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� We consider a 2-class, single-server, preemptive priority queueing model in which the
high-priority customers form a classical M/M/1 queue, while the low-priority customers form
the so-called Israeli Queue with at most N different groups and unlimited-size batch service.
We provide an extensive probabilistic analysis and calculate key performance measures. Special
cases are analyzed and numerical examples are presented and discussed.
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1. INTRODUCTION

The “Israeli Queue” model was introduced in Boxma, van der Wal,
and Yechiali[3], when studying an N -queue, single-server polling system with
unlimited-size batch service (see also Ref.[4]) governed by the following
server’s visit-order rule: After completion of a visit at a queue, the next
queue to be served is the one where its first customer in line has been
waiting in the system for the longest time. That is, the criterion for
selecting the next queue to visit and serve is an age-based one. This type of
service discipline was termed the Israeli Queue, illustrated vividly as follows:
A new arriving customer may find in the system up to N groups, where
each group is headed by a “leader.” This new arrival looks for a “friend”
among all group leaders in the system. If he (“he” stands for “she” as well)
finds such a leader, he joins him and his group and waits with all the
group’s members to be served in a batch mode. That is, the whole group
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is served at one service period, while the service duration is not affected
by the size of the batch. For example, this queue discipline represents a
physical waiting line for buying tickets to a movie, theater, or rock-concert
performance. A new arrival that finds a friend already standing in line joins
him and his group. When the “leader” reaches the cashier, he buys tickets
for the entire group. It is assumed that the buying process is (almost) not
affected by the number of tickets purchased. Recently, Perel and Yechiali[16]

extended this model to the case where there is no bound on the number
of different groups that can be present simultaneously in the system. They
studied single-server models with finite and infinite number of groups,
as well as models with multiple servers, and derived various performance
measures.

Unlimited batch-service has been studied by van der Wal and
Yechiali[20] when analyzing a computer tape-reading problem in a system
where large amounts of information are stored on tapes. Requests for data
stored on one of these tapes arrive randomly, and in order to read the
data, the tape has to be mounted, read, and then dismounted. If there
are several requests to be read from a tape, they all can be read in (more
or less) the same time, thus suggesting a modeling as a batch-service with
unlimited batch size. Unlimited batch-service models were considered in
the literature as application to videotex, telex, and TDMA systems (see,
e.g., Ref.[1], Ref.[10], and Ref.[13]). In addition, Van Oyen and Teneketzis[19]

formulated a central database system and an Automated Guided Vehicle
(AGV) as a polling system with an infinite capacity batch service.

There are systems in which a single server handles two streams of
arrivals: primary (important jobs) and secondary (less important jobs).
The primary jobs are processed individually one by one, while the less
important jobs can be served simultaneously. For example, in a production
scenario, a painting spray booth can process simultaneously a very large
number of items.

Consequently, in this article, we consider a single-server preemptive
priority queueing system with two classes of customers: VIP (class 1, high
priority) and regular (class 2, low priority). The VIP customers form a
classical infinite-buffer M/M/1 queue, while the customers of class 2 form
the so called Israeli Queue with batch service and at most N groups,
where the service time of a group is exponentially distributed. That is, a
lower-priority customer, upon arrival, looks for a friend among the class-2
group leaders (each one heading a class-2 group) present in the system.
We assume that the probability for an arriving class-2 customer to know
a group leader standing in line is p, with the same p for all groups.
Thus, if the number of low-priority groups in the system is k (1 ≤ k ≤ N −
1), then an arriving class-2 customer will join the ith group (i ≤ k) with
probability (1 − p)i−1p or will create a new class-2 group with probability
(1 − p)k . If N low-priority groups are present, then an arriving class-2
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customer will join the N th group if he does not know any of the first
N − 1 group leaders. This occurs with probability (1 − p)N−1. We can also
assume, due to the memoryless property of the exponential distribution,
that an arriving class-2 customer can join (with probability p) a class-2
group that is being served. As indicated, the class-2 groups are served in
an unlimited-size batch mode. That is, the whole group is served at one
service period, independent of its size. We assume that VIP customers have
preemptive priority over class 2, implying that a service of a class-2 group
is immediately interrupted by an arrival of a VIP customer.

Recently, He and Chavoushi[11] studied a queueing model with
customer interjections, where customers are distinguished between normal
and interjecting. All customers join a single queue. A normal customer
joins the queue at its end, while an interjecting customer tries to cut into
the queue following a geometric distribution. The waiting times of normal
customers and of interjecting customers are studied.

Queueing models with priorities have been studied extensively in the
literature and have wide applications in computer systems, communication
networks, health-care systems, production systems, and in many other
aspects of real life. For studies on priority queues, we refer the reader
to Cobham[6], White and Christie[21], Conway, Maxwell, and Miller[7],
Miller[14], Kella and Yechiali[12], Cidon and Sidi[5], Takagi [18], Zhang and
Shi[22], and the many references there.

Other works related to ours are Drekic and Grassmann[8], Drekic and
Woolford[9], Sivasamy[17] and Bitran and Caldentey[2]. In Ref.[8], a two-class,
single-server, preemptive priority queueing model is studied, where the
low-priority source population is finite. The steady-state distribution of
the number of class-1 and class-2 customers in the system is determined
by applying the method of generalized eigenvalues. Furthermore, Ref.[9]

analyzes a two-class, single-server, preemptive priority queueing model
with low-priority balking customers, where the decision to balk or not
depends on the queue length. Two specific forms of balking behavior are
considered, and the method of generalized eigenvalues is used in order
to derive the steady-state distribution of the number of customers in the
system. A priority model with batch service is studied in Ref.[17] where the
higher-priority units are served in batches of a finite size, according to a
certain bulk service rule. In Ref.[2], a 2-dimensional preemptive priority
queueing system with state-dependent arrivals is studied. It is assumed that
if at time t there are Ni(t) class-i customers in the system, then an arriving
class-i customer joins the system with probability Di(Ni(t)), i = 1, 2, or
leaves with the complementary probability. Using truncation, the steady-
state joint distribution for the two queue lengths is derived, and the waiting
times and busy period are characterized. We note that, in our model, a
class-2 customer always joins the queue, either to an existing group or by
forming a new one (the last in the groups’ line).
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The article is organized as follows: In Section 2, we employ Probability
Generating Functions (PGFs) to analyze the model. This requires the
calculation of certain boundary probabilities. In Section 3, we derive
various performance measures, such as the mean number of low-priority
groups in the system, the covariance between the number of high- and
low-priority customers, sojourn times of a class-2 group leader and of
an arbitrary class-2 customer, and the mean size of a class-2 group. In
Section 4, we use Matrix Geometric methods to further analyze the system,
and in Section 5 we present some extreme cases and numerical results.

2. THE MODEL

2.1. Model Description

We consider the general model described in the Introduction, namely,
two classes of customers, VIP and regular, where the VIP have preemptive
priority over the regular customers and where, among each class, the VIP
follow the M/M/1 queue, while the regular customers follow the Israeli
Queue regime with at most N groups.

We assume that the arrival stream of VIP (ordinary) customers follows
a homogeneous Poisson process with rate �1 (�2), while service time is
exponentially distributed with rate �1 (�2). Let L1(t) be the total number
of VIP customers in the system at time t , and L2(t) the number of class-2
groups in the system at time t . For i = 1, 2, let Li = limt→∞ Li(t), and Pmn =
�(L1 = m,L2 = n), for m ≥ 0 and 0 ≤ n ≤ N . A transition rate diagram of
the two-dimensional process (L1,L2) is depicted in Figure 1. Define the
marginal probabilities,

�(L1 = m) = Pm• =
N∑

n=0

Pmn , m ≥ 0,

�(L2 = n) = P•n =
∞∑

m=0

Pmn , 0 ≤ n ≤ N �

Clearly, since the VIP customers are not affected by the ordinary
customers, they form a regular M/M/1 queue for which, for all m ≥ 0
(where � = �1

�1
),

Pm• = �m(1 − �)�

For a stable system, we have � < 1.
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FIGURE 1 Transition rate diagram of (L1,L2).

2.2. Balance Equations and Generating Functions

For n = 0, the following relations hold,

(�1 + �2)P00 = �1P10 + �2P01, (2.1)

(�1 + �2 + �1)Pm0 = �1Pm−1,0 + �1Pm+1,0, m ≥ 1� (2.2)

Define the marginal PGF of L1: Fn(w) = ∑∞
m=0 Pmnwm , for all 0 ≤ n ≤ N .

Then, multiplying equation (2.2) by wm and summing over m together with
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(2.1) gives

((�1w − �1)(1 − w) + �2w) F0(w) = −�1(1 − w)P00 + �2wP01� (2.3)

Moreover, for 1 ≤ n ≤ N − 1 we get

(
�1 + �2(1 − p)n + �2

)
P0n = �2(1 − p)n−1P0,n−1 + �1P1n + �2P0,n+1, (2.4)

(
�1 + �2(1 − p)n + �1

)
Pmn

= �1Pm−1,n + �2(1 − p)n−1Pm,n−1 + �1Pm+1,n , m ≥ 1� (2.5)

Multiplying equation (2.5) by wm and summing over m together with (2.4)
leads to

(
(�1w − �1)(1 − w) + �2(1 − p)nw

)
Fn(w) − �2(1 − p)n−1wFn−1(w)

= −�1(1 − w)P0n + �2(P0,n+1 − P0n)w, 1 ≤ n ≤ N − 1� (2.6)

Last, for n = N we have

(�1 + �2)P0N = �2(1 − p)N−1P0,N−1 + �1P1N , (2.7)

(�1 + �1)PmN = �1Pm−1,N + �2(1 − p)N−1Pm,N−1 + �1Pm+1,N , m ≥ 1� (2.8)

Multiplying equation (2.8) by wm and summing over m together with (2.7)
yields

(�1w − �1) (1 − w)FN (w) − �2(1 − p)N−1wFN−1(w)

= −�1(1 − w)P0N − �2wP0N � (2.9)

Define

�n(w) = (�1w − �1)(1 − w) + �2(1 − p)nw, for 0 ≤ n ≤ N − 1,

�N (w) = (�1w − �1)(1 − w)�

The set of equations (2.3), (2.6), and (2.9) can be written as

A(w) · �F (w) = �b(w), (2.10)
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where

A(w) =



�0(w) 0 · · · · · · · · · 0

−�2w �1(w) 0 0 · · · ���

0 −�2(1 − p)w �2(w) 0
� � �

���
��� 0

� � �
� � �

� � � 0
���

� � �
� � � −�2(1 − p)N−2w �N−1(w) 0

0 · · · 0 0 −�2(1 − p)N−1w �N (w)


,

�F (w) = (F0(w), F1(w), � � � , FN (w))T is a column vector (of size N + 1) of the
desired PGFs, and

�b(w) =



b0(w)
b1(w)

���
bn(w)

���
bN−1(w)
bN (w)


=



−�1P00(1 − w) + �2P01w
−�1P01(1 − w) + �2(P02 − P01)w

���
−�1P0,n(1 − w) + �2(P0,n+1 − P0,n)w

���
−�1P0,N−1(1 − w) + �2(P0N − P0,N−1)w

−�1P0N (1 − w) − �2P0N w


�

Note that for 0 ≤ n ≤ N − 1, �n(w) has 2 roots given by

w(n)
1,2 = �1 + �2(1 − p)n + �1 ± √

(�1 + �2(1 − p)n + �1)2 − 4�1�1

2�1
� (2.11)

It is easy to verify that the smaller root satisfies 0 < w(n)
1 < 1 and w(n)

2 > 1.
As for �N (w), its roots are w(N )

1 = 1 and w(N )
2 = �1

�1
, which is greater than 1

if the system is stable.
In general, to obtain the PGFs Fn(w), one uses Cramer’s rule. That is,

for all 0 ≤ n ≤ N

Fn(w) = |An(w)|
|A(w)| ,

where |A| is the determinant of a matrix A, and An(w) is the matrix
obtained from A(w) by replacing the nth column by the vector �b(w).
This leads to an expression for Fn(w) in terms of the N + 1 unknown
probabilities, P00, P01, � � � ,P0N appearing in �b(w). However, in our case, the
PGFs can be calculated iteratively, using the structure of the matrix A(w).
Specifically, from equation (2.3), we immediately have that

F0(w) = b0(w)
�0(w)

�
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Rewriting equation (2.6) in terms of �n(w) and bn(w) gives

Fn(w) = bn(w) + �2(1 − p)n−1wFn−1(w)
�n(w)

� (2.12)

Iterating (2.12) yields, for 0 ≤ n ≤ N , a closed form expression for Fn(w),
as follows:

Fn(w) =
∑n

j=0 bn−j(w)(�2w)j(1 − p)
(
n2

)
−
(
n − j2

) (∏n−j−1
i=0 �i(w)

)
∏n

i=0 �i(w)
, (2.13)

where
∏−1

i=0 (·) � 1.
To calculate the boundary probabilities P00, P01, � � � ,P0N , we utilize the

N roots w(n)
1 , n = 0, 1, � � � ,N − 1. Note that, since Fn(w) is a (partial)

probability generating function defined for all 0 ≤ w ≤ 1, each root of
|A(w)| is a root of |An(w)|. Specifically, substituting w(0)

1 in F0(w) gives a
relation between P00 and P01. Substituting w(1)

1 in F1(w) gives a relation
between P00, P01 and P02, and so on. The last substitution is w(N−1)

1 in
FN−1(w), which relates P00, P01, � � � ,P0N . At last, we get N equations relating
N + 1 unknowns. The additional needed equation is

P00 + P01 + · · · + P0N = P0• = 1 − �� (2.14)

Applying vertical “cuts” on Figure 1 yields, for 0 ≤ n ≤ N − 1,

�2(1 − p)nP•n = �2P0,n+1� (2.15)

That is, once the boundary probabilities P00, P01, � � � , P0N are calculated,
the marginal probabilities of the queue length of class-2 groups is obtained
as follows:

P•n = Fn(1) = �(L2 = n) = �2P0,n+1

�2(1 − p)n
, 0 ≤ n ≤ N − 1,

P•N = FN (1) = �(L2 = N ) = 1 −
N−1∑
n=0

P•n � (2.16)

3. PERFORMANCE MEASURES

3.1. Mean Queue Lengths and Waiting Times

As for class 1, all performance measures are well known, since
VIP customers form a regular M/M/1 queue. In particular, �[L1] =
�1/(�1 − �1).
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Utilizing equation (2.16), the mean total number of class-2 groups in
the system is given by

�[L2] =
N∑

n=0

nP•n �

Let �̂2 denote the mean rate in which new class-2 groups are formed. Then,
�̂2 = �2

∑N−1
n=0 P•n(1 − p)n . Define W2 to be the total sojourn time of a class-

2 group leader in the system. W2 can be looked upon as the lifetime in the
system of an arbitrary group, that is, the duration of time from the moment
of a group’s initiation until the moment when it departs the system. Then,
from Little’s Law,

�[W2] = �[L2]
�̂2

� (3.1)

3.2. Covariance of L1 and L2

Given �[Li] for i = 1, 2, we need to calculate �[L1L2]. We have

�[L1L2] =
N∑

n=0

∞∑
m=0

mnPmn =
N∑

n=0

nF ′
n(1)� (3.2)

Differentiating Fn(w) in equation (2.12) for 0 ≤ n ≤ N − 1 and substituting
w = 1 results in the following recurrence relation:

F ′
n(1) = F ′

n−1(1)
1 − p

+ �1P0n�2(1 − p)n − �2P0,n+1(�1 − �1)

(�2(1 − p)n)2

= F ′
n−1(1)
1 − p

+ �1P0n − (�1 − �1)P•n
�2(1 − p)n

� (3.3)

Iterating (3.3) yields

F ′
n(1) = 1

�2(1 − p)n

n∑
j=0

(
�1P0,j − (�1 − �1)P•j

)
, 0 ≤ n ≤ N − 1� (3.4)

Now, to calculate F ′
N (1), we use the fact that the VIP queue is a regular

M (�1)/M (�1)/1 system for which

N∑
n=0

F ′
n(1) = �[L1] = �1

�1 − �1
�



362 Perel and Yechiali

This implies,

F ′
N (1) = �1

�1 − �1
−

N−1∑
n=0

F ′
n(1)

= �1

�1 − �1
−

N−1∑
n=0

1
�2(1 − p)n

n∑
j=0

(
�1P0,j − (�1 − �1)P•j

)
= �1

�1 − �1
−

N−1∑
j=0

(
�1P0,j − (�1 − �1)P•j

) N−1∑
n=j

1
�2(1 − p)n

= �1

�1 − �1
−

N−1∑
j=0

(
�1P0,j − (�1 − �1)P•j

) (1 − p)1−N − (1 − p)1−j

�2p

= �1

�1 − �1
− 1

�2p(1 − p)N−1
(−�1P0N + (�1 − �1)P•N )

+
N−1∑
j=0

�1P0,j − (�1 − �1)P•j
�2p(1 − p)j−1

= �1

�1 − �1
+

N∑
j=0

�1P0,j − (�1 − �1)P•j
�2p(1 − p)j−1

� (3.5)

Substituting in equation (3.2) the expressions for F ′
n(1), n = 0, 1, � � �N − 1,

and for F ′
N (1) given in equations (3.4) and (3.5), respectively, results in

�[L1L2] =
N−1∑
n=0

nF ′
n(1) + NF ′

N (1)

=
N−1∑
n=0

n
�2(1 − p)n

n∑
j=0

(�1P0,j − (�1 − �1)P•j) + N �1

�1 − �1

+ N
N∑
j=0

�1P0,j − (�1 − �1)P•j
�2p(1 − p)j−1

=
N−1∑
j=0

(
�1P0,j − (�1 − �1)P•j

) N−1∑
n=j

n
�2(1 − p)n

+ N �1

�1 − �1

+ N
N∑
j=0

�1P0,j − (�1 − �1)P•j
�2p(1 − p)j−1

� (3.6)
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Using the fact that

N−1∑
n=j

n
(1 − p)n

= Np − 1
p2(1 − p)N−1

− jp − 1
p2(1 − p)j−1

,

equation (3.6) translates to

�[L1L2] = N �1

�1 − �1
+

N∑
j=0

�1P0,j − (�1 − �1)P•j
�2p2(1 − p)j−1

((N − j)p + 1)� (3.7)

3.3. The Position of a New Class-2 Arriving Customer

Let X denote the position (group’s number) that a new class-2 arrival
enters to. The distribution of X is given by

�(X = k) = P•,k−1(1 − p)k−1 +
N∑

n=k

P•n(1 − p)k−1p, k = 1, � � � ,N − 1,

�(X = N ) = P•,N−1(1 − p)N−1 + P•N (1 − p)N−1�

From the above, we get

�[X ] =
N−1∑
k=1

(
P•,k−1(1 − p)k−1 +

N∑
n=k

P•n(1 − p)k−1p

)
k

+ NP•,N−1(1 − p)N−1 + NP•N (1 − p)N−1p + NP•N (1 − p)N

=
N∑
k=1

P•,k−1(1 − p)k−1k +
N∑
k=1

N∑
n=k

P•n(1 − p)k−1pk + NP•N (1 − p)N ,

which leads to

�[X ] =
N∑

n=1

P•n
n∑

k=1

(1 − p)k−1pk +
N−1∑
n=0

P•n(1 − p)n(n + 1) + P•N (1 − p)NN �

With some algebraic manipulations and the use of equation (2.15), we get

�[X ] =
N∑

n=1

P•n

(
1 − (1 − p)n(1 + np)

p

)

+ 1
�2

N−1∑
n=0

(n + 1)�2P0,n+1 + P•N (1 − p)NN
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= 1
p
(1 − P•0) −

(
�2

�2

N−1∑
n=1

nP0,n+1 + NP•N (1 − p)N

+ �2

�2p

N−1∑
n=1

P0,n+1 + 1
p
P•N (1 − p)N

)

+ �2

�2

N−1∑
n=0

nP0,n+1 + �2

�2

N−1∑
n=0

P0,n+1 + NP•N (1 − p)N

= 1
p

− �2

�2p
P01 − �2

�2p

N−1∑
n=1

P0,n+1 + �2

�2

N−1∑
n=0

P0,n+1 − 1
p
P•N (1 − p)N

= 1
p

(
1 − �2

�2
(1 − � − P00)(1 − p) − P•N (1 − p)N

)
� (3.8)

3.4. Sojourn Times

Let �m (m = 1, 2, � � � ) denote the time from the first moment when
there are m VIP customers in the system until the first moment thereafter
that no VIP customers are present. Clearly, since the order of service does
not affect the length of �m , it follows that �m = ∑m

i=1 �1,i , where �1,i ∼ �1,
all �1,i are independent, and �1 is the busy period in a standard M/M/1
queue. Hence, the Laplace Stieltjes Transform (LST) of �m is given by

�̃m(s) = �
[
e−s�m

] =
(
�1 + �1 + s − √

(�1 + �1 + s)2 − 4�1�1

2�1

)m

= (
�̃1(s)

)m
,

(3.9)

and

�[�m] = −�̃′
m(s)|s=0 = m

�1 − �1
� (3.10)

Now, suppose there are no VIP customers in the system and there are
n ≥ 1 class-2 groups. Let Cn be the time until these n groups are served
and leave the system. Since the waiting times of these n groups are not
affected by the stream of new class-2 arrivals, Cn may also be considered
as the “draining time” of the system if, when there are n class-2 groups
present, the arrival stream of VIP customers is stopped. Therefore,

Cn = Exp(�1 + �2) +


Cn−1 w.p.

�2

�1 + �2

�1 + Cn w.p.
�1

�1 + �2

, (3.11)
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where Exp(�1 + �2) is an exponential random variable with parameter
(�1 + �2). The lower expression in (3.11) is a consequence of the fact that
a new arrival of a VIP customer opens a class-1 busy period �1, and class-2
arrivals during �1 do not affect the waiting times of the class-2 customers
already present in the system.

From equation (3.11), we get that the LST of Cn , denoted by C̃n(s),
satisfies the following recursive relation

C̃n(s) = �2

�1 + �2 + s
C̃n−1(s) + �1

�1 + �2 + s
�̃1(s)C̃n(s), 0 ≤ n ≤ N � (3.12)

Iteration of equation (3.12) leads to

C̃n(s) =
(

�2

�2 + �1(1 − �̃1(s)) + s

)n

= (
C̃1(s)

)n
, (3.13)

where

C̃1(s) = �2

�2 + �1(1 − �̃1(s)) + s
�

From (3.13), we get

�[Cn] = −C̃ ′
n(s)|s=0 = n�1

�2(�1 − �1)
� (3.14)

A probabilistic interpretation to equation (3.14) arises from rewriting it as

�[Cn] = n
(
1
�2

+ �1

�2
· 1
�1 − �1

)
,

where 1
�2

is the mean service time of a class-2 group and �1
�2

is the mean
number of VIP arrivals (each one causing an interruption) during a service
time of a class-2 group. Each such interruption generates a class-1 busy
period with mean 1

�1−�1
.

In addition, assume there are m VIP customers and n class-2 groups
in the system, and denote by Dm,n (with LST D̃m,n(s)) the time until the
service of all those n class-2 groups is completed. Then

D̃m,n(s) = �̃m(s)C̃n(s) = (
�̃1(s)

)m (
C̃1(s)

)n
, (3.15)

and from equations (3.10) and (3.14),

�[Dm,n] = �[�m] + �[Cn] = 1
�1 − �1

(
m + n�1

�2

)
� (3.16)
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We now calculate the LST of the sojourn time of a class-2 group leader in
the system, denoted by W̃2(s). When the system is in state (m,n), m ≥ 0 and
n = 0, 1, � � � ,N − 1, an arriving class-2 customer becomes a group leader
(in the (n + 1) position) with probability (1 − p)n . The LST of his sojourn
time is therefore D̃m,n+1(·). Using (3.15), we get

W̃2(s) =
∑∞

m=0

∑N−1
n=0 Pmn(1 − p)nD̃m,n+1(s)∑N−1

n=0 P•n(1 − p)n

=
∑N−1

n=0 (1 − p)nC̃n+1(s)
∑∞

m=0 Pmn�̃m(s)∑N−1
n=0 P•n(1 − p)n

=
∑N−1

n=0 (1 − p)n(C̃1(s))n+1Fn(�̃1(s))∑N−1
n=0 P•n(1 − p)n

, (3.17)

where the numerator is, in fact, the probability for an arriving class-2
customer to become a group leader.

Let W a
2 denote the total sojourn time in the system of an arbitrary class-

2 customer, with LST W̃ a
2 (s). Assume the system is in state (m,n), for m ≥ 0

and n = 0, 1, � � � ,N − 1. Then, either (i) an arriving class-2 customer will
join the kth group (k = 1, 2, � � � ,n) with probability (1 − p)k−1p and the
LST of his total sojourn time in the system will be D̃m,k(s), or (ii) an
arriving class-2 customer will form a new group (with probability (1 − p)n)
so that the LST of his total sojourn time in the system will be D̃m,n+1(s).
In addition, if the system is in state (m,N ), an arriving class-2 customer
will join the N th group if he does not know any of the first N − 1 group
leaders (with probability (1 − p)N−1). Combining all of the arguments
above, using equation (3.15) and the definition of Fn(·) leads to

W̃ a
2 (s) =

∞∑
m=0

[
N∑

n=0

Pmn

n∑
k=1

(1 − p)k−1pD̃mk(s) + PmN (1 − p)N D̃mN (s)

+
N−1∑
n=0

Pmn(1 − p)nD̃m,n+1(s)

]

=
N∑

n=0

n∑
k=1

(1 − p)k−1pC̃k(s)Fn(�̃1(s)) + (1 − p)N C̃N (s)FN (�̃1(s))

+
N−1∑
n=0

(1 − p)nC̃n+1(s)Fn(�̃1(s))� (3.18)
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Substituting in (3.18) the expression of C̃n(s) given in (3.13) gives

W̃ a
2 (s) =

N∑
n=0

pC̃1(s)
(
1 − (

(1 − p)C̃1(s)
)n)

1 − (1 − p)C̃1(s)
Fn(�̃1(s))

+ (
(1 − p)C̃1(s)

)N
FN (�̃1(s))

+ C̃1(s)
N−1∑
n=0

(
(1 − p)C̃1(s)

)n
Fn(�̃1(s))� (3.19)

To calculate �[W2], the expected total sojourn time in the system of

a class-2 group leader, one can differentiate equation (3.17), or use

equations (3.16) and (3.4). We get

�[W2] =
∑∞

m=0

∑N−1
n=0 Pmn(1 − p)n�[Dm,n+1]∑N−1

n=0 P•n(1 − p)n

=
∑∞

m=0

∑N−1
n=0 Pmn(1 − p)n

(
m + (n+1)�1

�2

)
(�1 − �1)

∑N−1
n=0 P•n(1 − p)n

= �2

(�1 − �1)�̂2

[
N−1∑
n=0

(
(1 − p)n

∞∑
m=0

mPmn + �1

�2
(n + 1)(1 − p)n

∞∑
m=0

Pmn

)]

= �2

(�1 − �1)�̂2

[
N−1∑
n=0

(
(1 − p)nF ′

n(1) + �1

�2
(n + 1)(1 − p)nP•n

)]
�

Using the expression for F ′
n(1) given in equation (3.4) yields

�[W2] = �2

(�1 − �1)�̂2

N−1∑
n=0

 1
�2

n∑
j=0

[
�1P0,j − (�1 − �1)P•j

]
+�1

�2
(n + 1)(1 − p)nP•n

)]

= �2

(�1 − �1)�̂2

 1
�2

N−1∑
j=0

(N − j)
[
�1P0,j − (�1 − �1)P•j

]

+�1

�2

N−1∑
n=0

(n + 1)(1 − p)nP•n

]
� (3.20)
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By using the relation �2(1 − p)nP•n = �2P0,n+1, and after some algebra,
equation (3.20) becomes

�[W2] =
∑N

j=0 jP•j

�̂2
= �[L2]

�̂2
, (3.21)

which is indeed the result obtained by Little’s Law in (3.1). In a similar
manner, �[W a

2 ] is derived as follows:

�[W a
2 ] =

∞∑
m=0

[
N∑

n=0

Pmn

n∑
k=1

(1 − p)k−1p�[Dm,k] + PmN (1 − p)N�[Dm,N ]

+
N−1∑
n=0

Pmn(1 − p)n�[Dm,n+1]
]
� (3.22)

Using equation (3.16) and the fact that
∑N

n=0 F
′
n(1) = �[L1] = �1

�1−�1
,

equation (3.22) becomes, after some algebra,

�[W a
2 ] = 1

�1 − �1

(
�1

�1 − �1
+ �1

�2p

N∑
n=0

P•n(1 − (1 − p)n(1 + np))

+ N �1

�2
(1 − p)N P•N + �1

�2

N−1∑
n=0

(n + 1)(1 − p)nP•n

)
� (3.23)

Further manipulations on equation (3.23) yield

�[W a
2 ] = 1

�1 − �1

(
�1

�1 − �1
+ �1

�2p
+ �1

�2
(1 − � − P00)

(
1 − 1

p

)
− �1

�2p
(1 − p)N P•N

)
� (3.24)

Rearranging terms in equation (3.24) leads to

�[W a
2 ] = 1

�1 − �1
· �1

�1 − �1
+

(
1
�2

+ �1

�2
· 1
�1 − �1

)
1
p

×
(
1 − �2

�2
(1 − � − P00)(1 − p) − P•N (1 − p)N

)
, (3.25)

or, equivalently, using (3.10), (3.14), and (3.8),

�[W a
2 ] = �[�1]�[L1] + �[C1]�[X ]� (3.26)
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Indeed,

W a
2 =

L1∑
i=1

�1,i +
X∑
i=1

C1,i ,

where �1,i ∼ �1 and C1,i ∼ C1 for all i . As L1 and �1, and X and C1 are
independent, (3.26) follows.

3.5. The Mean Size of a Class-2 Batch

We wish to calculate the mean size of a class-2 group that has
completed service. We define the following random variables:

• D(k) = size of the class-2 group standing in the kth position (k =
1, 2, � � � ,N ) at the moment of service completion (k = 1 refers to the
group that leaves the system).

• D(k)
i = size of the group standing in the kth position at the moment of

service completion, given that it was formed in the ith position (i ≥ k).
• �(k) = number of customers who joined the kth class-2 group
(k = 1, 2, � � � ,N ) during a class-2 service duration (including VIP
interruptions), assuming that the kth group exists.

To derive �[D(k)], we condition on the position in which the kth group
(moving to the k − 1-st position) was created. From the definitions above,
and from the fact that �2P•,i−1(1 − p)i−1 = �2P0i , we have

D(k)
i = 1 +

i∑
m=k

�(m) w.p.
P•,i−1(1 − p)i−1∑N
j=k P•,j−1(1 − p)j−1

= P0i∑N
j=k P0j

� (3.27)

Since the mean number of class-2 arrivals during a service period of a class-
2 group is �2�[C1], we have, using (3.14),

�
[
�(k)

] = �2�1

�2(�1 − �1)
(1 − p)k−1p, 1 ≤ k ≤ N − 1,

�
[
�(N )

] = �2�1

�2(�1 − �1)
(1 − p)N−1� (3.28)

Combining all of the above leads to

�
[
D(k)

] =
N∑
i=k

�
[
D(k)

i

] P0i∑N
j=k P0j

=
N∑
i=k

(
1 +

i−k+1∑
m=1

�
[
�(i+1−m)

]) P0i∑N
j=k P0j

= 1 +
N−1∑
i=k

P0i∑N
j=k P0j

i−k+1∑
m=1

�2�1

�2(�1 − �1)
(1 − p)i−mp
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+ P0N∑N
j=k P0j

( N−k∑
m=1

�2�1

�2(�1 − �1)
(1 − p)N−1−mp

+ �2�1

�2(�1 − �1)
(1 − p)N−1

)

= 1 + �2�1

�2(�1 − �1)

(
N−1∑
i=k

P0i∑N
j=k P0j

(
(1 − p)k−1 − (1 − p)i

)
+ P0N∑N

j=k Poj

(1 − p)k−1

)

= 1 + �2�1

�2(�1 − �1)

(
(1 − p)k−1 −

N−1∑
i=k

P0i(1 − p)i∑N
j=k P0j

)
� (3.29)

In particular, �[D(1)], the mean size of a group completing service, is

�[D(1)] = 1 + �2�1

�2(�1 − �1)

(
1 −

N−1∑
i=1

P0i(1 − p)i∑N
j=1 P0j

)

= 1 + �2�1

�2(�1 − �1)

(
1 −

N−1∑
i=1

P0i(1 − p)i

1 − � − P00

)
�

Furthermore, the expected total number of class-2 customers in the system
at the moment of service completion of a class-2 group, denoted by �[Ltotal

2 ], is
derived from

�
[
Ltotal
2

] =
N∑

n=1

P•n
n∑

k=1

�[D(k)]�

4. MATRIX GEOMETRIC METHOD

An alternative approach to analyze this model is by constructing a finite
Quasi Birth and Death (QBD) process, with N + 1 phases and infinite
number of levels. State (m,n) indicates that there are m different VIP
customers and n class-2 groups in the system, m ≥ 0, 0 ≤ n ≤ N . The
infinitesimal generator of the QBD is denoted by Q , and is given by

Q =


B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0

� � �
���

� � �
� � �

� � �
� � �

 ,



Israeli Queue with Priorities 371

where B, A0, A1, and A2 are all square matrices of order N + 1, as follows:

B =



−(�1 + �2) �2 0 · · · · · · 0

�2 −(�1 + �2(1 − p) + �2) �2(1 − p) 0 · · ·
�
�
�

0 �2 −(�1 + �2(1 − p)2 + �2) �2(1 − p)2
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� 0

�
�
�

�
�
�

�
�
� �2 −(�1 + �2(1 − p)N−1 + �2) �2(1 − p)N−1

0 0 0 0 �2 −(�1 + �2)


,

A0 = �1I ,

A1 =



−(�1 + �2 + �1) �2 0 · · · · · · 0

0 −(�1 + �2(1 − p) + �1) �2(1 − p) 0 · · ·
�
�
�

0 0 −(�1 + �2(1 − p)2 + �1) �2(1 − p)2
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� 0

�
�
�

�
�
�

�
�
�

�
�
� −(�1 + �2(1 − p)N−1 + �1) �2(1 − p)N−1

0 0 0 0 0 −(�1 + �1)

 ,

and A2 = �1I , where I is the identity matrix of order N + 1.
Define the matrix A = A0 + A1 + A2. We get

A =



−�2 �2 0 · · · · · · 0

0 −�2(1 − p) �2(1 − p) 0 · · · ���

0 0 −�2(1 − p)2 �2(1 − p)2
� � �

���
���

� � �
� � �

� � �
� � � 0

���
� � �

� � �
� � � −�2(1 − p)N−1 �2(1 − p)N−1

0 0 0 0 0 0


�

This matrix is the infinitesimal generator of the “birth” process of class-2
groups, when there is at least one VIP customer in the system. Recall that
the service of class-2 customers (groups) is represented only in the matrix
B, since they receive service only when there are no VIP customers in the
system. Let �� = (�0, �1, � � � , �N ) be the stationary vector of the matrix A,
i.e., ��A = �0 and �� · �e = 1 (where �e is a column vector with all entries equal
to 1). Then, an immediate result is that �� = (0, 0, � � � , 0︸ ︷︷ ︸

N times

, 1). The stability

condition given in Neuts[15],

��A0�e < ��A2�e ,

translates here into �1 < �1 (see end of section 2.1).
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Define for all m ≥ 0 the steady-state probability vector �Pm =
(Pm0,Pm1, � � � ,PmN ). Then (see Ref.[15]),

�Pm = �P0Rm , m ≥ 0,

where R is the minimal non-negative solution of the matrix quadratic
equation

A0 + RA1 + R 2A2 = 0� (4.1)

The vector �P0 is derived by solving the following linear system,

�P0(B + RA2) = �0,
�P0 · �e = 1 − �� (4.2)

4.1. Calculation of the Rate Matrix R

We denote the elements of R as rij , for i , j = 0, 1, � � � ,N . Since A0 and
A2 are diagonal matrices, and A1 consists of the main diagonal and the one
above it (all other elements are 0), it follows that R is an upper triangular
matrix. A similar case in which R was in this form was studied in Ref.[23].
It follows that [

R 2
]
ii

= r 2ii , i = 0, 1, � � � ,N ,

[
R 2

]
ij

=
j∑

k=i

rik rkj , i < j �

Rewriting equation (4.1) for the elements on the main diagonal leads to

�1 − rii(�1 + �2(1 − p)i + �1) + �1r 2ii = 0, i = 0, 1, � � � ,N − 1, (4.3)

�1 − rNN (�1 + �1) + r 2NN�1 = 0� (4.4)

Since R is the minimal non-negative solution of (4.1), from (4.3) and (4.4)
we get

rii = �1 + �2(1 − p)i + �1 − √
(�1 + �2(1 − p)i + �1)2 − 4�1�1

2�1
,

i = 0, 1, � � � ,N − 1, (4.5)

rNN = �1

�1
= �� (4.6)
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It is easy to see that the elements on the main diagonal of R and the roots
w(n)

1 of the polynomials �n(w) discussed in Section 2 satisfy the relation

rii = �1

�1
w(i)

1 , 0 ≤ i ≤ N �

The other elements of R (for i < j) satisfy

�2(1 − p)j−1ri ,j−1 − (�1 + �2(1 − p)j + �1)rij + �1

j∑
k=i

rik rkj = 0� (4.7)

From equation (4.7), we can recursively calculate the other elements of
the matrix R , in the following order. We first compute the elements on
the first diagonal above the main diagonal. More precisely, let j = i + 1 in
(4.7). We then have

�2(1 − p)i rii − (�1 + �2(1 − p)i+1 + �1)ri ,i+1 + �1(rii ri ,i+1 + ri ,i+1ri+1,i+1) = 0,

which gives

ri ,i+1 = �2(1 − p)i rii
�1 + �2(1 − p)i+1 + �1 − �1(rii + ri+1,i+1)

�

We continue and calculate the next diagonal, that is, we assume that
j = i + 2. Equation (4.7) then becomes

�2(1 − p)i+1ri ,i+1 − (�1 + �2(1 − p)i+2 + �1)ri ,i+2

+ �1(rii ri ,i+2 + ri ,i+1ri+1,i+2 + ri ,i+2ri+2,i+2) = 0,

or,

ri ,i+2 = �2(1 − p)i+1ri ,i+1 + �1ri ,i+1ri+1,i+2

�1 + �2(1 − p)i+2 + �1 − �1(rii + ri+2,i+2)
�

In general, the (i , i + k)th element of R is given by

ri ,i+k = �2(1 − p)i+k−1ri ,i+k−1 + �1
∑k−1

n=1 ri ,i+nri+n,i+k

�1 + �2(1 − p)i+k + �1 − �1(rii + ri+k,i+k)
, k = 1, 2, � � � ,N − i ,

(4.8)

where we define
∑0

n=1 (·) = 0.
By using this procedure, we bypass the need to numerically solve the

system of non-linear equations given in (4.1), and convergence issues
become irrelevant.



374 Perel and Yechiali

5. SPECIAL CASES AND NUMERICAL RESULTS

5.1. Special Cases

5.1.1. A Single Class-2 Group
Consider the case where N = 1. That is, at most one class-2 group

can be formed in the system. An arriving class-2 customer immediately
enters this group if it exists, or becomes its leader if it does not exist. So,
N = 1 is equivalent to p = 1. We present the calculation of the steady-state
probabilities Pmn (m ≥ 0, n = 0, 1) by using both the PGFs and the Matrix
Geometric methods.

First, writing the balance equations and using the PGFs lead to

F0(w) = �2wP01 − �1(1 − w)P00

(�1w − �1)(1 − w) + �2w
, (5.1)

and

(�1w − �1) (1 − w)F1(w) − �2wF0(w) = −�1(1 − w)P01 − �2wP01, (5.2)

which are equivalent to equations (2.3) and (2.9). Since the

denominator of (5.1) vanishes at w = w(0)
1 = �1+�2+�1−

√
(�1+�2+�1)

2−4�1�1
2�1

(see
equation 2.11), we obtain P00 and P01 by solving the equations

�2w
(0)
1 P01 − �1(1 − w(0)

1 )P00 = 0,

P00 + P01 = 1 − � = 1 − �1

�1
�

The solution is

P00 = �2(�1 − �1)w
(0)
1

�1

[
(�2 − �1)w

(0)
1 + �1

] , P01 = (�1 − �1)(1 − w(0)
1 )

�1(1 − w(0)
1 ) + �2w

(0)
1

� (5.3)

Now, to find P•0 and P•1 we have

�2P•0 = �2P01,

P•0 + P•1 = 1�

Clearly, �[L2] = P•1 and �[W2] = �[L2]
�̂2

, where �̂2 = �2P•0.
Furthermore, since X ≡ 1 in this case, we have:

�[W a
2 ] = �[�1]�[L1] + �[C1]�[X ] = 1

�1 − �1
· �1

�1 − �1
+ �1

�2(�1 − �1)
,
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and

�[D(1)] = 1 + �2�1

�2(�1 − �1)
= 1 + �2 · �1

�2
· 1
�1 − �1

+ �2

�2
�

Indeed, �[D(1)] consists of the first class-2 arrival, the class-2 arrivals during
the service time of VIP customers, and the class-2 arrivals during the service
time of the class-2 group.

A second approach of analysis is via the Matrix Geometric method.
Following the notations and calculations presented in Section 4, we get

B =
(−(�1 + �2) �2

�2 −(�1 + �2)

)
, A0 = �1I ,

A1 =
(−(�1 + �2 + �1) �2

0 −(�1 + �1)

)
, A2 = �1I �

The matrix R is given by

R =
 �1+�2+�1−

√
(�1+�2+�1)

2−4�1�1
2�1

�1−�2−�1+
√

(�1+�2+�1)
2−4�1�1

2�1

0 �1
�1

 �

Solving the system in (4.2) gives the results in (5.3), and the rest of the
steady-state probabilities are derived from

�Pm = �P0Rm , m ≥ 0,

where �Pm = (Pm0,Pm1).

5.1.2. No Friends Among Class-2 Customers
We assume that p = 0 and N > 1. That is, in such a world of strangers,

an arriving class-2 customer that finds the system in state (•,n), for 0 ≤
n ≤ N − 1 immediately enters the n + 1-st position. If the system is in state
(•,N ), the customer is not lost and joins the group in the N th position.
So, a group with more than one customer can be built only in the last
position (the N th), and while this group steps forward in line toward the
server, new class-2 arrivals cannot join it.

An analysis via PGFs yields similar results to those obtained in
Section 2, with the following modifications:

Fn(w) =
∑n

j=0 bn−j(w)(�2w)j (�(w))n−j

(�(w))n+1 , for 0 ≤ n ≤ N − 1,
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FN (w) =
∑N

j=0 bN−j(w)(�2w)j (�(w))N−j

(�(w))N �N (w)
, (5.4)

where bn(w) are the same as in previous sections, and

�(w) = (�1w − �1)(1 − w) + �2w,
�N (w) = (�1w − �1)(1 − w)�

The calculation of the boundary probabilities P00,P01, � � � ,P0N appearing
in bj(w), j = 0, 1, � � � ,N , is done in a similar manner as in Section 2.
The only difference is that only a single root is utilized, w(0)

1 =
�1+�2+�1−

√
(�1+�2+�1)

2−4�1�1
2�1

. The substitution of this root in the denominator
of Fn(w), for n = 0, 1, � � � ,N − 1, together with equation (2.14), provides
us with N + 1 equations relating between the boundary probabilities. Once
P0n , n = 0, 1, � � � ,N , are known, the marginal distribution of L2 is derived
from

�2P•n = �2P0,n+1, n = 0, 1, � � � ,N − 1,

and
∑N

n=0 P•n = 1. Now, �[L2] = ∑N
n=0 nP•n and �[W2] = �[L2]

�̂2
, where �̂2 =

�2
∑N−1

n=0 P•n .
Furthermore,

�[X ] =
N−1∑
n=0

P•n(n + 1) + NP•N = �[L2] + 1 − P•N ,

and �[W a
2 ] is derived from (3.26).

The expression for �[D(1)] is identical to the one given in the previous
extreme case, when N = 1. This follows since class-2 customers can join
other class-2 customers only in the last group, and no other jobs can join
it during its progress down the line.

An analysis via the Matrix Geometric method is similar to the one
presented in Section 4.

5.2. Numerical Results

In Tables 1–3, we present some numerical results for each one of the
cases N = 5, N = 10, and N = 15, for different values of �1, �2, �1, �2,
and p. We calculate the measures introduced in previous sections. Note
that r (L1,L2) stands here for the correlation coefficient between L1 and L2

(number of VIP customers against number of class-2 groups).
The tables exhibit that, as expected, �[L2], �[W2], �[W a

2 ], and �[X ]
decrease monotonically when p increases. In addition, as p increases,
�[D(1)] ascends, and �[Ltotal ] decreases, since the mean size of served
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TABLE 1 Numerical results for N = 5

�1 = 2, �1 = 3, �2 = 2 �̂2 �[L2] �[W2] �[W a
2 ] �[D(1)] �

[
Ltotal

]
r (L1,L2) �[X ]

�2 = 3 p = 0�01 0.6598 4.6144 6.9937 9�1222 3�6178 18�5020 0.2700 4.7481
p = 0�1 0.6555 4.4506 6.7896 7�8852 3�8034 15�6031 0.3000 3.9235
p = 0�3 0.6371 3.8546 6.0504 5�8774 4�1872 11�1145 0.3704 2.5849
p = 0�6 0.5806 2.4833 4.2775 4�3050 4�6158 7�1984 0.4246 1.5366
p = 0�9 0.4989 1.3567 2.7195 3�6389 5�1724 5�2178 0.4057 1.0926

�2 = 5 p = 0�01 0.6654 4.8042 7.2196 9�2678 6�3047 32�1411 0.2340 4.8452
p = 0�1 0.6644 4.7118 7.0918 8�0429 6�4808 26�8430 0.2646 4.0286
p = 0�3 0.6585 4.3116 6.5479 6�0291 6�8933 18�6870 0.3421 2.6860
p = 0�6 0.6276 2.9845 4.7551 4�3713 7�3568 11�9090 0.4228 1.5808
p = 0�9 0.5589 1.5723 2.8133 3�6481 8�0139 8�4837 0.4058 1.0987

�2 = 8 p = 0�01 0.6664 4.8910 7.3388 9�3190 10�5734 53�3000 0.2000 4.8793
p = 0�1 0.6662 4.8379 7.2615 8�1024 10�7276 44�3099 0.2302 4.0683
p = 0�3 0.6647 4.5822 6.8937 6�0999 11�1414 30�3136 0.3105 2.7332
p = 0�6 0.6509 3.4227 5.2577 4�4130 11�6345 19�0396 0.4185 1.6087
p = 0�9 0.6007 1.7735 2.9519 3�6542 12�3237 13�3857 0.4053 1.1028

batches grows (larger-size groups leave the system). An interesting
observation is that in some cases �[W2] < �[W a

2 ], meaning that the
expected sojourn time in the system of a class-2 group leader is smaller
than that of an arbitrary class-2 customer. This result is somewhat counter
intuitive. However, it occurs in two situations: when p is small and when
p is large. In the first case new groups are formed fast, and L2 reaches
its maximal value, N , quite fast. Therefore, when p is small, a new class-
2 arrival does not know any of the present group leaders and will join
the last group, spending more time in the system than a class-2 customer
who becomes a group leader. The second case seems to be a result of the
finiteness of the number of groups.

TABLE 2 Numerical results for N = 10

�1 = 2, �1 = 3, �2 = 2 �̂2 �[L2] �[W2] �[W a
2 ] �[D(1)] �[Ltotal ] r (L1,L2) �[X ]

�2 = 3 p = 0�01 0.6655 9.5629 14�3471 16�0721 3�6113 35�0865 0.2603 9.3814
p = 0�1 0.6655 8.7898 13�2077 11�2830 4�0145 24�7811 0.3087 6.1887
p = 0�3 0.6456 5.1689 8�0067 6�2427 4�3289 12�9022 0.3836 2.8284
p = 0�6 0.5807 2.4998 4�3043 4�3064 4�6173 7�2151 0.4238 1.5376
p = 0�9 0.4989 1.3567 2�7195 3�6389 5�1724 5�2178 0.4572 1.0926

�2 = 5 p = 0�01 0.6666 9.7886 14�6830 16�2517 6�3190 61�2881 0.2346 9.5012
p = 0�1 0.6666 9.4137 14�1218 11�5957 6�7435 42�2392 0.2916 6.3971
p = 0�3 0.6627 6.4667 9�7576 6�5231 7�2000 22�2722 0.3832 3.0154
p = 0�6 0.6279 3.0346 4�8324 4�3744 7�3637 11�9658 0.4229 1.5829
p = 0�9 0.6666 1.5723 2�8133 3�6481 8�0139 8�4837 0.4203 1.0987

�2 = 8 p = 0�01 0.6666 9.8839 14�8259 16�3082 10�5915 102�2750 0.2038 9.5388
p = 0�1 0.6666 9.6870 14�5305 11�7018 10�9874 69�3388 0.2657 6.4679
p = 0�3 0.6661 7.5257 11�2976 6�6806 11�6269 36�3851 0.3815 3.1204
p = 0�6 0.6514 3.5401 5�4349 4�4186 11�6559 19�1880 0.4223 1.6124
p = 0�9 0.6007 1.7735 2�9519 3�6542 12�3237 13�3857 0.4201 1.1028
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TABLE 3 Numerical results for N = 15

�1 = 2, �1 = 3, �2 = 2 �̂2 �[L2] �[W2] �[W a
2 ] �[D(1)] �[Ltotal ] r (L1,L2) �[X ]

�2 = 3 p = 0�01 0.6666 14�4949 21�7425 22�6602 3�3776 47�2886 0.2494 13.7735
p = 0�1 0.6663 12�3595 18�5498 13�0680 4�2239 31�0610 0.3063 7.3786
p = 0�3 0.6456 5�2121 8�0572 6�2467 4�3319 12�9439 0.3818 2.8312
p = 0�6 0.5807 2�4998 4�3043 4�3064 4�6173 7�2151 0.4238 1.5376
p = 0�9 0.4989 1�3567 2�7195 3�6390 5�1724 5�2178 0.4238 1.0926

�2 = 5 p = 0�01 0.6666 14�7742 22�1613 22�8956 6�3560 89�1376 0.2378 13.9304
p = 0�1 0.6666 13�7569 20�6356 13�6121 7�0146 52�6509 0.3074 7.7414
p = 0�3 0.6628 6�6089 9�9710 6�5360 7�2159 22�4781 0.3800 3.0240
p = 0�6 0.6279 3�0346 4�8324 4�3744 7�3637 11�9658 0.4229 1.5829
p = 0�9 0.5589 1�5723 2�8133 3�6481 8�0139 8�4837 0.4229 1.0987

�2 = 8 p = 0�01 0.6666 14�8765 22�3148 22�9549 10�6135 148�7310 0.2072 13.9700
p = 0�1 0.6666 14�3656 21�5484 13�7963 11�2736 85�3069 0.2940 7.8642
p = 0�3 0.6661 7�9218 11�8917 6�7085 11�6779 37�0417 0.3799 3.1390
p = 0�6 0.6514 3�5409 5�4350 4�4186 11�6559 19�1880 0.4223 1.6124
p = 0�9 0.6007 1�7735 2�9519 3�6542 12�3237 13�3857 0.4223 1.1028

Numerical results for the matrix R and for the vector �P0 are presented
below, for N = 5 and N = 10, with parameters values �1 = 2, �1 = 3, �2 = 5,
�2 = 2, and p = 0�1. Note that the elements rij , (i , j = 0, 1, � � � , 4) of R when
N = 5 are identical to those when N = 10. This follows from equation (4.8).

For N = 5, we get

R =


0�2137 0�1306 0�0833 0�0557 0�0391 0�0378

0 0�2268 0�1334 0�0825 0�0541 0�0487
0 0 0�2401 0�1357 0�0815 0�0669
0 0 0 0�2537 0�1376 0�1005
0 0 0 0 0�2674 0�1704
0 0 0 0 0 0�6667

 ,

�P0 = (
0�00113, 0�00359, 0�01100, 0�03137, 0�08294, 0�20330

)
�

For N = 10, we get

R =



0�2137 0�1306 0�0833 0�0557 0�0391 0�0287 0�0219 0�0172 0�0137 0�0112 0�0136
0 0�2268 0�1334 0�0825 0�0541 0�0374 0�0272 0�0206 0�0160 0�0128 0�0152
0 0 0�2401 0�1357 0�0815 0�0523 0�0357 0�0257 0�0193 0�0149 0�0173
0 0 0 0�2537 0�1376 0�0802 0�0504 0�0339 0�0242 0�0181 0�0201
0 0 0 0 0�2674 0�1391 0�0786 0�0484 0�0322 0�0228 0�0242
0 0 0 0 0 0�2814 0�1402 0�0768 0�0464 0�0305 0�0302
0 0 0 0 0 0 0�2954 0�1407 0�0748 0�0443 0�03986
0 0 0 0 0 0 0 0�3094 0�1409 0�0726 0�0570
0 0 0 0 0 0 0 0 0�3235 0�1406 0�0918
0 0 0 0 0 0 0 0 0 0�3376 0�1753
0 0 0 0 0 0 0 0 0 0 0�6667


,
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�P0 = (
0�0000282, 0�0000896, 0�0002743, 0�0007822, 0�0020676, 0�0050676,

0�0115328, 0�0244097, 0�0481318, 0�0885722, 0�1523773
)
�
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