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Abstract

We show that, for the M/M/∞ queue in a Markovian random environment, the joint prob-

ability distribution function (pdf) of the two variables: random phase and number of cus-

tomers in the system, is equal to the product of the corresponding marginal pdfs if and only

if the ratio of arrival rate to service rate is the same for all phases. We explicitly derive this

joint pdf. Furthermore, for the general case, we calculate the conditional and overall mean

queue lengths.

1 Introduction

Steady-state M/M/∗ queues in random environment have been long studied in the literature.

Early models considered the M/M/1 queue with an underlying n-phase continuous-time

Markov chain (MC) as its random environment. That is, when in phase (environment) i, the

system acts as a M(λi)/M(µi)/1 queue with arrival and service rate λi and µi, respectively.

In Yechiali and Naor [8], and recently in Gupta, Wolf, Harchol-Balter and Yechiali [4], the

case with n = 2 was analyzed. Yechiali [9] studied the case where 2 ≤ n < ∞. Neuts [6]

formulated Markovian random environment systems via a matrix-geometric approach and

studied both the M/M/1 and the M/M/c queues. However, when considering the M/M/∞

queue, he indicated that such a system is ’surprisingly resistent to analytic solution’ and
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advocated a truncated brute force numerical solution. O’cinneide and Purdue [7] further

studied the n-phase M/M/∞ queue and showed that a necessary and sufficient condition

for stability is that at least one of the service rates should be positive. For the special case

of M/M/∞ queue with a Markov modulated arrival process, Keilson and Servi [5] showed

that a decomposition property holds and provided an explicit solution. Recently, Baykel-

Gursoy and Xiau [1] discussed the 2-phase M/M/∞ queue and provided explicit solution,

using Kumar functions. Lately, D’Auria [2] considered the M/M/∞ queue in a special 2-

phase (on-off) environment where service stops upon system failure (no change in the arrival

rate) and derived the tail of the number of customers in the system for the case where the

distribution of the off periods is heavy tailed. Furthermore, in [3] the author considered

a quasi-Markovian random environment and developed a recursive formula that allows to

compute all the factorial moments for the number of customers in the system in steady state.

We note that the M/M/∞ queue in a random environment may also serve as a model

for related transportation systems where the M/M/∞ queue represents a delay line such as

a highway, whose crossing time by vehicles may be affected by random road conditions such

as weather or an accident (see e.g. [1]).

In this Note we consider the M/M/∞ queue under a (general) n-phase continuous time

MC random environment and show that the joint probability distribution function (pdf) of

the environment phase and the number of customers in the system is equal to the product

of the corresponding marginal pdfs if and only if the ratio of arrival rate to service rate is

the same for all phases. We explicitly derive this joint probability distribution function. For

the general case with arbitrary arrival and service rates in each phase we derive a linear set

of n equations determining the system’s conditional mean queue sizes, given its underlying

environmental phase. The mean total queue size readily follows.

2 The model and balance equations

Consider an M/M/∞ type queue operating in ’random environment’ for which the underlying

process is an n-dimensional continuous-time MC. That is, when the process is in phase i,
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the system operates as an M(λi)/M(µi)/∞ queue, with Poisson arrival rate λi and service

rate µi by each server.

The duration of time the MC (and the system) stays in phase i is an exponentially

distributed random variable with mean 1/ηi. When the system ends its sojourn period

in phase i, it jumps (instantaneously) to phase j with probability qij (i, j = 1, 2, . . . , n),
n

∑

j=1

qij = 1 ∀i. We denote the phase-transition matrix of the underlying MC by Q ≡ [qij ],

and assume w.l.o.g. that qii = 0 ∀i.

A stochastic process {U(t), X(t)} describes the system’s state at time t as follows: U(t)

denotes the phase in which the system operates at time t, while X(t) counts the number of

customers present in the system at that time. The system is said to be in state (i, m) if it is

in phase i, and there are m customers in the system. Accordingly, let pim be the steady-state

probability of the system in state (i, m). That is, pim = P (U(t) = i, X(t) = m) ∀t ≥ 0,

1 ≤ i ≤ n, m = 0, 1, 2, . . . .

Figure 1 below depicts a transition-rate diagram of the described queueing system.

The steady-state balance equations are given as follows:

For i = 1, 2, . . . , n and m = 0,

(λi +
n

∑

j=1

ηiqij)pi0 = µipi1 +
n

∑

j=1

ηjqjipj0 (1)

For i = 1, 2, . . . , n; m ≥ 1,

(λi + mµi +
n

∑

j=1

ηiqij)pim = λipi,m−1 + (m + 1)µipi,m+1 +
n

∑

j=1

ηjqjipjm (2)

Define ηij = ηiqij and λi = 0 for m < 0. Then equations (1) and (2) can be written as

(λi + mµi + ηi)pim = λipi,m−1 + (m + 1)µipi,m+1 +

n
∑

j=1

ηjipjm ∀i = 1, 2, . . . , n; m ≥ 0 (3)

3



X(t) = 0 1 2 m − 1 m

U(t) = 1 •
λ1

((

η1q12

��

��
η1q1i

��

η1q1n

��

•
µ1

hh
λ1

((

��

��

•
2µ1

hh
((

��

��

•hh . • )) •
λ1

))

��

��

��

��

ii •
mµ1

ii &&

��

��

hh

2 •
λ2

((

VV

��

•
µ2

hh
λ2

((

VV

��

•
2µ2

hh
((

VV

��

•hh . • )) •ii
λ2

))

VV

��

•
mµ2

ii &&

VV

��

hh

•

VV

•

VV

•

VV

. . . •

VV

•

VV

•

��

•

��

•

��

•

��

•

��
i •

λi
((

ηiqi,i−1

VV

ηiqi1

YY

��

ηiqin

��

•
µi

hh

λi
((

VV

��

•
2µi

hh
((

VV

��

•hh . • )) •
λi

))

VV

YY

��

ηiqin

��

ii •
mµi

ii &&

VV

��

hh

•

VV

•

VV

•

VV

•

VV

•

VV

•

��

•

��

•

��

. . . •

��

•

��
n •

UU

λn
((

ηnqn,n−1

VV

•
µn

hh
λn

((

VV

•
2µn

hh
((

VV

•hh . • )) •

UU

ii
λn

))

VV

•
mµn

ii &&

VV

hh

Figure 1: A transition-rate diagram of an infinite-server queueing system in random environment. Tran-

sitions between phases are shown only for X(t) = 0 and X(t) = m − 1.

Summing equation (3) over all m gives

ηipi� =

n
∑

j=1

ηjipj� (4)

where pi� =

∞
∑

m=0

pim and

n
∑

i=1

pi� = 1.

The limit probabilities of the underlying Markov chain Q, describing just the random

environment process, are πj = P (U(t) = j). The πj’s satisfy

n
∑

j=1

πj = 1 and πj =

n
∑

i=1

πiqij ,

and are independent of the values of {λi}, {µi} and {ηi}. The proportion of time the system
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resides in phase i is given by

pi� =

πi

ηi
n

∑

k=1

πk

ηk

=
πiE[Sojourn time in phase i]

n
∑

k=1

πkE[Sojourn time in phase k]

(5)

Evidently, the {pi�} are independent of {λi} and {µi}.

3 Stability

Intuitively, the M/M/∞ queue is inheritly stable. Indeed, O’cinneide and Purdue [7] showed

that a necessary and sufficient condition for stability of a M/M/∞ queue in a random

environment is that ”in at least one of the environments the service rate should be positive”.

Nevertheless, we now show explicitly that, under the above condition, our system regulates

itself for any set of arrival and service rates.

Summing equation (3) over all i and canceling terms gives

n
∑

i=1

λipim =
n

∑

i=1

(m + 1)µipi,m+1 m = 0, 1, 2, . . . (6)

Summing equation (6) over all m yields

∞
∑

m=0

n
∑

i=1

λipim =
∞

∑

m=1

n
∑

i=1

mµipim (7)

After defining

µ̂ =

n
∑

i=1

∞
∑

m=0

mµipim =

n
∑

i=1

µi

∞
∑

m=0

mpim =

n
∑

i=1

µiE[Li]

where E[Li] =

∞
∑

m=0

mpim, and

λ̂ =
n

∑

i=1

∞
∑

m=0

λipim =
n

∑

i=1

λipi�
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we get, using equation (7),

µ̂ − λ̂ =

n
∑

i=1

∞
∑

m=0

mµipim −

n
∑

i=1

∞
∑

m=0

λipim

=

∞
∑

m=1

n
∑

i=1

mµipim −

n
∑

i=1

∞
∑

m=0

λipim

=
∞

∑

m=0

n
∑

i=1

λipim −
n

∑

i=1

∞
∑

m=0

λipim = 0

(8)

That is, in contrast with the M/M/1 queue in random environment, where stability holds if

and only of µ̂ ≡
n

∑

i=1

µipi� > λ̂ (see e.g. Yechiali [9]), the M/M/∞ queue in random environ-

ment is always stable.

4 Generating functions and mean queue sizes

We now use (partial) generating functions to express the unknown set of probabilities {pim}.

Let

Gi(z) =
∞

∑

m=0

zmpim i = 1, 2, . . . , n (9)

be the (partial) generating function of phase i. Multiplying both sides of equation (3) by zm

and summing over all m yield a system of n differential equations in the n unknowns Gi(z):

µi(1 − z)G′
i(z) = (λi(1 − z) + ηi)Gi(z) −

n
∑

j=1

ηjiGj(z) i = 1, 2, . . . , n (10)

Equation (10) can be written as a matrix differential equation:

A(z)G′(z) = B(z)G(z)
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where the matrices A(z) and B(z) are given by

A(z) =































µ1(1 − z) 0 0 . . . 0

0 µ2(1 − z) 0 . . . 0

.

.

.

0 0 0 . . . µn(1 − z)































and

B(z) =































λ1(1 − z) + η1 −η21 −η31 . . . −ηn1

−η12 λ2(1 − z) + η2 −η32 . . . −ηn2

. .

. .

. .

−η1n −η2n −η3n . . . λn(1 − z) + ηn































and G(z) is a n-dimensional column vector: G(z) = (G1(z), G2(z), . . . , Gn(z))T .

Note that A(z) is singular at z = 1. However, for 0 ≤ z < 1, the above can be written as

G′(z) = C(z)G(z)
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where

C(z) = A−1(z)B(z)

=



































λ1(1 − z) + η1

µ1(1 − z)

−η21

µ1(1 − z)

−η31

µ1(1 − z)
. . .

−ηn1

µ1(1 − z)
−η12

µ2(1 − z)

λ2(1 − z) + η2

µ2(1 − z)

−η32

µ2(1 − z)
. . .

−ηn2

µ2(1 − z)

. .

. .

. .

−η1n

µn(1 − z)

−η2n

µn(1 − z)

−η3n

µn(1 − z)
. . .

λn(1 − z) + ηn

µn(1 − z)



































(11)

Apparently, there is no simple analytic solution to the above set. Indeed, Neuts ([6], page

274) states the following: ”We note that the infinite-server queue M/M/∞ in a Markovian

environment is surprisingly resistent to analytic solution... Brute force numerical solution

of a truncated version of the birth-and-death equations enables one to solve this model for

a wide range of parameter values in spite of the lack of a mathematically elegant solution.”

However, we can calculate mean queue sizes as follows (see also [7] and [3]):

Differentiating equation (10) yields

−µiG
′
i(z)+µi(1− z)G′′

i (z) = −λiGi(z)+ (λi(1− z)+ ηi)G
′
i(z)−

n
∑

j=1

ηjiG
′
j(z), i = 1, 2, . . . , n

(12)

By setting z = 1 we get

−µiE[Li] = −λiGi(1) + ηiE[Li] −
n

∑

j=1

ηjiE[Lj ] (13)

where G′
i(1) = E[Li] =

∞
∑

m=0

mpim.
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Also, Gi(1) =

∞
∑

m=0

pim = pi�. Then, from equation (13),

(ηi + µi)E[Li] −
n

∑

j=1;j 6=i

ηjiE[Lj ] = λipi� i = 1, 2, . . . , n (14)

The set (14) can be written in a matrix equation form

DE[L
¯
] = b

¯
(15)

where the matrix D is given by

D =































η1 + µ1 −η21 −η31 . . . −ηn1

−η12 η2 + µ2 −η32 . . . −ηn2

.

.

.

−η1n −η2n −η3n . . . ηn + µn































and the column vectors E[L
¯
] and b

¯
are given by E[L

¯
] = (E[L1], . . . , E[Ln])T and b

¯
=

(λ1p1�
, . . . , λnpn�

)T . Therefore, the solution of the system is given by

E[L
¯
] = D−1b

¯
(16)

The expected value of the total number of customers in the system is E[L] =

n
∑

i=1

E[Li], and

the mean sojourn time of an arbitrary customer is, by Little’s law, E[W ] =
1

λ̂
E[L], where

λ̂ =

n
∑

i=1

λipi�.

Examples: a. When n = 1, i.e., when the system shrinks to a single phase, then D =

∆(η + µ) = (η1 + µ1), where ∆(a) is the diagonal matrix of a, for a = (a1, a2, . . . , an)T . For
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the single phase we have η11 = η1 = 0 and p1�
= 1. Using (15) we get

(η1 + µ1)E[L1] = λ1p1�
(17)

which leads to

E[L1] =
λ1

µ1

(18)

Indeed, for an M(λ1)/M(µ1)/∞ system, the mean queue size is E[L1] =
λ1

µ1

.

b. When n = 2, equation (15) leads to





η1 + µ1 −η21

−η12 η2 + µ2









E[L1]

E[L2]



 =





λ1p1�

λ2p2�



 (19)

Multiplying both sides by the inverse matrix of D we get





E[L1]

E[L2]



 =
1

(η1 + µ1)(η2 + µ2) − η12η21





η2 + µ2 η21

η12 η1 + µ1









λ1p1�

λ2p2�



 (20)

Hence, for n = 2,





E[L1]

E[L2]



 =
1

(η1 + µ1)(η2 + µ2) − η12η21





λ1p1�
(η2 + µ2) + λ2p2�

η21

λ2p2�
(η1 + µ1) + λ1p1�

η12



 (21)

5 The case where λi/µi = c for all i

Of special interest is the case when the ratios between the arrival rate and the service rate,

λi

µi

, are the same for all phases. We will show that if
λi

µi

= c for every phase i, then the

system possesses properties of a standard M/M/∞ queue, and an explicit simple solution

can be derived. We state the following:

Theorem 1

pim = pi�p�m = pi�e
−c cm

m!
(i = 1, 2, . . . , n; m = 0, 1, 2, . . . )
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if and only if, for every i,

λi

µi

= c (22)

where pi� is given by equation (5), and p
�m =

n
∑

i=1

pim.

Before proceeding with a formal proof we note that having the same ratio of
λi

µi

in all

phases is probabilistically equivalent to scaling the time differently when the system stays

in different phases. This scaling does not change the distribution of the number of jobs in

the M/M/∞ queue.

Proof: The proof will be carried out in three steps via a sequence of lemmas.

Lemma 2 If
λi

µi

= c, then

pim = pi�e
−c cm

m!
i = 1, . . . , n; m = 0, 1, 2, . . . (23)

Proof: Assume
λi

µi

= c ∀i. Adding same terms to both sides of (4) we write

(λi + mµi + ηi)pi� = mµipi� + λipi� +
n

∑

j=1

ηjipj� (24)

Multiplying by cm and using the assumption
λi

µi

= c yields

(λi + mµi + ηi)pi�c
m = mλipi�c

m−1 + µipi�c
m+1 +

n
∑

j=1

ηjipj�c
m (25)

Dividing by m! and multiplying by e−c leads to

(λi +mµi +ηi)pi�e
−c cm

m!
= λipi�e

−c cm−1

(m − 1)!
+(m+1)µipi�e

−c cm+1

(m + 1)!
+

n
∑

j=1

ηjipj�e
−c cm

m!
(26)
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Setting pim = pi�e
−c

cm

m!
in (26) leads to the steady-state balance equation (3). Since

equations (3) and (4) possess a unique solution, then pim = pi�e
−c

cm

m!
is the one, and the

proof is complete.

Lemma 3 If
λi

µi

= c, then pim = pi�p�m for i = 1, 2, . . . , n; m ≥ 0.

Proof: Assume
λi

µi

= c. Then, using lemma 2 and summing equation (23) over all i leads

to

p
�m = e−c cm

m!
∀m (27)

Substituting (27) in (23) completes the proof.

Lemma 4 If pim = pi�p�m, i = 1, . . . , n; ∀m, then, for all m ≥ 0,

p
�m = e

−
λi
µi

(λi

µi
)m

m!
, i = 1, . . . , n

and

λi

µi

= c, i = 1, . . . , n

Proof: Substituting pim = pi�p�m in equation (3) gives

(λi + mµi + ηi)pi�p�m = λipi�p�,m−1 + (m + 1)µipi�p�,m+1 +
n

∑

j=1

ηjipj�p�m (28)

By using equation (5) and the definition ηij = ηiqij we get

(λi + mµi + ηi)
πi

ηi

p
�m = λi

πi

ηi

p
�,m−1 + (m + 1)µi

πi

ηi

p
�,m+1 +

n
∑

j=1

ηjqji

πj

ηj

p
�m (29)

Multiplying both sides of (29) by ηi and using πj =

n
∑

i=1

πiqij yields

(λi + mµi + ηi)πip�m = λiπip�,m−1 + (m + 1)µiπip�,m+1 + ηiπip�m (30)
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Dividing by πi leads to

(λi + mµi)p�m = λip�,m−1 + (m + 1)µip�,m+1 (31)

Equations (31) are the steady-state balance equations of a standard M/M/∞ queue. That

is, the marginal distribution of L, given U(t) = i, is Poissonian, namely,

p
�m = e

−
λi
µi

(λi

µi
)m

m!
(32)

Since, by Lemma 3, p
�m is independent of the phase i, we must have that

λi

µi

= c for all i.

This completes the proof.

Lemmas 3 and 4 now complete the proof of Theorem 1.

Corollary 5 If
λi

µi

= c, i = 1, . . . , n, then the mean total number of customers in the system

is given by E[L] = c

Proof: Assume
λi

µi

= c, i = 1, . . . , n. From (27),

p
�m = e−c cm

m!
∀m

Thus,

E[L] =
∞

∑

m=0

mp
�m =

∞
∑

m=0

me−c cm

m!
= c

6 Extreme cases of ηi

We now investigate two extreme cases relating to the values of the ηi’s.
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a. Consider the case where, for some i, ηi −→ 0, but ηj > 0 ∀j 6= i. Then using equation

(5)

pi� =

πi

ηi

πi

ηi

+
n

∑

k=1;k 6=i

πk

ηk

=
πi

πi + ηi

n
∑

k=1;k 6=i

πk

ηk

−−−→
ηi−→0

1

Similarly, pj� −−−→
ηi−→0

0 for every j 6= i.

Indeed, when ηi −→ 0 the system (almost) always stays in phase i, and the proportion of

time it stays in another phase tends to 0.

b. Suppose ηi −→ ∞, while ηj > 0 ∀j 6= i. Again, using equation (5), we have

pi� =

πi

ηi

πi

ηi

+

n
∑

k=1;k 6=i

πk

ηk

=
πi

πi + ηi

n
∑

k=1;k 6=i

πk

ηk

−−−−→
ηi−→∞

0

pj� =

πj

ηj

πi

ηi

+

n
∑

k=1;k 6=i

πk

ηk

−−−−→
ηi−→∞

πj

ηj

n
∑

k=1;k 6=i

πk

ηk

j 6= i

That is, the proportion of time the system stays in phase i tends to 0 and the system behaves

as if it consists of only (n − 1) phases.
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