn + c�Pn,c−1,c+1zn

+ (c + 1)�Pn+1,c+1,c−1zn from (5�1-7),

Summing the above equations over n we obtain

z(�(1 − z) + c� + c�)
∞∑
n=0

Pn,c ,c zn − c�z
∞∑
n=0

Pn,c−1,c+1zn

− (c + 1)�
∞∑
n=0

Pn,c+1,c−1zn = �zP0,c ,c−1 − (c + 1)�P0,c+1,c−1�

This equation may be written in terms of the generating functions as

z(�(1 − z) + c� + c�)(Gc(z) − (P0,c ,0 + P0,c ,1 + · · · + P0,c ,c−1))

−c�z(Gc−1(z) − (P0,c−1,0 + P0,c−1,1 + · · · + P0,c−1,c))

−(c+1)�(Gc+1(z)−(P0,c+1,0+ · · · +P0,c+1,c−2)) = �zP0,c ,c−1 − (c+1)�P0,c+1,c−1�

That is,

z(�(1 − z) + c� + c�)Gc(z) − c�zGc−1(z) − (c + 1)�Gc+1(z)

= �zP0,c ,c−1 − (c + 1)�P0,c+1,c−1 + z(�(1 − z) + c� + c�)

× (P0,c ,0 + P0,c ,1 + · · · + P0,c ,c−1) − (c + 1)�(P0,c+1,0 + · · · + P0,c+1,c−2)

− c�z(P0,c−1,0 + P0,c−1,1 + · · · + P0,c−1,c)� (5.2-2)

Define the right hand side of (5.2-1) as bc(z). That is,

�zP0,c ,c−1 − (c + 1)�P0,c+1,c−1 + z(�(1 − z) + c� + c�)

× (P0,c ,0 + P0,c ,1 + · · · + P0,c ,c−1) − (c + 1)�(P0,c+1,0 + · · · + P0,c+1,c−2)

− c�z(P0,c−1,0 + P0,c−1,1 + · · · + P0,c−1,c) = bc(z)� (5.2-3)

Also, let ac(z) = �(1 − z) + c� + c�. Then, (5.2-3) can be written as

zac(z)Gc(z) − c�zGc−1(z) − (c + 1)�Gc+1(z) = bc(z)� (5.2-4)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 241

Similarly, define

a0(z) = �(1 − z) + c�,

a1(z) = �(1 − z) + c� + �,

a2(z) = �(1 − z) + c� + 2�,

ac(z) = �(1 − z) + c� + c�,

ac+1(z) = �(1 − z) + (c − 1)� + (c + 1)�,

a2c−1(z) = �(1 − z) + � + (2c − 1)�,

a2c(z) = �(1 − z) + 2c��

Proceeding in a similar manner the sets of equations (5.1-6) and (5.1-7)
are transformed into the matrix representation A(z)G(z) = b(z), where
A(z) is given in Figure 8, G(z) is the vector of PGFs and b(z) is the (2c + 1)
vector of right-hand side values bj(z).

We note that the determinant of A(z) can be calculated recursively as
follows:

Defining B1(z) ≡ a2c(z),

B2(z) ≡
{
za2c−1(z) −2c�
−� a2c(z)

}
Then , |B2(z)| = za2c−1(z)|B1(z)|−2c���

B3(z) ≡

za2c−2(z) −(2c − 1)� 0
−c�z za2c−1 −2c�
0 −� a2c(z)

 Then,

FIGURE 8 A(z) for the c -server case.

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

242 Kitsio and Yechiali

|B3(z)| = z�a2c−2(z)|B2(z)|−c(2c − 1)��|B1(z)|��
B2c+1 = A(z)� Now |A(z)| is calculated recursively:

|A(z)| = |B2c+1(z)| = z[a0(z)|B2c(z)|−c��|B2c−1(z)|]� (5.2-5)

5.3. Procedure for Solving the General c-Server Model

For the general c -server case, proceeding in a similar method as for
the special cases c = 1 and c = 2, presented in previous sections, we
can write (2c+1)(2c+2)

2 − 2c = 2c2 + c + 1 equations for the corresponding
“boundary probabilities” (Figure 6). The boundary probabilities are those
for which n = 0 and their balance equations involve only probabilities
for which n = 0. Indeed, for single-server case we have 4 boundary
probabilities, and for the case c = 2 there were 11 such probabilities.
On the other hand, 2c2 + c + 1 boundary equations contain (2c+1)(2c+2)

2 −
1 = 2c2 + 3c different unknown probabilities. This implies that we need
additional 2c − 1 equations in order to solve the model. For c = 1 the extra
equation was the ‘total probability’ equation, while for c = 2 we generated
3 additional equations, one of which is the ‘total probability’ equation. (see
last 3 equations in (4.4-1)). For the general case we utilize the properties
of the determinant of the matrix A(z) which is a polynomial of degree
4c + 1 (a2c(z) has degree 1 and zaj(z) has degree 2, for j = 0, 1, � � � , 2c − 1).
Indeed, for c = 1, the degree of |A(z)| is 5, while for c = 2 it is 9. We have
the following:

Theorem 5.3.1. The polynomial |A(z)| has a root of multiplicity c at z = 0;
c − 1 distinct roots in (0, 1); a single root at z = 1; and 2c + 1 roots in (1,∞).

Proof. From the recursive equation (5.2-5) it is easy to see that each of
the polynomials |B2j+1(z)| and |B2j+2(z)|, for j = 1, 2, � � � , c − 1 has a root of
multiplicity j at z = 0. Also, |B2c+1(z)|= |A(z)| has a root of multiplicity c
at z = 0. The rest of the proof is similar to that of Theorem 3.1 in Litvak
and Yechiali [3] since the matrix A(z) here has exactly the same structure
as the matrix A(z) there, where the only real difference is that the size of
A(z) here is 2c + 1 compared to c + 1 there (another insignificant change
is that � and � switch their positions in the matrix). �

The solution procedure is now concluded by deriving c − 1
independent equations from the c − 1 distinct roots in (0, 1), additional
c − 1 equations from the c roots at z = 0 (note that for c = 1 there was
a single root at z = 0, but no additional equation could be derived from
this fact, and for c = 2 there where two roots at z = 0, but only one
additional equation could be derived). To summarize, together with the

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 243

‘total probability’ equation, we obtain the required 2c − 1 additional
equations. Adding the 2c2 + c + 1 boundary equations we get a set of
2c2 + 3c equations in the 2c2 + 3c unknown probabilities.

Note: When � → ∞, the system converges to a M/M/2c -type queue
with arrival rate � and ‘service’ rate � for each individual server.

5.4. Matrix Geometric Approach

For the general case of c ≥ 2 the block-diagonal transition matrix Q
looks the same as in Section 3.6, but A0, A1 and A2 are of order 2c + 1.
Specifically, with I being the unit diagonal matrix,

A2 =

0 2c� 0 � � � 0 0 0 � � � 0 0 0
0 0 (2c − 1)� � � � 0 0 0 � � � 0 0 0
0 0 0 � � � 0 0 0 � � � 0 0 0
���

���
��� � � �

���
���

��� � � �
���

���
���

0 0 0 � � � (c + 1)� 0 0 � � � 0 0 0
0 0 0 � � � 0 c� 0 � � � 0 0 0
0 0 0 � � � 0 0 (c − 1)� � � � 0 0 0
���

���
��� � � �

���
���

��� � � �
���

���
���

0 0 0 � � � 0 0 0 � � � 0 2� 0
0 0 0 � � � 0 0 0 � � � 0 0 �
0 0 0 � � � 0 0 0 � � � 0 0 0

,

A0 = �I �

A1 =

−(� + 2c�) 0 � � � 0
� −(� + � + (2c − 1)�) � � � 0
���

��� � � �
���

0 0 � � � −(� + (c − 1)� + (c + 1)�)
0 0 � � � c�
���

��� � � �
���

0 0 � � � 0
0 0 � � � 0

0 � � � 0 0
0 � � � 0 0
��� � � �

���
���

0 � � � 0 0
−(� + c� + c�) � � � 0 0

��� � � �
���

���
0 � � � −(� + c� + �) 0
0 � � � c� −(� + c�)

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

244 Kitsio and Yechiali

The dimension of the vector � is 2c + 1 and the solution of{
�A = 0,

�0 + �1 + �2 + · · · + �2c−1 + �2c = 1

is given by

�1 = 2c��0,

�k =
(
2c
k

)
�k�0 for 0 ≤ k ≤ c ,

�c+1 = ��c ,

�c+m = c !
(c − m)!

(
�

c

)m

�c = 2c !
c !(c − m)!�

c

(
�

c

)m

,

for 0 ≤ m ≤ c .
The stability condition �A2e > �A0e is translated into

� < �(2c�0 + (2c − 1)�1 + · · · + (2c − k)�k + 2�2c−2 + �2c−1)� (5.4-1)

It is interesting to note that the probabilities ��j : 0 ≤ j ≤ 2c� are the steady
state solution of a machine-repair model with 2c identical machines, and
c servers. The time until breakdown of a machine and the repair time are
exponentially distributed with parameters � and �, respectively. �j denotes
the probability that j machines undergo repair.

6. CONCLUSION

In this work we have analyzed multi-server queues with intermediate
buffer and delayed information on service completions. We used two
methods of analysis: (1) via probability generation functions, which leads
to calculating roots of a certain polynomial and using the roots in
order to find the values of what we call ‘boundary probabilities’. (2) via
matrix–geometric approach, which enabled us to specifically calculate the
stationary condition of the system for any number of servers c ≥ 1. It is
shown that by using an intermediate buffer in front of the servers, queue
sizes (and waiting times) are reduced.

REFERENCES

1. Altman, E.; Marquez, R.; Yechiali, U. Admission and routing control with partial information
and limited buffers. International Journal on Systems Science 2003, 34, 615–626.

2. Levy, Y.; Yechiali, U. An M/M/s Queue with servers vacations. Canadian Journal of Operational
Research 1976, 14, 153–163.

D
ow

nl
oa

de
d

B
y:

 [T
el

 A
vi

v
U

ni
ve

rs
ity

] A
t:

17
:2

6
28

 M
ay

 2
00

8

Multi-Server Queues 245

3. Litvak, N.; Yechiali, U. Routing in queues with delayed information. Queueing Systems 2003,
43, 147–165.

4. Latouche, G.; Ramaswami, V. Introduction to Matrix Analytic Methods in Stochastic Modeling; SIAM:
Philadelphia, 1999.

5. Neuts, M.F. Matrix-Geometric Solutions in Stochastic Models An Algorithmic Approach; Johns Hopkins
University Press: Baltimore, 1981.

