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ABSTRACT

We study a system of two non-identical and separate M/M/1/e
queues with capacities (buffers) C; < oo and G, = oo, respec-
tively, served by a single server that alternates between the
queues. The server’s switching policy is threshold-based, and, in
contrast to other threshold models, is determined by the state of
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the queue that is not being served. That is, when neither queue is systems; threshold policy
empty while the server attends Q; (i = 1, 2), the server switches
to the other queue as soon as the latter reaches its threshold. MATHEMATICS SUBJECT

When a served queue becomes empty we consider two switching CLASSIFICATION
scenarios: (i) Work-Conserving, and (ii) Non-Work-Conserving. We ggggry: 60K25; Secondary:

analyze the two scenarios using Matrix Geometric methods and
obtain explicitly the rate matrix R, where its entries are given in
terms of the roots of the determinants of two underlying matri-
ces. Numerical examples are presented and extreme cases are
investigated.

1. Introduction

We study two-queue polling-type systems governed by a threshold-based switching
policy where, in contrast to many other works in the literature, the server’s switching
decisions are determined by the queue that is not being served. Specifically, when-
ever the server attends queue i (Q;), i = 1, 2, it serves the customers there until
the first moment thereafter when the number of customers in the other queue, Q s
j # i, reaches its threshold level. At that instant, the server immediately switches
to Q; (preemptive policy), unless the number of customers in Q; is greater than
or equal to Q;’s own threshold level. In the latter situation, the server remains in
Q; until the number of customers there is reduced below Q;’s threshold level, and
only then does it switch to Q;. When a served Q; becomes empty, we consider two
switching scenarios: (i) Work-Conserving: If Q; is not empty, the server switches
immediately; otherwise, it remains idle until either one of the queues becomes non-
empty. (ii) Non-Work-Conserving: The server remains in Q; (idle or busy) until the
first moment when Q; reaches its threshold level. For each Q;, we assume that the
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Figure 1. Two queues served by a single alternating server with threshold policy.

queue’s capacity is C; and that customers arrive according to a Poisson process with
rate A;. The service time for each individual customer is exponentially distributed
with mean 1/pu;. All the arrival and service processes are independent. For Q;, we
let C; < oo, while for Q, we set C, = 0o. We note that if both capacities C; and C,
are infinite, the problem will be completely different and will require an entirely dif-
ferent approach than the current one. The threshold levels are K < C; for Q; and
N < G, for Q,. The system is depicted in Figure 1.

A motivation for such a model is, for example, an automated traffic light (or
a traffic policeman) that regulates the traffic of vehicles crossing an intersection.
The traffic light alternates right-of-way priority between two directions as follows:
When one direction has the right-of-way and the accumulating number of cars in
the other direction reaches a threshold, the right-of-way is transferred to the latter
direction, and vice versa. Another application arises in data centers, where a rack of
discs requires special attention when the amount of recorded data exceeds a certain
limit (threshold), causing an inefficient operation that calls for a clean-up action. A
more abstract example refers to human beings, who often behave in a similar man-
ner: While working on a given task, they let the load of other tasks pile up. Only
when the amount of work of another task exceeds a threshold, do they switch their
attention to that task.

Single-server polling systems, where the server visits the queues in a cyclic order,
mostly under Exhaustive, Gated, Globally-Gated, or k-limited service regimes, have
been studied extensively in the queuing literature (see, e.g., Takagi[zo], Boxma
et al.l%); Yechiali!?!!, Boon et al.l*], and many references therein). Threshold-based
polling systems have also been treated (see, e.g., Leel'?], Lee and Senguptal'3!,
Haverkot et al.l'%l, Boxma et al.[%”), Avram and Gémez-Corrall?], Perel!'®! and
many others). In most of the above-mentioned studies, the switching policy is deter-
mined by the state of the queue that is presently being served. Recently, Avrachenkov
et al.l!) studied a two-queue finite-buffers system with a threshold-based switching
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policy. Using algebraic methods, they investigated the effects of buffer sizes, arrival
rates and service rates on the system’s performance.

In this paper, we concentrate on the derivation of the joint distribution func-
tion of the queue-size process for each of the two scenarios described above. To this
end, we formulate each system as a quasi-birth-and-death (QBD) process having a
three-dimensional state space. We study the system’s steady-state behavior by apply-

s!14], Latouche and Ramaswamil!'!))

ing Matrix Geometric methods (see, e.g., Neut
and obtain explicitly the rate matrix R. A detailed analysis of the Work-Conserving
switching scenario is presented, while the Non-Work-Conserving scenario is only
briefly discussed (since its analysis is very similar to that of the former). The two
scenarios are compared numerically.

The structure of the paper is as follows: In Section 2, the mechanism of the Work-
Conserving scenario is characterized. In Section 3, the system is defined as a QBD
process and a Matrix Geometric approach is employed to derive the system’ steady-
state probabilities. Investigating the rate matrix R reveals that its elements are closely
related to the roots of two polynomial equations, det(A(z)) = 0,and det(B(z)) = 0,
where A(z) and B(z) are two matrices related to the probability-generating func-
tions (PGFs) of the phases of the QBD process. We show that the entries of the rate
matrix R are explicitly calculated in terms of the roots of the determinants of the
above two matrices. The theoretical relationship between the diagonal elements of
R and the roots of the matrices A(z) and B(z) has not been analytically investigated,
but has already been observed in other studies such as Paz and Yechialil*®], Perel and
Yechiali!'”) and Hanukov et al.[]. In Section 4, the Non-Work-Conserving switch-
ing scenario is briefly treated, while in Section 5 numerical results are presented and
the two scenarios are compared. The numerical results are followed by a discussion
pointing out various phenomena occurring as a result of changes in parameters and
queue capacities. Section 6 deals with extreme cases, while Section 7 concludes the

paper.

2. Work-Conserving scenario: Model description

Consider a single-server two-queue polling-type system where the server’s switch-
ing instants between the queues follow a threshold policy based on the queue that is
not being served. Each queue i (Q;), i = 1, 2, operates as an M/M/1/C; queue, with a
Poisson arrival rate A, and exponentially distributed service time having mean 1/u;.
The overall capacity of Q; is 1 < C; < oo and of Q, is C, = oo. That is, customers
arriving at Q; and finding C; customers present there are blocked and balk from
the system. When the server attends a non-empty Q; (Q,, respectively), it continues
serving customers there until the first moment thereafter when the number of cus-
tomers in the other queue, Q, (Q;), reaches its threshold level, N (K). At that instant
the server immediately switches to Q, (Q;) and continues serving there until the first
moment thereafter when the queue size in Q; (Q;) reaches K (N). At that moment,
the server switches back to Q; (Q,), and so forth. Denoting by L;(t) the number
of customers in Q; at time ¢, then, if at a called-for switching moment from Q,
(Qy) to Q, (Qq) the number of customers in Q; (Q,) is still L1 (¢) > K (L,(t) > N),
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Figure 2. Transition-rate diagram of (L (t), L(t), /(t)). Work-Conserving.

the server remains in Q; (Q,) until the first moment thereafter when L, (t) (L,(t))
reduces to K — 1 (N — 1), and only then switches to Q, (Q;). When the server
empties Q; (Q,) while Ly(t) > 0 (L;(t) > 0), it immediately switches to the other
queue. To keep the analysis less cuambersome, we analyze the case where K = C; and
N < G, (noting that the analysis of the case where K < C; is similar). Let I(¢) = 1
if at time ¢ the server attends Q;, and I(t) = 2 if the server attends Q,. The triple
(Li(t), Ly(t), I(t)) defines a non-reducible continuous-time Markov chain with a
transition-rate diagram depicted in Figure 2 (the numbers 1 or 2 appearing next
to each node indicate whether I(¢) = 1, or I(t) = 2, respectively). Each box (k, n)
depicts both the state where I(t) = 1 and the state where I(¢) = 2. It will be shown
that a necessary and sufficient condition for stability is A, < u,. In such a case, let
L; = limy_, o L;i(t) and I = lim,_, » I(t). Consequently, for a system in the steady
state, let P,,(i) = P(L; = k,L, =n,I =i),where0 <k <K;0<mi=1,2.

3. The QBD process

3.1. Matrix geometric

The triple (L (t), L,(¢), I(¢)) defines a QBD process, where L, (t) denotes the level
and the pair (L; (¢), I(t)) indicates the phase of the process. We order the resulting
infinite-state space S as follows: We start with column L, = 0 and go down the boxes
from L; = 0to L; = K, where in each box we specify first the state associated with
I =1, and then the state associated with I = 2 (if any). We proceed similarly with
columns L, =1,2,3,...,N,N+1,.... Thus, the state’s space is S = {(0, 0, 1),
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0,0,2),(1,0,1),(2,0,1),...,(K,0,1); (0,1,2), (1,1,1),(1,1,2), ..., (K —
1,1,1),(K-1,1,2),(K,1,1);...;(O,LN—1,2),...,(K—=1,N—1,1), (K —1,
N-1,2),(K,N-1,1);(0,N,2),(1,N,2),...,(K—1,N,2),(K,N, 1), (K, N,
2);(O,N+1,2),(1,N+1,2),...,.(K—=1,N+1,2), (K, N+1,1), (K, N+1,
2); ...}

The generator matrix Q is given by

B B) 0 -
B B Bp 0 --
0 B, B By 0

0 B, B By 0
0 B B B! o
0 AY A Ay 0
0 A A A 0

where 0 is a matrix of zeros, and starting from the upper diago-
nal, B), By, B!, Ap; BY, By, A;; By, Bl, AY and A, are the follow-
ing matrices: Bj is of size (K+2)x 2K, By is of size 2K x 2K, Bg’_l
is of size 2K x (K+2), Ag is of size (K+2)x (K+2); BY is of size
(K+2) x (K+2), B; is of size 2K x 2K, A; is of size (K+2) x (K +2);
B, is of size 2K x 2K, B} is of size 2K x (K + 2), AY is of size (K + 2) x 2K, and
A, is of size (K + 2) x (K + 2). The above matrices are given by

S T ()
S | |
0 X 0 -
Bb=|l0o 0 0 2 0 (U
0 0
0 --v i eee e Ay 0 0
[ E S 0 A
BO = dlag()\z),
A0 0
0 X O 0
0 X 0 0
By '=: o ]
0 -+ v oo v Ay 0 O
0 M 0 0
0 0 A 0
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With By = A1 + A 1 = A1 + A, + s and By = Ay + Ay + o,

A

( —Po

0

231

0 M
—Bo M 0
B M
M1 —B1
0 231
0 M
B 0 A
0 —B 0
1 0 —h
0 0 0
M 0
B M 0
)
231
0
0
M2
0
M2

0
0
M 0
B M
231
0
0
Al
0 M
—B 0
0
231
0
— (A2 + 1)
0
0
, By=
0
0

0
0
0
0
0 0
—B1 A
wi o — A+ @)
0
0
0
0
M 0
—B Al
0 -2+ wm)
0
0
A ’
0
— (A2 + u2)
2 0
0 0 0
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n2 0 0
n2 0 0
0 12%) 0
0 0
AIZ\]: ’ 7A2:
0 0 0 0 0 K2
0 0 0 0 0 0
0w

0

Define the steady-state probability vector P = (1%, 151 R ﬁN, ...), satisfying
PQ=0,P - &= 1, where 0 is a vector of 0’s and ¢is a vector of 1’s. Also, the prob-
ability vector

(Poo(1), Poo(2), Pio(1), Py (1), ..., Pe_1,0(1), Pxn(1)), n=0,

By =1 (Pon(2), ooy Peo1,n (D), Po1,a(2), Pra(1)) 0<n<N,
(Pon(z)v"'vpK—l,n(z)v PKYI(I)’ PKH(Z))’ n ZN9
satisfies
PyB} + PiB) =0, (3.1)
PiB) + PiB, + P;B, =0, (32)
P,1By+PB +PB,=0, 2<n<N-2, (3.3)
Py_2By + Py_1B; + PyAY =0, (3.4)
Py_1BY ™' + PyA; + PypiA, =0, (3.5)
P, Ao+ PA + P Ay =0, n>N+1. (3.6)

Summing equations (3.1)-(3.6) and rearranging terms, we arrive at

N-1 K—1
"1 (P1.(1) — Pyo(1) + Pro(1) — ZPK,n(1)> + Ay (Poo(l) + ZPk,N—1(1)>

k=1

n=0

N-1
=Mﬂﬂﬂ®—ﬂﬂ@+ﬂw@ﬂ+h(%MD+§:&4AD>. (3.7)

n=1

Indeed, equation (3.7) states that the mean switching rate from state I = 1 to state
I = 2 (left-hand side of (3.7)) is equal to the mean switching rate from state I = 2
to state I = 1 (right-hand side of (3.7)).
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Let A = AO + Al + Az. Then,

N (U |
0 A A 0 - 0

A=
: a0 A
o - i —pr 0
\o 0o 0 0 0 0

Let @ = (7o, 71, ..., TK—1, 711(<1), ”1(<2)) be the stationary probability vector of the

matrix A, i.e., 7A = 0and 7 - € = 1. Then, @ = (0,0, ...,0,1). Thus, the stability
———
K+1 times
condition 7A€ < 7A,e (seel™]) becomes
)»2 < Ua. (38)

The probability vectors are given by

—

P,=PBR"N, n=N, (3.9)
where R is the minimal non negative solution of the matrix quadratic equation
Ao+ RA; + R°A;, = 0. (3.10)

The vectors Py, P;,\ldots, Py can be found by solving the set of equations (3.1)-(3.4),
together with the normalization equation:

where 7 is the identity matrix. We note that the above set of equations could
be solved efficiently using the Level-Dependent QBD approach, see Bright and
Taylor!®! and Phung-Duc et al.l*%].

The mean total number of customers in Q;, E[L;], i = 1, 2, is given by

N-1 [ee]
E(L\] =PRZo+ Y BZ+ Y Bl (3.11)
n=1 n=N
o] N-1 oo
E[Lz] = Z nﬁé’: HP:;E*F Z nﬁNR"_Né'
n=1 n=1 n=N

N-—1
— Z nP,é+ (N — 1)Py[Z — R]"'¢+ Py[Z — R] %¢, (3.12)
n=1

where, Zy = (0,0,1,2,..,K—1,K), Z=(0,1,1,2,2,...K—1,K — 1,K) and
7y =(0,1,2,...K — 1, K, K).

We denote the elements of the matrix R by Ry,,, for 0 < I, m < K + 1. By using
equation (3.10) and explicitly writing the (K + 2)* equations for the (K + 2)?
elements of R, we conclude that the matrix R is an upper triangular matrix,
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with only one non-zero element, Rk x_;, beneath the main diagonal. Therefore,
solving equation (3.10) yields an analytic closed-form expression for the elements
of the rate matrix R. We will show that the elements of R are closely related to the
roots of two polynomial equations, det(A(z)) = 0, and det(B(z)) = 0, where A(z)
and B(z) are two matrices related to the PGFs defined in the following section.

3.2. Probability-generating functions

In this section, we briefly describe an alternative approach to solving the QBD
process, namely, the PGF approach. It can be argued that given the analysis of
Section 3.1, the PGF approach is redundant. Nevertheless, in our case, a brief inves-
tigation via the PGF method is useful for gaining further insights into the analysis
of the system (see, e.g., Phung-Duc!'8]).

Splitting the set of equations (3.1)-(3.6) into two separate sets, one for I = 1, run-
ning from k = 0 to k = K; the other for I = 2, running over all n > 0, allows us to
define two sets of probability generating functions: For I = 1, Gx(z) = ), P (1)2",
1 <k <K, while forI =2, F(z) = Zn P, (2)2", 0 < k < K. After some algebra,
one obtains two sets of linear equations, where the unknowns are the sought-for
PGFs, as follows:

A(z2)G(z) = P(z), B(2)F(z) = Il(2), (3.13)

where the column vectors G(z) and P(z) are of order K, while their counterparts,
F(z) and T (2), are of order K + 1. The square matrices A(z) and B(z) are of orders
K and K + 1, respectively. Specifically,

G(2) = (Gi1(2), G2 (2), ..., Gk(2))"
F(2) = (F(2), F(2), ..., K (2))" |
P(z) = (P(2), P>(2), ..., Px ()",
M(z) = (Mo(2), M (2), ..., k()"

with Ji (Pao(1) + Po(2) = Pyt (DY + P 2), k=1
— AP n—1 (DZN + waPi (2), 2<k<K-2
Be(2) = 1 1 Yon—g Pan(1)2" = 2pP_g o1 (D2
+u2Pr_1,1(2), k=K-1
A Y0 Peo (22" + Py (2)2V 1, k=K
122Gy (z) — 1zPio(1) + A22°Pyo (1)
— 2 (1 — 2)Pyo(2), k=0
—A12Pyo(2) + AP N1 (DN — ppzP(2), k=1
Mi(2) = § MPn—1(1)ZN — 1ozP (2), 2<k<K-=-2
112G (2) + APi_1.n—1(1)ZN !
— 122 _1,1(2) — 1 Yoneg Prea(1)2", k=K—1
—h Yoy Peo1n )2 — 1aPev (202N, k=K
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A(z) =

where

and

where

o (2)
—

0

B(z) =

—H1
o (z)

_)\1

_I‘Ll 0 DY LR 0

a(z) —p1 0

A1 a(z) —u 0

—M Ol(Z) 0
0 —Ar ak(2)

a(z) = A1+ py + A2(1 = 2),
ag(z) =+ 2(1 — 2),

B(2) 0 0 0
—Mz B(z) 0 0 0
0 —Az  B(2) 0 0
0 . —hz B2 0
0 0 _)\‘12 ,BK(Z)

B(2) = (A2z — ) (1 — 2) + A1z,

Bk (2) = (A2z — 2)(1 — 2).

We first explore the roots of |[A(z)| = 0.

Theorem 3.1. For any Ay > 0, ;11 > 0, A, > 0 and K > 1, |A(z)| is a polynomial
of degree K possessing K distinct roots in the open interval (1, 00), where one of them

H M1
is =14+ =,
ZK + "

Proof. The proof is detailed in the appendix.

Now, we address the roots of [B(z)| = 0.

Theorem 3.2. For any 1, > 0, 2 > 0, &1 > 0 and K > 1, |B(z)| is a polynomial
of degree 2(K + 1) possessing a single root at z* =1, another root of multiplic-
ity K, z, in the open interval (0, 1), and a root z, (also of multiplicity K), in
the open interval (1, 00). Another root, zz = =2, exists in the open interval (0, 1)
iff Ay > Wo.

— K
=
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Proof. The matrix B(z) possesses nonzero elements on the main diagonal and on the
lower main diagonal. All other entries are 0. Therefore,

K
B(2)] = [ | Bu(2) = (B(2)" Bk (2), (3.14)

k=0

where By (z) is the kth element of the diagonal of B(z). The polyno-

At patri—A/ Ratpa+r1)2 =40 10,

78 <1 and z, =

mial B(z) has only two roots: z; =
1 1

hatiatity (AZWZH VT4t Therefore, z; and z, are roots of |B(z)|, each of

multiplicity K The polynomial Bk (z) has only two roots: z* =1, and z3 =

Clearly, z3 < 1ifand only if A, > u, (in which case the system is unstable).
This completes the proof of Theorem 3.2. O

Note 1. The root z; above is the Laplace-Stieltjes Transform (evaluated at ;) of the
busy period in an M/M/1 queue with arrival rate A, and service rate ©,. The mean
duration of such a busy period is ——- x , which is finite (stable system) if and only if
Ay < [a.

3.3. Thestructure of R

By explicitly writing equation (3.10), it is observed that R is an (almost fully) upper
diagonal matrix with only a single non-zero element in the diagonal below the main.
This is illustrated in the example below for K = 8.

Roo Roi Rox Ros Roa Ros Ros  Roy Ry

0

0 Ryt Rz Ri3s Ry Ris R Riz 0 Ry

0 0 Ry Ry Ry Ry Ry Ry 0 Ry

0 0 0 Rz Rsyy Rss Ry Rz 0 Ry
R— 0 0 0 0 Ry Ry Ry Ry 0 Ry

0 0 0 0 0 Rss Rys Ry; 0 Ry |

0 0 0 0 0 0 Rgs Ry 0 Ry

0 0 0 0 0 0 0 Ry 0 Ry

0 0 0 0 0 0 0 Rg; Rgs Rgo

KO 0 0 0 0 0 0 0 0 Ry

Solving for the elements on the main diagonal, it follows that

1
Ry = —, forall0 <k <K -1,
z

2
1

Rxx = —,

ZK
1

Riy1k01 = —.
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With 8, = A; + A, + uy and Z?zl () £ 0, one can calculate successively the other
elements of R, which results in

k7
ARy k-1 + 2 Z,-=11 RoiRo k—i

Ry = , foralll <k <K -1,
B2 —212/2
Rijyk = Rog, foralll <1 <K -2, 1<k<K-(I+1),
MlL
Rx k-1 = x

ﬂz—M(é-i-i)

Rix =0, foral0 <k <K+ 1,k#K,
M2Rk k—1Rk—1, k41 + ARk k-1

Rix+1 = — (3.15)
)»2+M2—M2<Z+Z)
At
Rx_1x41 = - —
)‘2+M2_M2<Z+Z)
K—(l4+1)
_ R R + MRy k-
Rixi = 12%) Zk,l LI+k8 4k, K+1 1R K 1, forall0 <1 <K — 2.

)»z-I-Mz—Mz(i—i—%)

We indicate that all the elements on the main diagonal of R are the inverse of the
roots of |[A(z)| = 0 and |B(z)| = 0 in the open interval (1, co) (see Section 3.2),
while all other elements are expressed in terms of the inverse of those roots along
with parameters of the system. Furthermore, in any diagonal, starting with the main
and above, all the elements along the diagonal are equal to each other, except for the
last two.

4. Non-Work-Conserving scenario

We now briefly present a Non-Work-Conserving switching scenario: If a served
Q; becomes empty, the server remains in Q; until the number of customers in Q;
reaches its threshold. The transition-rate diagram of the triple (L, (t), Ly(t), I(t))
for this scenario is depicted in Figure 3.

4.1. The QBD process

Constructing the QBD process that represents this scenario leads to a generator
matrix Q with exactly the same structure as the generator matrix in Section 3. How-
ever, some matrices appearing in Q are slightly different, namely the matrices Bf and
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Figure 3. Transition-rate diagram of (L (t), L»(t), /(t)). Non-Work-Conserving.

B! simply become B, and B,, respectively, and B? is given by

(—,30 0 A 0
0 —Bo 0 M 0 0
w0 =B 0 Al 0
0 0 0 —Bo 0 M 0 .
B =

1 0 0 1251 0 —181 0 }\,1 0
K : : : : : 0 —Bo A

0 78 0 _()"2—'_“1) (2K+1)x 2K+1)

All other matrices remain the same. Therefore, the stability condition for this case
is Ay < 2, as in the Work-Conserving scenario (see equation (3.8)).

Equation (3.7) above, equating the switching rates between the queues, trans-
forms in the Non-Work-Conserving scenario into

N-1 K-1 N—-1
m (PK.(l) - ZPK,nU)) +22 ) Pen1(1) = paPin (@) + 2 Y Peo1a(2).

n=0 k=0 n=0
(4.1)

Notice that in this case a switch occurs only when the non-served queue reaches its
threshold and the served queue is beneath its threshold level.
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With By = (Poo(1), Poo(2), Pro(1), Pro(2), Poo(1), Pyo(2), ..., Po1,0(1), P10

(2), P, (1)) and the same rate matrix, R, we have
B,=PR"N, n>N, (4.2)
As before, the vectors B, ﬁl, o ﬁN_l are obtained by solving the following set of
linear equations:

RyB) + PiB, =0,

P, By+P,B +PB,=0, 1<n<N-2,

Py_2By + Py_1B; + PyAY =0,

N-1 o] N-1
E[L]=Y BZ+Y BZy=Y BZ+P[I—R"Zy, (4.3)
n=0 n=N n=0
00 N-1 00
E[L,] = Z npP,e = nP,é+ Z nPyR"Ne
n=1 n=1 n=N
N-1
=Y nPé+ (N— DP[Z — RI™'e+ By[Z — R %€, (4.4)
n=1

where Z=1(0,0,1,1,2,2,...K—1,K—1,K) and Zy=(0,1,2,...,
K -1,K K).

5. Numerical examples and comparison between the scenarios

This section presents several numerical results, followed by a discussion. Define SR
to be the average switching rate between the queues and W; to be the time a customer

Table 1. Theimpact of A;, when A, = 3, u; =3, u; = 4,K =10and N = 3.

Work-Conserving scenario Non-Work-Conserving scenario

Valuesof A1 E[L]  ElL]  EW]  EW,] SR ElL,]  E[L] E[Wi] E[W,] SR

0.001 0.0038 3.0008 37679 10002 0.0011 77611  3.0025 7768.78 1.0008  0.0005
0.01 0.0381 3.0077  3.8105 1.0026 0.01M 77841  3.0251 786.066  1.0084  0.0049
0.1 04337 3.0875 43382 1.0292 0.0906 7.9875 3.2348 873689 1.0782  0.0451
0.5 33355 35958 72424 11986 02570 85919  3.9322 249671 13107  0.1748
1 6.8243 42937 10.0213 14312 03198 9.0279 4.4828 17.4707 14943  0.2701
2 91070  5.0466 122017 1.6822 03768 9.4572  5.0683 142979 1.6894 0.3587
4 97206 55190 129615 18397 04103 97470  5.5139 133463 1.8380  0.4061
10 99126 58187 132168 19396 04097 99131  5.8181 132404 1.9394  0.4095
100 9.9924 59845 133232 19948 03804 9.9924 59845 133232 19948 0.3804

100,000 10 6 133333 2 0.3750 10 6 133333 2 0.3750
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Table 2. The impact of A,, whenA; =2, u; =3, 4, =4, K =10and N = 3.

Work-Conserving scenario

Non-Work-Conserving scenario

Valuesof 1, [E[L;]  E[L;] EW;l  EWs] SR ElL]  EILy] E[W;] E[W,] SR

0.001 1.8717 0.0020 09413  2.0281 0.0002 1.8861 1.0086  0.9489 1008.65 0.0003
0.01 1.8749  0.0203 0.9430 2.0277 0.0098 2.0171 1.0017 1.0175 100.17 0.0033
0.1 1.9281  0.1810 0.9703 18104 0.0828 3.1637 0.9486 1.6344 9.4862 0.0303
0.5 25291 0.6191 12863 12383 02697 58629 0.9968 32727 1.9936 0.1302
1 3.8554  1.0983 2.0402 1.0983 03786 72984  1.3298 4.4786 13298  0.2609
2 7.1581 2.4053 49487 12026 0.4811  8.6921 2.4900 7.1384 12500 0.4437
25 83307  3.4013 75063 13605 0.4655 9.1169  3.4441  9.5361 13776 0.4393
3 9.1070  5.0466 1220177 1.6822 03768 9.4572  5.0683 14.2979 1.6894 0.3587
35 9.6263 93307 25.6908 2.6659 0.2175 97449 93449 285923 2.6700 0.2084
375 9.8203 16.9278 50.5541 4.5141 01188 9.8713 16.9409 55.2392 45176 01142

Table 3. The impact of u;, whenA; = 2,4, =3, 4, =4,K =10and N = 3.
Work-Conserving scenario Non-Work-Conserving scenario

Valuesof u;  E[L1]  E[L;] EW;] E[W,] SR E[L] E[L;] E[W;] E[W,] SR

0.001 9.9991 2997.74 5323.26 999.247 0.0010 9.9991 2997.74 532339  999.246  0.0010
0.01 9.9939 300.667 821572 100222 0.0068 9.9939 300.665 821753  100.222  0.0066
0.1 9.9833 34,5552 300.373 11.5184 0.0284 9.9834 34.5548 300.677 11.5183  0.0281
0.5 9.9354 10.7279 79.4401 3.5760 0.1160 9.9368 10.7272 80.0763 3.5757 01143

1 9.8580 75220  39.4318 25073 0.2091 9.8684 7.5218 40.4425 25073 0.2036
2 9.6044 5.7383 19.213 19128 03272 9.6948 5.7441 20.7735 1.9147 03137
4 83313 4.6364 8.5645 1.5455 03913 9.1639 4.6948 11107 1.5649 0.3665
10 4.8172 3.5796 3.1374 11932 0.4523 7.4667 3.9222 5.7012 1.3074 0.2731

100 3.0412 3.0335 17714 1.0112 0.5349 5.3816 3.5102 3.3611 1.1700 0.1561

100,000 2.9057 3 1.6812 1 0.5387 5.1592 3.4778 3.1780 1.1592 0.1456

Table 4. The impact of iy, when Ay = 2,1, =3, u; =3, K =10and N = 3.
Work-Conserving scenario Non-Work-Conserving scenario

Valuesof u,  E[Lq] E[L;] EW;]  EW;] SR ElL4] E[L,] EWw,l  EW,] SR

325 97635 14.0703 417325 4.6901 0.1266 9.8288 14.0774 454663 4.6925 0.1229
35 9.5435 8.1925 223185 27308 0.2264 9.6876 82028 24.8562 27343 0.2184
375 9.3248 6.1210 155966 2.0403 03091 9.5642 6.1361 177984  2.0454 0.2963
4 9.1070 5.0466 12.2017 1.6822 03768 9.4572 5.0683 142979 1.6894 0.3587
10 4.5628 1.3895 24663 04632 0.7896 8.6360 1.5888 6.1304 0.5296  0.5712
100 2.0034  0.6175 1.0091 02058 1.0283 83652  0.7077 54933 02359 04774
1000 1.8836  0.5691 09475 0.1897  1.0454 83468  0.6454 54634 0.2151 0.4681
100,000 1.8715 0.5640 09412 01880 10471 83448  0.6388 54603 02129 0.4671

resides in Q;. Tables 1-4 exhibit results for both scenarios for the performance mea-
sures E[L;], E[W;], i = 1, 2, and SR, where K = 10 and N = 3, for different values
of A1, A2, i1, and p,. In each table, we investigate the impact of one of the parame-

ters, while all other parameters remain unchanged. Specifically, Tables 1, 2, 3 and 4

present, respectively, the impact of A, A5, i1 and .

Tables 5-8 present numerical results for the Work-Conserving scenario, where
K = 10.In each table, results for N = 5vs. N = 10 are compared. Tables 5, 6,7 and 8
show, respectively, the impact of A, A5, £ and ..



Downloaded by [Tel Aviv University] at 00:51 26 October 2017

16 (&) E.PERELAND U.YECHIALI

Table 5. The impact of A;, when A, = 3, u; = 3, u, =4and K = 10,for N = 5vs. N = 10.

N=5 N=10
Values of A4 E[L] E[L,] EW;]  EW,] SR E[Ly] ElL,] E[W;] E[W,] SR
0.001 0.0035  3.00M 3.4991 1.0004 0.0010 0.0033 3.0013 3.3457 1.0004 0.0010
0.01 0.0353  3.0115 3.5321 1.0038  0.0100 0.0337 3.0137 33669 10046 0.0097
0.1 03967  3.1370 39676 10457 0.0800 0.3652 3.1793 3.6526 1.0598 0.0766
0.5 31723 4.0857 6.8097 13619 0.2108 2.9212 5.0758 6.1318 1.6919  0.1835
1 6.8590 54946  9.9274  1.8315 02663  6.9622 8.8247 9.8080 29416  0.2280
2 9.1678 6.8062 122579 22687 0.3523 9.2348  11.5552 123213 3.8517 0.3418
4 97298 74634 129733 24878 04044 97337 124387 129783  4.1462 0.4031
10 9.9128 7.8144  13.2171 26048 04093 99127 128139 13.2171 42713 0.4093
100 9.9924 79845 133232 26615 03804 9.9924 129845 13.3232 43282 03804
100,000 10 8 133333 26667 0.3750 10 13 133333 43333 03750
Table 6. The impact of A,, when Ay =2, 4 = 3, u, = 4and K = 10,for N = 5vs. N = 10.
N=5 N=10
Valuesof A,  [E[Lq] E[L,] EW]  EW,] SR E[L4] E[L,] EW] E[W,] SR
0.001 1.8717 0.0020 0.9413  2.0282 0.0010 1.8717 0.0020 0.9413  2.0282 0.0010
0.01 1.8748 0.0203 09429 2.0346 0.0098 1.8748 0.0203 0.9429 2.0347 0.0098
0.1 1.9152 0.2065 0.9635 2.0653 0.0820 19134 0.2105 0.9625  2.1051 0.0819
0.5 2.4010 0.9070 1.2173 18140 0.2478 22904 12223 11568  2.4445 0.2358
1 3.6890 1.7258 1.9385 17258  0.3165 3.4624 2.9291 17970 29291 0.2657
2 7.2094 3.7460 49463 18730 0.4043 73061 7.4733 49495 37366 0.3395
25 8.4136 4.9939 75479 19976 04163  8.5297 9.4168 7.6077 37667  0.3851
3 9.1678 6.8062 122579 22687 03523  9.2348 11.5552 12.3213 3.8517 0.3418
35 9.6540 111979  25.7421 31994 02089 9.6786 16.0952 257896 4.5986 0.2068
375 9.8336 18.8324  50.6023 5.0202 0.1151 9.8444 237698 50.6418 6.3386  0.1145
Table 7. The impact of 1, whenA; = 2,4, =3, u, =4and K = 10,for N = 5vs. N = 10.
N=5 N=10
Values of i1 [E[Lq] ElL,] EW;] E[W;] SR ElLq] E[L,] E[W;] E[W;] SR
0.001 9.9991 2999.66 532338 999.886 0.0009 9.9991 3004.59 5323.48 1001.53 0.0009
0.01 9.9939  302.617 821.678 100.872 0.0066 9.9939 307.577 821.763 102.526  0.0066
0.1 9.9834 36.5466 300.388 121822 0.0282 9.9834 415401 300.4 13.8467 0.0281
0.5 9.9359 12.7071 79.4439 42357 0.1145 9.9361 17.6921 79.4459 5.8974 0.1142
1 9.8611 9.4703 39.4444 3.1568 0.2041 9.8630 14.4321 39.4518 4.8107 0.2028
2 9.6257 7.6086 19.2534 25362 03129 9.6427 12.4986 19.2857 41662 0.3083
4 8.4234 6.2305 8.5797 2.0768 0.3571 8.5580 10.6908 8.6138 3.5636 0.3353
10 4.6743 41513 2.9030 1.3838 0.4273 4.4013 5.7058 2.5209 1.9019 0.3831
100 2.7595 3.0671 1.5244 1.0224 0.5422 23724 3.1326 1.2205 1.0442 0.5493
100,000 2.6128 3 1.4336 1 0.5477 2.2490 3 11521 1 0.5592
Table 8. The impact of 1, when Ay = 2,1, = 3, u; =3and K = 10,for N = 5vs. N = 10.
N=5 N=10
Values of M2 E[L]] E[Lz] E[W1] E[Wz] SR ]E[L1] E[Lz] E[W]] E[Wz] SR
325 9.781 15.9701 417695 53234 0.1233 97945 209096 418002 6.9699 0.1228
35 9.5774  10.051 223682 33503 02180 9.6069 14.9445 224138 49815 0.2157
3.75 93734 79324 156516  2.6441 02936 9.4213 127628 157077 4.2543  0.2880
4 9.1678 6.8062 122579 22687 03523 9.2348 115552 123213 38517 0.3418
10 4.4701 22132 24084 07377 05783 4.2789 41358 22890 13786 0.4236
100 1.9898 1127 1.0022 03709 0.7879 1.9633 2.0981 0.9887 0.6994 0.6333
1000 1.8823 1.0462 0.9468 03487 0.8025 1.8797 1.9929 0.9455 0.6643 0.6445
100,000 1.8714 1.0392 0.9412 03464 0.8040 1.8714 1.9819 0.9412 0.6606 0.6456
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5.1. Discussion

1.

When comparing the two scenarios (Tables 1-4), the average switching rate
between the queues, SR, is always smaller in the Non-Work-Conserving sce-
nario than in the Work-Conserving scenario, while the opposite statement
holds for E[L;] and E[W;], i = 1, 2. This occurs since, in the Non-Work-
Conserving scenario, the server may remain idle in an empty queue even
if there are waiting customers in the other queue, causing a decrease in the
switching rate on the one hand, and an increase in mean queue sizes and
mean waiting times, on the other hand.

When A; — 0o or u; — 0, the performance measures of the two scenarios
approach the same values, independently of all other parameters. See Tables 1
and 3 for A; > 10 and u; < 0.5, respectively.

. When the arrival rate into one of the queues, say A;, is relatively small,

the corresponding measures E[L;] and E[W;] in the Non-Work-Conserving
scenario are significantly greater than the comparable values in the Work-
Conserving scenario (see Tables 1 and 2). This follows since the server
remains idle in an empty queue as long as the threshold level in the oppo-
site queue has not been reached. Hence, the customers of Q; wait for a long
time until Q;’s threshold is reached, upon which the server is called for service
there.

In the Non-Work-Conserving scenario, initially, as A, increases, E[W;]
decreases. However, for large values of A; (A; > 10), E[W;] increases as
A1 increases. This occurs since increasing values of A; cause L; to ascend
at a faster rate, which increases the switching rate and decreases the
time intervals between switches. In the Work-Conserving scenario, E[W,]
increases when A; increases (see Table 1). Notice that E[L,] increases in both
scenarios.

. Table 2 exhibits an apparently counter-intuitive phenomenon for both sce-

narios, namely, as A, increases, E[W,] first decreases and then increases. A
similar phenomenon occurs in the Non-Work-Conserving scenario for the
values of E[L,].

In Tables 1, 2, 5 and 6, SR first increases and then decreases when
A1 (A) increases, the exact point of change in direction (increase or
decrease) depends on the entire set of parameters. This occurs in both
scenarios. In contrast, for the Work-Conserving scenario, when A; and
A, are fixed but p; or u, increase (Tables 3, 4, 7 and 8), SR always
increases.

The rate of service u, of the unbounded Q, has a more profound effect then
w1 (the service rate of the bounded Q) on the values of E[L;] and E[L,] (and
consequently on E[W;] and E[W,]). See Tables 3, 4, 7 and 8.

6. Extreme cases

We investigate the influence of extreme values of A, A,, 41 and 1, (as they reach 0 or

00) on the system’s performance measures in the two different switching scenarios.
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Some of the cases (e.g., A, = 0o or it — 0, 11 — 0, A, — 0) follow directly from

basic queueing principles. Other cases require more intricate analysis.

We first address extreme cases that lead to identical system structure in the two
policies, and then address extreme cases that lead to different system structures.

Ay = 00 or p,; — 0: These two cases are not stable since the stability condition,
Ay < L2, is not satisfied.

w1 — 0: The system is unstable. Once the server attends Q; and the number of cus-
tomers there is at its threshold level, meaning that L, = K, the number of cus-
tomers there will not reduce below the threshold level and the server will never
switch back to Q, even when the number of customers in Q, reaches its threshold,
N. Therefore, the number of customers in Q, will increase to oc.

A1 — 0:Itis clear that in both scenarios, P(I = 1) = 0 and P(I = 2) = 1, meaning
that Q, operates as an M(X,)/M(u,)/1 system. Therefore, P(L; = 0) = 1 and
Boss(1) = P(L; = K) = 0. Clearly then, E[L,] = 1fzpz,where i = 2—, i=1,2.

Ay — 0: It is straightforward that P(I = 1) = 1 and P(I = 2) = 0. Therefore, Q;
operates as an M(X;)/M(u1)/1/K system for which By (1) = pf_(lTl;f}) and

o (K4+1)pK+!
E[L] = 1_—1/,1 - T{dl-

A1 — o0o0: When A; — 00, Q is always at its maximum capacity, meaning L, = K

and Ps(1) = 1. In such a case, the server serves the customers of Q; until
the number of customers in Q, reaches its maximum value, N. Then, at the
next instant when the server completes a service of a customer in Qy, it imme-
diately switches to Q,. Then, before a service completion in Q,, an arrival at
Q; will occur, causing a switch back to Q; as soon as the number of cus-
tomers at Q, reduces below N. Hence, the only possible states with nonzero
probabilities are (K, #, 1), for n > N — 1, and (K, n, 2), for n > N. Therefore,
PI=1) =372\ Pea(1) = Pea(1) and P(I = 2) = 3702\ Pn (2) = Pra (2).
As a consequence, P(I =1) =1 — p,, P(I =2) = p; and E[L,] = 1302 + N —
(1= p2) + 2.
Note that the parameter K does not appear in any of the results above.
The next two extreme cases lead to a different system structure in each of the
switching scenarios.

w1 — oo: In the Work-Conserving switching scenario, if £; — oo then whenever
the server is at Q;, he immediately reduces the number of customers there to 0,
and will remain at Q; until the first moment thereafter that a customer arrives
at Q,. Therefore, P(I = 1) = Py (1). The server stays in Q, until Q; reaches its
threshold and Q, is below its own threshold, N. If Q; reaches its threshold and
Q, is not below its threshold, the server stays at Q, until the number of customers
there is reduced below Q,’s threshold, upon which the server switches to Q;, and
immediately empties the queue and returns to Q,. Note that in this case By (1) =
Pxe (2).
In the Non-Work-Conserving switching scenario, P(I =1) = P.(1) =
ijz_ol Py, (1). The server will remain at Q; until the first moment when
the number of customers in Q, reaches the value N and will remain there

until the number of customers in Q; reaches the value K. Then, given that Q, is
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below the threshold N, the server will switch to Q; and immediately reduce the
occupancy there to 0. Note that in this case Boss (1) = Pxe(2) as well.

W, — 00: In the Work-Conserving switching scenario, when u, — oo, the server
immediately empties Q, upon entering it and resides there until a customer
arrives at Q;. Therefore, P(I = 2) = Py(2). The server remains in Q; until
Q, reaches its threshold and Q; is below the threshold K. If Q, reaches
its threshold and Q, is not below its threshold, the server stays at Q; until
the number of customers there reduces below K, upon which the server
switches to Q,, empties it instantaneously, and returns to Q. In this case
Boss (1) = Pgo(1).

In the Non-Work-Conserving case, P(I =2) = P (2) = 52—01 P(2). The
server will remain at Q, until the first moment when the number of customers
in Q; reaches the value K and will remain there until the number of customers
in Q, reaches the value N. Then, if Q; is below the threshold K, the server will
switch to Q, and immediately reduce the occupancy there to 0. In this case, too,

Boss (1) = Pgo(1).

7. Concluding remarks and future investigations

This paper studies a two-queue polling-type system with a non-orthodox threshold-
based switching policy, which depends on the queue that is not being served.
Employing the Matrix Geometric method, we derive the joint steady-state proba-
bilities of the system’s state and its performance measures. We reveal that the entries
of the main diagonal of the rate matrix R of the Matrix Geometric are the reciprocal
of the roots of matrices defining the PGFs associated with the phases of the QBD
process. We remark that this phenomenon appears in other studies such as Paz and
Yechialil'®), Perel and Yechiali!'”!, Phung-Duc!!®! and Hanukov et al.[°!. This rela-
tionship has not been shown analytically as a general property and it calls for further
investigation. Furthermore, unlike many cases in which the rate matrix is calculated
numerically, we are able to derive closed-form expressions for all the elements of R.
Another direction of research is to study the non-preemptive version of the model.
A third direction, which is much more involved, is to assume that the switch-over
times are non-zero. Finally, the analysis of the case when both capacities are infinite
seems to be a challenging task.

Appendix
Proof of Theorem 3.1

Proof. Let qo(z) = 1. Define the minors of the diagonal of A(z), starting from the upper left-hand
corner, as follows:

a(z) —p1
—A1 a(z)

q1(2) = a(2), q2(2) = oo qr(2) = A(2)] (A.1)
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The polynomials gx(z), 1 < k < K satisty the following recursions:

q1(2) = a(2)qo(2),
qk(2) = a(2)gk-1(2) — Aip1Gr—2(2) , for 2 <k <K -1,
qx (z) = ax(z)qx-1(2). (A.2)

From (A.1) and (A.2), we conclude that

1. By definition, go(z) = 1 and therefore has no roots.

2. For every 1 < k < K — 1, qx(z) and gx—; (z) have no joint roots in (0, c0). Otherwise,
suppose they have a joint root, then it would also be a root for gx_»(2), gx—3(2), ..., o (2),
which contradicts the above conclusion.
sign(gx(o0)) = (=1)k, for all k.

(1) = Zf:o A’iu’ff" > 0,forall0 <i<K.
ae() = 5 Mpf T > 0.
Given z, a root of gx(z), then sign(qx—1(2)qk+1(2)) = —1, forevery1 <k < K — 2.
7. qk(z) is a polynomial of degree k for all 0 < k < K.
Mt

From the above conclusions it follows that q; (z) has only one root, z;; =1+ T’“ > 1.

q(1) = Z?:o )Ji,uf"‘ >0, q2(z1,1) <0, g2(00) > 0. Therefore, the 2 roots of g,(z) satisty:
21 € (1,211), 222 € (21,1, 00). Similarly, g5(2) is of degree 3 and therefore can have no more
than 3 distinct roots. Also g3(1) = Z?:o A’iuf‘i >0, g3(22,1) <0, g3(22,2) > 0, g3(00) < 0.
This implies that g3 (z) has exactly 3 distinct roots satisfying: z3 1 € (1, 22.1), 232 € (22.1, 22.2)>
z33 € (22,2, 00).

In general, for 2 < k < K — 1, given k — 1 distinct roots of gx_; (z), the roots of g (z) satisty:
Zk1 € (1, zk—1,1)s 22 € (Zk—1,15 Zk=1,2)5 v 2k € (Zk—1,k—1, OO).

gk (z) = ag(z)qk—1(2z) has K roots, where K — 1 of them are the K — 1 distinct roots of
gk-1(z) and another root (which appears in the matrix R whose structure is discussed in
Section 3.3) is

A e

w=141 (A.3)
A2

This completes the proof of Theorem 3.1. (]
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