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We study a M/M/1 queue in a multi-phase random environment, where the system
occasionally suffers a disastrous failure, causing all present jobs to be lost. The system
then moves to a repair phase. As soon as the system is repaired, it moves to phase i with
probability qi ≥ 0. We use two methods of analysis to study the probabilistic behavior
of the system in steady state: (i) via probability generating functions, and (ii) via matrix
geometric approach. Due to the special structure of the Markov process describing the
disaster model, both methods lead to explicit results, which are related to each other.
We derive various performance measures such as mean queue sizes, mean waiting times,
and fraction of lost customers. Two special cases are further discussed.

Keywords: M/M/1 queue; random environment; disasters; lost customers; generating
functions; matrix geometric.

1. Introduction

The M/M/1 queue in random environment, where the underlying environment is
a n-phase continuous-time Markov chain (MC), has been studied intensively by
various authors (see e.g., Gupta et al., 2006; Neuts, 1981; Yechiali and Naor, 1971;
Yechiali, 1973). In the present work, we further consider such a system, but one that
suffers random disastrous failures (catastrophes, see e.g., Artalejo and Gomez-Coral,
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1999; Chakravarthy, 2009; Sengupta, 1990; Sudhesh, 2010; Yechiali, 2006). When
occurs, a failure causes all present jobs to be cleared (flushed) out of the system and
lost. The system itself then moves to a repair phase (phase 0) that its duration is
exponentially distributed. Being repaired, the system moves to an operative phase
i ≥ 1 with probability qi ≥ 0, where

∑n
i=1 qi = 1. Such a model may represent

a manufacturing process or a storage process (Kella and Whitt, 1992) operating
in randomly changing environment where a severe failure causes all units in pro-
cess to be discarded (see e.g., Artalejo and Gomez-Coral, 1999; Sudhesh, 2010;
Yechiali, 2006). The model can also represent a dynamically changing road traffic
evolution when an incident (such as an accident or a broken traffic light) requires
that all present vehicles be directed to another roadway. In Sudhesh (2010), the
author argues that “queueing models with disasters seem to be appropriate in some
computer network applications or telecommunications applications that depend on
satellites or in Internet applications”.

The paper is constructed as follows: In Sec. 2, we describe the model and define
the two-dimensional stochastic process underlying its dynamics. In Sec. 3, we con-
struct the balance equations for the system’s steady-state probabilities and calculate
the fraction of time the system resides in phase i (0 ≤ i ≤ n). Probability generating
functions (PGFs) are employed in Sec. 4, while the roots of corresponding quadratic
functions are explicitly calculated and used to derive explicit solutions for the prob-
abilities that the system is in phase i and no customers are present. In Sec. 5, we use
matrix geometric analysis. Due to the special structure of the model, key matrices
are upper diagonal which enables explicit and direct calculation of the basic matrix
R, without the usual iteration procedure. The connection between the roots related
to the PGFs and the entries of the basic matrix R are revealed in Sec. 6, along with
other relationships. In Secs. 7 and 8, various performance measures, such as mean
queue sizes, mean sojourn times and mean number of customers lost per unit time
are calculated. Finally, two special cases are investigated.

2. The Model

Consider a M/M/1 type queue operating in a special “random environment”
as follows. The underlying environment is an (n + 1)-dimensional continuous-
time MC, with phases i = 0, 1, 2, . . . , n, governed by the matrix [q] of transition
probabilities:

[q] =




0 q1 q2 . . . qn

1 0 0 . . . 0
1 0 0 . . . 0
· · · . . . ·
1 0 0 . . . 0


.

When in operative phase i ≥ 1 the system acts as an M(λi)/M(µi)/1 queue, with
Poisson arrival rate λi ≥ 0 and service rate µi ≥ 0. The duration of time the system
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resides in phase i is an exponentially distributed random variable with mean 1/ηi,
i = 1, 2, . . . , n.

Furthermore, when in operative phase i ≥ 1, the system suffers occasionally a
disastrous failure (catastrophe), causing it to move to a “failure” phase, denoted
by i = 0. A disaster causes all present customers (jobs) to be cleared (flushed)
out of the system. When in the failure phase i = 0, the system undergoes a repair
process, having exponentially distributed duration with mean 1/η0. The arrival
process continues with rate λ0 ≥ 0 but no service is rendered, i.e., µ0 = 0. When
the system is repaired, it jumps from the failure phase to some operative phase i ≥ 1
with probability qi ≥ 0,

∑n
i=1 qi = 1. That is, there are no direct moves from phase

i ≥ 1 to phase j ≥ 1: in each “active” phase the system stays until a breakdown
occurs, which sends it to phase 0. Only then, after a repair duration, the system
can move back to one of the operating phases i = 1, 2, . . . , n.

A stochastic process {U(t), X(t)} describes the system’s state at time t as fol-
lows: U(t) denotes the phase in which the system operates at time t, while X(t)
counts the number of customers present in the system at that time. The system is
said to be in state (i, m) if it is in phase i, and there are m customers in the system.
Accordingly, let pim be the steady-state probability of the system in state (i, m).
That is, pim = limt→∞{P (U(t) = i, X(t) = m)} ∀ t ≥ 0, 0 ≤ i ≤ n, m = 0, 1, 2, . . . .

Figure 1 below depicts a transition-rate diagram of the above queueing system (see
Note below).

Fig. 1. A transition-rate diagram of a single-server queueing system in random environment and
with system failures. In case of a disaster the system moves to state (0, 0). After the system is
repaired, it moves to phase i with probability qi.

Note: For clarity of exposition, not all transitions are shown.
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3. Balance Equations

The system’s steady-state balance equations are given as follows:
For the failure phase i = 0, while m = 0,

(λ0 + η0)p00 =
n∑

i=1

ηi

∞∑
m=0

pim =
n∑

i=1

ηipi�, (1)

and while m ≥ 1,

(λ0 + η0)p0m = λ0p0,m−1. (2)

For i = 1, 2, . . . , n and m = 0,

(λi + ηi)pi0 = µipi1 + η0qip00, (3)

and when m ≥ 1,

(λi + µi + ηi)pim = λipi,m−1 + µipi,m+1 + η0qip0m. (4)

From (1) and (2) we get that

p0m =
(

λ0

λ0 + η0

)m

p00 m ≥ 0, (5)

implying that

p0� =
λ0 + η0

η0
p00, (6)

where pi� =
∑∞

m=0 pim, i = 0, 1, 2, . . . , n.
The limit probabilities of the underlying MC Q, dj = limt→∞{P (U(t) = j)},

satisfy
∑n

j=0 dj = 1, d0 =
∑n

j=1 dj , and dj = d0qj for j ≥ 1. Therefore, d0 = 1
2 , and

dj = qj

2 for j ≥ 1. (Intuitively, d0 = 1
2 since the MC constantly alternates between

phase i = 0 and one of the other phases j ≥ 1, and thus visits phase 0 half of the
times). Hence, the proportion of time the system resides in phase i is given by

pi� =
di

ηi∑n
k=0

dk

ηk

=
qi

ηi

1
η0

+
∑n

k=1
qk

ηk

1 ≤ i ≤ n,

p0� =
d0
η0∑n

k=0
dk

ηk

=
1
η0

1
η0

+
∑n

k=1
qk

ηk

=
1

αη0
,

(7)

where

α =
1
η0

+
n∑

k=1

qk

ηk
.

From (7) it follows that

ηipi� = η0qip0� i = 1, 2, . . . , n. (8)

Now, given p0�, p00 is calculated from (6), namely,

p00 =
1

α(λ0 + η0)
, (9)

and all p0m, for m ≥ 0, are explicitly determined by (5).
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We note that because of the disaster effect, the system is positive recurrent.

4. Generating Functions

Define a set of (partial) PGFs:

Gi(z) =
∞∑

m=0

pimzm i = 0, 1, . . . , n (0 ≤ z ≤ 1). (10)

For i = 0, using Eqs. (1) and (2), we get

(λ0(1 − z) + η0)G0(z) =
n∑

i=1

ηipi�. (11)

Writing Gi(1) = pi� and setting z = 1 in (11) we have

η0p0� =
n∑

i=1

ηipi�. (12)

Equation (12) reflects the fact that, when failure occurs in some phase i ≥ 1, the
system always moves to phase i = 0.

Alternatively, using (5),

G0(z) =
∞∑

m=0

p0mzm = p00

∞∑
m=0

(
λ0z

λ0 + η0

)m

= p00
λ0 + η0

λ0(1 − z) + η0
. (13)

Using (6) and (12) brings us back to Eq. (11).
For i ≥ 1, using (3) and (4) and arranging terms, we get

(λi(1 − z)z + µi(z − 1) + ηiz)Gi(z) − η0qizG0(z) = µi(z − 1)pi0. (14)

Now, given G0(z) in Eq. (11), each Gi(z) in (14) is fully determined once pi0 is
known, for 1 ≤ i ≤ n. Define

f0(z) = λ0(1 − z) + η0,

fi(z) = (λiz − µi)(1 − z) + ηiz i ≥ 1.
(15)

The quadratic polynomials fi(z), i ≥ 1, each have two real roots. Let zi denote the
(only) root of fi(z) in the interval (0, 1). This follows since

fi(0) = −µi < 0, fi(1) = ηi > 0, fi(±∞) < 0.

The root zi ∈ (0, 1) is given by

zi =
(λi + µi + ηi) −

√
(λi + µi + ηi)2 − 4λiµi

2λi
. (16)

In fact, zi represents the Laplace–Stieltjes Transform (LST), evaluated at point ηi,
of the busy period in a M/M/1 queue with arrival rate λi and service rate µi. From
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Eqs. (11), (12) and (14) it follows that

pi0 =
η0qiziG0(zi)
µi(1 − zi)

=
η2
0p0�qizi

[λ0(1 − zi) + η0]µi(1 − zi)
1 ≤ i ≤ n. (17)

Finally, with pi0 given in (17), each PGF Gi(z) is completely determined by
Eqs. (11) and (14). Now any probability pim can be calculated, either by differ-
entiation of Gi(z) at z = 0, or recurssively from Eqs. (2) to (5).

5. Matrix Geometric

Another approach to analyze our system is by using Neuts’ (Neuts, 1981) Matrix
Geometric approach. This analysis also reveals the relation between the roots zi

and the entries of Neuts’ matrix R (see below). Specifically, the continuous-time
MC underlying the queueing process has the following rate matrix Q

Q =




B + A2 + A1 A0 0 0 . . .

B + A2 A1 A0 0 . . .

B A2 A1 A0 . . .

B 0 A2 A1 . . .

· · · · . . .

· · · · . . .




,

where

B =




0 0 . . . 0
η1 0 . . . 0
· · . . . ·

ηn 0 . . . 0


,

A0 = diag(λ0, λ1, . . . , λn),

A1 =




−λ0 − η0 q1η0 q2η0 . . . qnη0

0 −λ1 − η1 − µ1 0 . . . 0
· · · . . . ·
· · · . . . ·
0 . . . . . . −λn−1 − ηn−1 − µn−1 0
0 . . . . . . 0 −λn − ηn − µn




,

A2 = diag(0, µ1, . . . , µn).

The steady-state probability vector P =(P0, P1, . . .) of Q, with Pm =(p0m, p1m, . . . ,

pnm) being a 1 × (n + 1) vector, has a matrix geometric form:

Pm = P0R
m, m ≥ 0

P0(B + A2 + A1) + P0R(B + A2) +

( ∞∑
m=2

Pm

)
B = 0

(18)
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implying that
∞∑

m=0

Pme = P0

( ∞∑
m=0

Rm

)
e = P0(I − R)−1e = 1, (19)

where the (n + 1) × (n + 1) matrix R is the smallest non-negative solution (see
Neuts, 1981) of

A0 + RA1 + R2A2 = 0. (20)

Due to the (upper) diagonal structures of the matrices A0, A1 and A2, it follows
from Eq. (20) that R is also an upper diagonal having the following form

R =




r00 r01 r02 . . . r0n

0 r1 0 . . . 0
· · · . . . ·
· · · . . . ·
0 . . . 0 rn−1 0
0 . . . . . . 0 rn




. (21)

Thus, from (20) and (21), the nonzero entries of R can be directly calculated:

ri =
(λi + µi + ηi) −

√
(λi + µi + ηi)2 − 4λiµi

2µi
, i > 0,

r00 =
λ0

λ0 + η0
,

r0i =
r00qiη0

(λi + µi + ηi) − (r00 + ri)µi
, i > 0.

6. Connections Between the Two Approaches

It is important to emphasize the relationship between the roots zi and the entries ri.
Indeed, a simple relationship exists, namely, ri = λi

µi
zi. The reader is also directed

to another case Zhang and Tian (2004) where the matrix R is upper diagonal
and its entries are explicitly calculated. A case where an explicit solution for the
corresponding matrix R can be determined may be found in Drekic and Grassmann
(2002). A connection between the two methods in terms of calculating the vector of
probabilities P0 = (p00, p10, . . . , pn0) is the following: In order to compute the vector
P0 we use the matrix G satisfying RA2 = A0G and is the smallest non-negative
solution (see Neuts, 1981) to

A2 + A1G + A0G
2 = 0. (22)

The matrix G has the same structure as R and therefore we have, for i > 0,
gi = µiri

λi
= zi; g0i = µir0i

λ0
; and g00 = 0. gi represents the probability of starting in

state (i, 1) and returning to state (i, 0) with no disaster, while g0i represents the
same probability starting in state (0, 1). Also the mean time spent in state (0, 0)

1450016-7
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between two consecutive disasters is 1
(λ0+η0) , and in state (i, 0)

λ0

λ0 + η0
g0i

1
ηi + λi(1 − gi)

+
η0

λ0 + η0
qi

1
ηi + λi(1 − gi)

.

Hence, P0 is proportional to the vector

V =
(

1,
λ0g01 + η0q1

η1 + λ1(1 − g1)
, . . . ,

λ0g0n + η0qn

ηn + λn(1 − gn)

)
. (23)

That is, P0 = cV . The coefficient c is now calculated by replacing P0 with cV in
Eq. (19). Thus, c is readily calculated, and so is P0 = cV . In view of (23) P00 = c.
All other probability vectors Pm can now be calculated via (18).

7. Mean Queue Sizes and Mean Customers Cleared Per Unit Time

Let G′
i(1) = E[Li] =

∑∞
m=1 mpim, i = 0, 1, . . . , n. Then, taking derivatives of (11)

and (14) at z = 1, we obtain [using (6) and (7)]

E[L0] =
λ0

( 1
η0

+
∑n

k=1
qk

ηk
)η2

0

=
λ0

η0

(
1 +

λ0

η0

)
p00 =

λ0

η0
p0�, (24)

and

(−λi + µi + ηi)pi� + ηiE[Li] − η0qi(p0� + E[L0]) = µipi0 i ≥ 1. (25)

This leads to

E[Li] =
1
ηi

[
µipi0 +

(
λ0

η0
+

λi

ηi
− µi

ηi

)
qi

1
η0

+
∑n

k=1
qk

ηk

]

=
1
ηi

[
µipi0 +

(
λ0

η0
+

λi

ηi
− µi

ηi

)
pi�ηi

]
i ≥ 1.

(26)

From (17) and (26), the total number of customers in the system is given by

E[L] =
n∑

i=0

E[Li]

=
λ0

η0

(
1 +

λ0

η0

)
p00 +

n∑
i=1

1
ηi

[
η2
0p0�qizi

(λ0(1 − zi) + η0)(1 − zi)

+
(

λ0

η0
+

λi

ηi
− µi

ηi

)
pi�ηi

]
. (27)

Finally, let C be the number of customers cleared from the system per unit time.
Then

E[C] =
n∑

i=1

ηi

∞∑
m=1

mpim =
n∑

i=1

ηiE[Li].
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The fraction of customers receiving full service is therefore

λ − E[C]
λ

= 1 − E[C]
λ

.

8. Sojourn Times

Let Wim be the sojourn time of a customer that arrives to the system when it is in
state (i, m). We claim

Proposition 1.

E[Wim] =
1
ηi

[
1 −

(
µi

µi + ηi

)m+1
]
. (28)

Proof. When in state (i, m), the time until departure, whether as a result of a
failure, or as a result of service completion, is the minimum of two independent
variables: (a) time to failure, distributed exponentially with parameter ηi, and (b)
sum of (m + 1) service completions, which has Erlang (Gamma) distribution with
(m + 1) stages and parameter µi, denoted as Erlang (µi, m + 1).

Thus, let Xi ∼ Erlang (µi, m + 1) and Yi ∼ exp(ηi), so that

Wim = min(Xi, Yi).

Then

P (Wim ≥ w) = P (Xi ≥ w)P (Yi ≥ w) = e−ηiw
m∑

k=0

e−µiw
(µiw)k

k!
.

Therefore,

E[Wim] =
∫ ∞

w=0

P (Wim ≥ w)dw

=
∫ ∞

w=0

m∑
k=0

e−µiw
(µiw)k

k!
e−ηiwdw

=
m∑

k=0

µk
i

(µi + ηi)k+1

∫ ∞

w=0

e−(µi+ηi)w
(µi + ηi)k+1wk

k!
dw

=
1
ηi

[
1 −

(
µi

µi + ηi

)m+1
]
.

Now, define E[W ] as the mean sojourn time of an arbitrary customer. Then,

E[W ] =
n∑

i=0

∞∑
m=0

pimE[Wim]. (29)

In fact, using Little’s law, E[W ] = 1
λ̂
E[L] where λ̂ =

∑n
i=0 λipi�.

1450016-9
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9. Two Special Cases

9.1. One operative phase

A special case of the general model introduced in Sec. 2 is when n = 1. That is,
there is only one active phase and one failure phase. We consider the homogeneous
case where the arrival rates are λ0 = λ1 = λ. (Clearly, since n = 1, q1 = 1, and this
case becomes a special case of Yechiali (Yechiali, 1973), where an M/M/1 system
with breakdowns and customers’ impatience is studied. Assuming in Yechiali (1973)
that ξ = 0, the two models coincide). It thus follows that

p0� =
η1

η0 + η1
, p1� =

η0

η0 + η1
, (30)

and

p10 =
p0�η2

0z1

(λ(1 − z1) + η0)µ1(1 − z1)
, (31)

where z1 is the root of f1(z), as discussed in Sec. 4.
Furthermore E[L0] = λp0�/η0, which equates the mean rate of arrivals to phase 0,

λp0�, to the mean rate of departures from this phase, η0E[L0]. In addition,

η1E[L1] = λp1� + η0E[L0] − µ1(p1� − p10). (32)

Again, Eq. (32) equates the rates of customers inflow and outflow at phase 1.

9.2. Arrival stops when the system is down

Another special case of the general n-phase model of Sec. 2 is when the arrival
process stops whenever the system is down. That is, λ0 = 0, implying that p0m = 0,
∀m > 0. The set of probabilities pi� is unchanged and is given by (7).

The equivalent of (11) and (14) is

G0(z) = p00, Gi(z) =
1

fi(z)
[µi(z − 1)pi0 + η0qip00z] i ≥ 1, (33)

where fi(z) are given by (15). Finally,

E[L0] = 0, ηiE[Li] + µi(pi� − pi0) = λipi�, i ≥ 1, (34)

which, again, equates the inflow and outflow rates at phase i.

10. Conclusion

We have considered an extended version of the M/M/1 queue in a n-phase Marko-
vian random environment with disasters that, when occurs, destroy all customers
present in the system. Two methods of analysis have been used: (i) PGFs and
(ii) matrix geometric approach, while some relationships between them have been
revealed. Mean queue sizes, mean (conditional and unconditional) waiting times,
and fraction of customers lost were calculated, and two special cases were further
investigated.
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