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Abstract We introduce and study cyclic polling systems in which service times of customers increase
after the completion of each cycle due to increased tiredness of the server. To prevent the system from
exploding, the server must be deactivated to regain (some or all of) its efficiency while another server
takes its place. Performing a ”change of guard” takes some additional random time. This requires the
determination of a ”swapping policy” between the two servers. We model such systems under the gated,
exhaustive, and globally-gated service regimes. In the case of swapping policies which call for a swap at
the end of every fixed number of cycles, we show that, contrary to classical polling systems, the stability
condition for the exhaustive regime differs from its counterpart for the gated regime. A single queue case
with identical servers is further studied and analyzed. Assuming stability we show that, in the latter case,
the maximal number of consecutive cycles a server can serve without resting under the gated regime is
approximately double than that under the exhaustive regime. In addition, we construct an algorithm to
obtain an optimal swapping policy for the case where two identical servers alternate every fixed number
of cycles in a system operating under the exhaustive service regime.

Keywords polling systems; alternating weary servers; exhaustive; gated; globally-gated; state-dependent
arrival rates; stability; mean value analysis.

1 Introduction

We consider a polling system with N queues. In contrast to most classical polling models where a single
server constantly cycles between the queues, we introduce a new model where there are two servers that
alternate with each other according to some swapping policy. This ”change of guard” is called for by the
fact that service times increase from cycle to cycle due to increasing tiredness of the active server. For the
system to remain stable it is necessary to replace a weary active server with a rested server while the former
rests and gradually regains its efficiency. However, each swap between the servers takes time. Our goal is
to analyze such systems and study stability-preserving symmetric swapping policies.

There exists a vast literature on the subject of polling systems and its applications in areas such as
manufacturing, transportation, data reading, computer networks, telephone communications, etc. Many
variations and extensions of the classic model (e.g. batch-service, fluid models, multiple servers, and various
strategic customers behaviors) have also been studied. We refer the reader to the recent comprehensive
survey by Boon, van der Mei and Winands [1] and the 185 references there, as well as to the mathematically
oriented survey by Vishnevskii and Semenova [13] and the 273 references there. The question of steady
state stability is thoroughly studied by Flicker and Jaibi [9]. As the analysis of polling systems is complex,
various analysis technics have been developed and utilized. Some of those technics are useful only if the
service regimes satisfy a certain ”branching property” (See Resing [12] for an elaborate treatment of polling
systems and branching processes). Some earlier important works are Takagi [10] and Yechiali [15], where
overviews of the commonly used analytic methods are presented. Pseudo conservation laws were introduced
and developed in Boxma and Groenendijk [4]. See also Winands, Adan and van Houtum [14] and its in-
troduction for a variety of computationally oriented approaches to calculate customers mean waiting times.
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The bulk of the above manuscripts deal with static server-visit policies. Dynamic server visit-order schemes,
which are analytically intricate, were originally studied in Browne and Yechiali [6] and [7].

The current work is motivated by the notion of shift scheduling. In Section 2 we describe the model and
introduce the notation used in the analysis. In Section 3 we state the relevant stability condition as was
introduced in Boxma, Ivanovs, Kosinski and Mandjes [5]. In Sections 4 and 5 we define the laws of motion
and construct formulas for calculating the means of the queue sizes at various time instants. We also indicate
similarities between our model and a standard polling model. Section 6 is devoted to the derivation of the
queue joint Probability Generating Functions (PGFs) at arrival and at departure epochs. In Section 7 we
remark on a method used in Boon, Van Wijk, Adan and Boxma [2] which allows calculation of the marginal
queue lenght PGFs in steady state. However, this method is not practical for our needs. The authors in [2]
implemented a more practical ”Mean Value Analysis” (MVA) approach. This MVA approach is mentioned
in Section 8, where we also present our optimality criterion. Section 9 consists of an elaboration on the
relevant stability conditions, stated in Section 3, for a single-queue model. In Section 10 we utilize some
MVA equations, derived in Section 8, in order to analyze a single-queue model with identical servers (the
case of not necessarily identical servers is also referred to). In addition, we present an algorithm to obtain
a restricted optimal swapping policy between the two (identical) servers, for the case of an exhaustively-
served single-queue system with exponential service times. We conclude in Section 11 with some illustrative
numerical results and possible extensions for our model.

2 The model

2.1 The basic model

Consider a polling system comprised of N queues Q1, Q2, . . . , QN served by a single server. For each queue,
say Qi, type-i customers arrive according to an independent Poisson process with rate λi > 0. There are
two alternating servers in the system, dubbed ”Server 1” and ”Server 2”. During each cycle exactly one of
the servers is active, while the other remains inactive. An active server visits the queues in a cyclic manner,
starting from Q1, and incurring switch-over times when moving from Qi to Qi+1. The switching time from
Qi to Qi+1 is a random variable Hi having Laplace-Stieltjes transform (LST) H̃i (·). Switching times are
independent of the servers’ identity. At the end of a cycle the active server may be replaced by the inactive
one. Performing such a ”swap” requires additional H0 units of time so that the actual switch-over time
from QN back to Q1 becomes H ′N = HN + H0. While visiting Qi, the active server serves according to a
pre-determined regime which can be gated, exhaustive, or globally-gated, while the inner order of service
is FCFS. The basic service duration of a type-i customer is a random variable depending on the identity
of the active server. If server 1 is active, the basic service duration of a type-i customer is Gi, where Gi is
a positive random variable, drawn from a continuous Probability Distribution Function (PDF) having LST
G̃i (·). If server 2 is active, the basic service duration of a type-i customer is Ki, where Ki is a positive
random variable, drawn from a continuous PDF having LST K̃i (·).

The servers themselves get weary while active and must rest in order to continue operating in an efficient
level. Both servers start at 0 ”tiredness level” (TL). After each cycle in which a server is active, his TL
increases by 1. After each cycle in which a server is not active, his TL decreases by 1 (to a minimum of
0). Let ATL be the TL of a cycle’s active server. Let α > 1 be a ”fatigue parameter”- a constant factor
corresponding to the deterioration of a server’s efficiency. We assume that during each cycle, the effective
service duration of type-i customers is the basic one multiplied by the factor αATL. We refer to the described
model as the ”basic” model. Combining the basic model with a specified swapping policy, results in a
well-defined operating system.

For example, assume that we start the system with server 1 as the active server. During the first cycle
ATL is 0, which means that type-i customers are being served according to the basic service duration Gi.
By the cycle’s end, the TL of server 1 increases from 0 to 1. Suppose server 1 continues to be active in the
second and third cycles; the time to serve a type-i customer will become αGi in the second cycle and α2Gi
in the third. By the end of the third cycle the TL of server 1 becomes 3. Now, suppose a swapping occurs
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and server 2 becomes active during the next two cycles. Performing a swap requires additional H0 units
of time just before Q1 is revisited for the fourth time (now by server 2). The result will be ATLs of 0 and
1 so that type-i customers service durations in cycles number four and five are Ki and αKi, respectively.
By the end of the fifth cycle the TL of server 2 becomes 2. Swapping back to server 1 (whose TL has been
reduced from 3 to 1 since the end of the third cycle) will result in an effective service duration of αGi for
the sixth cycle, after incurring an additional H0 units of time at the end of the fifth cycle. When the sixth
cycle in completed, the TL of server 2 has been reduced to 1 and the TL of server 1 (the last active server)
has been increased to 2.

Before moving on, let us indicate a few points: Firstly, the switch-over times Hi are unaffected by the
servers ATLs; secondly, the choice of the first server to be active does not incur the additional H0 units of
time; and lastly, choosing to never swap the servers will clearly result in the system’s explosion.

2.2 Swapping policies and re-modeling of the system

We are interested in comparing various swapping policies in steady state. To this end, for a given swapping
policy, we combine several sequential cycles into one big meta-cycle (the formers are referred to as sub-cycles,
while the latter is called a cycle). We alter the arrival process in such a way that the resulting model will
be equivalent to the original basic model (mentioned in Section 2.1), under the given swapping policy. This
will enable us to technically analyze the model by using recently developed techniques. We refer to the
aforementioned resulting model as the ”new” model.

To clarify the issue, let us consider a simple swapping policy in which we start the system by activating
server 1 and perform a swap at the end of every two sub-cycles. This can be alternatively modeled by a
polling system composed of 4 sub-cycles, for a total of 4N queues Q1, Q2, . . . , Q4N . Those queues are visited
by a single server with the regular switching times during each sub-cycle and the added H0 swapping time
at the end of every even sub-cycle. The switch-over times corresponding to the 4N queues are the elements
of a new vector of switch-over times, Hnew (recall that H ′N = HN +H0):

{H1, H2, . . . ,HN−1,HN, H1, H2, . . . ,HN−1,H
′
N, H1, H2, . . . ,HN−1,HN, H1, H2, . . . ,HN−1,H

′
N}.

In the first and second sub-cycles server 1 is active while the ATLs are 0 and 1, respectively. In the third
and fourth sub-cycles server 2 is active with ATLs 0 and 1. The service times corresponding to individual
customers in the 4N queues are the elements of a new vector of service times, GKnew:

{G1, G2, . . . , GN−1, GN , αG1, αG2, . . . , αGN−1, αGN ,K1,K2, . . . ,KN−1,KN , αK1, αK2, . . . , αKN−1, αKN}.

Note that at the end of the forth sub-cycle (the end of the first meta-cycle) the TL of server 1 is reduced
back to 0. The same holds true for server 2 at the end of the second sub-cycle in the middle of the second
(meta-)cycle. This allows us to replace the two tiring servers by a single non-tiring server.

We will only deal with (servers-)activation orders which are fully repetitive (i.e. can be modeled by using
identical cycles), and possess the following two properties:

• Quasi-Fairness: Each cycle is composed of identical number of sub-cycles in which each of the servers
is active.

• No Over-Rest: After his initial activation, every time a server’s TL reaches zero, he is activated
immediately.

In each fully repetitive activation order, during the first cycle, both servers reach their first activation
sub-cycle with TL = 0. We emphasize that the two mentioned properties are satisfied i.f.f. during each
sequential cycle both servers continue to reach their first activation sub-cycle with TL = 0.

In view of the above, we will concentrate on a family of symmetric swapping policies which call for a
swap at the end of every T sub-cycles (T = 1, 2, 3, . . . ). For example, the ”always swap” (T = 1) swapping
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policy means a (servers-)activation order of 1,2 (without loss of generality, we always set server 1 to be
the first active server), while the ”swap at the end of every T = 2 sub-cycles” swapping policy means
an activation order of 1,1,2,2. Note that the discussed family is a subset of the superset constructed of all
activation orders which are fully repetitive and possess the ”Quasi-Fairness” and ”No Over-Rest” properties.
Moreover, the later superset includes elements which do not belong to the former subset (e.g. the activation
order 1,1,1,1,2,2,1,2,2,2).

Although we do not treat other types of activation orders, some of them can be modeled similarly (e.g.
the activation order 1,2,2,1 is identical, in the long run, to the activation order 1,1,2,2 or 2,2,1,1; the acti-
vation order which starts with 1,1,1,2,1,2,2 and then continues with 1,2 indefinitely, is identical, in the long
run, to the activation order 1,2 with basic service durations of αGi for server 1 and αKi for server 2), while
other activation orders may result in the system’s explosion (e.g. the activation orders 2,2,1 and 1,1,2,1).

The new model is not yet fully equivalent to the basic model under a given swapping policy because
customers’ arrival rates to the new model have been quadrupled. In order to make the new model equivalent
to the basic one, we incorporate the concept of state-dependent arrival rates, where a ”state” corresponds
to the position (a specific queue being visited or a specific switch-over) of the active server.

As will be elaborated in Remark 2.2, the service regime used in the basic model does not affect the
service regime used in the new model, which we will consider to be exhaustive. The basic model’s service
regime only affects the structure of the state-dependent arrival rates in the new model.
Let C be the total number of sub-cycles which are used to construct a cycle. Thus, each cycle is composed
of CN queues. Consider now, the three different (basic model) service regimes.

Gated: When the server reaches Qi (i = 1, . . . , N) in sub-cycle γ (γ = 1, . . . , C) all arriving processes of
type-i customers in the cycle are set to zero, save that of Qi in sub-cycle γ + 1. In this way all and only
type-i customers arriving after closing queue-i’s gate in sub-cycle γ will be served in the next sub-cycle.
For example, assume N = 3, under the gated regime and the ”always swap” (swapping) policy (C = 2),
some of the state-dependent arrival rates are illustrated in the following scheme (each star represents the
position of the active server in the polling system directly above it):
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Exhaustive: When the server departs from Qi in sub-cycle γ all arriving processes of type-i customers
in the cycle are set to zero, save that of Qi in sub-cycle γ + 1. In this way all and only type-i customers
arriving after moving away from queue-i in sub-cycle γ will be served in the next sub-cycle.

Globally-Gated: When the server reaches Q1 in sub-cycle γ all arriving processes of all different customer
types in the cycle are set to zero, save those of sub-cycle γ + 1. In this way all and only customers arriving
after closing all the queues’ gates in sub-cycle γ will be served in the next sub-cycle.

Now, let’s define precisely the server’s position. If the server is visiting Qi we state that his position is
Vi. If the server is switching (i.e. moving) from Qi to Qi+1 we state that his position is Mi. Let P denote
the vector of server’s poison in the new model. Then,

P ≡ {V1,M1, V2,M2, . . . , VN ,MN , . . . , VCN−1,MCN−1, VCN ,MCN} .

Define λ
(p)
i+(γ−1)N as the arrival rate to Qi in sub-cycle γ while the server’s position is p ∈ P .

If the basic model operates under the gated regime, the arrival rates to all queues in the new model satisfy:

λ
(p)
i+(γ−1)N =

{
λi p ∈

[
Vi+(γ−2)N , M i−1+(γ−1)N

]
,

0 else,
(2.1)

where, if p1, p2 ∈ P , then [p1, p2] is the closed interval of sequential positions starting at p1 and ending at
p2. That is, the arrival rate to Qi is λi during the time interval from the moment the server reaches Qi in
sub cycle γ − 1 until it completes the switching period from Qi−1 to Qi in sub-cycle γ.
If the basic model operates under the exhaustive regime, the arrival rates to all queues in the new model
satisfy:

λ
(p)
i+(γ−1)N =

{
λi p ∈

[
Mi+(γ−2)N , V i+(γ−1)N

]
,

0 else.
(2.2)

If the basic model operates under the globally-gated regime, the arrival rates to all queues in the new
model satisfy:

λ
(p)
i+(γ−1)N =

{
λi p ∈

[
V1+(γ−2)N , MN+(γ−2)N

]
,

0 else.
(2.3)

It is easy to see that in the new model, each of the CN queues receive new customers during exactly one
sub-cycle, which starts at various positions of the server. Actually, each original arrival process is active
only while the server occupies 1/C of the available positions in a cycle.

To conclude, with the new adjusted arrival rates (in accordance with the chosen regime), new switching
times and new service times for the single server, the new (exhaustively-served) model is equivalent to the
basic model with the aforementioned swapping policy.

To complete the presentation of the new model, we introduce additional notation. For i = 1, 2, . . . , N ,
let l = i + (γ − 1)N ∈ {1, 2, . . . , CN} denote the index corresponding to the new CN queues. Let Sl and
it’s LST, S̃l (·), correspond to the l-th element in the new vector of CN switch-over times Hnew, and let
Bl and it’s LST, B̃l (·), correspond to the l-th element in the new vector of CN service times, GKnew. Let
j ∈ {1, 2, . . . , CN}, and note that the sub-cycle number corresponding to the system states Vj and Mj is

γ =
⌈
j
N

⌉
(e.g. λ

(p)
j+(γ−1)N = λ

(p)

j+(d jN e−1)N
).

Remark 2.1. When calculating expressions related to the globally-gated regime, we sometimes use the
notation ”(l mod N)” or ”(j mod N)”. This notation should always be considered modulo N . For example,
for l = 2N , (l mod N) = N .

Remark 2.2. In the new model, under the gated regime λ
(Vl)
l = 0 ∀l = 1, . . . , CN , while under the globally-

gated regime λ
(p)
l = 0 ∀l = 1, . . . , CN and p ∈ [Vl−(l mod N)+1, V l]. In other words, under the gated and
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globally-gated regimes, customers arrival rate to Ql equals zero, from the moment Ql’s gate closes until the
end of Vl. Hence, the type-l customers present at the arrival epoch to Ql are exactly the type-l customers
who are supposed to be served during Vl. Since there are no new type-l customers arriving during Vl, we
can assume that a basic model which operates under any of the three various service regimes, translates to
a new model which operates under the exhaustive service regime with the relevant state-dependent arrival
rates. Note that, in the sequel, when referring to the new model under the gated (exhaustive; globally-gated)
regime, we mean the new model which is originated from a basic model operating under the gated
(exhaustive; globally-gated) regime.

Remark 2.3. When discussing a new model which is originated from a basic model consisting of a single
queue, we use the notation λ ≡ λ1, H ∼ H1, G ∼ G1 and K ∼ K1.

2.3 The compact model

Under a ”swap at the end of every T ≥ 2 sub-cycles” policy, each cycle of the resulting new model consists
of 2T sub-cycles. However, assuming that in the basic model both servers are identical, each of the first
consecutive T sub-cycles share the same effective service durations with its counterpart in the last consecu-
tive T sub-cycles. Since, within a cycle, swapping occurs only at the end of the T -th sub-cycle and the 2T -th
sub-cycle, the new model’s cycle can practically be ”cut” in half into two separated identically structured
”half-cycles”. By setting a ”half-cycle” to be a full cycle in the new model, we create a ”compact” form of
the new model, which is easier to analyze, since it is essentially a new model with half the number of queues
(l, j = 1, . . . , CN2 ; CN

2 ∈ Z, where Z denotes the set of integer numbers). We refer to the compact form of a
new model as the ”compact” model.

We now state some points of interest regarding the compact model. Firstly, as long as we discuss a basic
model with identical servers which operate under a ”swap at the end of every T ≥ 2 sub-cycles” policy, we
can always consider a compact model. Generally speaking, this holds true since in the new model, under
all service regimes, when the server changes his position, the arrival rates to queues whose next visit period
will occur after the following sub-cycle do not change. This prevents overlapping between different arrival
rates in the compact model.

Secondly, we can also consider a compact model in case we discuss a basic model with identical servers
which operate under the ”always swap” policy, but we have to be careful. In the new model, under all service
regimes, each queue is empty at a server’s departure epoch from it. However, only in a basic model operating
under the exhaustive regime, does the equivalent queue in the next sub-cycle is (always) also empty at the
same epoch. The lack of this property in a basic model operating under the gated or globally-gated regime,
contradicts the new model’s exhaustive service regime assumption. Therefore, under the ”always swap”
policy, the service regime used in the compact model is the same as the service regime used in the basic
model.

Thirdly, when discussing a basic model with identical servers which operate under an ”always swap”
policy, the compact model does not include state-dependent arrival rates. Moreover, if the basic model
consists of a single queue and operates under the exhaustive regime, the resulting compact model will be an
M/G/1 system with multiple server vacations (see Levy and Yechiali [11]) of length H ′N = HN + H0 (the
resulting new model will, of course, also be equivalent).

Lastly, consider the new model which is originated from a basic model operating under the ”swap at
the end of every T sub-cycles” policy and the compact model which is originated from the same basic
model under the ”swap at the end of every 2T sub-cycles” policy. Clearly, both models have the same
number (2T ) of sub-cycles per cycle. Comparing the structure of both models emphasizes the differences
between them (e.g. choosing to swap earlier thus ”paying” the additional H0 units of time in order to avoid
increased effective service durations), and allows for a convenient arguments comparison (i.e. the expected
cycle times, the expected visit time in the l-th visited queue etc.).
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3 Stability

Based on [5], due to the state-dependent arrival rates, the condition for stability in the new model is that
the Perron-Frobenius eigenvalue of the matrix (R− ICN) should be strictly less than 0, where ICN is the
identity matrix of order CN and

R ≡
(
λ

(Vj)
l E(Bl)

)
=

 λ
(V1)
1 E(B1) · · · λ

(VCN )
1 E(B1)

...
. . .

...

λ
(V1)
CN E(BCN ) · · · λ

(VCN )
CN E(BCN )

 . (3.1)

In other words, let π ∈ R where R denotes the set of real numbers. The above stability condition means
that the maximal π root of the equation

det (R− (π+1) ICN) = 0, (3.2)

should be negative. Note that the (l, j) element of the matrix (R− ICN) corresponds to the expected change
in the number of customers in Ql, during an average service time of a type-l customer while the server visits

Qj . Another point of interest is that at least half out of the values of λ
(Vj)
l are zeroes. More accurately, only

1/C out of the (CN)2 elements of R are non-zeroes.

Remark 3.1. Since a compact model is originated from an equivalent new model, both share the same
stability condition. This can also be seen by directly calculating the stability condition for the compact
model (where , j = 1, . . . , CN2 ). Note that the stability condition does not change if the model in question
operates under the gated or globally-gated regime. Thus, even under those regimes and an ”always swap”
policy, directly calculating the stability condition for the compact model will result in the classical ”total
traffic-intensity in system must be less than 1” stability condition.

4 Laws of motion

Define θl to be the length of a busy period in a regular M/G/1 queueing system with type-l customers,

constant λ
(Vl)
l arrival rate, and service times Bl. Then, E (θl) = E(Bl)

1−ρl , where

ρl ≡ λ
(Vl)
l E(Bl) is the fraction of time the server is visiting Ql.

The LST of θl is the root in (0, 1] of the equation (see e.g. Cohen [8]):

θ̃l (w) = B̃l

[
w + λ

(Vl)
l

(
1− θ̃l (w)

)]
.

Define

Dl ≡
{
θl exhaustive,
Bl gated or globally-gated,

(4.1)

with LST,

D̃l (w) ≡

{
θ̃l(w) exhaustive,

B̃l(w) gated or globally-gated.
(4.2)

Under the exhaustive regime λ
(Vl)
l = λl+(γ−1)N . But under both the gated and globally-gated regimes

λ
(Vl)
l = 0, implying that θl = Bl, and θ̃l (w) = B̃l (w).

Let A
(p)
l (Ω) denote the number of Poisson arrivals to Ql during a (random) time interval of length Ω

(with LST Ω̃(w)) while the server’s position is p throughout that time interval. Define Xj
l as the number

of customers in Qj (j = 1, . . . , CN) at the moment the server polls Ql, and define Y j
l as the number of

customers in Qj at the moment the server departs from Ql. Moreover, let Dl1, Dl2, Dl3, . . . be a sequence
of i.i.d. random variables all distributed like Dl. Noting that under the gated and globally-gated regimes

λ
(Vl)
l = λ

(Ml)
l = 0, and under the exhaustive regime λ

(Ml)
l = 0, the evolution of the process is as follows:

Y j
l =

{
Xj
l +A

(Vl)
j (

∑Xl
l

k=1Dlk) l 6= j,

0 l = j,
(4.3)
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Xj
l+1 =

{
Xj
l +A

(Vl)
j (

∑Xl
l

k=1Dlk) +A
(Ml)
j (Sl) l 6= j,

0 l = j.
(4.4)

5 First moments

From the aforementioned laws of motion (4.3) and (4.4), it is easy to observe that:

E(Y j
l ) =

{
E(Xj

l ) + λ
(Vl)
j E

(
X l
l

)
E (Dl) l 6= j,

0 l = j,
(5.1)

E(Xj
l+1) =

{
E(Xj

l ) + λ
(Vl)
j E

(
X l
l

)
E (Dl) + λ

(Ml)
j E (Sl) l 6= j,

0 l = j.
(5.2)

Recursive substitution in Equation (5.1) yields,

E
(
Xj
l

)
=

l−1∑
r=j+1

[λ
(Vr)
j E (Xr

r )E (Dr) + λ
(Mr)
j E (Sr)]. (5.3)

Note that Equation (5.3) holds for all three regimes. Now, let us consider the case where l = j for the
various regimes:
For the gated regime,

E
(
Xj
j

)
= λj−(γ−1)N

j−1∑
r=j−N

[E (Xr
r )E (Br) + E (Sr)]. (5.4)

Note that λj−(γ−1)N is simply an alternative way to represent the original queue’s constant λj . Thus,

E
(
Xj
j

)
is actually the number of customers arriving to the original queue, Qj−(γ−1)N , counting from the

beginning of the last time the server visited Qj−(γ−1)N until its return. This is similar to classical polling
systems operating under the gated regime in which E

(
Xi
i

)
= λiE(C), were C stands for the cycle duration.

Also note that E
(
Xj
l

)
will always be zero unless {[j + 1, l − 1] ∩ [j −N, j − 1]} 6= ∅, where ∅ denotes the

empty set. This can be interpreted as having less than N switch-over periods while cycling from Ql to Qj
in the new model. From a combinatorial point of view, having a choice of CN places for ”l”, and N places
for ”j”, means that, similarly to the case of the matrix R in Section 3 (see Equation (3.1) and its following

explanation), only 1/C out of the (CN)2 values of E
(
Xj
l

)
are non-zeroes.

For the exhaustive regime,

E
(
Xj
j

)
= λj−(γ−1)N

E (Sj−N ) +

j−1∑
r=j−N+1

[E (Xr
r )E (θr) + E (Sr) ]

 . (5.5)

E
(
Xj
j

)
is actually the number of customers arriving to the original queue, Qj−(γ−1)N , counting from the last

time the server departed from Qj−(γ−1)N until its return epoch to Qj−(γ−1)N . Denote by SC the elapsed
time period between the last time the server polled Qj−(γ−1)N until its return epoch to Qj−(γ−1)N . Then,

E
(
Xj
j

)
is actually the number of customers arriving to Qj−(γ−1)N , during

[
1− λj−(γ−1)NE (Bj−N )

]
E(SC).

Note that

E(Xj
j ) = λj−(γ−1)N [E(SC)− E(Vj−N )]

= λj−(γ−1)N

[
E(SC)− λj−(γ−1)NE(Bj−N )E(SC)

]
= λj−(γ−1)N [1− λj−(γ−1)NE(Bj−N )]E(SC).

This is similar to classical polling systems operating under the exhaustive regime in which E
(
Xi
i

)
= λi[1−

λiE(Bi)]E(C). For similar reasons to those stated regarding the gated regime, only 1/C out of the (CN)2

values of E
(
Xj
l

)
are non-zeroes.
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Finally, for the globally-gated regime,

E
(
Xj
j

)
= λj−(γ−1)N

j−(j mod N)∑
r=j−(j mod N)+1−N

[E (Xr
r )E (Br) + E (Sr)]. (5.6)

E
(
Xj
j

)
is actually the number of customers arriving to the original queue, Qj−(γ−1)N , during the sub-cycle

which is followed by sub-cycle γ =
⌈
j
N

⌉
. This is similar to classical polling systems operating under the

globally-gated regime in which E
(
Xi
i

)
= λiE(C). Again, for similar reasons to those stated regarding the

gated regime, only 1/C out of the (CN)2 values of E
(
Xj
l

)
are non-zeroes.

6 PGFs of Joint queue lengths at arrival and departure epochs

In the current section we will use the following notation:

•
∏
j 6=l ≡

∏CN

j = 1
j 6= l

.

•
∑

j 6=l ≡
∑CN

j = 1
j 6= l

.

For each service regime, define the joint PGF of
{
Xj
l+1

}CN
j=1

as,

X̂l+1 (z1, z2, . . . , zCN ) ≡ E

CN∏
j=1

z
Xj
l+1

j


= EXlE

CN∏
j=1

z
Xj
l+1

j |Xl

 = EXlE

∏
j 6=l

z
Xj
l +A

(Vl)
j

(∑Xll
k=1Dlk

)
+A

(Ml)
j (Sl)

j |Xl


= EXl

∏
j 6=l

z
Xj
l

j ∗

E
∏
j 6=l

z
A

(Vl)
j (Dl)

j

Xl
l

 ∗ E
∏
j 6=l

z
A

(Ml)
j (Sl)

j

 . (6.1)

Note that,

E

CN∏
j=1

z
A

(P )
l (Ω)

j

 = Ω̃

CN∑
j=1

λ
(P )
j (1− zj)

 .
Then, using Equation (6.1),

X̂l+1 (z1, z2, . . . , zCN )

= EXl

∏
j 6=l

z
Xj
l

j ∗

D̃l

∑
j 6=l

λ
(Vl)
j (1− zj)

Xl
l

 ∗ S̃l
∑
j 6=l

λ
(Ml)
j (1− zj)

 . (6.2)

We conclude, from Equation (6.2) that,

X̂l+1 (z1, z2, . . . , zCN )

= X̂l

z1, z2, . . . , zl−1, D̃l

∑
j 6=l

λ
(Vl)
j (1− zj)

 , zl+1, . . . , zCN

 ∗ S̃l
∑
j 6=l

λ
(Ml)
j (1− zj)

 . (6.3)
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In a similar manner we obtain the PGF Ŷl (z1, z2, . . . , zCN ):

Ŷl (z1, z2, . . . , zCN ) ≡ E

CN∏
j=1

z
Y jl
j

 = X̂l

z1, z2, . . . , zl−1, D̃l

∑
j 6=l

λ
(Vl)
j (1− zj)

 , zl+1, . . . , zCN

 . (6.4)

Thus, Equation (6.3) can be rewritten as

X̂l+1 (z1, z2, . . . , zCN ) = Ŷl (z1, z2, . . . , zCN ) ∗ S̃l

∑
j 6=l

λ
(Ml)
j (1− zj)

 . (6.5)

Namely, the number of customers at the various queues at an instant of server’s visit to Ql+1 is the sum
of the number of customers at server’s departure from Ql plus the number of arrivals to Ql+1 during the
switch-over time Sl. We now distinguish between the three different regimes.

The gated regime
According to Equation (4.2), for the gated regime, D̃l (·) = B̃l (·). Let us consider terms from Equation

(6.3), starting with B̃l

[∑
j 6=l λ

(Vl)
j (1− zj)

]
. In accordance with the calculations of E

(
Xj
j

)
in Section 5,

the only queues whose arrival rates are positive for a given p = Vl are the N queues which will be visited
right after the current Ql. Moreover, those arrival rates are precisely the constant ones of the original

queues. Hence, the mentioned term can be rewritten as B̃l

[∑l+N
j=l+1 λj−(γ−1)N (1− zj)

]
. The same holds

true regarding S̃l

[∑
j 6=l λ

(Ml)
j (1− zj)

]
, since λ

(Vl)
j = λ

(Ml)
j ∀l, j. Therefore, the last term can be rewritten

as S̃l

[∑l+N
j=l+1 λj−(γ−1)N (1− zj)

]
.

Equation (6.4) thus becomes

Ŷl (z1, z2, . . . , zCN ) = X̂l

z1, z2, . . . , zl−1, B̃l

 l+N∑
j=l+1

λj−(γ−1)N (1− zj)

 , zl+1, . . . , zCN

 , (6.6)

and Equation (6.5) becomes

X̂l+1 (z1, z2, . . . , zCN ) = Ŷl (z1, z2, . . . , zCN ) ∗ S̃l

 l+N∑
j=l+1

λj−(γ−1)N (1− zj)

 . (6.7)

The exhaustive regime
According to Equation (4.2), for the exhaustive regime, D̃l (·) = θ̃l (·). Let us consider terms from Equation

(6.3), starting with θ̃l

[∑
j 6=l λ

(Vl)
j (1− zj)

]
. In accordance with the calculations of E

(
Xj
j

)
in Section 5, the

only queues whose arrival rates are positive for a given p = Vl are the current Ql and the following N − 1
queues. As before, those arrival rates are precisely the constant ones of the original queues. Hence, the men-

tioned term can be rewritten as θ̃l

[∑l+N−1
j=l+1 λj−(γ−1)N (1− zj)

]
. Regarding S̃l

[∑
j 6=l λ

(Ml)
j (1− zj)

]
, the only

queues whose arrival rates are positive for a given p = Ml are the next N queues to be visited (again with the

original queues’ arrival rates). Therefore, the latter term can be rewritten as S̃l

[∑l+N
j=l+1 λj−(γ−1)N (1− zj)

]
.

Equation (6.4) thus becomes

Ŷl (z1, z2, . . . , zCN ) = X̂l

z1, z2, . . . , zl−1, θ̃l

l+N−1∑
j=l+1

λj−(γ−1)N (1− zj)

 , zl+1, . . . , zCN

 , (6.8)

and Equation (6.5) becomes

X̂l+1 (z1, z2, . . . , zCN ) = Ŷl (z1, z2, . . . , zCN ) ∗ S̃l

 l+N∑
j=l+1

λj−(γ−1)N (1− zj)

 . (6.9)
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The globally-gated regime

For the globally-gated regime, D̃l (·) = B̃l (·). Consider the term B̃l

[∑
j 6=l λ

(Vl)
j (1− zj)

]
from Equation

(6.3). In accordance with the calculations of E
(
Xj
j

)
in Section 5, the only queues whose arrival rates

are positive for a given p = Vl are the N queues composing the previous sub-cycle (which is followed by
sub-cycle

⌈
l
N

⌉
). Moreover, those arrival rates are the precisely constant ones of the original queues. Hence,

the mentioned terms can be rewritten as B̃l

[∑l−(l mod N)
j=l−(l mod N)+1−N λj−(γ−1)N (1− zj)

]
. The same holds true

regarding S̃l

[∑
j 6=l λ

(Ml)
j (1− zj)

]
, since λ

(Vl)
j = λ

(Ml)
j ∀l, j. Therefore, the latter term can be rewritten as

S̃l

[∑l−(l mod N)
j=l−(l mod N)+1−N λj−(γ−1)N (1− zj)

]
.

Equation (6.4) thus becomes

Ŷl (z1, z2, . . . , zCN ) = X̂l

z1, z2, . . . , zl−1, B̃l

 l−(l mod N)∑
j=l−(l mod N)+1−N

λj−(γ−1)N (1− zj)

 , zl+1, . . . , zCN

 ,

(6.10)
and Equation (6.5) becomes

X̂l+1 (z1, z2, . . . , zCN ) = Ŷl (z1, z2, . . . , zCN ) ∗ S̃l

 l−(l mod N)∑
j=l−(l mod N)+1−N

λj−(γ−1)N (1− zj)

 . (6.11)

7 Marginal queue PGF in steady state

As stated in [2], although the steady state marginal queue length distributions at customer’s arrival and
departure epochs are the same, they differ from the distribution of the steady state marginal queue length at
an arbitrary moment. In other words, the PASTA property does not hold. The authors in [2] circumvented
this problem by relaying on the arrival rate’s ”fixation” during a given position for the server.
Specifically, define L̂j (z) as the PGF of Qj length at an arbitrary moment, and L̂j|p (z) as the PGF of Qj
length during an arbitrary moment under the condition that the server resides in positions p. Weighting
over the relative expected time the server occupies the different positions during a steady state cycle, yields
the following relation:

L̂j (z) ≡ E
(
zLj
)

=

MCN∑
p=V1

E (p)

E (C)
L̂j|p (z) =

CN∑
l=1

[
E (Vl)

E (C)
L̂j|p=Vl (z) +

E (Ml)

E (C)
L̂j|p=Ml

(z)]. (7.1)

Note that p (i.e. Vl and Ml) serves, according to the context, either as an indicator of the system state, or
as a random variable measuring the time length of the system state.

In order to compute Equation (7.1), one needs to find L̂j|p (z), E (Vl) and E (C) (obviously, E (Ml) =
E (Sl) ∀l). E (Vl) and E (C) can be calculated using Equations (8.1) − (8.4) which will be presented in
Section 8. For the sake of brevity, we refer the reader to [2] for an elaboration on the calculation of L̂j|p (z),
which can be implemented in our model using Equations (2.1)− (2.3). However, we note that the calcula-
tion of L̂j|p (z) in [2] requires the use of explicit expressions for the PGFs (6.6) − (6.11). Using recursive

substitutions, the latter can be expressed as a function of X̂1 (·) (or any other X̂l (·)) and the known LSTs
B̃l (·) and S̃l (·). However, there is no known simple explicit expression for X̂1 (·). Based on [12], Boxma [3]
expressed X̂1 (·) as an infinite product of arguments from the framework of ”Multiple Branching Processes
with Immigration”. Nevertheless, this presentation still results in a technically intractable mathematical
model. We remark that this problem does not necessarily prevent one from using the resulting intractable
expressions for some general proofs (e.g. for convergence).

Remark 7.1. In [2], the authors also addressed the issue of finding the LSTs of the waiting time distribu-
tions. The state-dependent arrival rates imply that the distributional form of Little’s Law does not hold. As
a result, the authors in [2] developed a generalization of the distributional form which can be applied. As
in the case of the marginal queue PGFs in steady state, this method leads to expressions which include an
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infinite product. Moreover, the use of this method is accompanied by a considerable increase in complexity,
due to the need to add additional queues in models with zero arrival rates (as is in our case).

8 Mean Value Analysis

As noted in Section 7, finding the marginal queues lengths PGF in steady state is intractable. As explained
in [2], one can use a ”Mean Value Analysis” (MVA) approach in order to calculate the expected waiting
time of type-l customers in steady state (and the corresponding expected queues lengths). The use of the
MVA approach relays, among other things, on deriving explicit expressions for E (Vl) and E (C). We now
show how to compute them.

Each of the type-l customers present at the arrival epoch to Ql initiates a (possibly degenerate) regular
M/G/1 busy period. The number of the mentioned type-l customers is determined by the state-dependent
arrival rate, accumulated from the last epoch at which the server departs (the empty) Ql. This yields:

E (Vl) =
E (Bl)

1− λ(Vl)
l ∗ E (Bl)

[
λ

(Ml)
l E (Sl) +

l+CN−1∑
r=l+1

(
λ

(Vr)
l E (Vr) + λ

(Mr)
l E (Sr)

)]
.

Under the gated regime this means

E (Vl) = λl−(γ−1)N ∗ E (Bl)

[
l−1∑

r=l−N
(E (Vr) + E (Sr))

]
. (8.1)

Under the exhaustive regime,

E (Vl) =
λl−(γ−1)N ∗ E (Bl)

1− λl−(γ−1)N ∗ E (Bl)

[
E (Sl−N ) +

l−1∑
r=l−N+1

(E (Vr) + E (Sr))

]
. (8.2)

Under the globally-gated regime,

E (Vl) = λl−(γ−1)N ∗ E (Bl)

 l−(l mod N)∑
r=l−(l mod N)+1−N

(E (Vr) + E (Sr))

 . (8.3)

Obviously, under each service regimes,

E (C) =

CN∑
l=1

(E (Vl) + E (Sl)). (8.4)

The idea behind the MVA approach is to express E (Lql) (the expected number of type-l customers
in the system, excluding a potential type-l customer in service), and E(Wql) (the expected time a type-l
customer waits from his arrival epoch until his service starts), using a set of equations (linear in the method’s
arguments) and, by implementing Little’s Law, derive explicit expressions for them. In Section 10 we will
use the MVA approach in order to analyze some basic cases derived from our model. In the current section
we mostly present the equations which will be used in that analysis. For a complete presentation of the
MVA approach, for exhaustively served polling systems which include state-dependent arrival rates, we refer
the reader to [2]. We note that the MVA approach, in conjunction with Equations (2.1)− (2.3), can be used
to (numerically) study intricate cases derived from our model.

8.1 MVA equations

The following presentation requires some explanations and notation, which will be given simultaneously.
Let p, p1, p2 ∈ P be system states. The fraction of time the system spends in a given state p within a cycle
is (recall that p serves both as an indicator of the server’s position, or as the duration that the server stays
in that position)
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ρ(p) ≡ E (p)

E (C)
.

The mean arrival rate of type-l customers to the system is

λl ≡
MCN∑
p=V1

ρ(p) ∗ λ(p)
l =

1

E (C)

CN∑
j=1

[
E (Vj) ∗ λ

(Vj)
l + E (Sj) ∗ λ

(Mj)
l

]
.

Under the gated regime this means

λl =
λl−(γ−1)N

E (C)

 l−1∑
j=l−N

[E (Vj) + E (Sj)]

 . (8.5)

Under the exhaustive regime,

λl =
λl−(γ−1)N

E (C)

E (Sl−N ) +

l−1∑
j=l−N+1

[E (Vj) + E (Sj)] + E (Vl)

 . (8.6)

Under the globally-gated regime,

λl =
λl−(γ−1)N

E (C)

 l−(l mod N)∑
j=l−(l mod N)+1−N

[E (Vj) + E (Sj)]

 . (8.7)

Note that under all regimes (either in a new or compact model form), adding together the λls representing
all ”duplications” of an original basic model queue, will sum up to the latter’s original λ. That is,

C∑
r=1

λl+(r−1)N =
λl−(γ−1)N

E (C)
∗ E (C) = λl−(γ−1)N .

By Little’s law,
E (Lql) = λlE (Wql) . (8.8)

Define E (Rp) as the expected residual duration of time the system spends in state p, assuming it is
currently at a random epoch within p. The expected residual time until the end of the service of the
currently served type-l customer is,

E (RBl) =
E(Bl

2)

2E(Bl)
.

In addition,

E (RSl) ≡ E (RMl
) =

E
(
Sl

2
)

2E (Sl)
.

In Section 10 we will discuss the case where the basic model consists of a single queue. As a preparation
for the analysis there, the rest of the MVA equations are presented under the corresponding assumption,

namely, N = 1. E
(
Lq

(p)
l

)
is the expected number of type-l customers in the system excluding a possible

type-l customer in service, assuming the system is currently at a random epoch within p. For p 6= Vl it can
be calculated by building up the number of type-l customers, counting from the last departure epoch from
Ql until the current random point in state p.
Assuming (globally) gated regime,

E
(
Lq

(Ml−1)
l

)
= λ

(
E (Vl−1) + E

(
RSl−1

))
, (8.9)

and
E
(
Lq

(Vl−1)
l

)
= λE

(
RVl−1

)
, (8.10)
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while E
(
Lq

(p)
l

)
= 0 for p 6= Vl−1,Ml−1, Vl.

Assuming exhaustive regime,

E
(
Lq

(Ml−1)
l

)
= λE

(
RSl−1

)
, (8.11)

while E
(
Lq

(p)
l

)
= 0 for p 6= Ml−1, Vl.

Now, assuming (globally) gated regime, E (RVl) consists of the expected residual serving time of
the type-l customer currently being served and the sum of all expected service times of the other type-l
customers in Ql. We thus write

E (RVl) = E (RBl) + E
(
Lq

(Vl)
l

)
E (Bl) . (8.12)

For all service regimes, we have

E (Lql) =

MC∑
p=V1

ρ(p)E
(
Lq

(p)
l

)
.

For the (globally) gated regime this means (recall that
(
Lq

(p)
l

)
= 0 for p 6= Vl−1,Ml−1, Vl),

E (Lql) = ρ(Vl−1)E
(
Lq

(Vl−1)
l

)
+ ρ(Ml−1)E

(
Lq

(Ml−1)
l

)
+ ρ(Vl)E

(
Lq

(Vl)
l

)
. (8.13)

For the exhaustive regime this means (recall that E
(
Lq

(p)
l

)
= 0 for p 6= Ml−1, Vl),

E (Lql) = ρ(Ml−1)E
(
Lq

(Ml−1)
l

)
+ ρ(Vl)E

(
Lq

(Vl)
l

)
. (8.14)

For all service regimes, the fraction of type-l customers arriving during p is
λ
(p)
l E(p)∑MC

p=V1
ρ(p)∗λ(p)l

=
ρ(p)λ

(p)
l

λl
. Con-

ditioning on the system state in which a type-l customer arrives to the a system yields,

E (Wql) =

MC∑
p=V1

Prob

(
arrival occurs
during p

)
∗ E

(
Wql

∣∣∣∣ arrival occursduring p

)
.

Assuming (globally) gated regime we get,

E (Wql) =
ρ(Vl−1) ∗ λ

λl
∗
[
E
(
RVl−1

)
+ E (Sl−1) + E

(
Lq

(Vl−1)
l

)
∗ E (Bl)

]
+
ρ(Ml−1) ∗ λ

λl
∗
[
E
(
RSl−1

)
+ E

(
Lq

(Ml−1)
l

)
∗ E (Bl)

]
. (8.15)

Assuming exhaustive regime results in,

E (Wql) =
ρ(Vl)λ

λl
∗
[
E (RBl) + E

(
Lq

(Vl)
l

)
E (Bl)

]
+
ρ(Ml−1) ∗ λ

λl
∗
[
E
(
RSl−1

)
+ E

(
Lq

(Ml−1)
l

)
∗ E (Bl)

]
.

(8.16)

For example, under the exhaustive regime, a customer arriving during Vl will enter service after waiting the
residual time until the currently served type-l customer departs the system, plus all the service times of the
type-l customers present at his arrival epoch. Hence, under the exhaustive regime,

E

(
Wql

∣∣∣∣ arrival occursduring Vl

)
= E (RBl) + E

(
Lq

(Vl)
l

)
E (Bl) .
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8.2 Optimality criterion

Generally speaking (and under all three regimes), type-i customers from the basic model can only ar-
rive to queues Qi, Qi+N , . . . , Qi+(C−1)N in the new model. The fraction of type-i customers present in

Ql ∈
{
Qi, Qi+N , . . . , Qi+(C−1)N

}
is E(Ll)∑C−1

r=0 E(Li+rN )
, where E (Ll) is the expected total number of type-l

customers in the system. The expected sojourn time of an arbitrary type-i customer in the basic system is,

E (Wi) =

∑C−1
r=0

[
E (Li+rN ) ∗

(
E
(
Wqi+rN

)
+ E(Bi+rN )

)]∑C−1
r=0 E (Li+rN )

∀i = 1, . . . , N.

By Little’s law E (Ll) = λl ∗ [E (Wql) + E(Bl)], so we can write

E (Wi) =

∑C−1
r=0

[
λi+rN∗

(
E
(
Wqi+rN

)
+ E(Bi+rN )

)2]∑C−1
r=0

[
λi+rN ∗

(
E
(
Wqi+rN

)
+ E(Bi+rN )

)] ∀i = 1, . . . , N.

Define E(Wnew
l ) ≡ E (Wql) +E(Bl) to be the expected sojourn time of an arbitrary type-l customer in the

new model. We conclude that

E (Wi) =

∑C−1
r=0

[
λi+rN ∗ E2

(
Wnew
i+rN

)]∑C−1
r=0

[
λi+rN ∗ E

(
Wnew
i+rN

)] ∀i = 1, . . . , N. (8.17)

As mentioned earlier, in Section 10 we will discuss basic models consisting of a single queue. In those
cases, E (W1) will measure the system performances.

9 Stability for a single queue case

In Section 3 we stated the following stability condition: The maximal π root of Equation (3.2) should
be negative. We now examine the general structure of this stability condition for a new model which is
originated from a basic model consisting of a single exhaustively-served queue under ”swap at the end of
every T sub-cycles” (T = 1, 2, 3, . . . ) policy. Recall that E (G) (E (K)) is the expected basic service duration
of server 1 (server 2). We have:

det (R− (π+1) ∗ ICN) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λα0 E(G)− (π+1) 0 0 0 · · · 0

0
. . .

...
0 λ αT−1E(G)− (π+1) 0
0 λ α0E(K)− (π+1) 0
...

. . . 0
0 · · · 0 0 0 λ αT−1E(K)− (π+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

So,

det (R− (π+1) ICN) = 0 =⇒
T−1∏
r=0

[(λαr E (G)− (π+1)) ∗ (λαr E (K)− (π+1))] = 0.

Hence, the collection of all π solutions is given by

T−1⋃
r=0

{{π=λαr E (G)− 1} ∪ {π=λαr E (K)− 1}}.

Thus, the stability condition for the exhaustive regime reads

max
R

[
π|π ∈

T−1⋃
r=0

{{π=λαr E (G)− 1} ∪ {π=λαr E (K)− 1}}

]
< 0,
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namely,

λαT−1 max [E (G) , E (K)] < 1. (9.1)

Failure to meet this condition means that the server would eventually get ”stuck” in some Ql, l = 1, 2, . . . , C.

We define ”zero TL stability” as the stability condition of a new model under the ”always swap” policy,
namely, T = 1 =⇒ λmax [E (G) , E (K)] < 1. Given ”zero TL stability”, in a stable system α ∈ (1, UB),
where

UB =


∞ T = 1,

1

[λmax[E(G),E(K)]]
1

T−1
T ∈ [2,∞) ,

and Tmax, the maximal T for which the corresponding swapping policy still produces a stable system, is

Tmax = max
T∈Z

T |T <
ln
(

α
λmax[E(G),E(K)]

)
ln (α)

 =


ln
(

1
λmax[E(G),E(K)]

)
ln (α)

 .
We now examine the general structure of the discussed stability condition for a new model, which is

originated from a basic model consisting of a single gatedly-served queue under ”swap at the end of every
T sub-cycles” (T = 1, 2, 3, . . . ) policy.

Remark 9.1. For a basic model consisting of a single queue, the gated regime and the globally-gated regime
converge. In such cases we will refer to the service regime as ”(globally) gated”.

We have:

det (R− (π+1) ∗ ICN) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (π+1) 0 · · · 0 0 · · · 0 0 λ α0E(G)
λ α1E(G) − (π+1) 0

0 λ α2E(G)
. . . 0

...
. . . − (π+1)

...
0 λ αT−1E(G) − (π+1) 0
... λα0 E (K)

. . .
...

0
. . . − (π+1) 0

0 λ αT−2E(K) − (π+1) 0
0 0 · · · 0 0 · · · 0 λ αT−1E(K) − (π+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This means,

det (R− (π+1) ICN) = (π+1)2T −
T∏
r=1

[
λ αr−1E (G) ∗ λαr−1E (K)

]
= (π+1)2T − αT (T−1)

[
λ
√
E (G)E (K)

]2T
.

So,

det (R− (π + 1) ICN) = 0 =⇒ π = λα
(T−1)

2

√
E (G)E (K)− 1.

Thus, the stability condition for the (globally) gated regime reads

max
R

[
π|π = λα

(T−1)
2

√
E (G)E (K)− 1 < 0

]
,

namely,

λα
(T−1)

2

√
E (G)E (K) < 1. (9.2)

16



Given ”zero TL stability” (i.e. T = 1 =⇒ λ
√
E (G)E (K) < 1), in a stable system α ∈ (1, UB), where

UB =


∞ T = 1,

1

[λ2E(G)E(K)]
1

T−1
T ∈ [2,∞) ,

and

Tmax = max
T∈Z

T |T <
ln
(

α
λ2E(G)E(K)

)
ln (α)

 =


ln
(

1
λ2E(G)E(K)

)
ln (α)

 .
The stability condition for the exhaustive regime (Equation (9.1)), states that the highest traffic-intensity

produced by a queue would not exceed 1. In the case of the (globally) gated regime (Equation (9.2)), we need
only demand that the (unweighed) geometric mean of all traffic-intensities produced by the queues would
not exceed 1. For a given α, this generally translates to a higher Tmax under the gated regime than
under the exhaustive regime (note that the stability condition of the exhaustive regime is a sufficient
condition for the stability of the gated regime). One way to look at it is to observe that, under the (globally)
gated regime, no matter how slow the tired server is, he never gets ”stuck” in a queue. After a cycle in
which a server operates at his highest incurred TL, he is always replaced by a ”fresh” server, with TL = 0.

We now compare the two stability conditions for the case of identical servers (B ∼ G ∼ K).
For the exhaustive regime, max [E (G) , E (K)] = E (B) means

λαT−1 max [E (G) , E (K)] < 1 =⇒ λαT−1E (B) < 1.

For the (globally) gated regime, E (G)E (K) = E2 (B) means

λα
(T−1)

2

√
E (G)E (K) < 1 =⇒ λα

(T−1)
2 E (B) < 1.

Both regimes’ ”zero TL stability” conditions converge to

λE (B) < 1.

We conclude that, given ”zero TL stability”, in a stable system α ∈ (1, UB), where

UB =



∞ T = 1,

1

[λE(B)]
1

T−1

T ∈ [2,∞)
exhaustive,

(
1

[λE(B)]
1

T−1

)2
T ∈ [2,∞)
(globally) gated,

and

Tmax =



TmaxE ≡ maxT∈Z

[
T |T <

ln
(

α
λE(B)

)
ln(α)

]
=

⌈
ln
(

1
λE(B)

)
ln(α)

⌉
exhaustive,

TmaxG ≡ maxT∈Z

[
T |T <

ln
(

α

[λE(B)]2

)
ln(α)

]
=

⌈
2 ∗

ln
(

1
λE(B)

)
ln(α)

⌉
(globally) gated.

(9.3)

We can write,

TmaxG =


2TmaxE 0 ≤ TmaxE −

ln
(

1
λE(B)

)
ln(α) < 0.5,

2TmaxE − 1 0.5 ≤ TmaxE −
ln
(

1
λE(B)

)
ln(α) < 1.

(9.4)
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We now interpret the results for the case of identical servers. In classical polling systems consisting
of a single queue (with service durations B), the stability condition is identical under the exhaustive and
(globally) gated regimes. Namely, it is the same as the ”zero TL stability” condition, λE (B) < 1. This
holds true since λE (B) is the expected number of customers arriving to the queue during an expected
service time of a single customer (which takes place during a certain visit period V ′). Under the exhaustive
regime, those arriving customers are served during the same visit period in which they arrived (V ′). This
requires an average of E (B) units of time per customer, so λE (B) ≥ 1 means that the server will eventually
get ”stuck” in the queue. Under the (globally) gated regime, those arriving customers are served during
the next visit period to their arrival (V ′ + 1). This requires an average of E (B) units of time per customer
during which the number of new arrivals will be (λE(B))2, and so on. Thus, λE (B) ≥ 1 means that the
number of customers served each visit period will tend to infinity in the long run (in a kind of ”snow ball
effect”). In our model the ergodic behavior of the system, under the exhaustive regime, follows the same
logic. If during any visit period λE (Bl) ≥ 1 (which occurs i.f.f αT−1λE (B) ≥ 1), the system will explode
in the long run due to the fact that each arriving customer is served during an average of E (Bl) units of
time. However, for the (globally) gated regime, the logic differs. This results from the fact that, during the
visit period V ′ + 1, the effective service duration is not the same as in the service period V ′. Each arriving
customer in V ′ is served during an average of E (Bl+1) units of time. Since the server never gets ”stuck” in
a queue, after a cycle in which he operates at his highest incurred TL, he is always ”refreshed” (TL = 0).
Thus, TmaxG ≥ TmaxE .

Note that under an ”always swap” policy, the average amount of service time per customer is identical
in both queues comprising the new model (E (B1) = E (B2) = E (B)). Indeed, for T = 1, the stability
conditions for the exhaustive regime and (globally) gated regime are identical (and equal to the ”zero TL
stability” condition λE (B) < 1).

We remind that, as stated in Remark 3.1, the stability condition for a compact model is the same as in
the equivalent new model.

10 Analysis of a single queue case

10.1 The exhaustive regime, N=1

Consider a system composed of a single exhaustively-served queue and two identical servers which operates
under the ”swap every T sub-cycles” (T = 1, 2, . . . ) policy. Furthermore, assume ”zero TL stability”.

Consider the compact models, under a given T ≤ TmaxE =

⌈
ln
(

1
λE(B)

)
ln(α)

⌉
.

Our initial goal is to find an explicit expression for the optimality criterion, E (W1), which depends only
on the initial parameters H, H0, B, α, λ and T .
From Equation (8.17), using (8.6),

E (W1) =

∑T
r=1 λrE

2(Wnew
r )∑T

r=1 λrE(Wnew
r )

=

∑T
r=1 (E (Sr−1) + E (Vr))E

2(Wnew
r )∑T

r=1 (E (Sr−1) + E (Vr))E(Wnew
r )

. (10.1)

From Equation (8.2),

E (Vl) =
λE (Bl)E (Sl−1)

1− λE (Bl)
. (10.2)

Note that since Bl = αl−1B and Sl =

{
H l < T
H +H0 l = T

, Equation (10.2) means E (V2) < E (V3) < · · · <

E (VT ) ∀T .
Substitution of Equation (10.2) into Equation (10.1) yield,

E (W1) =

∑T
r=1

E(Sr−1)
1−λE(Br)

[E (Wqr) + E (Br)]
2∑T

r=1
E(Sr−1)

1−λE(Br)
[E (Wqr) + E (Br)]

. (10.3)
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Combining Equations (8.8), (8.11), (8.14) and (8.16) yields,

E (Wql) =
E
(
Sl−1

2
)

2E (Sl−1)
+

λE
(
Bl

2
)

2 (1− λE (Bl))
= E

(
RSl−1

)
+ E

(
WqM(λ)/G(Bl)/1

)
. (10.4)

Equation (10.4) reflects a decomposition property which exists due to the absence of correlation between
the different visit periods and the properties of the Poisson arrival rates. Equation (10.4) and the above
explanation also holds for the case of not necessarily identical servers. Note that we can view the current
model (with identical servers) as an M/G/1 system with multiple vacations of duration H, where the server’s
TL increases after each vacation. From this viewing point, each T -th vacation is a special extended vacation
(lasting an additional H0 units of time) from which the server returns at full strength (i.e. TL = 0).

Substitution of Bl = αl−1B and Sl =

{
H l < T
H +H0 l = T

into Equation (10.4) yields,

E (Wql) =


E(H2)+E(H0

2)+2E(H)E(H0)

2(E(H)+E(H0)) +
λE(B2)

2(1−λE(B)) l = 1,

E(H2)
2E(H) +

λα2(l−1)E(B2)
2(1−λαl−1E(B))

l > 1.

(10.5)

Note that E (Wq1) is unaffected by α. Also note that for T = 1,

E (W1) = E (Wnew
1 ) = E (Wq1) + E (B) =

E
(
H2
)

+ E
(
H0

2
)

+ 2E (H)E (H0)

2 (E (H) + E (H0))
+

λE
(
B2
)

2 (1− λE (B))
+ E (B) .

In accordance with Section 2.3, the last equation is equivalent to the mean sojourn time in an M/G/1 system
with multiple server vacations of duration H +H0.
Substitution of Equations (10.4) and (10.5) into Equation (10.3) yields,

E (W1) =


E(H)+E(H0)

1−λE(B) ∗
[
E(H2)+E(H0

2)+2E(H)E(H0)

2(E(H)+E(H0)) +
λE(B2)

2(1−λE(B)) + E (B)

]2

+
∑T

r=2
E(H)

1−λαr−1E(B)
∗
[
E(H2)
2E(H) +

λα2(r−1)E(B2)
2(1−λαr−1E(B))

+ αr−1E (B)

]2


E(H)+E(H0)

1−λE(B) ∗
[
E(H2)+E(H0

2)+2E(H)E(H0)

2(E(H)+E(H0)) +
λE(B2)

2(1−λE(B)) + E (B)

]
+
∑T

r=2
E(H)

1−λαr−1E(B)
∗
[
E(H2)
2E(H) +

λα2(r−1)E(B2)
2(1−λαr−1E(B))

+ αr−1E (B)

]

. (10.6)

For the sake of completeness, we note that Equation (8.4) leads to

E (C) =

T∑
k=1

E (H)

1− λαk−1E (B)
+

E (H0)

1− λE (B)
, (10.7)

and Equation (8.6) leads to

λl =


λ

E(C)

(
E(H)+E(H0)

1−λE(B)

)
l = 1,

λ
E(C)

(
E(H)

1−λαl−1E(B)

)
1 < l ≤ T.

(10.8)

Remark 10.1. The above results can be extended for the more general case of not necessarily identical

servers in a straight forward way (assuming λmax [E (G) , E (K)] < 1, and T ≤ Tmax =

⌈
ln
(

1
λmax[E(G),E(K)]

)
ln(α)

⌉
).

This is done by simply recalling that the aforementioned case is composed of two ”compact model cycles”,

whose only difference lies in Bl =

{
Gi=l 1 ≤ l ≤ T
Ki=l−T 1 + T ≤ l ≤ 2T

.
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The results are:

E (W1) =

∑T
r=1

[
E(Sr−1)

1−λE(Br)
[E (Wqr) + E (Br)]

2 +
E(Sr+T−1)

1−λE(Br+T )

[
E
(
Wqr+T

)
+ E (Br+T )

]2]
∑T

r=1

[
E(Sr−1)

1−λE(Br)
[E (Wqr) + E (Br)] +

E(Sr+T−1)
1−λE(Br+T )

[
E
(
Wqr+T

)
+ E (Br+T )

]]

=

∑T
r=1E (Sr−1)

[
1

1−λαr−1E(G)

[
E (Wqr) + αr−1E (G)

]2
+ 1

1−λαr−1E(K)

[
E
(
Wqr+T

)
+ αr−1E (K)

]2
]

∑T
r=1E (Sr−1)

[
1

1−λαr−1E(G)

[
E (Wqr) + αr−1E (G)

]
+ 1

1−λαr−1E(K)

[
E
(
Wqr+T

)
+ αr−1E (K)

] ] ,

where

E (Sl) = E (Sl+T ) =

{
E (H) + E (H0) l = T,
E (H) 1 ≤ l < T,

and

E (Wql) =



E(H2)+E(H0
2)+2E(H)E(H0)

2(E(H)+E(H0)) +
λE(G2)

2(1−λE(G)) l = 1,

E(H2)
2E(H) +

λα2(l−1)E(G2)
2(1−λαl−1E(G))

1 < l ≤ T,

E(H2)+E(H0
2)+2E(H)E(H0)

2(E(H)+E(H0)) +
λE(K2)

2(1−λE(K)) l = T + 1,

E(H2)
2E(H) +

λα2(l−T−1)E(K2)
2(1−λαl−T−1E(K))

T + 1 < l ≤ 2T.

In addition,

E (C) = E (H) ∗
T∑
r=1

(
1

1− λαr−1E (G)
+

1

1− λαr−1E (K)

)
+ E (H0) ∗

(
1

1− λE (G)
+

1

1− λE (K)

)
,

and

λl =



λ
E(C)

(
E(H)+E(H0)

1−λE(G)

)
l = 1,

λ
E(C)

(
E(H)

1−λαl−1E(G)

)
1 < l ≤ T,

λ
E(C)

(
E(H)+E(H0)

1−λE(K)

)
l = T + 1,

λ
E(C)

(
E(H)

1−λαl−1E(K)

)
T + 1 < l ≤ 2T.

We now concentrate our efforts on finding an efficient algorithm to obtain an optimal swapping policy
for the case of identical servers. Define,

ξr ≡
E (Sr−1)

1− λE (Br)
=


E(H)+E(H0)

1−λE(B) r = 1,

E(H)
1−λαr−1E(B)

r > 1.

So, we can rephrase Equation (10.3) as

E (W1) =

∑T
r=1 ξr ∗ E2(Wnew

r )∑T
r=1 ξr ∗ E(Wnew

r )
.
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The following observation is crucial: Since E (Wnew
r ) = E (Wqr) +αr−1E (B), Equation (10.5) implies that

E(Wnew
r ) is positive and unaffected by T ∀r = 1, 2, . . . , T . Clearly, the same holds for ξr ∀r = 1, 2, . . . , T .

Let ET (W1) be E (W1) under a given T = 1, 2, . . . , TmaxE , and let

T opt ≡ {T |ET (W1) ≤ El (W1) ∀l = 1, 2, . . . , TmaxE } .

In the following, we will make use of the integer numbers T 1 and T 2, which we assume satisfy 1 ≤ T 1 <
T 2 ≤ TmaxE .
If ET 2 (W1) ≥ ET 1 (W1) we can write∑T 2

r=1 ξr ∗ E2 (Wnew
r )∑T 2

r=1 ξr ∗ E (Wnew
r )

≥
∑T 1

r=1 ξr ∗ E2 (Wnew
r )∑T 1

r=1 ξr ∗ E (Wnew
r )

=⇒
T 2∑

k=T 1+1

 ξk ∗ E (Wnew
k )

∗
(∑T 1

r=1 ξr ∗ E (Wnew
r )E (Wnew

k )
)
 ≥ T 2∑

k=T 1+1

 ξk ∗ E (Wnew
k )

∗
(∑T 1

r=1 ξr ∗ E (Wnew
r )E (Wnew

r )
)
.

Note that the only difference between the two sides of the last inequality lies in E (Wnew
k ) versus E (Wnew

r ).
Now, α > 1 means E (Wnew

l ) < E
(
Wnew
l+1

)
∀l = 2, 3, . . . , TmaxE − 1. That is,

E
(
H2
)

2E (H)
+

λα2(l−1)E
(
B2
)

2 (1− λαl−1E (B))
+ αl−1E (B) <

E
(
H2
)

2E (H)
+

λα2lE
(
B2
)

2 (1− λαlE (B))
+ αlE (B) .

In other words, E (Wnew
2 ) < E (Wnew

3 ) < · · · < E
(
Wnew
TmaxE

)
. So E (Wnew

1 ) ≤ E
(
Wnew
T 1+1

)
means E (Wnew

1 ) <

E (Wnew
l ) ∀l = T 1 + 2, T 1 + 3, . . . , TmaxE . Moreover:

• E (Wnew
1 ) < E (Wnew

2 ) =⇒ E1 (W1) < El (W1) ∀l = 2, 3, . . . ., TmaxE =⇒ T opt = {1} .

• E (Wnew
1 ) = E (Wnew

2 ) =⇒ E1 (W1) = E2 (W1) < El (W1) ∀l = 3, 4, . . . ., TmaxE =⇒ T opt = {1, 2} .

• And


E (Wnew

2 ) < E (Wnew
1 ) =⇒ E1 (W1) > E2 (W1) =⇒ {1} /∈ T opt,(

Wnew
T ′−1

)
< E (Wnew

1 ) ≤ E
(
Wnew
T ′

)
for some T ′ = 3, 2, . . . ., TmaxE

=⇒ ET l (W1) < ET l+1 (W1) ∀l = T ′ − 1, T ′, . . . , TmaxE − 1
=⇒ {T ′, T ′ + 1, . . . , TmaxE } /∈ T opt.

This means

And



E (Wnew
2 ) < E (Wnew

1 ) for TmaxE = 2 =⇒ T opt = {2} ,
E (Wnew

2 ) < E (Wnew
1 ) ≤ E (Wnew

3 ) for TmaxE ≥ 3 =⇒ T opt = {2} ,
E
(
Wnew
T ′−1

)
< E (Wnew

1 ) ≤ E
(
Wnew
T ′

)
for some T ′ = 4, 5, . . . ., TmaxE

=⇒ {{1} ∪ {T ′, T ′ + 1, . . . , TmaxE }} /∈ T opt,
E (Wnew

1 ) > E
(
Wnew
TmaxE

)
=⇒ {1} /∈ T opt.

Remark 10.2.
(
Wnew
T ′′

)
< E (Wnew

1 ) means that El (W1) < E1 (W1) ∀ l = 2, 3, . . . , T ′′. So
(
Wnew
T ′−1

)
<

E (Wnew
1 ) ≤ E

(
Wnew
T ′

)
for some T ′ = 3, 4, . . . ., TmaxE means El (W1) < E1 (W1) ∀ l = 2, 3, . . . , T ′ − 1.

If ET 2 (W1) ≤ ET 1 (W1) we can write

T 2∑
k=T 1+1

[
ξk ∗ E (Wnew

k )

∗
(∑T 1

r=1 ξr ∗ E (Wnew
r )E (Wnew

k )
) ] ≤ T 2∑

k=T 1+1

[
ξk ∗ E (Wnew

k )

∗
(∑T 1

r=1 ξr ∗ E (Wnew
r )E (Wnew

r )
) ].

Remark 10.3. Observe that a necessary (but not sufficient) condition for ET 2 (W1) ≤ ET 1 (W1), is

E
(
Wnew
T 1+1

)
< E (Wnew

1 ). Note that, assuming E
(
Wnew
T 2

)
< E (Wnew

1 ), any T 1 and T 2 satisfy this nec-

essary condition.
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Assume ET ′ (W1) ≤ ET ′−1 (W1), this implies that

T ′−1∑
r=1

ξr ∗ E (Wnew
r )E (Wnew

T ′ ) ≤
T ′−1∑
r=1

ξr ∗ E (Wnew
r )E (Wnew

r ). (10.9)

Consider ET ′−1 (W1) < ET ′−2 (W1) where T ′ − 2 ≥ 1. This holds true i.f.f.,

T ′−2∑
r=1

ξr ∗ E (Wnew
r )E

(
Wnew
T ′−1

)
<

T ′−2∑
r=1

ξr ∗ E (Wnew
r )E (Wnew

r ).

Since E
(
Wnew
T ′

)
> E

(
Wnew
T ′−1

)
, we can deduce from Equation (10.9) that

T ′−2∑
r=1

ξr ∗ E (Wnew
r )E

(
Wnew
T ′−1

)
<

T ′−2∑
r=1

ξr ∗ E (Wnew
r )E (Wnew

T ′ ) <

T ′−2∑
r=1

ξr ∗ E (Wnew
r )E (Wnew

r ),

where the rightmost and leftmost elements imply that ET ′−1 (W1) < ET ′−2 (W1). So ET ′ (W1) ≤ ET ′−1 (W1) =⇒
ET ′−1 (W1) < ET ′−2 (W1) ∀T ′ = 3, 4, . . . , TmaxE . This means that ET ′ (W1) ≤ ET ′−1 (W1) leads to ET ′−1 (W1) <
ET ′−2 (W1) < · · · < E2 (W1) < E1 (W1).

To conclude, assuming ”zero TL stability”, the system has the following general form:{
E1 (W1) > E2 (W1) > · · · > ET ′−2 (W1) > ET ′−1 (W1) ≥ ET ′ (W1) ,
ET ′ (W1) < ET ′+1 (W1) < · · · < ETmaxE

(W1) < ETmaxE
(W1) .

Where E
(
Wnew
l−1

)
< E (Wnew

1 ) ≤ E (Wnew
l ) for some l ≥ T ′ + 1, and

T opt =

{
{T ′ − 1, T ′} ET ′−1 (W1) = ET ′ (W1) ,
{T ′} ET ′−1 (W1) > ET ′ (W1) .

Remark 10.4. While moving from l = 1 to l = TmaxE , El (W1) decreases down to ET opt (W1) and then
increases. By using Equation (10.6) to check whether an El (W1) is in the increasing part or in the decreasing
part, one can use a binary search method in order to find T opt (which is non-empty and contains at most
two consecutive elements). Knowing where to locate E (Wnew

1 ) on the E (Wnew
l ) axis would narrow down

the search.

Now, for 1 < T ≤ TmaxE , the inequality E (Wnew
1 ) ≤ E (Wnew

T ) means

E
(
H2
)

+ E
(
H0

2
)

+ 2E (H)E (H0)

2 (E (H) + E (H0))
+

λE
(
B2
)

2 (1− λE (B))
+ E (B) ≤

E
(
H2
)

2E (H)
+

λα2(T−1)E
(
B2
)

2 (1− λαT−1E (B))
+ αT−1E (B)

=⇒
E
(
H0

2
)
− E (H0)

[
V ar(H)
E(H) − E (H)

]
E (H) + E (H0)

≤

{
2E (B)

(
αT−1 − 1

)
+ λ

(
V ar (B)− E2 (B)

)
∗
[
α2(T−1) (1− λE (B))−

(
1− λαT−1E (B)

)] }
(1− λαT−1E (B)) (1− λE (B))

.

Assume B∼exp (·). This means V ar (B) = E2 (B), so the last inequality simplifies to

E
(
H0

2
)
− E (H0)

[
V ar(H)
E(H) − E (H)

]
E (H) + E (H0)

≤
2E (B)

(
αT−1 − 1

)
(1− λαT−1E (B)) (1− λE (B))

. (10.10)

For any given B∼exp (·), λ and α, E
(
H0

2
)
− E (H0)

[
V ar(H)
E(H) − E (H)

]
≤ 0 =⇒ E(H0

2)
E(H0) ≤

V ar(H)
E(H) − E (H)

would mean that E (Wnew
1 ) < E (Wnew

2 ). So this is a sufficient (but not necessary) condition for T opt = 1
(note that this sufficient condition never holds if H∼exp (·)).

22



In case
E(H0

2)
E(H0) > V ar(H)

E(H) − E (H), isolating T from Equation (10.10) leads to

T ≥
ln

{
α

[
2E(B)(E(H)+E(H0))+(1−λE(B))

[
E(H0

2)−E(H0)
(
V ar(H)
E(H)

−E(H)
)]

2E(B)(E(H)+E(H0))+λE(B)(1−λE(B))
[
E(H0

2)−E(H0)
(
V ar(H)
E(H)

−E(H)
)]
]}

ln (α)
≡ TBOUND.

Note that since λE (B) < 1 and α > 1, TBOUND > 1. Also note that TBOUND monotonically decreases
in α > 1.

Clearly, we are interested in dTBOUNDe. We claim: dTBOUNDe ≤ TmaxE + 1.

Proof: We first show that TBOUND <
ln
(

α
λE(B)

)
ln(α) , for otherwise

ln

{
α

[
2E(B)(E(H)+E(H0))+(1−λE(B))

[
E(H0

2)−E(H0)
(
V ar(H)
E(H)

−E(H)
)]

2E(B)(E(H)+E(H0))+λE(B)(1−λE(B))
[
E(H0

2)−E(H0)
(
V ar(H)
E(H)

−E(H)
)]
]}

ln (α)
≥

ln
(

α
λE(B)

)
ln (α)

=⇒

 λE (B) 2E (B) (E (H) + E (H0))
+λE (B) (1− λE (B))

∗
(
E
(
H0

2
)
− E (H0)

(
V ar(H)
E(H) − E (H)

))
 ≥

 2E (B) (E (H) + E (H0))
+λE (B) (1− λE (B))

∗
(
E
(
H0

2
)
− E (H0)

(
V ar(H)
E(H) − E (H)

))


=⇒ λE (B) ≥ 1.

This defies the ”zero TL stability” condition.

Next, recall that TmaxE = maxT∈Z

[
T |T <

ln
(

α
λE(B)

)
ln(α)

]
(see Equation (9.3)). Now,

• If
ln
(

α
λE(B)

)
ln(α) ∈ Z then dTBOUNDe ≤

ln
(

α
λE(B)

)
ln(α) and TmaxE =

ln
(

α
λE(B)

)
ln(α) − 1

so dTBOUNDe ≤ TmaxE + 1.

• If
ln
(

α
λE(B)

)
ln(α) /∈ Z then dTBOUNDe ≤

⌈
ln
(

α
λE(B)

)
ln(α)

⌉
and TmaxE =

⌈
ln
(

α
λE(B)

)
ln(α)

⌉
− 1

so, again, dTBOUNDe ≤ TmaxE + 1.

This completes the proof.

To summarize, assuming ”zero TL stability”, B∼exp (·) and
E(H0

2)
E(H0) > V ar(H)

E(H) − E (H):
2 ≤ dTBOUNDe ≤ TmaxE + 1,

dTBOUNDe ≤ TmaxE ⇐⇒ E
(
Wnew
dTBOUNDe−1

)
< E (Wnew

1 ) ≤ E
(
Wnew
dTBOUNDe

)
,

dTBOUNDe = TmaxE + 1⇐⇒ E
(
Wnew
TmaxE

)
< E (Wnew

1 ) .

To conclude, assuming B∼exp (·), an O(log (Tmax)) algorithm for finding T opt is:
Step1: IF λE (B) ≥ 1 THEN T opt = ∅ ELSE

Step2: IF TmaxE = 1 THEN T opt = {1} ELSE

Step3: IF
E(H0

2)
E(H0) ≤

V ar(H)
E(H) − E (H) THEN T opt = {1} ELSE
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Step4: IF TBOUND = 2 THEN T opt = {1, 2} ELSE

Step5: IF dTBOUNDe = 2 THEN T opt = {1} ELSE

Step6: IF dTBOUNDe = 3 THEN T opt = {2} ELSE

Step7: Use a binary search method in order to find all elements of
Step7: T opt = argmin{ET (W1)|T = 2, 3, . . . , dTBOUNDe − 1} (cf. Remark 10.4).

Remark 10.5. Steps 4-6 follow the same logic as step 7. They deal with simpler cases which do not require
further calculations.

10.2 The (globally) gated regime with identical servers, N=1

Consider a system composed of a single queue, operating under the (globally) gated regime, with two
identical servers switching according to the ”swap at the end of every T sub-cycles” (T = 1, 2, . . . ) policy.
Furthermore, assume ”zero TL stability”. Consider the compact models, under a given 2 ≤ T ≤ TmaxG =⌈

2 ∗
ln
(

1
λE(B)

)
ln(α)

⌉
(we will later relax the T 6= 1 assumption).

We begin by finding expressions for E (Vl). Equation (8.1) states that

E (Vl) = λE (Bl) [E (Vl−1) + E (Sl−1)]∀l = 1, . . . , T. (10.11)

Recursive substitution in Equation (10.11) yields,

E (V1) =

∑T
k=1E (Sk)λE (B1)

∏T
r=k+1 λE (Br)

1−
∏T
r=1 λE (Br)

. (10.12)

Since Bl = αl−1B and E (Sl) =

{
E (H) + E (H0) l = T
E (H) 1 ≤ l < T

, Equation (10.12) can be rewritten as

E (V1) =
E (H)

∑T
k=1 (λE (B))T−k+1α

T (T−1)−k(k−1)
2 + E (H0)λE (B)

1− (λE (B))Tα
T (T−1)

2

.

For the same reason, Equation (10.11) also implies

E (Vl) = λαl−1E (B) [E (Vl−1) + E (H)] ∀l = 2, 3, . . . , T.

Recursive substitution in the last expression yields

E (Vl) = E (H)

l∑
k=2

(λE (B))l−k+1α
(l−k+1)(l+k−2)

2 + E (V1) (λE (B))l−1α
(l−1)l

2 ∀l = 2, 3, . . . , T. (10.13)

Substitution of E (V1), from Equation (10.12), into Equation (10.13) yields

E (Vl) = E (H)

l∑
k=2

(λE (B))l−k+1α
(l−k+1)(l+k−2)

2

+
E (H)

∑T
k=1 (λE (B))T+l−kα

T (T−1)+l(l−1)−k(k−1)
2 + E (H0) (λE (B))lα

l(l−1)
2

1− (λE (B))Tα
T (T−1)

2

∀l = 2, 3, . . . , T.

(10.14)

Remark 10.6. To avoid confusion regarding the use of ”modulo T” marks in the context of recursive
substitution, we have found an expression for E (V1) (which is the only case where the modulo context
differs from the non-modulo context) and then used it to express all other E (Vl)s. This created a de-facto
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distinction between cases which are not essentially different (l = 1 versus l = 2, 3, . . . , T ). This is made
evident by setting l = 1 in Equation (10.13), which yields the identity E (V1) ≡ E (V1). This is also true
regarding the five cases which are used to express E (Wql) in the following paragraph.

We now find expressions for E (Wql). Tediously combining Equations (8.8), (8.9), (8.10), (8.12), (8.13)
and (8.15) yields the following five cases:

1. For l = 1 and T = 2,

E (Wq1) =
E (H) + E (H0)

E (V2) + E (H) + E (H0)
∗

 (
E(H2)+E(H0

2)+2E(H)E(H0)

2(E(H)+E(H0))

)
∗ (1 + λE (B)) + λE (B)E (V2)


+

E (V2)

E (V2) + E (H) + E (H0)
∗

[
E
(
B2
)
α

2E (B)
(1 + λE (B)) + E (H) + E (H0)

]

+
(λE (B)α)2 (1 + λE (B))

(E (V2) + E (H) + E (H0))
(

1− (λE (B))4α2
)

∗



E (V1)

(
E (H) +

E(B2)
2E(B)

)
+

E(H2)
2

+(λE (B))2

 E (V2)

(
E (H) + E (H0) +

E(B2)α
2E(B)

)
+

(
E(H2)+E(H0

2)+2E(H)E(H0)

2

)



.

2. For l = 1 and T ≥ 3 we have

E (Wq1) =
E (H) + E (H0)

E (VT ) + E (H) + E (H0)
∗

 (
E(H2)+E(H0

2)+2E(H)E(H0)

2(E(H)+E(H0))

)
∗ (1 + λE (B)) + λE (B)E (VT )


+

E (VT )

E (VT ) + E (H) + E (H0)
∗

[
E
(
B2
)
αT−1

2E (B)
(1 + λE (B)) + E (H) + E(H0)

]

+



∑T−1
k=1


(

(λE(B))2(2T−k)(1+λE(B))α2T (T−1)−k(k−1)

E(VT )+E(H)+E(H0)

)
∗
[
E (Vk)

(
E (H) +

E(B2)αk−1

2E(B)

)
+

E(H2)
2

]


+ (λE(B))2T (1+λE(B))αT (T−1)

E(VT )+E(H)+E(H0) ∗

 E (VT )

(
E (H) + E (H0) +

E(B2)αT−1

2E(B)

)
+

(
E(H2)+E(H0

2)+2E(H)E(H0)

2

)



1− (λE (B))2TαT (T−1)

+
T∑
k=2


(

(λE(B))2(T−k+1)(1+λE(B))αT (T−1)−k(k−3)−2

E(VT )+E(H)+E(H0)

)
∗
[
E (Vk−1)

(
E (H) +

E(B2)αk−2

2E(B)

)
+

E(H2)
2

]
.
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3. For l = 2 we have

E (Wq2) =
E(H)

E (V1) + E (H)
∗

[
E
(
H2
)

2E (H)
(1 + λE (B)α) + λE (B)αE (V1)

]

+
E (V1)

E (V1) + E (H)
∗

[
E
(
B2
)

2E (B)
(1 + λE (B)α) + E (H)

]

+



∑T−1
k=1


(

(λE(B))2(T−k+1)(1+λE(B)α)αT (T−1)−k(k−1)

E(V1)+E(H)

)
∗
[
E (Vk)

(
E (H) +

E(B2)αk−1

2E(B)

)
+

E(H2)
2

]


+ (λE(B))2(1+λE(B)α)
E(V1)+E(H) ∗

 E (VT )

(
E (H) + E (H0) +

E(B2)αT−1

2E(B)

)
+

(
E(H2)+E(H0

2)+2E(H)E(H0)

2

)



1− (λE (B))2TαT (T−1)

.

4. For l = 3 ≤ T we have

E (Wq3) =
E(H)

E (V2) + E (H)
∗

[
E
(
H2
)

2E (H)

(
1 + λE (B)α2

)
+ λE (B)α2E (V2)

]

+
E (V2)

E (V2) + E (H)
∗

[
E
(
B2
)
α

2E (B)

(
1 + λE (B)α2

)
+ E (H)

]

+
(λE (B)α)2 (1 + λE (B)α2

)
E (V2) + E (H)

∗
[
E (V1)

(
E (H) +

E(B2)
2E(B)

)
+

E(H2)
2

]

+



∑T−1
k=1


(

(λE(B))2(T−k+2)(1+λE(B)α2)αT (T−1)−k(k−1)+2

E(V2)+E(H)

)
∗
[
E (Vk)

(
E (H) +

E(B2)αk−1

2E(B)

)
+

E(H2)
2

]


+
(λE(B))4(1+λE(B)α2)α2

E(V2)+E(H) ∗

 E (VT )

(
E (H) + E (H0) +

E(B2)αT−1

2E(B)

)
+

(
E(H2)+E(H0

2)+2E(H)E(H0)

2

)



1− (λE (B))2TαT (T−1)

.
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5. For l = 4, 5, . . . , T we have

E (Wql) =
E(H)

E (Vl−1) + E (H)
∗

[
E
(
H2
)

2E (H)

(
1 + λE (B)αl−1

)
+ λE (B)αl−1E (Vl−1)

]

+
E (Vl−1)

E (Vl−1) + E (H)
∗

[
E
(
B2
)
αl−2

2E (B)

(
1 + λE (B)αl−1

)
+ E (H)

]

+

l−1∑
k=2


(

(λE(B))2(l−k)(1+λE(B)αl−1)αl(l−3)−k(k−3)

E(Vl−1)+E(H)

)
∗
[
E (Vk−1)

(
E (H) +

E(B2)αk−2

2E(B)

)
+

E(H2)
2

]


+



∑T−1
k=1


(

(λE(B))2(T−k+l−1)(1+λE(B)αl−1)αT (T−1)−k(k−1)+(l−1)(l−2)

E(Vl−1)+E(H)

)
∗
[
E (Vk)

(
E (H) +

E(B2)αk−1

2E(B)

)
+

E(H2)
2

]


+
(λE(B))2(l−1)(1+λE(B)αl−1)α(l−1)(l−2)

E(Vl−1)+E(H) ∗

 E (VT )

(
E (H) + E (H0) +

E(B2)αT−1

2E(B)

)
+

(
E(H2)+E(H0

2)+2E(H)E(H0)

2

)



1− (λE (B))

2T
αT (T−1)

.

Substitution of E (V1) and E (Vl) ∀l = 2, 3, . . . , T , from Equations (10.12) and (10.14) respectively, into
the above five cases, results in expressions for E (Wql) ∀l = 1, 2, . . . , T which depend only on the initial
parameters H, H0, B, α, λ and T . For example, in case T = 2 we have

E (V1) =
E (H)λE (B) (1 + λE (B)α) + (H0)λE (B)

1− (λE (B))2α
.

E (V2) =
E (H)λE (B) (1 + λE (B))α+ E (H0) (λE (B))2α

1− (λE (B))2α
.

E (Wq1) =
(E (H) + E (H0))

(
1− (λE (B))

2
α
)

E (H) (1 + λE (B)α) + E (H0)
∗


(
E(H2)+E(H0

2)+2E(H)E(H0)

2(E(H)+E(H0))

)
(1 + λE (B))

+
(
E(H)(λE(B))2(1+λE(B))α+E(H0)(λE(B))3α

1−(λE(B))2α

)


+
E (H)λE (B) (1 + λE (B))α+ E (H0) (λE (B))

2
α

E (H) (1 + λE (B)α) + E (H0)
∗

[
E
(
B2
)
α

2E (B)
(1 + λE (B)) + E (H) + E (H0)

]

+
(λE (B)α)

2
(1 + λE (B))

(E (H) (1 + λE (B)α) + E (H0))
(

1 + (λE (B))
2
α
)

∗



(
E(H)λE(B)(1+λE(B)α)+(H0)λE(B)

1−(λE(B))2α

)(
E (H) +

E(B2)
2E(B)

)
+

E(H2)
2

+ (λE (B))
2


(
E(H)(λE(B))(1+λE(B))α+E(H0)(λE(B))2α

1−(λE(B))2α

)(
E (H) + E (H0) +

E(B2)α
2E(B)

)
+ E(H2)+E(H0

2)+2E(H)E(H0)

2




.

Recall that we assumed T 6= 1 at the beginning of Section 10.2. We now relax this assumption (note
that, as mentioned in Section 2.3, since the discussed model does not include state-dependent arrival rates,
it can also be treated as a classical polling system). For the case of T = 1 (i.e. the ”always swap” policy),
we can simply use the expressions obtained for T = 2 after setting α = 1 and replacing any H which did not
originated from ST=2 with H + H0. This would result in E (V1) = E (V2) and E (Wq1) = E (Wq2) which
represent the respective E (V1) and E (Wq1) for the T = 1 case. The resulting expressions are

E (V1) =
(E (H) + E (H0))λE (B) (1 + λE (B))

1− (λE (B))2 . (10.15)
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E (Wq1) =
E (V1)

E (V1) + E (H) + E (H0)
∗

[
E
(
B2
)

2E (B)
(1 + λE (B)) + E (H) + E (H0)

]

+
E (H) + E (H0)

E (V1) + E (H) + E (H0)
∗
[

E(H2)+E(H0
2)+2E(H)E(H0)

2(E(H)+E(H0)) (1 + λE (B)) + λE (B)E (V1)
]

+

∑5
k=2 (λE (B))k ∗

 E (V1)

(
E (H) + E (H0) +

E(B2)
2E(B)

)
+
E(H2)+E(H0

2)+2E(H)E(H0)

2


(E (V1) + E (H) + E (H0))

(
1− (λE (B))4

) . (10.16)

Equation (10.16) means that, for the case of T = 1,

E (W1) = E (Wnew
1 ) = E (Wq1) + E (B)

=

(
1 +

∑3
k=1 (λE (B))k

1− (λE (B))4

)
∗


λE (B)

[
E(B2)
2E(B) + E (H) + E (H0)

]
+ (1− λE (B))

[
E(H2)+E(H0

2)+2E(H)E(H0)

2(E(H)+E(H0))

]
+ E (B) . (10.17)

We can thus calculate E (W1), for any 1 ≤ T ≤ TmaxG , using Equation (8.17). Namely, using

E (W1) =

∑T
r=1 λrE

2 (Wnew
r )∑T

r=1 λrE (Wnew
r )

=

∑T
r=1 (E (Vr−1) + E (Sr−1)) (E (Wqr) + E (Br))

2∑T
r=1 (E (Vr−1) + E (Sr−1)) (E (Wq1) + E (Br))

=

∑T
r=1

[
(E (Vr−1) + E (H))

(
E (Wqr) + αr−1E (B)

)2]
+ E (H0) (E (Wq1) + E (B))2∑T

r=1 [(E (Vr−1) + E (H)) (E (Wqr) + αr−1E (B))] + E (H0) (E (Wq1) + E (B))
.

For the sake of complete presentation, note that

E (C) =
T∑
k=1

(E (Sk−1) + E(Vk−1)) =
T∑
k=1

E (Vk−1) + TE (H) + E (H0), (10.18)

and

λl =


λ(E(VT )+E(H)+E(H0))

E(C) l = 1,

λ(E(Vl−1)+E(H))
E(C) l > 1.

(10.19)

Remark 10.7. The above results can be extended for the more general case of not necessarily identical
servers using the same approach which was described in Remark 10.1 (assuming λ

√
E (G)E (K) < 1 and

T ≤ Tmax =

⌈
ln
(

1
λ2E(G)E(K)

)
ln(α)

⌉
). The T = 1 case does not require a special treatment.

The current (globally) gated regime case is much more complicated than the exhaustive regime case
studied in Section 10.1. This is mainly due to the fact that, unlike in Section 10.1, here the lengths of the
different visit periods are (positively) correlated with each other. Such correlations allays exist, except in
the case of a single queue exhaustive regime.

For the rest of the current section, we assume that E(H) > 0. This is done for the sake of a clear
presentation. The general case of E(H) ≥ 0 will be addressed in Remarks 10.8 and 10.9.
We conclude this section with some observations regarding the expected visit periods. From Equations
(10.12) and (10.15):
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E (V1) =


(E(H)+E(H0))λE(B)(1+λE(B))

1−(λE(B))2
T = 1,

E(H)
∑T
k=1 (λE(B))T−k+1α

T (T−1)−k(k−1)
2 +E(H0)λE(B)

1−(λE(B))Tα
T (T−1)

2

T = 2, 3, . . . , TmaxG .

(10.20)

Let ET (Vl) be E (Vl) under a given T = 1, 2, . . . , TmaxG . Assuming TmaxG ≥ 2 (i.e. α
1
2λE (B) < 1),

E1 (V1) < E2 (V1) means

(E (H) + E (H0))λE (B) (1 + λE (B))

1− (λE (B))2 <
E (H)

∑2
k=1 (λE (B))2−k+1α

2(2−1)−k(k−1)
2 + E (H0)λE (B)

1− (λE (B))2α
2(2−1)

2

=⇒ E (H0)
(

1− (λE (B))2α− λE (B) (α− 1)
)
< E (H) (α− 1) (1 + λE (B)) . (10.21)

It follows that, if 1
α ≤ λE (B) < 1√

α
, Equation (10.21) is always true. So, for TmaxG = 2 (which implies

αλE(B) ≥ 1), E1 (V1) < E2 (V1).

For T = 2, 3, . . . , TmaxG − 1, ET (V1) < ET+1 (V1) means

[
E (H)

∑T
k=1 (λE (B))

T−k+1
α

T (T−1)−k(k−1)
2

+E (H0)λE (B)

]
1− (λE (B))

T
α

T (T−1)
2

<

 E (H)
∑T
k=1 (λE (B))

T−k+2
α

(T+1)T−k(k−1)
2

+E (H) (λE (B))
T−(T+1)+2

α
(T+1)T−(T+1)T

2

+E (H0)λE (B)


1− (λE (B))

T+1
α

(T+1)T
2

=⇒

[
E (H)

∑T
k=1 (λE (B))

T−k+1
α

T (T−1)−k(k−1)
2

+E (H0)λE (B)

]
1− (λE (B))

T
α

T (T−1)
2

<

 E (H)
∑T
k=1 (λE (B))

T−k+1
α

T (T−1)−k(k−1)
2 ∗ αTλE (B)

+E (H)λE (B)
+E (H0)λE (B)


1− (λE (B))

T
α

T (T−1)
2 ∗ αTλE (B)

.

(10.22)

In this presentation it is readily observed that αTλE (B) ≥ 1 =⇒ ET (V1) < ET+1 (V1).

From Equation (10.14),

ET (Vl) = E (H)

l∑
k=2

(λE (B))l−k+1α
(l−k+1)(l+k−2)

2

+

[
E (H)

∑T
k=1 (λE (B))T+l−kα

T (T−1)+l(l−1)−k(k−1)
2

+E (H0) (λE (B))lα
l(l−1)

2

]
1− (λE (B))Tα

T (T−1)
2

∀ T = 2, 3, . . . , TmaxG and
l = 2, 3, . . . , T.

(10.23)
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For T = 2, 3, . . . , TmaxG − 1 and l = 2, 3, . . . , T , ET (Vl) < ET+1 (Vl) means

E (H)
∑l

k=2 (λE (B))l−k+1α
(l−k+1)(l+k−2)

2

+

 E (H)
∑T

k=1 (λE (B))T+l−kα
T (T−1)+l(l−1)−k(k−1)

2

+E (H0) (λE (B))lα
l(l−1)

2


1−(λE(B))Tα

T (T−1)
2



<



E (H)
∑l

k=2 (λE (B))l−k+1α
(l−k+1)(l+k−2)

2

+


E (H)

∑T
k=1 (λE (B))T+l−k+1α

(T+1)T+l(l−1)−k(k−1)
2

+E (H) (λE (B))T+l−(T+1)+1α
(T+1)T+l(l−1)−(T+1)T

2

+E (H0) (λE (B))lα
l(l−1)

2


1−(λE(B))T+1α

(T+1)T
2



=⇒

[
E (H)

∑T
k=1 (λE (B))T+l−kα

T (T−1)+l(l−1)−k(k−1)
2

+E (H0) (λE (B))lα
l(l−1)

2

]
1− (λE (B))Tα

T (T−1)
2

<

 E (H)
∑T

k=1 (λE (B))T+l−kα
T (T−1)+l(l−1)−k(k−1)

2 ∗ αTλE (B)

+E (H) (λE (B))lα
l(l−1)

2

+E (H0) (λE (B))lα
l(l−1)

2


1− (λE (B))Tα

T (T−1)
2 ∗ αTλE (B)

. (10.24)

In this presentation it is readily observed that αTλE (B) ≥ 1 =⇒ ET (Vl) < ET+1 (Vl).
From Equations (10.21), (10.22) and (10.24) we conclude that αTλE (B) ≥ 1 =⇒ ET (Vl) < ET+1 (Vl) ∀ T =
1, 2, . . . , TmaxG − 1 and l = 1, 2, . . . , T .

Define Tmid ≡ minT∈Z
{
T |αTλE (B) ≥ 1

}
=

⌈
ln( 1

λE(B)
)

ln(α)

⌉
. Note that Tmid ≥ 1.Intriguingly, Tmid = TmaxE .

So Equation (9.4) also describes the relation between TmaxG and Tmid (hence the ”mid” superscript).
According to the last conclusion, we can write that, for E(H) 6= 0 (see Remark 10.8),

ETmid (Vl) < ETmid+1 (Vl) < · · · < ETmaxG
(Vl) ∀l = 1, 2, . . . , T.

Remark 10.8. As stated above, the last conclusion was obtained under the assumption that E(H) 6= 0.
For the case of E(H) = 0 and αTλE (B) > 1 the conclusion is still valid. However, for the case of E(H) = 0
and αTλE (B) = 1 we obtain

ETmid (Vl) = ETmid+1 (Vl) < ETmid+2 (Vl) · · · < ETmaxG
(Vl) ∀l = 1, 2, . . . , T.
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For T = 2, 3, . . . , TmaxG , ET (V1) < ET (V2) means[
E (H)

∑T
k=1 (λE (B))T−k+1α

T (T−1)−k(k−1)
2

+E (H0)λE (B)

]
1− (λE (B))Tα

T (T−1)
2

<



E (H) (λE (B))2−2+1α
(2−2+1)(2+2−2)

2

+


 E (H)

∑T
k=1 (λE (B))T+2−kα

T (T−1)+2(2−1)−k(k−1)
2

+E (H0) (λE (B))2α
2(2−1)

2


1−(λE(B))Tα

T (T−1)
2





=⇒

E (H)
∑T

k=1 (λE (B))T−k+1α
T (T−1)−k(k−1)

2

+E (H0)λE (B)

1− (λE (B))Tα
T (T−1)

2

<



E (H)αλE (B)

+


 E (H)

∑T
k=1 (λE (B))T−k+1α

T (T−1)−k(k−1)
2

+E (H0)λE (B)


1−(λE(B))Tα

T (T−1)
2

 ∗ αλE (B)


. (10.25)

In this presentation it is readily observed that αλE (B) ≥ 1 =⇒ ET (V1) < ET (V2). So, for TmaxG = 2
(which implies Tmid = 1), ET (V1) < ET (V2).

For T = 3, 4, . . . , TmaxG and l = 2, 3, . . . , T − 1, ET (Vl) < ET (Vl+1) means

E (H)
∑l

k=2 (λE (B))l−k+1α
(l−k+1)(l+k−2)

2

+


 E (H)

∑T
k=1 (λE (B))T+l−kα

T (T−1)+l(l−1)−k(k−1)
2

+E (H0) (λE (B))lα
l(l−1)

2


1−(λE(B))Tα

T (T−1)
2





<



E (H)
∑l

k=2 (λE (B))l−k+2α
(l−k+2)(l+k−1)

2

+E (H) (λE (B))l−(l+1)+2α
(l−(l+1)+2)(l+l+1−1)

2

+


 E (H)

∑T
k=1 (λE (B))T+l−k+1α

T (T−1)+(l+1)l−k(k−1)
2

+E (H0) (λE (B))l+1α
(l+1)l

2


1−(λE(B))Tα

T (T−1)
2
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=⇒



E (H)
∑l

k=2 (λE (B))l−k+1α
(l−k+1)(l+k−2)

2

+


 E (H)

∑T
k=1 (λE (B))T+l−kα

T (T−1)+l(l−1)−k(k−1)
2

+E (H0) (λE (B))lα
l(l−1)

2


1−(λE(B))Tα

T (T−1)
2





<



E (H)
∑l

k=2 (λE (B))l−k+1α
(l−k+2)(l+k−1)

2 ∗ αlλE (B)

+E (H)αlλE (B)

+


 E (H)

∑T
k=1 (λE (B))T+l−kα

T (T−1)+l(l−1)−k(k−1)
2

+E (H0) (λE (B))lα
l(l−1)

2


1−(λE(B))Tα

T (T−1)
2

 ∗ αlλE (B)


. (10.26)

In this presentation it is readily observed that αlλE (B) ≥ 1 =⇒ ET (Vl) < ET (Vl+1).
From Equations (10.25) and (10.26) we conclude that for T = Tmid + 1, Tmid + 2 . . . , TmaxG and l =
Tmid, Tmid + 1, . . . , T − 1, ET (Vl) < ET (Vl+1). According to the last conclusion we can write that, for
E(H) 6= 0 (cf. Remark 10.9),

ET (VTmid) < ET
(
VTmid+1

)
< · · · < ET

(
VTmaxG

)
∀T = Tmid + 1, Tmid + 2, . . . , TmaxG .

Remark 10.9. According to Equation (8.1), Vl’s length is composed of (i) the service times of all type-l
customers arriving during Vl−1, and (ii) the service times of all type-l customers arriving during Ml−1. This
means that, for l = 2, 3, . . . , TmaxG ,

E(Vl) = λ[E(Vl−1) + E(H)]αl−1E(B).

Generally speaking, (ii) keeps increasing while moving from l = 1 to l = TmaxG . We can nullify this
parameter-dependent affect by assuming E(H) = 0. The expected amount of time spent per served customer
in E(Vl) is αl−1E(B). The arrival rate of this workload to the system during E(Vl−1) is λαl−1E(B).
Recall the equality between Tmid and TmaxE which is embodied in the fact that λαl−1E(B) ≥ 1 for l =
Tmid + 1, Tmid + 2, . . . , TmaxG . Hence, without relevance to E(H), the single server spends more (expected)
time in Vl than in Vl−1 for l = Tmid+2, Tmid+3, . . . , TmaxG . Note that, similarly to Remark 10.8,

E(VTmid) ≤ E(VTmid+1),

where
E(VTmid) = E(VTmid+1) ⇐⇒

{
{H = 0} ∩ {λαTmidE(B) = 1}

}
.

Remark 10.10. For a general E(H) ≥ 0, T opt may be bigger than Tmid. To see this, recall that Tmid

and TmaxG are not affected by H0. In a system which is stable under ”zero TL stability”, continuously
increasing E(H0) will eventually results in T opt = TmaxG since swapping the servers becomes more “costly”
(both directly, by some prolonged switch-over periods, and indirectly, by prolonged visit periods).

11 Concluding remarks

In this paper we introduced a new polling system comprised of two alternating weary servers, which operates
under either the gated, exhaustive, or globally-gated regime. The tradeoff between the tiredness effects on
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the servers and the ”swapping cost” (H0 units of time) can be illustrated by observing some numerical
results. Consider the following basic model consisting of a single queue and identical servers, where we take
α > 1 as a variable:

λ‖ = ‖1︸ ︷︷ ︸
Arrival rate

; H ∼ exp (1)︸ ︷︷ ︸
Switch−over time

; H0 ∼ exp (0.5)︸ ︷︷ ︸
Swapping time

; B ∼ exp (4)︸ ︷︷ ︸
Service time

.

Using standard polling techniques (see e.g. [15]), we have accurately calculated E (W1) for this model under
the ”always swap” policy. This results in E (W1) = 32

3 for the (globally) gated regime and in E (W1) = 22
3

for the exhaustive regime. Next, for each of the ”swap at the end of every T sub-cycles” policies where
T = 2, 3, 4, we used the MVA approach to numerically calculate the value of α, for which the resulting
system’s E (W1) obtains the same value as under the ”always swap” policy. The results are
summarized in the following table:

Numerical results

T Exhaustive: E (W1) = 22
3 (Globally) Gated: E (W1) = 32

3

2 α = 2.5 α ∼= 2.335

3 α ∼= 1.63 α ∼= 1.692

4 α ∼= 1.4 α ∼= 1.451

As was expected, under both regimes, a smaller α allows swapping the servers less often and still gain the
same (or better) expected sojourn time as in the ”always swap” policy. Clearly, in each case, increasing
(decreasing) α will result in a worse (better) expected sojourn time than in the ”always swap” policy.

Although we have only uncovered the “tip of the iceberg”, one can consider various ways in which to
extend the presented new polling system. Aside from the inclusion of additional regimes (e.g. mixed), one
can (i) change the way the fatigue parameter and tiredness levels affect the service time distributions; (ii)
differ between the tiredness effects on each server; (iii) develop a broader scope of criterions for comparison
between the different swapping policies, etc. Another extension can be to include tiredness effects on switch-
over times. Note that doing so does not affect the stability condition under the three discussed regimes (nor
under the mixed regime for that matter).
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