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ABSTRACT
We study a system of two non-identical and separate M/M/1/•
queues with capacities (buffers) C1 < ∞ and C2 = ∞, respec-
tively, served by a single server that alternates between the
queues. The server’s switching policy is threshold-based, and, in
contrast to other threshold models, is determined by the state of
the queue that is not being served. That is, when neither queue is
empty while the server attends Qi (i = 1, 2), the server switches
to the other queue as soon as the latter reaches its threshold.
When a served queue becomes emptywe consider two switching
scenarios: (i) Work-Conserving, and (ii) Non-Work-Conserving. We
analyze the two scenarios using Matrix Geometric methods and
obtain explicitly the rate matrix R, where its entries are given in
terms of the roots of the determinants of two underlying matri-
ces. Numerical examples are presented and extreme cases are
investigated.

1. Introduction

We study two-queue polling-type systems governed by a threshold-based switching
policy where, in contrast tomany other works in the literature, the server’s switching
decisions are determined by the queue that is not being served. Specifically, when-
ever the server attends queue i (Qi), i = 1, 2, it serves the customers there until
the first moment thereafter when the number of customers in the other queue, Qj,
j �= i, reaches its threshold level. At that instant, the server immediately switches
to Qj (preemptive policy), unless the number of customers in Qi is greater than
or equal to Qi’s own threshold level. In the latter situation, the server remains in
Qi until the number of customers there is reduced below Qi’s threshold level, and
only then does it switch to Qj. When a served Qi becomes empty, we consider two
switching scenarios: (i) Work-Conserving: If Qj is not empty, the server switches
immediately; otherwise, it remains idle until either one of the queues becomes non-
empty. (ii) Non-Work-Conserving: The server remains inQi (idle or busy) until the
first moment when Qj reaches its threshold level. For each Qi, we assume that the
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2 E. PEREL AND U. YECHIALI

Figure . Two queues served by a single alternating server with threshold policy.

queue’s capacity isCi and that customers arrive according to a Poisson process with
rate λi. The service time for each individual customer is exponentially distributed
with mean 1/μi. All the arrival and service processes are independent. For Q1, we
let C1 < ∞, while for Q2 we set C2 = ∞. We note that if both capacities C1 and C2

are infinite, the problem will be completely different and will require an entirely dif-
ferent approach than the current one. The threshold levels are K ≤ C1 for Q1 and
N < C2 for Q2. The system is depicted in Figure 1.

A motivation for such a model is, for example, an automated traffic light (or
a traffic policeman) that regulates the traffic of vehicles crossing an intersection.
The traffic light alternates right-of-way priority between two directions as follows:
When one direction has the right-of-way and the accumulating number of cars in
the other direction reaches a threshold, the right-of-way is transferred to the latter
direction, and vice versa. Another application arises in data centers, where a rack of
discs requires special attention when the amount of recorded data exceeds a certain
limit (threshold), causing an inefficient operation that calls for a clean-up action. A
more abstract example refers to human beings, who often behave in a similar man-
ner: While working on a given task, they let the load of other tasks pile up. Only
when the amount of work of another task exceeds a threshold, do they switch their
attention to that task.

Single-server polling systems, where the server visits the queues in a cyclic order,
mostly under Exhaustive, Gated, Globally-Gated, or k-limited service regimes, have
been studied extensively in the queuing literature (see, e.g., Takagi[20], Boxma
et al.[5], Yechiali[21], Boon et al.[3], and many references therein). Threshold-based
polling systems have also been treated (see, e.g., Lee[12], Lee and Sengupta[13],
Haverkot et al.[10], Boxma et al.[6,7], Avram and Gómez-Corral[2], Perel[16] and
many others). Inmost of the above-mentioned studies, the switching policy is deter-
mined by the state of the queue that is presently being served. Recently, Avrachenkov
et al.[1] studied a two-queue finite-buffers system with a threshold-based switching
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STOCHASTIC MODELS 3

policy. Using algebraic methods, they investigated the effects of buffer sizes, arrival
rates and service rates on the system’s performance.

In this paper, we concentrate on the derivation of the joint distribution func-
tion of the queue-size process for each of the two scenarios described above. To this
end, we formulate each system as a quasi-birth-and-death (QBD) process having a
three-dimensional state space.We study the system’s steady-state behavior by apply-
ing Matrix Geometric methods (see, e.g., Neuts[14], Latouche and Ramaswami[11])
and obtain explicitly the rate matrix R. A detailed analysis of the Work-Conserving
switching scenario is presented, while the Non-Work-Conserving scenario is only
briefly discussed (since its analysis is very similar to that of the former). The two
scenarios are compared numerically.

The structure of the paper is as follows: In Section 2, themechanism of theWork-
Conserving scenario is characterized. In Section 3, the system is defined as a QBD
process and aMatrix Geometric approach is employed to derive the system’s steady-
state probabilities. Investigating the ratematrixR reveals that its elements are closely
related to the roots of two polynomial equations, det(A(z)) = 0, and det(B(z)) = 0,
where A(z) and B(z) are two matrices related to the probability-generating func-
tions (PGFs) of the phases of the QBD process. We show that the entries of the rate
matrix R are explicitly calculated in terms of the roots of the determinants of the
above two matrices. The theoretical relationship between the diagonal elements of
R and the roots of the matricesA(z) and B(z) has not been analytically investigated,
but has already been observed in other studies such as Paz andYechiali[15], Perel and
Yechiali[17] and Hanukov et al.[9]. In Section 4, the Non-Work-Conserving switch-
ing scenario is briefly treated, while in Section 5 numerical results are presented and
the two scenarios are compared. The numerical results are followed by a discussion
pointing out various phenomena occurring as a result of changes in parameters and
queue capacities. Section 6 deals with extreme cases, while Section 7 concludes the
paper.

2. Work-Conserving scenario: Model description

Consider a single-server two-queue polling-type system where the server’s switch-
ing instants between the queues follow a threshold policy based on the queue that is
not being served. Each queue i (Qi), i = 1, 2, operates as anM/M/1/Ci queue, with a
Poisson arrival rate λi and exponentially distributed service time havingmean 1/μi.
The overall capacity of Q1 is 1 ≤ C1 < ∞ and of Q2 is C2 = ∞. That is, customers
arriving at Q1 and finding C1 customers present there are blocked and balk from
the system.When the server attends a non-emptyQ1 (Q2, respectively), it continues
serving customers there until the first moment thereafter when the number of cus-
tomers in the other queue,Q2 (Q1), reaches its threshold level,N (K). At that instant
the server immediately switches toQ2 (Q1) and continues serving there until the first
moment thereafter when the queue size in Q1 (Q2) reaches K (N). At that moment,
the server switches back to Q1 (Q2), and so forth. Denoting by Li(t ) the number
of customers in Qi at time t , then, if at a called-for switching moment from Q1

(Q2) to Q2 (Q1) the number of customers in Q1 (Q2) is still L1(t ) ≥ K (L2(t ) ≥ N),
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4 E. PEREL AND U. YECHIALI

Figure . Transition-rate diagram of (L1(t ), L2(t ), I(t )). Work-Conserving.

the server remains in Q1 (Q2) until the first moment thereafter when L1(t ) (L2(t ))
reduces to K − 1 (N − 1), and only then switches to Q2 (Q1). When the server
empties Q1 (Q2) while L2(t ) > 0 (L1(t ) > 0), it immediately switches to the other
queue. To keep the analysis less cumbersome, we analyze the case whereK = C1 and
N < C2 (noting that the analysis of the case where K < C1 is similar). Let I(t ) = 1
if at time t the server attends Q1, and I(t ) = 2 if the server attends Q2. The triple
(L1(t ), L2(t ), I(t )) defines a non-reducible continuous-time Markov chain with a
transition-rate diagram depicted in Figure 2 (the numbers 1 or 2 appearing next
to each node indicate whether I(t ) = 1, or I(t ) = 2, respectively). Each box (k, n)

depicts both the state where I(t ) = 1 and the state where I(t ) = 2. It will be shown
that a necessary and sufficient condition for stability is λ2 < μ2. In such a case, let
Li = limt→∞ Li(t ) and I = limt→∞ I(t ). Consequently, for a system in the steady
state, let Pkn(i) = P(L1 = k, L2 = n, I = i), where 0 ≤ k ≤ K; 0 ≤ n; i = 1, 2.

3. The QBD process

3.1. Matrix geometric

The triple (L1(t ), L2(t ), I(t )) defines a QBD process, where L2(t ) denotes the level
and the pair (L1(t ), I(t )) indicates the phase of the process. We order the resulting
infinite-state space S as follows:We start with column L2 = 0 and go down the boxes
from L1 = 0 to L1 = K, where in each box we specify first the state associated with
I = 1, and then the state associated with I = 2 (if any). We proceed similarly with
columns L2 = 1, 2, 3, . . . ,N,N + 1, . . .. Thus, the state’s space is S = {(0, 0, 1),
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STOCHASTIC MODELS 5

(0, 0, 2), (1, 0, 1), (2, 0, 1), . . . , (K, 0, 1); (0, 1, 2), (1, 1, 1), (1, 1, 2) , . . . , (K −
1, 1, 1), (K − 1, 1, 2), (K, 1, 1); . . . ;(0,N − 1, 2), . . . , (K − 1,N − 1, 1), (K −1,
N − 1, 2), (K,N − 1, 1);(0,N, 2), (1,N, 2), . . . , (K − 1,N, 2), (K,N, 1), (K,N,

2);(0,N + 1, 2), (1,N + 1, 2), . . . , (K − 1,N + 1, 2), (K,N + 1, 1), (K,N + 1,
2); . . .}.

The generator matrix Q is given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0
1 B0

0 0 · · · · · · · · · · · · · · · · · · · · · · · ·
B1
2 B1 B0 0 · · · · · · · · · · · · · · · · · · · · ·
0 B2 B1 B0 0 · · · · · · · · · · · · · · · · · ·
... . . . . . . . . . . . . . . . · · · · · · · · · · · · · · ·
...

... 0 B2 B1 B0 0 · · · · · · · · · · · ·
...

...
... 0 B2 B1 BN−1

0 0 · · · · · · · · ·
...

...
...

... 0 AN
2 A1 A0 0 · · · · · ·

...
...

...
...

... 0 A2 A1 A0 0 . . .
...

...
...

...
... . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where 0 is a matrix of zeros, and starting from the upper diago-
nal, B0

0, B0, BN−1
0 , A0; B0

1, B1, A1; B2, B1
2, AN

2 and A2 are the follow-
ing matrices: B0

0 is of size (K + 2) × 2K, B0 is of size 2K × 2K, BN−1
0

is of size 2K × (K + 2), A0 is of size (K + 2) × (K + 2); B0
1 is of size

(K + 2) × (K + 2), B1 is of size 2K × 2K, A1 is of size (K + 2) × (K + 2);
B2 is of size 2K × 2K, B1

2 is of size 2K × (K + 2), AN
2 is of size (K + 2) × 2K, and

A2 is of size (K + 2) × (K + 2). The above matrices are given by

B0
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2 0 · · · · · · · · · · · · · · · 0
λ2 0 · · · · · · · · · · · · · · · 0

0 λ2 0 . . . . . . . . . . . . ...
0 0 0 λ2 0 · · · · · · 0

0 . . . . . . . . . . . . . . . . . . 0
0 · · · · · · · · · · · · λ2 0 0
0 · · · · · · · · · · · · 0 0 λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B0 = diag(λ2),

BN−1
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2 0 · · · · · · · · · · · · · · · 0
0 λ2 0 · · · · · · · · · · · · 0
0 λ2 0 · · · · · · · · · · · · 0
... . . . . . . . . . . . . . . . . . . ...
0 · · · · · · · · · · · · λ2 0 0
0 · · · · · · · · · · · · λ2 0 0
0 · · · · · · · · · · · · 0 λ2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A0 = diag(λ2).
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6 E. PEREL AND U. YECHIALI

With β0 = λ1 + λ2; β1 = λ1 + λ2 + μ1; and β2 = λ1 + λ2 + μ2,

B0
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β0 0 λ1 · · · · · · · · · · · · 0
0 −β0 λ1 0 0 · · · · · · 0

μ1 0 −β1 λ1 0 . . . · · · 0
0 0 μ1 −β1 λ1 0 0 · · ·
0 0 0 μ1 −β1 λ1 0 0
... . . . . . . . . . . . . . . . . . . ...
...

...
...

...
... μ1 −β1 λ1

0 · · · · · · · · · · · · 0 μ1 −(λ2 + μ1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β2 0 λ1 · · · · · · · · · · · · 0

μ1 −β1 0 λ1 0 · · · · · · 0

0 0 −β2 0 λ1
. . . · · · 0

0 μ1 0 −β1 0 λ1 0 · · ·
0 0 0 0 −β2 0 λ1 0
... . . . . . . . . . . . . . . . . . . ...
...

...
...

...
... 0 −β2 λ1

0 · · · · · · · · · · · · μ1 0 −(λ2 + μ1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β2 λ1 0 · · · · · · 0

0 −β2 λ1 0
... 0

... . . . . . . . . . . . . ...

... . . . . . . −β2 0 λ1

... . . . . . . μ1 −(λ2 + μ1) 0

... . . . . . . . . . 0 −(λ2 + μ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B1
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ2 0 · · · · · · · · · 0

0 0 0 · · · · · · · · ·
...

... . . . μ2
. . . . . . . . . ...

... . . . . . . 0
. . . . . . ...

... . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . μ2 0

... . . . . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B2=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ2 0 · · · · · · · · · · · · 0

0 0 0 · · · · · · · · ·
...

... . . . μ2
. . . . . . . . . ...

... . . . . . . 0
. . . . . . ...

... . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . μ2 0

... . . . . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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STOCHASTIC MODELS 7

AN
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ2 0 · · · · · · 0

0 0 μ2
. . . ...

... . . . . . . . . . ...
0 0 0 0 0
... . . . . . . 0 μ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ2 0 · · · · · · · · · 0

0 μ2 0 . . . . . . ...
... . . . . . . . . . . . . ...
... . . . . . . μ2

. . . ...
0 0 0 0 0 0
... . . . . . . . . . 0 μ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Define the steady-state probability vector �P = (�P0, �P1, . . . , �PN, . . .), satisfying
�PQ = �0, �P · �e = 1, where�0 is a vector of 0’s and �e is a vector of 1’s. Also, the prob-
ability vector

�Pn =
⎧⎨
⎩
(
P00(1), P00(2), P10(1), P20(1), ..., PK−1,0(1), PKn(1)

)
, n = 0,(

P0n(2), ..., PK−1,n(1), PK−1,n(2), PKn(1)
)
, 0 < n < N,(

P0n(2), ..., PK−1,n(2), PKn(1), PKn(2)
)
, n ≥ N,

satisfies

�P0B0
1 + �P1B1

2 = �0, (3.1)

�P1B0
0 + �P1B1 + �P2B2 = �0, (3.2)

�Pn−1B0 + �PnB1 + �Pn+1B2 = �0, 2 ≤ n ≤ N − 2, (3.3)

�PN−2B0 + �PN−1B1 + �PNAN
2 = �0, (3.4)

�PN−1BN−1
0 + �PNA1 + �PN+1A2 = �0, (3.5)

�Pn−1A0 + �PnA1 + �Pn+1A2 = �0, n ≥ N + 1. (3.6)

Summing equations (3.1)–(3.6) and rearranging terms, we arrive at

μ1

(
P1•(1) − P10(1) + PK•(1) −

N−1∑
n=0

PK,n(1)

)
+ λ2

(
P00(1) +

K−1∑
k=1

Pk,N−1(1)

)

= μ2 (P•1(2) − P01(2) + PKN (2)) + λ1

(
P00(2) +

N−1∑
n=1

PK−1,n(2)

)
. (3.7)

Indeed, equation (3.7) states that the mean switching rate from state I = 1 to state
I = 2 (left-hand side of (3.7)) is equal to the mean switching rate from state I = 2
to state I = 1 (right-hand side of (3.7)).
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8 E. PEREL AND U. YECHIALI

Let A = A0 + A1 + A2. Then,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1 λ1 0 · · · · · · 0
0 −λ1 λ1 0 · · · 0
... . . . . . . . . . . . . ...
...

...
... −λ1 0 λ1

0 · · · · · · μ1 −μ1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let �π = (π0, π1, ..., πK−1, π
(1)
K , π

(2)
K ) be the stationary probability vector of the

matrix A, i.e., �πA = �0 and �π · �e = 1. Then, �π = (0, 0, . . . , 0︸ ︷︷ ︸
K+1 times

, 1). Thus, the stability

condition �πA0�e < �πA2�e (see[14]) becomes

λ2 < μ2. (3.8)

The probability vectors are given by

�Pn = �PNRn−N, n ≥ N, (3.9)

where R is the minimal non negative solution of the matrix quadratic equation

A0 + RA1 + R2A2 = 0. (3.10)

The vectors �P0, �P1,\ldots, �PN can be found by solving the set of equations (3.1)–(3.4),
together with the normalization equation:

N−1∑
n=0

�Pn�e + �PN[I − R]−1�e = 1,

where I is the identity matrix. We note that the above set of equations could
be solved efficiently using the Level-Dependent QBD approach, see Bright and
Taylor[8] and Phung-Duc et al.[19].

The mean total number of customers in Qi, E[Li], i = 1, 2, is given by

E[L1] = �P0�Z0 +
N−1∑
n=1

�Pn�Z +
∞∑

n=N

�Pn �ZN, (3.11)

E[L2] =
∞∑
n=1

n�Pn�e =
N−1∑
n=1

n�Pn�e +
∞∑

n=N

n�PNRn−N�e

=
N−1∑
n=1

n�Pn�e + (N − 1)�PN[I − R]−1�e + �PN[I − R]−2�e, (3.12)

where, �Z0 = (0, 0, 1, 2, ...,K − 1,K), �Z = (0, 1, 1, 2, 2, ...,K − 1,K − 1,K) and
�ZN = (0, 1, 2, ...,K − 1,K,K).

We denote the elements of the matrix R by Rlm, for 0 ≤ l,m ≤ K + 1. By using
equation (3.10) and explicitly writing the (K + 2)2 equations for the (K + 2)2

elements of R, we conclude that the matrix R is an upper triangular matrix,
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STOCHASTIC MODELS 9

with only one non-zero element, RK,K−1, beneath the main diagonal. Therefore,
solving equation (3.10) yields an analytic closed-form expression for the elements
of the rate matrix R. We will show that the elements of R are closely related to the
roots of two polynomial equations, det(A(z)) = 0, and det(B(z)) = 0, where A(z)
and B(z) are two matrices related to the PGFs defined in the following section.

3.2. Probability-generating functions

In this section, we briefly describe an alternative approach to solving the QBD
process, namely, the PGF approach. It can be argued that given the analysis of
Section 3.1, the PGF approach is redundant. Nevertheless, in our case, a brief inves-
tigation via the PGF method is useful for gaining further insights into the analysis
of the system (see, e.g., Phung-Duc[18]).

Splitting the set of equations (3.1)–(3.6) into two separate sets, one for I = 1, run-
ning from k = 0 to k = K; the other for I = 2, running over all n ≥ 0, allows us to
define two sets of probability generating functions: For I = 1,Gk(z) = ∑

n Pkn(1)z
n,

1 ≤ k ≤ K, while for I = 2, Fk(z) = ∑
n Pkn(2)z

n, 0 ≤ k ≤ K. After some algebra,
one obtains two sets of linear equations, where the unknowns are the sought-for
PGFs, as follows:

A(z)�G(z) = �P(z), B(z)�F(z) = ��(z), (3.13)

where the column vectors �G(z) and �P(z) are of order K, while their counterparts,
�F(z) and ��(z), are of order K + 1. The square matrices A(z) and B(z) are of orders
K and K + 1, respectively. Specifically,

�G(z) = (G1(z),G2(z), ...,GK (z))t ,
�F(z) = (F0(z), F1(z), ..., FK (z))t ,
�P(z) = (P1(z), P2(z), ..., PK (z))t ,
��(z) = (�0(z), �1(z), ..., �K (z))t ,

with

Pk(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1 (P00(1) + P00(2)) − λ2P1,N−1(1)zN + μ2P11(2), k = 1
−λ2Pk,N−1(1)zN + μ2Pk1(2), 2 ≤ k ≤ K − 2
μ1
∑N−1

n=0 PKn(1)zn − λ2PK−1,N−1(1)zN

+μ2PK−1,1(2), k = K − 1
λ1
∑N−1

n=1 PK−1,n(2)zn + μ2PKN (2)zN−1, k = K

�k(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1zG1(z) − μ1zP10(1) + λ2z2P00(1)
−μ2(1 − z)P00(2), k = 0

−λ1zP00(2) + λ2P1,N−1(1)zN+1 − μ2zP11(2), k = 1
λ2Pk,N−1(1)zN+1 − μ2zPk1(2), 2 ≤ k ≤ K − 2
μ1zGK (z) + λ2PK−1,N−1(1)zN+1

−μ2zPK−1,1(2) − μ1
∑N−1

n=0 PKn(1)z
n, k = K − 1

−λ1
∑N−1

n=1 PK−1,n(2)zn+1 − μ2PKN(2)zN, k = K
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10 E. PEREL AND U. YECHIALI

A(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(z) −μ1 0 · · · · · · · · · 0
−λ1 α(z) −μ1 0 · · · · · · 0

0 −λ1 α(z) −μ1 0 · · · ...
... . . . . . . . . . . . . . . . ...
... . . . . . . −λ1 α(z) −μ1 0

0 . . . . . . . . . −λ1 α(z) 0
0 · · · · · · · · · 0 −λ1 αK (z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

α(z) = λ1 + μ1 + λ2(1 − z),
αK (z) = μ1 + λ2(1 − z),

and

B(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(z) 0 0 · · · · · · 0
−λ1z β(z) 0 0 · · · 0

0 −λ1z β(z) 0 0
...

... . . . . . . . . . . . . ...

0 . . . . . . −λ1z β(z) 0
0 · · · · · · 0 −λ1z βK (z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

β(z) = (λ2z − μ2)(1 − z) + λ1z,
βK (z) = (λ2z − μ2)(1 − z).

We first explore the roots of |A(z)| = 0.

Theorem 3.1. For any λ1 > 0, μ1 > 0, λ2 > 0 and K ≥ 1, |A(z)| is a polynomial
of degree K possessing K distinct roots in the open interval (1, ∞), where one of them
is zK = 1 + μ1

λ2
.

Proof. The proof is detailed in the appendix. �

Now, we address the roots of |B(z)| = 0.

Theorem 3.2. For any λ2 > 0, μ2 > 0, λ1 > 0 and K ≥ 1, |B(z)| is a polynomial
of degree 2(K + 1) possessing a single root at z∗ = 1, another root of multiplic-
ity K, z1, in the open interval (0, 1), and a root z2 (also of multiplicity K), in
the open interval (1, ∞). Another root, z3 = μ2

λ2
, exists in the open interval (0, 1)

iff λ2 > μ2.
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STOCHASTIC MODELS 11

Proof. Thematrix B(z) possesses nonzero elements on themain diagonal and on the
lower main diagonal. All other entries are 0. Therefore,

|B(z)| =
K∏

k=0

Bkk(z) = (β(z))K βK (z), (3.14)

where Bkk(z) is the kth element of the diagonal of B(z). The polyno-

mial β(z) has only two roots: z1 = λ2+μ2+λ1−
√

(λ2+μ2+λ1)2−4λ2μ2

2λ2
< 1 and z2 =

λ2+μ2+λ1+
√

(λ2+μ2+λ1)2−4λ2μ2

2λ2
> 1. Therefore, z1 and z2 are roots of |B(z)|, each of

multiplicity K. The polynomial βK (z) has only two roots: z∗ = 1, and z3 = μ2
λ2
.

Clearly, z3 < 1 if and only if λ2 > μ2 (in which case the system is unstable).
This completes the proof of Theorem 3.2. �

Note 1. The root z1 above is the Laplace-Stieltjes Transform (evaluated at λ1) of the
busy period in anM/M/1 queue with arrival rate λ2 and service rate μ2. The mean
duration of such a busy period is 1

μ2−λ2
, which is finite (stable system) if and only if

λ2 < μ2.

3.3. The structure of R

By explicitly writing equation (3.10), it is observed that R is an (almost fully) upper
diagonalmatrix with only a single non-zero element in the diagonal below themain.
This is illustrated in the example below for K = 8.

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R00 R01 R02 R03 R04 R05 R06 R07 0 R09

0 R11 R12 R13 R14 R15 R16 R17 0 R19

0 0 R22 R23 R24 R25 R26 R27 0 R29

0 0 0 R33 R34 R35 R36 R37 0 R39

0 0 0 0 R44 R45 R46 R47 0 R49

0 0 0 0 0 R55 R56 R57 0 R59

0 0 0 0 0 0 R66 R67 0 R69

0 0 0 0 0 0 0 R77 0 R79

0 0 0 0 0 0 0 R87 R88 R89

0 0 0 0 0 0 0 0 0 R99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Solving for the elements on the main diagonal, it follows that

Rkk = 1
z2

, for all 0 ≤ k ≤ K − 1,

RKK = 1
zK

,

RK+1,K+1 = 1
z3

.
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12 E. PEREL AND U. YECHIALI

With β2 = λ1 + λ2 + μ2 and
∑0

i=1 (·) � 0, one can calculate successively the other
elements of R, which results in

R0k = λ1R0,k−1 + μ2
∑k−1

i=1 R0iR0,k−i

β2 − 2μ2/z2
, for all 1 ≤ k ≤ K − 1,

Rl,l+k = R0k, for all 1 ≤ l ≤ K − 2, 1 ≤ k ≤ K − (l + 1),

RK,K−1 = μ1
1
zK

β2 − μ2

(
1
z2

+ 1
zK

) ,

Rk,K = 0, for all 0 ≤ k ≤ K + 1, k �= K,

RK,K+1 = μ2RK,K−1RK−1,K+1 + λ1RK,K−1

λ2 + μ2 − μ2

(
1
z2

+ 1
z3

) (3.15)

RK−1,K+1 =
λ1

1
z3

λ2 + μ2 − μ2

(
1
z2

+ 1
z3

) ,

Rl,K+1 = μ2
∑K−(l+1)

k=1 Rl,l+kRl+k,K+1 + λ1Rl,K−1

λ2 + μ2 − μ2

(
1
z2

+ 1
z3

) , for all 0 ≤ l ≤ K − 2.

We indicate that all the elements on the main diagonal of R are the inverse of the
roots of |A(z)| = 0 and |B(z)| = 0 in the open interval (1, ∞) (see Section 3.2),
while all other elements are expressed in terms of the inverse of those roots along
with parameters of the system. Furthermore, in any diagonal, starting with themain
and above, all the elements along the diagonal are equal to each other, except for the
last two.

4. Non-Work-Conserving scenario

We now briefly present a Non-Work-Conserving switching scenario: If a served
Qi becomes empty, the server remains in Qi until the number of customers in Qj

reaches its threshold. The transition-rate diagram of the triple (L1(t ), L2(t ), I(t ))
for this scenario is depicted in Figure 3.

4.1. The QBD process

Constructing the QBD process that represents this scenario leads to a generator
matrixQwith exactly the same structure as the generator matrix in Section 3. How-
ever, somematrices appearing inQ are slightly different, namely thematrices B0

0 and
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STOCHASTIC MODELS 13

Figure . Transition-rate diagram of (L1(t ), L2(t ), I(t )). Non-Work-Conserving.

B1
2 simply become B0 and B2, respectively, and B0

1 is given by

B0
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β0 0 λ1 · · · · · · · · · · · · 0
0 −β0 0 λ1 0 · · · · · · 0

μ1 0 −β1 0 λ1
. . . · · · 0

0 0 0 −β0 0 λ1 0 · · ·
0 0 μ1 0 −β1 0 λ1 0
... . . . . . . . . . . . . . . . . . . ...
...

...
...

...
... 0 −β0 λ1

0 · · · · · · · · · · · · μ1 0 −(λ2 + μ1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2K+1)×(2K+1)

.

All other matrices remain the same. Therefore, the stability condition for this case
is λ2 < μ2, as in the Work-Conserving scenario (see equation (3.8)).

Equation (3.7) above, equating the switching rates between the queues, trans-
forms in the Non-Work-Conserving scenario into

μ1

(
PK•(1) −

N−1∑
n=0

PK,n(1)

)
+ λ2

K−1∑
k=0

Pk,N−1(1) = μ2PKN (2) + λ1

N−1∑
n=0

PK−1,n(2).

(4.1)
Notice that in this case a switch occurs only when the non-served queue reaches its
threshold and the served queue is beneath its threshold level.
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14 E. PEREL AND U. YECHIALI

With �P0 = (P00(1), P00(2), P1,0(1), P1,0(2), P2,0(1), P2,0(2), ..., PK−1,0(1), PK−1,0

(2), PKn(1)) and the same rate matrix, R, we have

�Pn = �PNRn−N, n ≥ N, (4.2)

As before, the vectors �P0, �P1, ..., �PN−1 are obtained by solving the following set of
linear equations:

�P0B0
1 + �P1B2 = �0,

�Pn−1B0 + �PnB1 + �Pn+1B2 = �0, 1 ≤ n ≤ N − 2,
�PN−2B0 + �PN−1B1 + �PNAN

2 = �0,
N−1∑
n=0

�Pn�e + �PN[I − R]−1�e = 1.

The mean number of customers in Qi, i = 1, 2 is given by

E[L1] =
N−1∑
n=0

�Pn�Z +
∞∑

n=N

�Pn�ZN =
N−1∑
n=0

�Pn�Z + �PN[I − R]−1 �ZN, (4.3)

E[L2] =
∞∑
n=1

n�Pn�e =
N−1∑
n=1

n�Pn�e +
∞∑

n=N

n�PNRn−N�e

=
N−1∑
n=1

n�Pn�e + (N − 1)�PN[I − R]−1�e + �PN[I − R]−2�e, (4.4)

where �Z = (0, 0, 1, 1, 2, 2, ...,K − 1,K − 1,K) and �ZN = (0, 1, 2, ...,
K − 1,K,K).

5. Numerical examples and comparison between the scenarios

This section presents several numerical results, followed by a discussion. Define SR
to be the average switching rate between the queues andWi to be the time a customer

Table . The impact of λ1, when λ2 = 3,μ1 = 3,μ2 = 4,K = 10 andN = 3.

Work-Conserving scenario Non-Work-Conserving scenario

Values of λ1 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
,   .  .   .  .
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STOCHASTIC MODELS 15

Table . The impact of λ2, when λ1 = 2,μ1 = 3,μ2 = 4, K = 10 andN = 3.

Work-Conserving scenario Non-Work-Conserving scenario

Values of λ2 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

Table . The impact ofμ1, when λ1 = 2, λ2 = 3,μ2 = 4, K = 10 andN = 3.

Work-Conserving scenario Non-Work-Conserving scenario

Values ofμ1 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
, .  .  . . . . . .

Table . The impact ofμ2, when λ1 = 2, λ2 = 3,μ1 = 3,K = 10 andN = 3.

Work-Conserving scenario Non-Work-Conserving scenario

Values ofμ2 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
, . . . . . . . . . .

resides inQi. Tables 1–4 exhibit results for both scenarios for the performance mea-
sures E[Li], E[Wi], i = 1, 2, and SR, where K = 10 and N = 3, for different values
of λ1, λ2, μ1, and μ2. In each table, we investigate the impact of one of the parame-
ters, while all other parameters remain unchanged. Specifically, Tables 1, 2, 3 and 4
present, respectively, the impact of λ1, λ2, μ1 and μ2.

Tables 5–8 present numerical results for the Work-Conserving scenario, where
K = 10. In each table, results forN = 5 vs.N = 10 are compared. Tables 5, 6, 7 and 8
show, respectively, the impact of λ1, λ2, μ1 and μ2.
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16 E. PEREL AND U. YECHIALI

Table . The impact of λ1, when λ2 = 3,μ1 = 3,μ2 = 4 and K = 10, forN = 5 vs.N = 10.

N = 5 N = 10

Values of λ1 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
,   . . .   . . .

Table . The impact of λ2, when λ1 = 2,μ1 = 3,μ2 = 4 and K = 10, forN = 5 vs.N = 10.

N = 5 N = 10

Values of λ2 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

Table . The impact ofμ1, when λ1 = 2, λ2 = 3,μ2 = 4 and K = 10, forN = 5 vs.N = 10.

N = 5 N = 10

Values ofμ1 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
, .  .  . .  .  .

Table . The impact ofμ2, when λ1 = 2, λ2 = 3,μ1 = 3 and K = 10, forN = 5 vs.N = 10.

N = 5 N = 10

Values ofμ2 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
, . . . . . . . . . .
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STOCHASTIC MODELS 17

5.1. Discussion

1. When comparing the two scenarios (Tables 1–4), the average switching rate
between the queues, SR, is always smaller in the Non-Work-Conserving sce-
nario than in the Work-Conserving scenario, while the opposite statement
holds for E[Li] and E[Wi], i = 1, 2. This occurs since, in the Non-Work-
Conserving scenario, the server may remain idle in an empty queue even
if there are waiting customers in the other queue, causing a decrease in the
switching rate on the one hand, and an increase in mean queue sizes and
mean waiting times, on the other hand.

2. When λ1 → ∞ or μ1 → 0, the performance measures of the two scenarios
approach the same values, independently of all other parameters. See Tables 1
and 3 for λ1 ≥ 10 and μ1 ≤ 0.5, respectively.

3. When the arrival rate into one of the queues, say λi, is relatively small,
the corresponding measures E[Li] and E[Wi] in the Non-Work-Conserving
scenario are significantly greater than the comparable values in the Work-
Conserving scenario (see Tables 1 and 2). This follows since the server
remains idle in an empty queue as long as the threshold level in the oppo-
site queue has not been reached. Hence, the customers of Qi wait for a long
time untilQi’s threshold is reached, uponwhich the server is called for service
there.

4. In the Non-Work-Conserving scenario, initially, as λ1 increases, E[W1]
decreases. However, for large values of λ1 (λ1 ≥ 10), E[W1] increases as
λ1 increases. This occurs since increasing values of λ1 cause L1 to ascend
at a faster rate, which increases the switching rate and decreases the
time intervals between switches. In the Work-Conserving scenario, E[W1]
increases when λ1 increases (see Table 1). Notice thatE[L1] increases in both
scenarios.

5. Table 2 exhibits an apparently counter-intuitive phenomenon for both sce-
narios, namely, as λ2 increases, E[W2] first decreases and then increases. A
similar phenomenon occurs in the Non-Work-Conserving scenario for the
values of E[L2].

6. In Tables 1, 2, 5 and 6, SR first increases and then decreases when
λ1 (λ2) increases, the exact point of change in direction (increase or
decrease) depends on the entire set of parameters. This occurs in both
scenarios. In contrast, for the Work-Conserving scenario, when λ1 and
λ2 are fixed but μ1 or μ2 increase (Tables 3, 4, 7 and 8), SR always
increases.

7. The rate of service μ2 of the unbounded Q2 has a more profound effect then
μ1 (the service rate of the boundedQ1) on the values of E[L1] and E[L2] (and
consequently on E[W1] and E[W2]). See Tables 3, 4, 7 and 8.

6. Extreme cases

We investigate the influence of extreme values ofλ1, λ2,μ1 andμ2 (as they reach 0 or
∞) on the system’s performance measures in the two different switching scenarios.
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18 E. PEREL AND U. YECHIALI

Some of the cases (e.g., λ2 → ∞ or μ2 → 0, λ1 → 0, λ2 → 0) follow directly from
basic queueing principles. Other cases require more intricate analysis.

We first address extreme cases that lead to identical system structure in the two
policies, and then address extreme cases that lead to different system structures.
λ2 → ∞ or μ2 → 0: These two cases are not stable since the stability condition,

λ2 < μ2, is not satisfied.
μ1 → 0: The system is unstable. Once the server attendsQ1 and the number of cus-

tomers there is at its threshold level, meaning that L1 = K, the number of cus-
tomers there will not reduce below the threshold level and the server will never
switch back toQ2 evenwhen the number of customers inQ2 reaches its threshold,
N. Therefore, the number of customers in Q2 will increase to ∞.

λ1 → 0: It is clear that in both scenarios, P(I = 1) = 0 and P(I = 2) = 1, meaning
that Q2 operates as an M(λ2)/M(μ2)/1 system. Therefore, P(L1 = 0) = 1 and
Ploss(1) ≡ P(L1 = K) = 0. Clearly then, E[L2] = ρ2

1−ρ2
, where ρi = λi

μi
, i = 1, 2.

λ2 → 0: It is straightforward that P(I = 1) = 1 and P(I = 2) = 0. Therefore, Q1

operates as an M(λ1)/M(μ1)/1/K system for which Ploss(1) = ρK
1 (1−ρ1)

1−ρK+1
1

and

E[L1] = ρ1
1−ρ1

− (K+1)ρK+1
1

1−ρK+1
1

.
λ1 → ∞: When λ1 → ∞, Q1 is always at its maximum capacity, meaning L1 ≡ K

and Ploss(1) = 1. In such a case, the server serves the customers of Q1 until
the number of customers in Q2 reaches its maximum value, N. Then, at the
next instant when the server completes a service of a customer in Q1, it imme-
diately switches to Q2. Then, before a service completion in Q2, an arrival at
Q1 will occur, causing a switch back to Q1 as soon as the number of cus-
tomers at Q2 reduces below N. Hence, the only possible states with nonzero
probabilities are (K, n, 1), for n ≥ N − 1, and (K, n, 2), for n ≥ N. Therefore,
P(I = 1) = ∑∞

n=N−1 PKn(1) = PK•(1) and P(I = 2) = ∑∞
n=N PKn(2) = PK•(2).

As a consequence, P(I = 1) = 1 − ρ2, P(I = 2) = ρ2 and E[L2] = ρ2
1−ρ2

+ N −
(1 − ρ2) + λ2

μ1
.

Note that the parameter K does not appear in any of the results above.
The next two extreme cases lead to a different system structure in each of the
switching scenarios.

μ1 → ∞: In the Work-Conserving switching scenario, if μ1 → ∞ then whenever
the server is at Q1, he immediately reduces the number of customers there to 0,
and will remain at Q1 until the first moment thereafter that a customer arrives
at Q2. Therefore, P(I = 1) = P00(1). The server stays in Q2 until Q1 reaches its
threshold and Q2 is below its own threshold, N. If Q1 reaches its threshold and
Q2 is not below its threshold, the server stays atQ2 until the number of customers
there is reduced belowQ2’s threshold, upon which the server switches toQ1, and
immediately empties the queue and returns toQ2. Note that in this case Ploss(1) =
PK•(2).
In the Non-Work-Conserving switching scenario, P(I = 1) = P0•(1) =∑N−1

n=0 P0n(1). The server will remain at Q1 until the first moment when
the number of customers in Q2 reaches the value N and will remain there
until the number of customers in Q1 reaches the value K. Then, given that Q2 is
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STOCHASTIC MODELS 19

below the threshold N, the server will switch to Q1 and immediately reduce the
occupancy there to 0. Note that in this case Ploss(1) = PK•(2) as well.

μ2 → ∞: In the Work-Conserving switching scenario, when μ2 → ∞, the server
immediately empties Q2 upon entering it and resides there until a customer
arrives at Q1. Therefore, P(I = 2) = P00(2). The server remains in Q1 until
Q2 reaches its threshold and Q1 is below the threshold K. If Q2 reaches
its threshold and Q1 is not below its threshold, the server stays at Q1 until
the number of customers there reduces below K, upon which the server
switches to Q2, empties it instantaneously, and returns to Q1. In this case
Ploss(1) = PK•(1).
In the Non-Work-Conserving case, P(I = 2) = P•0(2) = ∑K−1

k=0 Pk0(2). The
server will remain at Q2 until the first moment when the number of customers
in Q1 reaches the value K and will remain there until the number of customers
in Q2 reaches the value N. Then, if Q1 is below the threshold K, the server will
switch to Q2 and immediately reduce the occupancy there to 0. In this case, too,
Ploss(1) = PK•(1).

7. Concluding remarks and future investigations

This paper studies a two-queue polling-type systemwith a non-orthodox threshold-
based switching policy, which depends on the queue that is not being served.
Employing the Matrix Geometric method, we derive the joint steady-state proba-
bilities of the system’s state and its performance measures. We reveal that the entries
of the main diagonal of the rate matrix R of the Matrix Geometric are the reciprocal
of the roots of matrices defining the PGFs associated with the phases of the QBD
process. We remark that this phenomenon appears in other studies such as Paz and
Yechiali[15], Perel and Yechiali[17], Phung-Duc[18] and Hanukov et al.[9]. This rela-
tionship has not been shown analytically as a general property and it calls for further
investigation. Furthermore, unlike many cases in which the rate matrix is calculated
numerically, we are able to derive closed-form expressions for all the elements of R.
Another direction of research is to study the non-preemptive version of the model.
A third direction, which is much more involved, is to assume that the switch-over
times are non-zero. Finally, the analysis of the case when both capacities are infinite
seems to be a challenging task.

Appendix

Proof of Theorem 3.1

Proof. Let q0(z) = 1. Define theminors of the diagonal ofA(z), starting from the upper left-hand
corner, as follows:

q1(z) = α(z), q2(z) =
∣∣∣∣α(z) −μ1
−λ1 α(z)

∣∣∣∣ , . . . , qK (z) = |A(z)| . (A.1)
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20 E. PEREL AND U. YECHIALI

The polynomials qk(z), 1 ≤ k ≤ K satisfy the following recursions:

q1(z) = α(z)q0(z),
qk(z) = α(z)qk−1(z) − λ1μ1qk−2(z) , for 2 ≤ k ≤ K − 1,
qK (z) = αK (z)qK−1(z). (A.2)

From (A.1) and (A.2), we conclude that
1. By definition, q0(z) = 1 and therefore has no roots.
2. For every 1 ≤ k ≤ K − 1, qk(z) and qk−1(z) have no joint roots in (0,∞). Otherwise,

suppose they have a joint root, then it would also be a root for qk−2(z), qk−3(z), ..., q0(z),
which contradicts the above conclusion.

3. sign(qk(∞)) = (−1)k, for all k.
4. qk(1) = ∑k

i=0 λi
1μ

k−i
1 > 0, for all 0 ≤ i ≤ K.

5. qK (1) = μ1
∑K−1

i=0 λi
1μ

K−1−i
1 > 0.

6. Given z̃, a root of qk(z), then sign(qk−1(z̃)qk+1(z̃)) = −1, for every 1 ≤ k ≤ K − 2.
7. qk(z) is a polynomial of degree k for all 0 ≤ k ≤ K.
From the above conclusions it follows that q1(z) has only one root, z1,1 = 1 + λ1+μ1

λ2
> 1.

q2(1) = ∑2
i=0 λi

1μ
2−i
1 > 0, q2(z1,1) < 0, q2(∞) > 0. Therefore, the 2 roots of q2(z) satisfy:

z2,1 ∈ (1, z1,1), z2,2 ∈ (z1,1,∞). Similarly, q3(z) is of degree 3 and therefore can have no more
than 3 distinct roots. Also q3(1) = ∑3

i=0 λi
1μ

3−i
1 > 0, q3(z2,1) < 0, q3(z2,2) > 0, q3(∞) < 0.

This implies that q3(z) has exactly 3 distinct roots satisfying: z3,1 ∈ (1, z2,1), z3,2 ∈ (z2,1, z2,2),
z3,3 ∈ (z2,2,∞).

In general, for 2 ≤ k ≤ K − 1, given k − 1 distinct roots of qk−1(z), the roots of qk(z) satisfy:
zk,1 ∈ (1, zk−1,1), zk,2 ∈ (zk−1,1, zk−1,2), ..., zk,k ∈ (zk−1,k−1,∞).

qK (z) = αK (z)qK−1(z) has K roots, where K − 1 of them are the K − 1 distinct roots of
qK−1(z) and another root (which appears in the matrix R whose structure is discussed in
Section 3.3) is

zK = 1 + μ1

λ2
. (A.3)

This completes the proof of Theorem 3.1. �
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