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The so called “Israeli Queue” is a single server polling system with batch service of an
unlimited size, where the next queue to be visited is the one in which the first customer in
line has been waiting for the longest time. The case with finite number of queues (groups)
was introduced by Boxma, Van der Wal and Yechiali [3]. In this paper we extend the model
to the case with a (possibly) infinite number of queues. We analyze the M/M/1, M/M/c,
and M/M/1/N—type queues, as well as a priority model with (at most) M high-priority
classes and a single lower priority class. In all models we present an extensive probabilistic
analysis and calculate key performance measures.

1. INTRODUCTION

Consider a single-server queue where arriving customers form groups. Each group is unre-
stricted in its size, and when served it is served in one batch. The service duration of a batch
is independent of the group size. After a group is served, the next group to be attended is
the one having the most “senior” customer (the one who has been waiting for the longest
time). For example, this queue discipline represents a real situation (termed “The Israeli
Queue”) of a physical waiting line for buying tickets to a movie, theater, or a rock-concert
performance. New arrivals see only one representative of each group (the most senior mem-
ber or the group leader). A new arrival who is a friend with a group leader already standing
in line joins the group. When the “leader” reaches the cashier he (“he” stands for “she” as
well) buys tickets for the entire group. It is assumed that the buying process is (almost) not
affected by the number of tickets purchased. If a new arrival does not find such a friend, he
forms a new group, the last in line.

This model was first introduced and studied by Van der Wal and Yechiali [12]. They
studied a polling system (see e.g., Takagi [10], Boon, Van der Mei, and Winands [2],
Yechiali [13]) with N queues and a single server, where service at each queue is performed in
unlimited-size batches. That is, when the server arrives at queue i, i = 1, 2 . . . , N , it serves
all customers (jobs) present there in one batch, where the duration of a batch-service is inde-
pendent of the batch size. The motivation in [12] was to analyze a computer tape-reading
problem in a system where large amounts of information are stored on tapes. Requests for
data stored on one of these tapes arrive randomly and in order to read the data the tape
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has to be mounted, read and then dismounted. If there are several requests to be read from
a tape, they all can be read in (more or less) the same time, thus suggesting a modeling as a
batch-service with unlimited batch size. Various server dynamic visit-order rules were ana-
lyzed, leading, under various objective functions, to surprisingly simple optimal index-type
operating procedures. The probabilistic characteristics of the unlimited-size batch service
polling system were further analyzed by Boxma et al. [3] for the Exhaustive, Gated and
Globally-Gated service disciplines, where the server visits the queues in a cyclic order. Fur-
thermore, in [3] the following server’s visit-order rule was studied: after completion of service
in a queue, the next queue to be served is the one where its first customer in line has been
waiting for the longest time. That is, the criterion of selecting the next queue to visit and
serve is an age-based one. This type of service discipline was termed “The Israeli Queue”.

Unlimited batch-service models were also considered in the literature as application
to videotex, telex and Time Division Multiple Access (TDMA) systems (see e.g. [1,4,8]).
In addition, Van Oyen and Teneketzis [11] formulated a central data base system and an
Automated Guided Vehicle as a polling system with an infinite capacity batch service.

In this work we extend the batch-service model with finite number of groups to the case
where there is no bound on the number of different groups that can be present simultane-
ously in the system. We assume that the probability that an arriving job knows a group
leader standing in line is p, independent of the group’s size. Specifically, suppose there are
n groups in the system, including the one in service. Then, the probability that an arriving
customer will join the group standing in the kth position is (1 − p)k−1p for 1 ≤ k ≤ n (the
1st position refers to the group in service, the 2nd refers to the group to be served next, and
so on). Clearly, if an arriving customer finds no friends among any of the n group leaders,
he will create a new group, with probability (1 − p)n. Hence, as the number of groups in
the system increases, the growth rate of new groups decreases geometrically. Recently, He
and Chavoushi [6] studied a queueing model with customer interjections, where customers
are distinguished between normal and interjecting. All customers join a single queue. A
normal customer joins the queue at its end, while an interjecting customer tries to cut into
the queue following a geometric distribution. The waiting times of normal customers and
of interjecting customers were studied.

In what follows we present an extensive probabilistic analysis of the “Israeli Queue’ for
the following cases: In Section 2, we analyze an M/M/1-type queue with an un-restricted
number of groups, that is, a single server system, where the arrival stream follows a homoge-
neous Poisson process, and the batch service time is exponentially distributed. In Section 3,
we briefly give the main results for the corresponding M/M/c-type and M/M/1/N -type
queues. We conclude in Section 4 with a two-class (VIP and ordinary) priority model where
the VIP’s can form at most M Israeli Queue-type groups. For each model, a set of per-
formance measures is derived for key parameters such as queue size, busy period, sojourn
and waiting times, size of a batch, position of a new arrival, and number of groups being
bypassed by an arriving customer.

2. THE M/M/1-TYPE MODEL

2.1. Model Description

We consider a single-server queue with an infinite buffer, where arriving customers form
groups as follows: each group has a “leader” or a “head”—the first one of the group to
arrive to the system. A new arrival sees only the head of each existing group, and the
probability that he knows a group leader is p, independent of the group’s size. That is, if
there are n groups in the system (including the one in service), then the probability that
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Figure 1. Transition rate diagram of the process {L(t), t ≥ 0}.

a new arrival joins the kth group is (1 − p)k−1p, for 1 ≤ k ≤ n, while the probability that
he creates a new group is (1 − p)n. We assume that an arriving customer can also join
the group that is being served. The arrival process is Poisson with rate λ, and the service
is given in unlimited-size batches. That is, it takes one service duration to serve a group,
independent of its size. We assume that a service duration of each group is exponentially
distributed with parameter μ.

The underlying process of the system is represented by a continuous-time Markov chain
{L(t), t ≥ 0}, where L(t) is the total number of different groups (different families) in the
system at time t. A transition rate diagram of L(t) is depicted in Figure 1.

We analyze this model and calculate various performance measures, such as the waiting
time and the sojourn time of a group leader and of an arbitrary customer; the number of
different family types in the system, the mean size of the served batch and of the batch
in the kth position, the mean length of a busy period, and the number of groups being
bypassed by a newly arriving customer.

2.2. Steady-State Probabilities, Queue Length, and Busy Period

Steady-state probabilities. Let πn, n ≥ 0, denote the equilibrium distribution of L =
limt→∞ L(t). That is, πn = P (L = n). Then, the balance equations of the model are given
as follows:

λπ0 = μπ1, (2.1)

(μ + λ(1 − p)n) πn = λ(1 − p)n−1πn−1 + μπn+1, n ≥ 1. (2.2)

Eq. (2.2) together with
∑∞

n=0 πn = 1 gives

πn = π0

(
λ

μ

)n

(1 − p)
n(n−1)

2 , n ≥ 1,

where π0 is given by

π0 =

( ∞∑
n=0

(
λ

μ

)n

(1 − p)
n(n−1)

2

)−1

. (2.3)

We note that the system is always stable for 0 < p ≤ 1, since the sum in Eq. (2.3) is finite.
When p = 0 (regular M/M/1 queue) the stability condition is λ < μ.

We also mention that the sum in Eq. (2.3) is a q-hypergeometric series (q = 1 − p)
defined in the Appendix (see also [5]).

Probability generating function. Let G(z) =
∑∞

n=0 πnzn be the probability generating
function (PGF) of L, the number of different group leaders in the system. Then, by mul-
tiplying Eq. (2.2) by zn for all n ≥ 1, summing with Eq. (2.1) and dividing by (1 − z)
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Figure 2. (Color online) Plots of E[L] as a function of p.

we obtain

G(z) =
λ

μ
zG ((1 − p)z) + π0. (2.4)

Substituting z = 1 in (2.4) and using G(1) = 1 gives

G(1 − p) =
μ

λ
(1 − π0), (2.5)

which is the probability that an arrival will lead to creating a new group in the system:∑∞
n=0 πn(1 − p)n = G(1 − p). Furthermore, λeff := λG(1 − p) is the average effective arrival

rate (i.e. the rate at which new groups (families) are created), and μ(1 − π0) is the average
rate of emptying the system. Eq. (2.5) then gives

π0 = 1 − λeff

μ
. (2.6)

Queue length. In order to calculate E[L], the expected total number of different groups in
the system, we differentiate Eq. (2.4) and substitute z = 1. We obtain

E[L] =
λ

μ
G(1 − p) +

λ

μ
(1 − p)G′(1 − p). (2.7)

Taking the limit p → 0 in (2.7) leads to

E[L]p=0 =
λ

μ
+

λ

μ
E[L]p=0,

which gives

E[L]p=0 =
λ

μ − λ
, (2.8)

which is the expected total number of customers in a regular M/M/1 queue.
For the case p → 1, L can only be 0 or 1, with probabilities π0 = μ/(λ + μ) and π1 =

λ/(λ + μ), respectively. It follows that E[L]p=1 = (λ/μ)π0 = λ/(λ + μ).
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E[L] is plotted in Figure 2 as a function of p. The upper straight line depicts
E[L] (= λ/(μ − λ)) of a regular M/M/1 queue with λ = 4, μ = 5. The center line depicts
E[L] for a regular M/M/1 queue with arrival rate λeff = 4G(1 − p), and μ = 5. The bottom
line depicts E[L] for the Israeli Queue with λ = 4, μ = 5. It is readily seen, as expected,
that the mean number of groups in the M/M/1-type Israeli Queue is considerably smaller
than the mean number of individual customers in a regular M/M/1 queue. The same holds
for waiting times.

Busy period. Let θ denote the busy period (the period of time during which the server is
working continuously). Since the idle time of the server is Exp(λ), we obtain

E[θ]
(1/λ) + E[θ]

= 1 − π0 =
λG(1 − p)

μ
,

resulting in

E[θ] =
G(1 − p)

μ − λG(1 − p)
.

2.3. Sojourn Times and Waiting Times

Sojourn and waiting times of a group leader. Let W denote the total sojourn time
of a group leader in the system and let W̃ (·) denote its Laplace–Stieltjes Transform (LST).
Then,

W̃ (s) = E
[
e−sW

]
= E

[
E
[
e−sW |L in the system and a new arrival creates a new group

]]
=

1
G(1 − p)

∞∑
n=0

πn(1 − p)n

(
μ

μ + s

)n+1

=
μ

μ + s
× 1

G(1 − p)
× G

(
μ

μ + s
(1 − p)

)
. (2.9)

Note that we divide by G(1 − p), the probability that a new group is created. Furthermore,

E[W ] = −W̃ ′(s)|s=0 =
1
μ

(
1 +

(1 − p)G′(1 − p)
G(1 − p)

)
, (2.10)

and by using Little’s Law we have

E[L] = λeffE[W ] = λG(1 − p)E[W ],

which coincides with Eq. (2.7).
The waiting time of a group leader, Wq, is derived from W = Wq + B, where B denotes

the service time. As a result of independence,

W̃ (s) = W̃q(s) × μ

μ + s
.

Consequently,

W̃q(s) =
1

G(1 − p)
× G

(
μ

μ + s
(1 − p)

)
. (2.11)

Sojourn and waiting times of an arbitrary customer. Define W a as the total sojourn
time of an arbitrary customer in the system, and W̃ a(·) as its LST. Distinguishing between



6 N. Perel and U. Yechiali

the events that a new arrival joins an existing group, and the event that he creates a new
one, we write

W̃ a(s) = E[e−sW a
] = E[E[e−sW a |L]] =

∞∑
n=0

πnE[e−sW a |L = n]

=
∞∑

n=1

πnp
μ

μ + s

n−1∑
k=0

(
μ

μ + s
(1 − p)

)k

+
∞∑

n=0

πn(1 − p)n

(
μ

μ + s

)n+1

=
∞∑

n=1

πnp
μ

μ + s

n−1∑
k=0

(
μ

μ + s
(1 − p)

)k

+
∞∑

n=0

πn(1 − p)n

(
μ

μ + s

)n+1

=
μp

μp + s

(
1 − G

(
μ

μ + s
(1 − p)

))
+

μ

μ + s
G

(
μ

μ + s
(1 − p)

)
,

and

E[W a] = −W̃ a
′
(s)|s=0 =

1
μp

− 1 − p

μp
G(1 − p) =

1
μp

− (1 − p)(1 − π0)
λp

. (2.12)

Clearly, as can be expected,

lim
p→1

E[W a] =
1
μ

,

and by applying l’Hopital’s rule we obtain

lim
p→0

E[W a] =
1

μ − λ
,

which is the mean sojourn time of an arbitrary customer in a regular M/M/1 queue.
Define Ltotal to be the total number of customers in the system. Then, from Little’s

Law, we obtain

E[Ltotal] = λE[W a] =
λ

μp
− λ(1 − p)G(1 − p)

μp

=
λ

μp
− (1 − p)(1 − π0)

p
. (2.13)

Clearly, when p → 0, E[Ltotal] = (λ/(μ − λ)). Also, when p → 1, only a single group
is formed, and the process is reduced to a two-state process, where π0 = P (L = 0) =
(μ/(λ + μ)) and π1 = P (L = 1) = (λ/(λ + μ)). Hence, E[Ltotal] = π1(1 + (λ/μ)) = λ/μ.
Alternatively, since the mean sojourn time of each customer is 1/μ, then by Little’s Law,
E[Ltotal] = λ/μ.

Another important service measure is the waiting time of an arbitrary customer, denoted
by W a

q . Since W a = W a
q + B, from the expression for W̃ a(s) we obtain

W̃ a
q (s) =

s(1 − p)
μp + s

× G

(
μ

μ + s
(1 − p)

)
+

p(μ + s)
μp + s

. (2.14)
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2.4. Size of a Batch

We first wish to calculate the mean size of the served batch. For that, we consider a group
that was formed in the ith place (i ≥ 1), and follow its progress up the queue. That is, we
calculate the number of jobs joining this group during each service period, until this group
completes its service and leaves the system. Let us define the following variables:

• D(k) = the size of the group standing in the kth place (for k ≥ 1) at the moment of
service completion, assuming that the kth group exists (k = 1 refers to the group
that has just completed service).

• Y = the number of arrivals to the system during a single service duration.
• ξ(k) = the number of customers who joined the group in the kth place (for k ≥ 1)

among the Y arrivals, assuming that the kth group exists.

Then, from the above, D(k) d= D(k+1) + ξ(k), for k ≥ 1. Our goal is to calculate E
[
D(1)

]
.

First, note that for all m ≥ 0 and 0 ≤ j ≤ m,

P(ξ(k) = j|Y = m) =
(

m

j

)(
(1 − p)k−1p

)j (
1 − (1 − p)k−1p

)m−j
.

Second, for k ≥ 1 and j ≥ 0, and since P(Y = m) = (λ/(λ + μ))m (μ/(λ + μ)) for m ≥ 0,
we have

P(ξ(k) = j) =
∞∑

m=j

P(Y = m)
(

m

j

)(
(1 − p)k−1p

)j (
1 − (1 − p)k−1p

)m−j

=
μ

λ(1 − p)k−1p + μ

(
λ(1 − p)k−1p

λ(1 − p)k−1p + μ

)j

. (2.15)

In order to better understand the result given in (2.15), consider two Poisson processes
competing with each other: the arriving process to the group standing in the kth position,
with rate λ(1 − p)k−1p, and the departure process, with rate μ. Having exactly j jobs joining
the kth group during a service duration means that the arriving process to the kth group
“wins” j times before the end of a single service duration.

Consequently,

E[ξ(k)] =
λ

μ
(1 − p)k−1p, k ≥ 1. (2.16)

Indeed, the mean number of arrivals during a service is E[Y ] = λ/μ, while the probability
of an arrival to join the kth group (when it exists) is (1 − p)k−1p.

Moreover, using Eq. (2.15), the PGF of ξ(k) is given by

E[zξ(k)
] =

∞∑
j=0

P(ξ(k) = j)zj =
μ

λ(1 − p)k−1p(1 − z) + μ
. (2.17)

Define by D
(1)
i the size of the group that has just completed its service, given

that this group was formed in the ith place. Then, D(1) = D
(1)
i = 1 +

∑i
k=1 ξ(i+1−k)

with probability (πi−1(1 − p)i−1)/(
∑∞

i=1 πi−1(1 − p)i−1), or equivalently, with probability
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(πi−1(1 − p)i−1)/(G(1 − p)). Using this fact, and Eq. (2.16), yields,

E[D(1)] =
∞∑

i=1

E[D(1)
i ]

πi−1(1 − p)i−1

G(1 − p)
=

∞∑
i=1

(
1 +

i∑
k=1

E[ξ(i+1−k)]

)
πi−1(1 − p)i−1

G(1 − p)

= 1 +
∞∑

i=1

πi−1(1 − p)i−1

G(1 − p)

i∑
k=1

λ

μ
(1 − p)k−1p

= 1 +
λ

μ

∞∑
i=1

πi−1(1 − p)i−1

G(1 − p)
(
1 − (1 − p)i

)
= 1 +

λ

μ
− λ

μ

(
(1 − p)G

(
(1 − p)2

)
G(1 − p)

)
. (2.18)

In order to find G
(
(1 − p)2

)
, we substitute z = 1 − p in Eq. (2.4), which gives

G
(
(1 − p)2

)
=

μ(μ(1 − π0) − λπ0)
λ2(1 − p)

, (2.19)

and together with (2.5) we obtain

E[D(1)] =
λ

μ(1 − π0)
=

1
G(1 − p)

. (2.20)

The PGF of D(1), is given by

E[zD(1)
] =

∞∑
i=1

E[zD
(1)
i ]

πi−1(1 − p)i−1

G(1 − p)

=
∞∑

i=1

E[z1+
∑ i

k=1 ξ(i+1−k)
]
πi−1(1 − p)i−1

G(1 − p)

=
∞∑

i=1

z
πi−1(1 − p)i−1

G(1 − p)

i∏
k=1

μ

λ(1 − p)k−1p(1 − z) + μ
, (2.21)

where in the last equality we utilize Eq. (2.17), and the fact that the variables ξ(i+1−k), for
k = 1, . . . , i, are independent since they are generated in distinct service periods.

In the same manner, let us define D
(k)
i to be the size of the batch standing in the kth

place at the moment of service completion, given that it was formed in the ith place, for
i ≥ k ≥ 1. Then, with probability (πi−1(1 − p)i−1)/(

∑∞
j=k πj−1(1 − p)j−1), D(k) = D

(k)
i =

1 +
∑i−k+1

m=1 ξ(i+1−m). Using the fact that πi−1(1 − p)i−1 = πi(μ/λ) we obtain

E[D(k)] =
∞∑

i=k

E[D(k)
i ]

πi−1(1 − p)i−1∑∞
j=k πj−1(1 − p)j−1

=
∞∑

i=k

(
1 +

i−k+1∑
m=1

E[ξ(i+1−m)]

)
πi−1(1 − p)i−1∑∞

j=k πj−1(1 − p)j−1

= 1 +
∞∑

i=k

πi∑∞
j=k πj

i−k+1∑
m=1

λ

μ
(1 − p)i−mp
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= 1 +
λ

μ

∞∑
i=k

πi∑∞
j=k πj

(
(1 − p)k−1 − (1 − p)i

)
= 1 +

λ

μ
(1 − p)k−1 −

∑∞
i=k πi+1∑∞
j=k πj

=
λ

μ
(1 − p)k−1 +

πk

1 −∑k−1
j=0 πj

. (2.22)

Note that, since λ(1 − p)k−1πk−1 = μπk, Eq. (2.22) can be written as

E[D(k)] =
πk/
∑∞

j=k πj

πk−1/
∑∞

j=k−1 πj
=

P(L = k|L ≥ k)
P(L = k − 1|L ≥ k − 1)

. (2.23)

Let L̂total denote the total number of customers in the system at instant of service
completion. Then,

E[L̂total] =
∞∑

j=1

πj

j∑
k=1

E[D(k)] =
∞∑

j=1

πj

j∑
k=1

(
λ

μ
(1 − p)k−1 +

πk

1 −∑k−1
j=0 πj

)

=
λ

μ

∞∑
j=1

πj
1 − (1 − p)j

p
+

∞∑
j=1

πj

j∑
k=1

πk

1 −∑k−1
j=0 πj

=
λ

μ
· 1 − G(1 − p)

p
+

∞∑
k=1

πk

∞∑
j=k

πj∑∞
i=k πi

=
λ

μ
· 1 − G(1 − p)

p
+

∞∑
k=1

πk =
λ(1 − G(1 − p))

μp
+ 1 − π0. (2.24)

Substituting 1 − π0 = (λ/μ)G(1 − p) in (2.24) we conclude that E[L̂total] = E[Ltotal] (see
Eq. (2.13)).

2.5. Number of Bypassed Groups

Let X denote the index of the group to which a new arrival joins, and X̂(z) its PGF. The
distribution of X is given by

P(X = k) = πk−1(1 − p)k−1 +
∞∑

n=k

πn(1 − p)k−1p, k ≥ 1. (2.25)

This follows since if there are k − 1 groups, the new job creates a new group in the kth
position with probability (1 − p)k−1, and if there are at least k different families (groups),
the new job joins the kth group with probability (1 − p)k−1p. Hence,

X̂(z) =
∞∑

k=1

zk

(
πk−1(1 − p)k−1 + (1 − p)k−1p

∞∑
n=k

πn

)

= zG ((1 − p)z) +
∞∑

n=1

πnpz
n−1∑
k=0

(z(1 − p))k
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= zG ((1 − p)z) +
∞∑

n=1

πnpz

(
1 − (z(1 − p))n

1 − z(1 − p)

)
= zG ((1 − p)z) +

pz

1 − z(1 − p)
(1 − G ((1 − p)z)). (2.26)

From the PGF of X we obtain

E[X] = X̂ ′(z)|z=1 = G(1 − p) +
1
p

(1 − G(1 − p))

=
1
p

(1 − (1 − p)G(1 − p)) . (2.27)

Note that, multiplying E[X] by the mean service time, 1/μ, gives the mean total sojourn
time of an arbitrary customer in the system, which coincides with Eq. (2.12).

We also define the random variable NB as the number of groups that are being bypassed
by an arriving customer. That is, if L = n and the new arrival joins group k ≤ n, then he
bypasses NB = n − k groups. By conditioning on the number of different families present
in the system, we obtain that the probability distribution of NB is,

P(NB = 0) =
∞∑

n=1

πnp(1 − p)n−1 +
∞∑

n=0

πn(1 − p)n =
p

1 − p
(G(1 − p) − π0) + G(1 − p),

P(NB = k) =
∞∑

n=k+1

πnp(1 − p)n−k−1, k ≥ 1. (2.28)

From Eq. (2.28) we obtain

E[NB ] =
∞∑

k=0

k

∞∑
n=k+1

πnp(1 − p)n−k−1 =
∞∑

n=1

πn

n−1∑
k=0

kp(1 − p)n−k−1

=
∞∑

n=1

πn

(
n − 1

p
+

(1 − p)n

p

)
= E[L] − 1

p
(1 − G(1 − p)) . (2.29)

The PGF of NB is obtained as follows:

E[zNB ] ≡ N̂B(z) = G(1 − p) +
∞∑

k=0

zk
∞∑

n=k+1

πnp(1 − p)n−k−1

= G(1 − p) + p

∞∑
n=1

πn(1 − p)n−1
n−1∑
k=0

(
z

1 − p

)k

= G(1 − p) +
p

1 − p − z

( ∞∑
n=1

πn(1 − p)n −
∞∑

n=1

πnzn

)

= G(1 − p) +
p

1 − p − z
(G(1 − p) − π0 − G(z) + π0)

=
1 − z

1 − p − z
G(1 − p) − p

1 − p − z
G(z). (2.30)

Indeed, differentiating N̂B(z) and setting z = 1 yields result (2.29).
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(1 )c kpλ +−(1 )cpλ −cμ2(1 )pλ −2μ(1 )pλ −

c k+1c +210

cμcμμ 1(1 )cpλ +−λ

c:cL

Figure 3. Transition rate diagram of the process {Lc(t), t ≥ 0}.

Another way to calculate E[NB ] is the following. Suppose there are n different groups
in the system, including the one in service. Then, the expected number of families being
bypassed by an arriving customer is

n∑
k=1

(n − k)p(1 − p)k−1 = n − 1
p

+
(1 − p)n

p
.

By conditioning over all values of n we obtain (2.29).

3. THE M/M/C AND M/M/1/N MODELS

3.1. The M/M/c—Type Model

This case is similar to the M/M/1 model, where the state space is defined by {Lc(t), t ≥ 0},
and its transition rate diagram is depicted in Figure 3.

Steady-state probabilities and generating function. With Lc = limt→∞ Lc(t) we let
πn = P (Lc = n), for n ≥ 0. It is readily obtained that:

πn =
(

λ

μ

)n 1
n!

(1 − p)
n(n−1)

2 π0, 1 ≤ n ≤ c − 1, (3.1)

πc+k =
(

λ

cμ

)k (
λ

μ

)c 1
c!

(1 − p)
(c+k)(c+k−1)

2 π0, k ≥ 0. (3.2)

where

π0 =

(
c−1∑
n=0

(
λ

μ

)n 1
n!

(1 − p)
n(n−1)

2 +
(

λ

μ

)c 1
c!

∞∑
k=0

(
λ

cμ

)k

(1 − p)
(c+k)(c+k−1)

2

)−1

. (3.3)

The corresponding PGF is given by

Gc(z) =

[
c−1∑
n=0

(
λz

μ

)n 1
n!

(1 − p)
n(n−1)

2 +
∞∑

k=0

(
λz

cμ

)k (
λz

μ

)c 1
c!

(1 − p)
(c+k)(c+k−1)

2

]
π0.

(3.4)

Apparently there is no closed form expression for Gc(z). However, it satisfies the following
functional equation,

Gc(z) =
λ

cμ
zGc ((1 − p)z) − z

c
H ′(z) + H(z), (3.5)

where H(z) =
∑c−1

n=0 πnzn. Substituting z = 1 in Eq. (3.5) gives

λGc(1 − p) =
c−1∑
n=1

nμπn + cμ

∞∑
n=c

πn. (3.6)

Clearly, when c = 1, Eq. (3.6) coincides with Eq. (2.5), and its explanation is similar.
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In addition,

E[Lc] = G′
c(z)|z=1 =

λ

cμ
(Gc(1 − p) + (1 − p)G′

c(1 − p)) + H ′(1) − H ′(1) + H ′′(1)
c

(3.7)

Sojourn and waiting times. Let Wc and W a
c denote the total time a group leader and an

arbitrary customer spends in the system, with LST W̃c(s) and W̃c

a
(s), respectively. Using

a similar approach as presented in Section 2, we obtain:

W̃c(s) =
1

Gc(1 − p)
· μ

μ + s

×
[
H(1 − p) +

(
cμ

cμ + s

)1−c(
Gc

(
(1 − p)cμ
cμ + s

)
− H

(
(1 − p)cμ
cμ + s

))]
, (3.8)

and

W̃c

a
(s) =

μ

μ + s

[
1 − (1 − p)c(1 − H(1))s

cpμ + s

]
+

μ

μ + s

×
[
Gc

(
(1 − p)cμ
cμ + s

)
− H

(
(1 − p)cμ
cμ + s

)][(
cμ

cμ + s

)1−c

− cpμ

cpμ + s

(
1 +

s

cμ

)c
]

.

(3.9)

3.2. The M/M/1/N -Type Model

Again, this case is similar to the previous models, but the state space {LN (t), t ≥ 0} is finite.
The only modification is that whenever a new customer finds the system in state L = N he
joins the Nth (last) group even if he does not know any of the existing group leaders. With
L(N) = limt→∞ L(N)(t), the stationary distribution πn = P (L(N) = n) is given by

πn =
(

λ

μ

)n

(1 − p)
n(n−1)

2 π0, 1 ≤ n ≤ N, (3.10)

π0 =

(
N∑

n=0

(
λ

μ

)n

(1 − p)
n(n−1)

2

)−1

. (3.11)

The corresponding PGF satisfies the relation

G(N)(z) =
λ

μ
z
(
G(N) ((1 − p)z) − (1 − p)NπNzN

)
+ π0, (3.12)

and the mean batch size right after the moment of service completion is

E[D(k)] =
λ

μ
(1 − p)k−1 +

πk∑N
j=k πj

, k = 1, 2, . . . , N. (3.13)

4. A PRIORITY MODEL (SINGLE SERVER)

Assume that there is a single server and that the population of customers is comprised
of two priority classes: a VIP (class 1), and an ordinary (class 2). There are M different
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families among the VIP class, and a class-1 customer, upon arrival, searches for a friend
among the VIP groups present in a manner similar to previous sections. The size of each of
the (possibly) M VIP groups is unlimited. The customers of class 2 form a single regular
M/M/1-type queue (they do not search for a friend). The number of low priority customers
in the system is unbounded. A preemptive priority rule is considered. That is, a higher
priority customer, upon arrival, takes over the service if a lower priority customer is currently
being served, or looks for a friend among the higher priority group leaders. Hence, if the
number of high priority groups in the system is k, where 1 ≤ k ≤ M − 1, then he will either
join the ith group (i ≤ k), or create a new group, in front of all the low priority customers (if
present). If M high-priority groups are present, then an arriving class 1 customer will join
the Mth group if he does not know any of the first M − 1 group leaders (with probability
(1 − p)M−1).

We define L1(t) as the number of class-1 groups in the system at time t, and by L2(t)
as the total number of class-2 customers in the system at time t. Let Li = limt→∞ Li(t),
and πm,n = P (L1 = m,L2 = n), for 0 ≤ m ≤ M and n ≥ 0. A transition rate diagram of
the two-dimensional process (L1, L2) is given in Figure 4. Define the marginal probabilities,

πm• =
∞∑

n=0

πm,n, 0 ≤ m ≤ M,

π•n =
M∑

m=0

πm,n, n ≥ 0.

Considering the marginal probabilities πm• and utilizing horizontal cuts in Figure 4, it is
readily seen that πm• is given by Eqs. (3.10) and (3.11), where m replaces n (and M replaces
N), λ1 and μ1 replaces λ and μ, respectively.

Since the number of high-priority classes is bounded, and the service is in (unlimited)
batches, it immediately follows that the stability condition is

λ2

μ2
< π0•, (4.1)

as the queue of the low-priority customers empties out only when there are no high priority
customers in the system.

4.1. Balance Equations and Generating Functions

From Figure 4, we have for all n ≥ 0,

λ2π•n = μ2π0,n+1.

Summing over n gives

π0,0 = π0• − λ2

μ2
. (4.2)

Now, for m = 0, the following relations hold,

(λ1 + λ2) π0,0 = μ1π1,0 + μ2π0,1, (4.3)

(λ1 + λ2 + μ2) π0,n = λ2π0,n−1 + μ1π1,n + μ2π0,n+1, n ≥ 1. (4.4)
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1μ
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m

1μ
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2λ
1μ
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2λ

1λ
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2λ
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2λ2λ2λ2λ
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2 1−n n

0

1

2

1−M

M

1L

Figure 4. Transition rate diagram of (L1, L2) for priority model.

Define the marginal PGF, Gm(z) =
∑∞

n=0 πm,nzn, for all 0 ≤ m ≤ M . Then, multiplying
Eq. (4.4) by zn and summing over n together with (4.3) gives

(λ1z + λ2z(1 − z) − μ2(1 − z))G0(z) − μ1zG1(z) = −μ2π0,0(1 − z). (4.5)

Moreover, for 1 ≤ m ≤ M − 1 we obtain

(λ1(1 − p)m + λ2 + μ1) πm,0 = λ1(1 − p)m−1πm−1,0 + μ1πm+1,0, (4.6)

(λ1(1 − p)m + λ2 + μ1) πm,n = λ1(1 − p)m−1πm−1,n + λ2πm,n−1 + μ1πm+1,n, n ≥ 1.
(4.7)

Multiplying Eq. (4.7) by zn and summing over n together with (4.6) leads to

(λ1(1 − p)m + λ2(1 − z) + μ1) Gm(z) − λ1(1 − p)m−1Gm−1(z) − μ1Gm+1(z) = 0,

1 ≤ m ≤ M − 1. (4.8)
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Last, for m = M we have

(λ2 + μ1) πM,0 = λ1(1 − p)M−1πM−1,0, (4.9)

(λ2 + μ1) πM,n = λ1(1 − p)m−1πM−1,n + λ2πM,n−1, n ≥ 1. (4.10)

Multiplying Eq. (4.10) by zn and summing over n together with (4.9) yields

(λ2(1 − z) + μ1) GM (z) = λ1(1 − p)m−1GM−1(z). (4.11)

The set of Eqs. (4.5), (4.8), and (4.11) can be written as

A(z) · G(z) = Π(z), (4.12)

where A(z) = [ai,j ]1≤i,j≤M+1 is an (M + 1) × (M + 1) tridiagonal matrix with the following
entries

ai,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1z + λ2(1 − z) − μ2(1 − z) i = 1, j = 1
−μ1z i = 1, j = 2
−λ1(1 − p)i−2 2 ≤ i ≤ M + 1, j = i − 1
λ1(1 − p)i−1 + λ2(1 − z) + μ1 2 ≤ i ≤ M, j = i

−μ1 2 ≤ i ≤ M, j = i + 1
λ2(1 − z) + μ1 i = M + 1, j = M + 1
0 elsewhere

(4.13)

G(z) = (G0(z), G1(z), . . . , GM (z))T is a column vector (of size M + 1) of the desired PGF’s,

and Π(z) is the column vector Π(z) =

⎛⎝−μ2π0,0(1 − z), 0, . . . , 0︸ ︷︷ ︸
Mtimes

⎞⎠T

. From the structure of

Π(z) we have that G(z) is equal to the product of the first column of the matrix (A(z))−1 and
−μ2π0,0(1 − z). Once the PGFs are obtained, the mean total number of class-2 customers
in the system, E[L2], can be derived from

E[L2] =
M∑

m=0

G′
m(1).

A numerical example:
Consider the following set of parameters: λ1 = 2, μ1 = 2, λ2 = 1, μ2 = 4, p = 0.3 and M = 3.
Calculations of the boundary probabilities give:

π0• = 0.3286,

π1• = 0.3286,

π2• = 0.2301,

π3• = 0.1127,

π0,0 = π0• − λ2

μ2
= 0.0786.
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The PGFs are given by:

G0(z) =
0.8(z − 6.1749)(z − 3.61361)(z − 1.59149)
(z − 5.8578)(z − 3.17745)(z − 1.14476)

,

G1(z) =
−1.6(z − 4.97327)(z − 2.00673)

(z − 5.8578)(z − 3.17745)(z − 1.14476)
,

G2(z) =
2.24(z − 3)

(z − 5.8578)(z − 3.17745)(z − 1.14476)
,

G3(z) =
−2.1952

(z − 5.8578)(z − 3.17745)(z − 1.14476)
.

The mean number of class-1 groups and class-2 customers are E[L1] = 1.1269 and E[L2] =
5.2933, respectively.

4.2. Matrix Geometric Method

An alternative approach to describe the model presented in this section is by constructing
a finite Quasi Birth and Death (QBD) process, with M + 1 phases and infinite number
of levels. State (n,m) indicates that there are m different class-1 groups and n class-2
customers in the system, n ≥ 0, 0 ≤ m ≤ M . The infinitesimal generator of the QBD is
denoted by Q, and is given by

Q =

⎛⎜⎜⎜⎝
B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 · · ·
...

...
...

...

⎞⎟⎟⎟⎠ ,

where B, A0, A1, and A2 are all square matrices of order M + 1, as follows:
A0 = λ2I,

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ1 + λ2 + μ2) λ1 0
μ1 −(λ1(1 − p) + λ2 + μ1) λ1(1 − p)
0 μ1 −(λ1(1 − p)2 + λ2 + μ1)
... 0

. . .
...

. . . . . .
0 · · · 0

· · · · · · 0

0 · · · ...

λ1(1 − p)2
. . .

...
. . . . . . 0
. . . −(λ1(1 − p)M−1 + λ2 + μ1) λ1(1 − p)M−1

0 μ1 −(λ2 + μ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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A2 =

⎛⎜⎜⎜⎝
μ2 0 0 . . . 0
0 0 0 . . . 0
...
0 0 0 . . . 0

⎞⎟⎟⎟⎠ .

and B = A1 + A2.
The elements of A1 correspond to transitions within a given level, while the elements

of A0 and A2 correspond to transitions from level n to level n + 1 and to level n − 1,
respectively. Furthermore, the matrix A = A0 + A1 + A2 is the infinitesimal generator of the
M/M/1/N -type model described in Section 3.2. Let �π = (π0, π1, . . . , πM ) be a stationary
vector of the irreducible matrix A, that is, �πA = 0 and �π · �e = 1. Note that πm = πm,• for
all 0 ≤ m ≤ M , where πm• is given by Eqs. (3.10) and (3.11), where m replaces n.

The stability condition is ([9], page 83)

�πA0�e < �πA2�e,

which immediately translates to
λ2 < μ2π0.

This coincides with the condition given by Eq. (4.1).
Define for all n ≥ 0 the steady-state probability vector �Pn = (π0,n, π1,n, . . . , πM,n).

Then, a well known result is (see Theorem 3.1.1 in [9]) that

�Pn = �P1R
n−1, n ≥ 1,

where R is the minimal non-negative solution of the matrix quadratic equation

A0 + RA1 + R2A2 = 0.

The vectors �P0 and �P1 are derived by solving the following linear system,

�P0B + �P1A2 = �0,

�P0A0 + �P1(A1 + RA2) = �0,

�P0 · �e + �P1[I − R]−1 · �e = 1. (4.14)

The derivation of the matrix R is based on Theorem 8.5.1 in [7], which states that if the
QBD is recurrent and A2 = c · r, where c is a column vector and r is a row vector normalized
by r · �e = 1, than the matrix R is explicitly given by

R = A0 (−A1 − A0�e · r)−1
. (4.15)

Indeed, in our case, the matrix A2 may be represented as

A2 =

⎛⎜⎜⎜⎝
μ2

0
...
0

⎞⎟⎟⎟⎠ · (1 0 · · · 0) = c · r.

The expected total number of class-2 customers in the system is given by

E[L2] =
∞∑

n=1

n �Pn · �e =
∞∑

n=1

n �P1R
n−1 · �e = �P1 [I − R]−2 · �e (4.16)
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5. CONCLUSION

In this paper we have studied the so called Israeli Queue, which originated from a polling
model where the next queue to be served is the one having the most senior customer. We
analyzed the M/M/1, M/M/c, and M/M/1/N - type models, in which an arriving customer
searches for a friend standing in line. If he finds a friend in the queue, he joins his group and
together they receive service in a batch mode. We derived various performance measures,
such as the waiting time and sojourn time of a group leader, and of an arbitrary customer;
the number of different family types in the system, the mean size of the served batch and of
the batch in the kth position; and the number of groups being bypassed by a newly arriving
customer. In addition, a priority model has been studied, where the VIP (high priority)
customers form the Israeli Queue, while the low priority customers form a single regular
queue. We analyzed this model using both PGF and matrix geometric methods.
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APPENDIX

The q-hypergeometric series is defined as

rφs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, x) =
∞∑

n=0

(a1, a2, . . . , ar; q)n
(q; q)n(b1, b2, . . . , bs; q)n

[(−1)nq(
n
2)]1+s−rxn,

where r and s are non-negative integers, (a1, a2, . . . , ar; q)n = (a1; q)n(a2; q)n · · · (ar; q)n, (a; q)0 =

1, and (a; q)n =
∏n−1

k=0

(
1 − aqk

)
for n ≥ 1.
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With the above notation, Eq. (2.3) for π0 can be expressed as

π0 =

(
1φ1

(
1 − p; 0; 1 − p,−λ

μ

))−1

.

Since πj = π0

(
λ
μ

)j
(1 − p)(

n
2), G(z) can be written as

G(z) =

∞∑
n=0

πnzn =
1φ1(1 − p; 0; 1 − p,−λz

μ )

1φ1(1 − p; 0; 1 − p,−λ
μ )

.


	1 INTRODUCTION
	2 THE M/M/1-TYPE MODEL
	2.1 Model Description
	2.2 Steady-State Probabilities, Queue Length, and Busy Period
	2.3 Sojourn Times and Waiting Times
	2.4 Size of a Batch
	2.5 Number of Bypassed Groups

	3 THE M/M/c AND M/M/1/N MODELS
	3.1 The M/M/c---Type Model
	3.2 The M/M/1/N-Type Model

	4 A PRIORITY MODEL (SINGLE SERVER)
	4.1 Balance Equations and Generating Functions
	4.2 Matrix Geometric Method

	5 CONCLUSION



