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Abstract Many models for customers impatience in queue-

ing systems have been studied in the past; the source of

impatience has always been taken to be either a long wait

already experienced at a queue, or a long wait anticipated

by a customer upon arrival. In this paper we consider sys-

tems with servers vacations where customers’ impatience is

due to an absentee of servers upon arrival. Such a model,

representing frequent behavior by waiting customers in ser-

vice systems, has never been treated before in the literature.

We present a comprehensive analysis of the single-server,

M/M/1 and M/G/1 queues, as well as of the multi-server

M/M/c queue, for both the multiple and the single-vacation

cases, and obtain various closed-form results. In particular,

we show that the proportion of customer abandonments un-

der the single-vacation regime is smaller than that under the

multiple-vacation discipline.

Keywords Queueing · Single and multiple vacations ·
Impatience · Abandonment · M /M /1 · M /G/1 · M /M /c.

1. Introduction

Customers impatience has been dealt with in the queueing

literature mainly in the context of customers abandoning the

queue due to either a long wait already experienced, or a long
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wait anticipated upon arrival. Many authors treated the impa-

tience phenomenon under various assumptions. We mention

a few of the works. Palm’s pioneering work [1953, 1957]

seems to be the first to analyze queueing systems with impa-

tient customers by considering the unlimited buffer M/M/c
queue and assuming that each individual customer stays in

the queue as long as his waiting time does not exceed an expo-

nentially distributed impatience time. Daley (1965) studied

the GI/G/1 queue “in which customers entering the system, if

they are obliged to wait too long, may leave the system before

starting or completing their service”. He derived an integral

equation for the limiting waiting-time distribution function

and investigated its solution for the cases of deterministic

and of distributed impatience.

Takacs (1974) further studied the M/G/1 queue in which

customers have a fixed threshold on their sojourn time, and

derived the limiting distributions of the actual and of the

virtual waiting times. Baccelli et al. (1984) considered the

GI/G/1 queue where each ‘aware’ customer, upon arrival,

leaves immediately if he knows that his total waiting time is

beyond his impatience threshold. They devoted the analysis

to characterization of waiting times in the system. Boxma and

de Waal (1994) studied the M/M/c queue with generally dis-

tributed impatience times, developed several approximations

for the abandonment probability and tested them via simula-

tion. Altman and Borovkov (1997) considered impatience of

customers in a retrial queue, in which a customer leaves the

system if its commulative sojourn time exceeds some random

threshold; impatience is shown to have an important impact

on the system stability. Van Houdt et al. (2003) presented

“an algorithmic procedure to calculate the delay distribution

of im(patient) customers in a discrete time D–MAP/PH/1
queue, where the service time distribution of a customer

depends on his waiting time.” They consider determinis-

tic impatience time in the waiting room and in the system.
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The abandonment phenomenon and its importance with re-

spect to stability of so called “call centers” has been stud-

ied extensively recently by various authors. We direct the

reader to the survey paper by Gans et al. (2003) and the

many references there. For the relevance of impatience in

telecommunication systems, see e.g. Bonald and Roberts

(2001).

However, there are situations where customers impatience

is due to an absentee of servers upon arrival. This situation is

encountered, in particular, when observing human behaviour

in service systems: if an arriving customer sees no server

present in the system, he/she may abandon the queue if no

server shows up within some time.

As a consequence, we analyze in this work queueing sys-

tems with servers vacations, where each arriving customer

who finds no servers on duty, activates an independent ran-

dom impatience timer. If a server does not show up by the time

the timer expires, the customer abandons the queue. (This

timer procedure is different from the server’s timer procedure

studied by Boxma et al. (2002) and by Yechiali (2004), in

which the server, upon returning from a vacation to an empty
system, activates a timer before taking another vacation.)

We study both the multiple-vacation and the single-vacation

models of the single-server M/M/1 and M/G/1 queues, as well

as of the multi-server M/M/c systems. The analyses of the

M/M/1 queues, as well as of the M/M/c systems, require the

solution of a differential equation for the partial generating

functions. This is not a common occurrence when employing

the partial generating functions method. The analyses of the

M/G/1 queues are achieved by an interesting use of a related

M/G/∞ model. The M/M/c queues further require the calcu-

lation of certain probabilities, which are derived by finding

the roots of a 2c-degree polynomial being the determinant of

a certain matrix whose entries are functions of the system’s

parameters.

The paper consists of the following models: In Section 2

we consider the M/M/1 queue with multiple server’s expo-

nentially distributed vacations and with exponentially dis-

tributed impatience times. After deriving the balance equa-

tions we obtain and solve a differential equation for G0(z), the

(conditional) generating function of the queue size when the

server is on vacation. This enables us to calculate the frac-

tions of time the server is vacationing or busy. In addition,

we calculate P00, the fraction of time the server is on va-

cation and the system is empty. Section 3 deals with the

multiple-vacation M/G/1 queue where the vacation times,

the service times and the impatience times are generally dis-

tributed. We derive the Laplace-Stieltjes transform (LST) and

the mean of the vacation period; the probability generating

function (PGF) and mean of the number of customers at the

start of a busy period; the LST and the mean duration of a

busy period, and calculate P00. Furthermore, we derive the

PGF of the number of customers at a service completion

instant, and present a decomposition result. Also, we have

calculated the mean number of customers in the system at an

arbitrary moment. Finally, we derive a closed-form expres-

sion for P(served), the fraction of customers served without

abandoning the system. Section 4 treats the multiple-vacation

M/M/c queue with exponentially distributed vacation and

impatience times. Again, the balance equations lead to a dif-

ferential equation for the PGF G0(z). Interestingly enough, its

solution is similar to the solution of the M/M/1 case. In order

to obtain a complete solution for the unknown probabilities

of the system state, the roots of a polynomial, obtained via

the calculation of a square matrix, are determined. Section

5, 6 and 7 are the counterparts of Section 2, 3 and 4, respec-

tively, where the scenario is that of the server following the

single-vacation service procedure.

2. Multiple vacations: M/M/1 queue with
exponentially distributed vacation and
impatience times

2.1. The model

The underlying process is a M/M/1 queue with multiple

server vacations (Levy and Yechiali, 1975). The Poisson

arrival rate is λ, service times B are exponentially dis-

tributed with parameter μ, and each vacation duration U
is exponentially distributed with parameter γ . Customers

are impatient. That is, whenever a customer arrives to the

system and realizes that the server is on vacation he activates

an ‘impatience timer’ T , exponentially distributed with

parameter ξ , which is independent of the queue size at that

moment. If the server returns from his vacation before the

time T expires (and starts rendering service), the customer

stays in the system until his service is completed. However,

if T expires while the server is still on vacation, our customer

abandons the queue, never to return.

2.2. Balance equations

Let L denote the total number of customers in the system,

and let J denote the number of working servers (J = 0 im-

plies that the server is on vacation, while J = 1 denotes

that the server is active). Then, the pair (J, L) defines a

continuous-time Markov process with transition-rate dia-

gram as depicted in Figure 1. Let Pjn = P{J = j, L = n}
( j = 0, 1; n = 0, 1, 2, . . .) denote the (steady state) system-

state probabilities. Then, the set of balance equations is given

as follows:

j = 0

⎧⎪⎨⎪⎩
n = 0 λP00 = ξ P01 + μP11

n ≥ 1 (λ + nξ + γ )P0n = λP0,n−1

+ (n + 1)ξ P0,n+1,

(2.1)
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Fig. 1 Transition-rate diagram

j = 1

⎧⎪⎨⎪⎩
n = 1 (λ + μ)P11 = μP12 + γ P01

n ≥ 2 (λ + μ)P1n = λP1,n−1

+μP1,n+1 + γ P0,n.

(2.2)

Define the Probability Generating Functions (PGFs)

G0(z) =
∞∑

n=0

P0nzn , G1(z) =
∞∑

n=1

P1nzn.

Then, by multiplying each equation for n in (2.2) by zn ,

summing over n and rearrange terms, we get

G1(z)[(λz − μ)(1 − z)] = γ zG0(z) − (μP11 + γ P00)z

(2.3)

In a similar manner we obtain from (2.1)

ξ (1 − z)G ′
0(z) = [λ(1 − z) + γ ]G0(z) − (γ P00 + μP11).

(2.4)

where G ′
0(z) = d

dz G0(z). We derive the solution of the dif-

ferential Eq. (2.4) in the following section.

2.3. Solution of the differential equation

Set

A = γ P00 + μP11. (2.5)

Then, for z �= 1,

G ′
0(z) −

[
λ

ξ
+ γ

ξ (1 − z)

]
G0(z) = −A

ξ (1 − z)
(2.6)

Multiplying both sides of (2.6) by e− λ
ξ

z(1 − z)
γ

ξ we get

d

dz

[
(e− λ

ξ
z · (1 − z)γ /ξ )G0(z)

] = −A

ξ
e− λ

ξ
z(1 − z)

γ

ξ
−1

.

Integrating from 0 to z we have

e − λ
ξ

z · (1 − z)γ /ξ G0(z) − G0(0)

= −A

ξ

∫ z

s=0

(1 − s)
γ

ξ
−1 · e − λ

ξ
s · ds (2.7)

Thus,

G0(z) = G0(0) · e
λ
ξ

z · (1 − z)−
γ

ξ − A

ξ
e

λ
ξ

z · (1 − z)−
γ

ξ
·

∫ z

s=0

(1 − s)
γ

ξ
−1 · e− λ

ξ
s · ds (2.8)

Then,

G0(1) = e
λ
ξ

[
G0(0) − A

ξ

∫ 1

s=0

(1 − s)
γ

ξ
−1e− λ

ξ
sds

]
·

lim
z→1

[
(1 − z)−γ /ξ

]
.

Since G0(1) = ∑∞
n=0 P0n

def= P0• > 0 and lim
z→1

(1 − z)−γ /ξ =
∞, we must have that

G0(0) = A

ξ

∫ 1

s=0

(1 − s)
γ

ξ
−1 · e− λ

ξ
sds (2.9)

Define

Z (λ, γ ) := −λ−γ e−λ (−�(γ, −λ) + �(γ )) ,

where �(z) is the �-function that has the repre-

sentation �(z) := ∫ ∞
t=0

exp(−t)t z−1dt, and �(a, z) := ∫ ∞
t=z

exp(−t) ta−1dt. Further define

K :=
∫ 1

s=0

(1 − s)
γ

ξ
−1e− λ

ξ
sds.

Some computations give

K = Z

(
λ

ξ
,
γ

ξ

)
. (2.10)

We then write, using (2.5),

G0(0) = P00 = γ P00 + μP11

ξ
· K = Kμ

ξ − Kγ
P11. (2.11)

(It is easy to check that ξ − γ K > 0. Indeed, K =∫ 1

0
(1 − s)γ /ξ−1e− λ

ξ
s · ds <

∫ 1

0
(1 − s)γ /ξ−1 ·ds = ξ

γ
). Now,

substituting in (2.8) the value of A from equation (2.9) we

Springer



264 Queueing Syst (2006) 52: 261–279

obtain

G0(z) = G0(0) · e
λ
ξ

z

[
1−

∫ z
0

(1−s)
γ

ξ
−1e− λ

ξ
s · ds∫ 1

0
(1 −s)

γ

ξ
−,1·e − λ

ξ
s ·ds

] /
(1 − z)γ /ξ . (2.12)

Using L’Hopital rule, the probability that the server is on

vacation, P0• = ∑∞
n=0 P0n , is derived:

G0(1) = P0• = G0(0)
1

γ

ξ

∫ 1

0
(1 − s)

γ

ξ
−1 · e− λ

ξ
sds

= ξ

γ K
G0(0) = ξ

γ K
P00. (2.13)

Clearly, the probability that the server is working is P1• =∑∞
n=1 P1n = 1 − P0•. By substituting G0(0) from (2.11) we

get the relation

G0(1) = P0• =
A
ξ

K
γ

ξ
K

= A

γ
= γ P00 + μP11

γ
.

Clearly, the above expression,

γ P0• = γ P00 + μP11. (2.14)

can be obtained by considering a horizontal ‘cut’ between

the two levels of the transition rate diagram (Figure 1).

Equation (2.12) expresses G0(z) in terms of G0(0) = P00,

the proportion of time the server is on vacation and there are

no customers in the system. Also, G1(z) is a function of G0(z)

and P00. Thus, once P00 is calculated, G0(z) and G1(z) are

completely determined, P11 is obtained from (2.11), and P0•
is given by (2.13). Finally, the proportion of customers aban-
doning the system is P(T < U )P0• = ξ

γ+ξ
P0•. Nevertheless,

the necessary and sufficient condition for stability is λ < μ,

for otherwise the busy period has an infinite expectation.

We derive the value of P00 in the next section.

2.4. Derivation of P0•, P1•, P00, E[L0] and of E[L1].

From (2.3),

G1(z) = [γ G0(z) − (μP11 + γ P00)]z

(λz − μ)(1 − z)
.

Applying L’Hopital rule, we get

G1(1) = [γ G0(1) − (μP11 + γ P00)] + γ G ′
0(1)

μ − λ
,

where G ′
0(1) ≡ E[L0] = ∑∞

n=1 n P0n .

Since G j (1) = Pj• ( j = 1, 2), by applying equation

(2.14) to the numerator of G1(1) above, we have

E[L0] = μ − λ

γ
P1•. (2.15)

On the other hand, from equation (2.4),

E[L0] = lim
z→1

G ′
0(z) = −λG0(1) + γ G ′

0(1)

−ξ

= −λP0• + γ E[L0]

−ξ
,

implying that

E[L0] = λP0•
γ + ξ

. (2.16)

Equating the two expressions (2.15) and (2.16) for E[L0],

and using 1 = P0• + P1•, we get

P1• = λγ

μγ + ξ (μ − λ)
, P0• = (γ + ξ )(μ − λ)

μγ + ξ (μ − λ)
, (2.17)

implying that

E[L0] = λ(μ − λ)

μγ + ξ (μ − λ)
·

Now, using equation (2.13), we finally obtain

P00 = γ K

ξ
P0• = γ K

ξ
· (γ + ξ )(μ − λ)

μγ + ξ (μ − λ)
, (2.18)

where K is given by equation (2.10).

P1• [P0•] is a decreasing [increasing] convex [concave]

function of ξ , having its limits at λ
μ

[at 1 − λ/μ] when ξ → 0,

and at 0 [at 1, respectively] when ξ → ∞. E[L0] behaves

similar to P1•. Indeed, E[L0] → λ
γ

(1 − λ
μ

) when ξ → 0, and

E[L0] → 0 when ξ → ∞ (that is, every arrival who finds

the server on vacation leaves immediately). As for P00, its

behavior as a function of ξ is given in Figure 2 for parameter

values λ = 1, μ = 2, and γ = 1. In general, it is an increasing

concave function of ξ with asymptote at 1 (since, as ξ → ∞,

the probability that at the end of a vacation the system is non

empty, converges to zero). When ξ → 0 then P00 approaches

0.25 (see also section 3).

Derivation of E[L1]

From (2.3) we have

G1(z) = γ G0(z)z − Az

(λz − μ)(1 − z)
,
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Fig. 2 P00 as a function of ξ

By using L’Hopital rule and γ P0• = A, we derive

E[L1] = lim
z→1

G ′
1(z) = γ E[L0(L0 − 1)] + 2γ E[L0]

2(μ − λ)2
,

where E[L0(L0 − 1)] is obtained by differentiating twice

G0(z) at z = 1.

2.5. Sojourn times

Let S be the total sojourn time of a customer in the system,

measured from the moment of arrival until departure, either

after completion of service or as a result of abandonment. By

Little’s law,

E[S] = E[L]

λ
= E[L0] + E[L1]

λ
(2.19)

However, a more important measure of performance is Sserved,

defined as the total sojourn time of a customer who completes
his service.

Let Sjn denote the conditional sojourn time of a customer

who do not abandon the system, given that the state upon

his arrival is ( j, n). Clearly, E[S1n] = n+1
μ

, n = 1, 2, 3, . . .

When J = 0, for n ≥ 1,

E[S0n] = γ

γ + (n + 1)ξ + λ

(
1

γ + (n + 1)ξ + λ
+ E[S1n]

)
+ λ

γ + (n + 1)ξ + λ
·

×
(

1

γ + (n + 1)ξ + λ
+ E[S0n]

)
+ (n + 1)ξ

γ + (n + 1)ξ + λ
· n

n + 1
·

×
(

1

γ + (n + 1)ξ + λ
+ E[S0,n−1]

)

The second term above follows since a new arrival does not

change the sojourn time of a customer present in the system,

while the third term takes into account the probability n/

(n + 1) that, when there is an abandonment among (n + 1)

waiting customers, our customer will not be the one to leave.

Thus,

(γ + (n + 1)ξ )E[S0n] = γ + nξ + λ

γ + (n + 1)ξ + λ
+ γ (n + 1)

μ

+nξ E[S0,n−1] (2.20)

We also have

E[S00] = γ

γ + ξ + λ

(
1

γ + ξ + λ
+ 1

μ

)
+ λ

γ + ξ + λ

(
1

γ + ξ + λ
+ E[S00]

)
,

implying that

E[S00] = 1

γ + ξ

(
γ + λ

γ + ξ + λ
+ γ

μ

)
Iterating (2.20) we obtain, for n ≥ 0,

E[S0n] = 1

γ + (n + 1)ξ

[
n∑

k=1

(
γ + (k − 1)ξ + λ

γ + kξ + λ
+ kγ

μ

)
n∏

j=k

(
jξ

γ + jξ

)

+
(

γ + nξ + λ

γ + (n + 1)ξ + λ
+ (n + 1)γ

μ

)]
(2.21)

Finally, using the expression for E[S1n], we write

E[Sserved] =
∞∑

n=1

P1n E[S1n] +
∞∑

n=0

P0n E[S0n] (2.22)

That is,

E[Sserved] = E[L1] + P1•
μ

+
∞∑

n=0

P0n E[S0n] (2.23)

One might be interested in the (conditional) expectation

of W (0, n), the total sojourn time of a customer in the system,

regardless if served or not, given that upon arrival he observes

the state (0, n). Then, for n ≥ 1,

E[W (0, n)] = 1

γ + (n + 1)ξ + λ

+ γ

γ + (n + 1)ξ + λ
E[S1n]
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+ λ

γ + (n + 1)ξ + λ
E[W (0, n)] + (n + 1)ξ

γ + (n + 1)ξ + λ

×
(

1

n + 1
· 0 + n

n + 1
E[W (0, n − 1)]

)
,

and, for n = 0,

E[W (0, 0)] = 1

γ + ξ + λ
+ γ

γ + ξ + λ

1

μ
+ ξ

γ + ξ + λ
· 0

+ λ

γ + ξ + λ
E[W (0, 0)].

After calculations, the above yields

E[W (0, n)] =
n∑

k=0

n!

k!

ξ n−k

μ
· μ + (k + 1)γ∏n+1

j=k+1(γ + jξ )
.

3. Multiple vacations: M/G/1 queue with generally
distributed vacation and impatience times

In this section we consider the case of generally distributed

service times, i.e., the underlying process is the M/G/1 queue

with multiple server vacations (c.f. Levy and Yechiali 1975).

The arrival process is Poisson with rate λ. Service times are

i.i.d random variables, all copy of B, having first moment

E[B], second moment E[B2] and Laplace Stieltjes trans-

form (LST) B∗(s) = E[e−s B]. At the end of a busy period

the server takes a vacation U , having finite moments E[U ]

and E[U 2], and LST U ∗(s). If the system is empty at the end

of a vacation, the server takes another vacation. If there are

n ≥ 1 customers at the end of a vacation, the server starts im-

mediately a busy period. When the server is on vacation and

is not available for service, arriving customers are impatient.
An arrival who finds that the server is away on vacation, ac-

tivates an ‘impatience timer,’ T . If the server does not return

by the time T , the customer abandons the system. Each cus-

tomer activates its own timer and the Ti ’s are i.i.d. random

variables, independent of the number of customers waiting.

Let the starting time of a vacation be t = 0. Then, a key
observation is that, within U , the evolution of the system is

the same as that of a M/G/∞ queue with service times all

distributed as T . For time t ≤ U , it is well known (Takacs,

1962) that the number of customers in the system has a Pois-

son distribution with parameter

�(t) = λ

∫ t

0

[1 − P(T ≤ y)]dy , t ≤ U. (3.1)

We will use this observation extensively in the sequel.

3.1. Duration of a vacation period, τ

Consider the time t = 0 when the server first leaves for a

vacation of duration U1. If at time t = U1 the queue is empty,

the server takes another vacation U2, and so on. This sequence

of events terminates at the first time when the server returns

and finds a non-empty system. We call this entire length of

time, τ , a Vacation Period.

Using the M/G/∞ analogy, the probability of an empty

system at time U is e−�(U ). Thus,

τ =
k∑

i=1

Ui + Uk+1 with probability

(
k∏

i=1

e−�(Ui )

)
(
1 − e−�(Uk+1)

)
.

Therefore, the LST, ∼τ (s), of the Vacation Period is given by

τ ∗(s)

=
∞∑

k=0

E

⎡⎣e
−s(

k∑
i=1

Ui )
e−sUk+1

⎛⎝e
−

k∑
i=1

�(Ui )

⎞⎠ (
1 − e−�(Uk+1)

)⎤⎦
=

∞∑
k=0

(
E

[
e−(sU+�(U ))

])k (
E

[
e−sU

] − E
[
e−(sU+�(U ))

])
= U ∗(s) − E

[
e−(sU+�(U ))

]
1 − E

[
e−(sU+�(U ))

] (3.2)

It follows that the mean length of a Vacation Period is

E[τ ] = E[U ]

1 − E
[
e−�(U )

] (3.3)

3.2. Number of customers at a start of

a busy period

A busy period starts with N (τ ) ≥ 1 customers. We now de-

rive the Probability Generating Function (PGF) of N (τ ). It

should be pointed out that N (τ ) is not distributed as a Pois-

son variable with parameter �(·). This follows since the last

vacation U in τ (in which there is at least one arrival) is not

a regular one. Indeed,

U ∗(s)
∣∣

N (U )≥1
= E

[
e−sU

∣∣N (U ) ≥ 1
]

= E
[
e−sU · I {N (U ) ≥ 1}]
E[P(N (U ) ≥ 1)]

= U ∗(s) − E
[
e−(sU+�(U ))

]
1 − E

[
e−�(U )

]
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This results in

E
[
U

∣∣
N (U )≥1

]
= E[U ] − E

[
Ue−�(U )

](
1 − E

[
e−�(U )

]) .

We write

N (τ ) =
{

N (U1) if N (U1) ≥ 1

N ′(τ ′) if N (U1) = 0
(3.4)

where N ′(τ ′) and τ ′ are i.i.d. replicas of N (τ ) and τ , respec-

tively. Then, the PGF of N (τ ) is given by

G N (τ )(z) = E[zN (τ )]

= E
{

E[zN (U )|N (U ) ≥ 1]P(N (U ) ≥ 1)
}

+ E
{

E[zN (τ )|N (U ) = 0]P(N (U ) = 0)
}

= E

[ ∞∑
n=1

zne−�(U ) (�(U ))n

n!

]
+ E[zN (τ )] · E[e−�(U )]

Thus,

G N (τ )(z) = E[e−(1−z)�(U )] − E[e−�(U )]

1 − E[e−�(U )]

=

∞∑
n=1

1
n!

E[e−�(U )(�(U ))n]zn

1 − E[e−�(U )]
. (3.5)

It readily follows that

P(N (τ ) = n) =
1
n!

E[e−�(U )(�(U ))n]

1 − E[e−�(U )]

(n = 1, 2, 3, . . .) (3.6)

and

E[N (τ )] = E[�(U )]

1 − E[e−�(U )]
(3.7)

3.3. The busy period and P(busy)

Let � denote the duration of a busy period.

A busy period starts with N (τ ) ≥ 1 customers, and hence

is equal to the sum of N (τ ) i.i.d regular M/G/1 periods θ1,

θ2, . . . , θN (τ ), all distributed like θ , where θ∗(s) = B∗[s +
�(1 − θ∗(s))] (Kleinrock, 1975, p. 212). Thus, the LST of �

is given by

�∗(s) = E[e−s�] = E[e
−s(

N (τ )∑
i=1

θi )
]

= [θ∗(s)]N (τ ) = G N (τ )(θ
∗(s)).

Using (3.5) we get

�∗(s) = E[e−(1−θ∗(s)�(U )] − E[e−�(U )]

1 − E[e−�(U )]
. (3.8)

In particular, with ρ = λE[B],

E[�] = E[N (τ )]E[θ ] = E[�(U )]

1 − E[e−�(U )]
· E[B]

1 − ρ
. (3.9)

Now, the proportion of time the server is busy, P(busy), is

give by

P(busy) = E[�]

E[�] + E[τ ]
= E[�(U )]E[B]

E[�(U )]E[B] + (1 − ρ)E[U ]

(3.10)

Indeed, for the M/M/1 case, P(busy) = P1• as given by (2.17).

Furthermore, P(busy) < ρ. To see this, it is enough to show

that E[�(U )] < λE[U ]. In fact,

λE

[∫ U

0

[1 − P(T ≤ y)

]
dy ≤ λE

[∫ U

0

1 · dy

]
= λE[U ].

(3.11)

3.4. Calculation of P00

We now calculate P00, defined in section 1.

Let D denote the sum of time intervals, within τ , where

the system is empty. That is,

D =
∫ τ

0

I {N (t) = 0}dt. (3.12)

Due to the regenerative property of the system we can write

D =
∫ U1

0

I {N (t) = 0}dt + D′ · I {N (U1) = 0}

where D′ has the same distribution of D. Since E[I {N (t) =
0}] = e−�(t) we have

E[D] = E[
∫ U

0
e−�(t)dt]

1 − E[e−�(U )]
. (3.13)
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Now, since P00 is the fraction of time in which both the system

is empty and the server is on vacation, we have

P00 = E[D]

E[�] + E[τ ]
. (3.14)

Using (3.13), (3.10) and (3.3) we finally get

P00 = E[
∫ U

0
e−�(t)dt]

E[�(U )]E[θ ] + E[U ]

= (1 − ρ)
E[

∫ U
0

e−�(t)dt]

E[�(U )]E[B] + (1 − ρ)E[U ]
(3.15)

For the case where the impatience variable T is exponentially

distributed with parameter ξ ,

P00 =
(1 − ρ)E

[∫ U
0

e− λ
ξ

(1−e−ξ t )dt
]

ρ

ξ
[1 − U ∗(ξ )] + (1 − ρ)E[U ]

. (3.16)

Note that when ξ → 0 we get:

P00 = 1 − ρ

E[U ]
· 1 − U ∗(λ)

λ
.

If U is exponentially distributed with parameter γ then this

simplifies to

P00 = 1 − ρ

E[U ](λ + γ )
= (1 − ρ)

γ

λ + γ

In particular, if we substitute the parameters values used in

Figure 2 we obtain 0.25, which indeed coincides with what

we see in the figure.

3.4.1. Exponentially distributed vacation and
impatience times

Supposing that U ∼ Exp(γ ), equation (3.16) yields

P00 =
(1 − ρ)

∫ ∞
u=0

γ e−γ u
(∫ u

t=0
e− λ

ξ
(1−e−ξ t )dt

)
du

ρ

ξ

[
1 − γ

γ+ξ

]
+ (1 − ρ) 1

γ

.

By changing order of integration and applying change of

variable: s = 1 − e−ξ t in the numerator above, we get

∫ 1

s=0

e− λ
ξ

s(1 − s)γ /ξ · ds

ξ (1 − s)
=

∫ 1

s=0

1

ξ
(1 − s)

γ

ξ
−1e− λ

ξ
sds

= K

ξ
,

where the last equality comes from equation (2.10). Thus,

P00 =
(1 − ρ) K

ξ

ρ

γ+ξ
+ 1−ρ

γ

= γ K

ξ
· (γ + ξ )(μ − λ)

γ λ + (γ + ξ )(μ − λ)
,

which is the expression for P00 given by eq (2.19).

3.5. Number of customers at a service completion

instant

Let Xn denote the number of customers present after the

completion of the n-th service. We have

Xn+1 =d

{
Xn − 1 + A(B) if Xn ≥ 1

N (τ ) − 1 + A(B) if Xn = 0
(3.17)

where A(t) is the number of Poisson arrivals in (0, t]. The

symbol =d means “equal in distribution.” Therefore, in

steady state, the PGF of X = lim
n→∞ Xn is given by

X̂ (z) = E[zX ] = E[zX |X > 0]z−1 E[z A(B)](1 − P0)

+ E[zN (τ ]z−1 E[z A(B)]P0

= z−1 B∗[λ(1 − z)]
[
(X̂ (z) − P0)]

+ E[zN (τ )]P0

]
where P0 = (X = 0). Thus,

X̂ (z) = P0

E[zN (τ )] − 1

z − B∗[λ(1 − z)]
B∗[λ(1 − z)] (3.18)

where E[zN (τ )] = G N (τ (z) is given by (3.5).

To calculate P0 we substitute z = 1 in (3.18) and apply

L’Hopital rule to get

P0 = P(X = 0) = 1 − ρ

E[N (τ )]
= (1 − ρ)

1 − E[e−�(U )]

E[�(U )]

(3.19)

where ρ = λE[B] and E[N (τ )] is given by (3.7).

Note that P0 �= P00 since P00 is the fraction of time the

system is empty, while P0 is the relative frequency of occur-
rences, among service completion instants, when the system

becomes empty.

Finally,

X̂ (z) = (1 − ρ)
(G N (τ )(z) − 1)B∗[λ(1 − z)]

E[N (τ )](z − B∗[λ(1 − z)])

= (1 − ρ)

(
E[e(1−z)λ(U )] − 1

)
B∗[λ(1 − z)]

E[�(U )](z − B∗[λ(1 − z)])
(3.20)
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When T = ∞, the process transforms into the classical

M/G/1 queue with multiple server vacations. Then, �(U ) =
λU and (G N (τ )(z) − 1)/E[N (τ )] = (U ∗[λ(1 − z)] − 1)/

(λE[U )).

Equation (3.20) then leads to the known expression (see

Levy and Yechiali (1975) and Boxma, et al. (2002))

X̂ (z) = (1 − ρ)
U ∗[λ(1 − z)] − 1

λE(U )(z − B∗[λ(1 − z)])
B∗[λ(1 − z)]).

(3.21)

3.6. A decomposition representation

Equation (3.20) can be written in a decomposition form,

namely,

X̂ (z) = L̂M/G/1(z) · G N (τ )(z) − 1

(z − 1)E[N (τ )]
(3.22)

where L̂M/G/1(z) is the PGF of the system’s state (occupancy)

at an arbitrary moment in the corresponding regular M/G/1
queue, given by

L̂M/G/1(z) = (1 − ρ)
(z − 1)B∗[λ(1 − z)]

z − B∗[λ(1 − z)]

That is, X is the sum of two independent random variables,

LM/G/1 and Y , where the PGF of Y is given by

Ŷ (z) = G N (τ )(z) − 1

(z − 1)E[N (τ )]

Note that, because of customer abandonments due to impa-

tience, one cannot use PASTA and Burke’s theorem to deduce

that the distribution of X , the number of customers at service

completions, is the same as the distribution of L , the number

of customers at an arbitrary instant.

Now, from (3.22) and using (3.5), it follows that

E[X ] = E[LM/G/1] + E[Y ]

=
[
λ2 E[B2]

2(1 − ρ)
+ ρ

]
+ E[�(U )2]

2E[�(U )]
(3.23)

When T → ∞, E[�(U )2]
2E[�(U )]

= λE[U 2]
2E[U ]

= �E[RU ], where RU

is the residual life time of U .

3.7. Mean number of customers at an arbitrary moment

We now calculate E[L], the mean number of customer in the

system at an arbitrary moment. We write

E[L] = E[L|Vacation Period](1 − P(busy))

+ E[L|Busy]P(busy). (3.24)

Consider a vacation period τ . Let N (t) be the number of cus-

tomers in the system at time t ∈ [0, τ ]. Let 
 = ∫ τ

0
N (t)dt.

Then,


 =
∫ U1

0

N (t)dt + 
′ · I {N (U1) = 0}

where 
′ has the same distribution as 
, and N (t) has a Pois-

son distribution with parameter �(t). Taking expectations we

get

E[
] =
E

[∫ U
0

N (t)dt
]

1 − E
[
e−�(U )

] .

Then, using (3.3),

E[L|Vacatoin Period] = E[
]

E[τ ]
=

E
[∫ U

0
N (t)dt

]
E[U ]

.

Now, E
[∫ U

0
N (t)dt

]
= E [�(t)], implying that

E[L|Vacation Period] =
E

[∫ U
0

�(t)dt
]

E[U ]
. (3.25)

In particular, when U ∼ Exp(γ ) and T ∼ Exp(ξ ), then

E[L|Vacation Period] = λ
γ+ξ

. Now consider a busy period

(which starts with N (τ ) ≥ 1 customers). Then,

E[L|Busy]

= EN (τ )

[
N (τ )∑
n=1

{E[LM/G/1|Busy] + (N (τ ) − n)}
]

= E[N (τ )]E[LM/G/1|Busy]

+ 1

2
EN (τ )[N (τ )(N (τ ) − 1)]. (3.26)

Clearly, E[LM/G/1|Busy] = E[LM/G/1]/ρ. Collecting terms,

we obtain
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E[L] = E

[∫ U

0


(t)dt

]
1 − ρ

(1 − ρ)E[U ] + E[�(U )]E[B]

+
{

E[N (τ )]E[LM/G/1]/ρ + 1

2
E[N (τ )(N (τ ) − 1)]

}
E[�(U )]E[B]

(1 − ρ)E[U ] + E[�(U )]E[B]
(3.27)

where E[N (τ )] is given by (3.7), E[LM/G/1] is given by the

first term in the right hand side of (3.23) and

E[N (τ )(N (τ ) − 1)] = E[�(U )2]

1 − E
[
e−λ(U )

] , (3.28)

which is derived by differentiating (3.5) twice at z = 1. In

particular, when T ∼ Exp(ξ ), and U ∼ Exp(γ ), then� (i) E[�(U )2] = λ2

ξ 2

[
1 − 2γ

ξ+γ
+ γ

2ξ+γ

]
,� (ii) E[e−�(U )] = γ

ξ
K ,� (iii) E

[∫ U

0


(t)dt

]
= λ

ξ

[
E[U ] − 1

ξ
+ γ

ξ (ξ + γ )

]
= λ

γ (ξ + γ )
.

Substituting the above into (3.27), together with E[�(U )] =
λ/(ξ + γ ) (which we shall establish in (3.31)), yields an ex-

plicit solution for E[L] when T and U are distributed ex-

ponentially. Further note that it can readily be shown that in

the exponential case, and with E[B] = 1/μ, the first term in

(3.27) coincides with E[L0] given in Section 2.4.

3.8. Proportion of customers served

An important performance measure is the proportion of cus-

tomers served, denoted by P(served). We can write,

P(served)

= Expected number of customers served during a cycle

Expected number of arrivals during a cycle

(3.29)

Using (3.10) and then (3.3) and (3.7), we get

P(served) = E[�]/E[B]

λ [E[�] + E[τ ]]
= P(busy)

ρ

= 1

ρ + λ(1 − ρ) E[U ]
E[�(U )]

(3.30)

Clearly, P(served) → 1 when ρ → 1. For exponentially dis-

tributed vacations and impatience times, where U ∼ Exp(γ )

and T ∼ Exp(ξ ), we have

λ(U ) = λ

∫ U

y=0

e−ξ ydy = λ

ξ

(
1 − e−ξU

)
leading to

E[�(U )] =
∫ ∞

u=0

λ

ξ

(
1 − e−ξu

)
γ e−γ udu = λ

ξ + γ
. (3.31)

It follows that

P(served) = 1

ρ + (1 − ρ) ξ+γ

γ

= γ

γ + (1 − ρ)ξ
. (3.32)

4. Multiple vacations: M/M/c queue with
exponentially distributed vacation and impatience
times

4.1. The model

We consider a M/M/c type queue with c ≥ 1 server and mul-

tiple vacations (see Levy and Yechiali (1976) and recent

studies using matrix geometric methods by Zhang and Tian

(2003)). Service time, B, of each individual customer is ex-

ponentially distributed with mean 1/μ. The arrival process

is Poisson with rate λ, and we assume that λ < cμ. Servers

never stay idle in the service station: when a server finishes a

service and finds no waiting customers in the queue, he im-

mediately leaves for a vacation. The duration of a vacation

by a server is exponentially distributed with mean 1/γ . If

there are 1 ≤ j ≤ c − 1 customers attended by j servers and

one of the c − j vacationing servers returns from a vacation

to find an empty queue, he immediately leaves for another

vacation.

Customers are impatient: an arriving customer who finds

that all servers are on vacation activates an independent

timer, with exponentially distributed duration, having mean

1/ξ . If no server becomes available by the moment the

timer expires, the customer abandons the queue (and the

system).

4.2. Balance equations

Let L denote the total number of customers in the system,

and let J denote the number of working servers. Then the

pair (J, L) defines a continuous-time Markov process with

stationary probabilities Pjn = P{J = j, L = n} (0 ≤ j ≤
c, n ≥ j). The set of (steady state) balance equations for this
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process is given as follows:

j = 0

⎧⎪⎪⎨⎪⎪⎩
n = 0 λP00 = μP11 + ξ P01

n ≥ 1 (λ + nξ + cγ )P0n

= λP0,n−1 + (n + 1)ξ P0,n+1

(4.1)

1 ≤ j ≤ c − 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n = j (λ + jμ)Pj j

= jμPj, j+1 + (c − j + 1)γ Pj−1,n

+ ( j + 1)μPj+1, j+1

n > j [λ + jμ + (c − j)γ ]Pjn

= λPj,n−1 + jμPj,n+1

+(c − j + 1)γ Pj−1,n

(4.2)

j = c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n = c (λ + cμ)Pcc = cμPc,c+1

+γ Pc−1,c

n = c + k (λ + cμ)Pc,c+k = λPc,c+k−1

+ cμPc,c+k+1

+ γ Pc−1,c+k

(k = 1, 2, 3, . . .)
(4.3)

4.3. Generating functions

For every j ( j = 0, 1, . . . , c) we define a (partial) Generating

Function (GF) and its derivative:

G j (z) =
∞∑

n= j

Pjnzn G ′
j (z) = d

dz
G j (z). (4.4)

By multiplying by zn each equation for j and n in (4.1), (4.2),

and (4.3), and summing over n we obtain the following:

From (4.1), for j = 0, we derive a differential equation

for G0(z):

ξ (1 − z)G ′
0(z) = [λ(1 − z) + cγ ]G0(z)

−(cγ P00 + μP11). (4.5)

From (4.2), for 1 ≤ j ≤ c − 1, we obtain a set of linear equa-

tions in G j (z):

[(λz − jμ)(1 − z) + (c − j)γ z]G j (z)

−(c − j + 1)γ zG j−1(z)

= [(
(c − j)γ z j − jμz j−1

)
Pj j

− (c − j + 1)γ z j−1 Pj−1, j−1

]
z

+ ( j + 1)μPj+1, j+1z j+1

= z j
[
((c − j)γ z − jμ) Pj j

−(c − j + 1)γ Pj−1, j−1 + ( j + 1)μz Pj+1, j+1

]
(4.6)

Finally, from (4.3), for j = c, we get

[λz(1 − z) − cμ(1 − z)]Gc(z) − γ zGc−1(z)

= zc[−cμPcc − γ Pc−1,c−1] (4.7)

Define, for every j , the marginal probability Pj• =∑∞
n= j Pjn = Prob(J = j). Then, by substituting z = 1 in

each of the equations (4.5), (4.6) and (4.7), and repeated

substitution, we get, for 0 ≤ j ≤ c − 1,

(c − j)γ [Pj• − Pj j ] = ( j + 1)μPj+1, j+1. (4.8)

4.4. Solution of the differential equation for G0(z)

Interesting enough, the differential equation (4.5) is similar
to equation (2.4), where the only difference is that the term

cγ replaces the term γ . Therefore, the solution is given by

(see (2.8))

G0(z) = P00e
λ
ξ

z · (1 − z)−
cγ
ξ − Ac

ξ
e

λ
ξ

z

·(1 − z)−
cγ
ξ

∫ z

s=0

(1 − s)
cγ
ξ

−1 · e− λ
ξ

s · ds (4.9)

where, similarly to the single server case, Ac = cγ P00 +
μP11, and

P00 = G0(0) = Ac

ξ
·
∫ 1

s=0

(1 − s)
cγ
ξ

−1 · e− λ
ξ

s · ds

def= Ac

ξ
· Kc. (4.10)

(Kc can be computed using (2.10) with cγ replacing γ .

Thus, ξ P00 = Ac Kc = (cγ P00 + μP11)Kc, implying that

Ac = ξ P00/Kc and

(ξ − cγ Kc)P00 = μKc P11. (4.11)

In order to obtain G0(z) completely we need to calculate

P00. This is accomplished in section 4.7, together with the

calculation of all Pj j and Pj•.
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4.5. Evaluating the mean busy period duration, E[�c]

In the M/M/c with vacations model, when all servers are on

vacation (J = 0), the equivalent of a single vacation U of

the M/G/1 queue is the variable V , distributed exponentially

with parameter cγ . Thus, the duration of a Vacation Period

is

τc =
k∑

i=1

Vi + Vk+1 with probability

(
k∏

i=1

e−�(Vi )

)
(
1 − e−�(Vk+1)

)
.

Therefore, similarly to equation (3.2), the LST of τc is given

by

τ ∗
c (s) = V ∗(s) − E[e−(sV +�(V ))]

1 − E[e−(sV +�(V ))]
(4.12)

where V ∗(s) = cγ
cγ+s . Also, similarly to (3.3),

E[τc] = E[V ]

1 − E[e−�(V )]
= [

cγ (1 − E[e−�(V )])
]−1

(4.13)

The PGF, probability mass function and mean of N (τc) are

given, respectively, by equations (3.5), (3.6) and (3.7), where

V ∼ Exp(cγ ) replaces U .

The equivalent of D (Section 3.4) is a random variable

Dc, with mean (similarly to (3.13)),

E[Dc] =
E

[∫ V
0

e−�(t)dt
]

1 − E[e−�(V )]
(4.14)

The busy period, �c, is defined as the length of time from the

moment, starting at τc, when one of the c vacationing servers

returns from a vacation to find N (τc) waiting customers, until

the first moment thereafter in which there are no customers

in the system anymore. Thus, as in (3.14),

P00 = E[Dc]

E[�c] + E[τc]
(4.15)

Once P00 is calculated, E[�c] is directly determined from

(4.15).

4.6. Solution of the set of generating functions

The set of equations (4.6) and (4.7) is a set of c linear equa-

tions with (c + 1) variables G j (z), j = 0, 1, 2, . . . , c, where

G0(z) is given by (4.9) and the c unknowns are the PGFs

G j (z), j = 1, 2, . . . , c.

Set

a j (z) = (λz − jμ)(1 − z) + (c − j)γ z (1 ≤ j ≤ c)

(4.16)

and

b j (z) = z j
[
((c − j)γ z − jμ) Pj j − (c − j + 1)γ Pj−1, j−1

+ ( j + 1)μz Pj+1, j+1

]
(1 ≤ j ≤ c − 1)

(4.17)

bc(z) = zc
[−cμPcc − γ Pc−1,c−1

]
.

Then, equations (4.6) and (4.7) can be written as

a j (z)G j (z) − (c − j + 1)γ zG j−1(z) = b j (z) (1 ≤ j ≤ c)

(4.18)

where the terms b j (z) are functions of the probabilities Pj j

for j = 1, 2, . . . , c.

Define a c × c square matrix Q(z) as

Q(z)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(z) 0 0 0 · · · · · · · · · 0

−(c − 1)γ z a2(z) 0 0 · · · · · · · · · 0

0 −(c − 2)γ z a3(z) 0 · · · · · · · · · 0

0 0 −(c − 3)γ z a4(z)
...

...
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

...
...

... −2γ z ac−1(z) 0

0 0 0 0 · · · 0 −γ z ac(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Set the vector dT (z) = (d1(z), b2(z), b3(z), . . . , bc(z)),

where d1(z) = b1(z) + cγ zG0(z). Also, set gT (z) =
(G1(z), G2(z), . . . , Gc(z)). Then, the set (4.18) can be

written in a matrix form as

Q(z)g(z) = d(z). (4.19)

To obtain G j (z) we use Cramer’s rule and write

|Q(z)|G j (z) = |Q j (z)|, 0 ≤ j ≤ c (4.20)

where |Q| denotes the determinant of the matrix Q, and

Q j (z) is a matrix obtained from Q(z) by replacing the j th

column with the rhs vector of 4.19, d(z). It thus follows that

the functions G j (z) are expressed in terms of the c + 1 prob-

abilities Pj j , 0 ≤ j ≤ c. Once P00 is calculated, P11 is ex-

tracted from (4.11), but we still have to find c − 1 additional
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equations for the unknowns Pj j . The following theorem an-

swers this requirement.

Theorem. The 2c-degree polynomial |Q(z)| has exactly

(c − 1) distinct roots in the interval (0, 1).

Proof: |Q(z)| = ∏c
j=1 a j (z). For j = c, ac(z) =

(1 − z)(λz − cμ), implying that the two roots of ac(z)

are z(1)
c = 1 and z(2)

c = cμ/λ > 1. For 1 ≤ j ≤ c − 1,

a j (z) = −λz2 + (λ + jμ + (c − j)γ )z − jμ, implying

that a j (0) = − jμ < 0, a j (1) = (c − j)γ > 0, while

a j (∞) = −∞. Thus, the two roots of a j (z) are 0 < z(1)
j < 1

and 1 < z(2)
j < ∞. Clearly, all z(1)

j roots for 1 ≤ j ≤ c − 1

are distinct, which completes the proof. �

Now, since G j (z) is positive for 0 < z < 1, then

|Q j (z)| vanishes whenever |Q(z)| does. Thus, each equation

|Q j (z
(1)
j )| = 0, j = 1, 2, . . . , c − 1, yields an independent

equation in the probabilities Pj j , 0 ≤ j ≤ c. Once P00 and

P11 are known, the values of the required Pj j for 2 ≤ j ≤ c
are directly obtained.

Given Pj j for 0 ≤ j ≤ c, the PGFs G j (z) are completely

determined by equation (4.20).

4.7. Simultaneous calculation of Pj j , Pj• and

G ′
j (1) ≡ E[L j ] for 0 ≤ j ≤ c

The calculation of P00 for the multiple-vacations M/M/c
queue is more elaborate than the calculation in the multiple-

vacation M/M/1 case. Indeed, P00 is derived simultaneously
with all unknowns Pj j and Pj• as follows.

Equation 4.11 gives a relation between P00 and P11,

namely,

(ξ − cγ Kc)P00 = μKc P11.

Similarly to the derivation of equation (2.13), by using equa-

tions (4.9) and (4.10) we get

P0• = ξ

cγ Kc
P00. (4.21)

This implies, similarly to (2.14), that

cγ P0• = cγ P00 + μP11 = Ac. (4.22)

Also, from (4.5), and similarly to (2.16), we obtain

E[L0] = λP0•
cγ + ξ

. (4.23)

where

E[L j ] ≡ G ′
j (1) =

∞∑
n= j

n Pjn j = 0, 1, 2, . . . , c. (4.24)

From (4.18), after taking derivatives at z = 1, we have, for

1 ≤ j ≤ c

a′
j (1)Pj• + a j (1)G ′

j (1) − [(c − j + 1)γ ](Pj• + G ′
j−1(1))

= b′
j (1) (4.25)

where, from (4.16),

a′
j (1) = −λ + jμ + (c − j)γ 1 ≤ j ≤ c , (4.26)

and, from 4.17, for j = 1, 2, . . . , c − 1,

b′
j (1) = j

[
((c − j)γ − jμ)Pj j − (c − j + 1)γ Pj−1, j−1

+ ( j + 1)μPj+1, j+1

] + (c − j)γ Pj j

+( j + 1)μPj+1, j+1 (4.27)

while, for j = c,

b′
c(1) = c[−cμPcc − γ Pc−1,c−1]. (4.28)

Thus, there are 3(c + 1) unknowns involved: Pj j , Pj• and

E[L j ] = G ′
j (1), for j = 0, 1, 2, . . . , c. Their values are ob-

tained by solving a set of 3(c+1) linear equations as follows:

Relations (4.11), (4.21) and (4.23) give 3 independent

equations involving P00, P11, P0• and E[L0]. The set (4.25)

yields another c independent equations relating the un-

knowns Pj• (for 1 ≤ j ≤ c) and E[L j ] (for 0 ≤ j ≤ c).

There are additional c − 1 independent equations resulting

from the Theorem in section 4.6. The set (4.8) adds c equa-

tions relating to the Pj j ’s and the P ′
j•’s. The last equation is∑c

j=0 Pj• = 1.

All in all we have (3 + c + (c − 1) + c + 1) =)3c + 3

independent equations to solve for the 3(c + 1) unknown

variables.

5. Single vacation: M/M/1 queue with exponentially
distributed vacation and impatience times

5.1. The model

We consider now the M/M/1 queue where the server takes

only a single vacation (see [Levy and Yechiali, 1975)]) at the

end of a busy period. If the server returns from a vacation to

an empty system he waits dormant to the first arrival there-

after, who opens a busy period. Otherwise, if the queue is

positive at the vacation’s termination, the server starts a busy

period with no delay. Customers are, as before, impatient

when they find, upon arrival, that the server is vacationing.

Each customer activates his independent, exponentially dis-

tributed ‘impatience time’, T .
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5.2. Balance equations and PGFs

The system state is, as before, (J, L). Figure 1 can represent

the transition rate diagram of the single vacation case if we

add the state (1, 0) to it. The balance equations are now

j = 0

⎧⎪⎨⎪⎩
n = 0 (λ + γ )P00 = ξ P01 + μP11

n ≥ 1 (λ + nξ + γ )P0n

= λP0,n−1 + (n + 1)ξ P0,n+1

(5.1)

j = 1

⎧⎪⎨⎪⎩
n = 0 λP10 = γ P00

n ≥ 1 (λ + μ)P1n

= λP1,n−1 + μP1,n+1 + γ P0n

(5.2)

Summing (5.2) over n we obtain, similarly to (2.14), that in

this case γ P0• = μP11.

Define the PGFs: G j (z) = ∑∞
n=0 Pjnzn , j = 1, 2.

Then, similarly to section 2.2, we obtain from (5.1)

(λ + γ )G0(z) + ξ zG ′
0(z) = λzG0(z) + ξG ′

0(z) + μP11

(5.3)

and from (5.2)

λG1(z) + μ(G1(z) − P10)

= λzG1(z) + μ

z
(G1(z) − P11z − P10) + γ G0(z). (5.4)

Equation (5.3) can be written as

ξ (1 − z)G ′
0(z) = [λ(1 − z) + γ ]G0(z) − μP11 (5.5)

implying (z = 1) that, indeed,

γ P0• = μP11. (5.6)

The differential Eq. (5.5) is very similar to equation (2.4)

and therefore its solution is given by equation (2.12) with

G0(0) = P00 = μP11

ξ
K (see (2.11)).

Using the last relation, as well as λP10 = γ P00 from (5.2),

equation (5.4) is written as

G1(z)[(λz − μ)(1 − z)]

= γ zG0(z) −
(

μ
γ

λ
(1 − z) + ξ

K
z

)
P00. (5.7)

Also, from (5.7), when z = 1 we get, as in (2.13),

P0• = ξ

γ K
P00. (5.8)

Again, once P00 is calculated, both G0(z) and G1(z) are

completely determined, as well as P0•, which is given by

(2.13).

We’ll calculate P00 in the next section.

5.3. Calculation of P00

From equation (5.7),

G1(z) = γ zG0(z) − (
μ

γ

λ
(1 − z) + ξ

K z
)

P00

(λz − μ)(1 − z)
(5.9)

Applying L’Hopital rule, we get

G1(1) = γ G0(1) + γ G ′
0(1) + (

μγ

λ
− ξ

K

)
P00

μ − λ
.

That is,

G ′
0(1) = E[L0] = μ − λ

γ
P1• − P0• −

(
μ

λ
− ξ

γ K

)
P00.

(5.10)

On the other hand, from (5.5)

E[L0] = lim
z→1

G ′
0(z) = −λG0(1) + γ G ′

0(1)

−ξ
,

implying that

E[L0] = λ

γ + ξ
P0•. (5.11)

Equating the two expressions (5.10) and (5.11) for E[L0],

using equation (5.8) and 1 = P0• + P1•, we obtain the needed

expression for P00 (by which P0• and E[L0] are obtained):

P00

[
λξ

(ξ + γ )K
+ (μ − λ)ξ

γ K
+ γμ

λ

]
= μ − λ. (5.12)

Note the similarities and differences between (5.12) and 2.18.

Clearly, P00(single vacation) < P00(multiple vacation).

5.4. Sojourn times

Let S and Sjn be defined as is section 2.5. Then, E[S] is

given by expression (2.19), with E[L1] derived from (5.9).

E[S1n] = (n + 1)/μ, but this time for n = 0, 1, 2, . . . rather

than for n ≥ 1. E[S0n] is given by (2.21). Finally, E[Sserved]

is given by (2.22) and (2.23), but with the first sum in (2.22)

starting from n = 0.
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6. Single vacation: M/G/1 queue with generally
distributed vacation and impatience times

The setting is as in Section 3, but under the single-vacation

policy.

6.1. The busy period

A busy period starts either with N (U ) = n ≥ 1 customers

(with probability e−�(U )(�(U ))n/n! or with a single cus-

tomer (with probability e−�(U )). Thus, the LST of the busy

period is

�∗(s) = E

[ ∞∑
n=1

(θ∗(s))ne−�(U )(�(U ))n/n!

]
+ E

[
θ∗(s)e−�(U )

]
= E

[
e−�(U )

(
e�(U )θ∗(s) − 1

)] + θ∗(s)E
[
e−�(U )

]
= E

[
e−�(U )(1−θ∗(s))

] − (1 − θ∗(s))E
[
e−�(U )

]
(6.1)

From (6.1) it follows that

E[�] = E[θ ]
(
E[�(U )] + E

[
e−�(U )

])
(6.2)

where E[θ ] = E[B]/(1 − ρ).

6.2. Calculation of P00, P10 and P1•

A cycle C consists of a busy period �, a single vacation U ,

and, with probability E
[
e−�(U )

]
, an exponential inter-arrival

time with mean 1/λ. Thus,

E[C] = E[�] + E[U ] + E
[
e−�(U )

]
(1/λ). (6.3)

In the single vacation case the sum D of time intervals,

within a vacation U , in which the system is empty is given

by

D =
∫ U

0

I {N (t) = 0}dt (6.4)

and

E[D] = E

[∫ U

0

e−�(t)dt

]
. (6.5)

The fraction of time in which there are no customers in

the system and the server is on vacation is, using (6.5),

(6.3) and (6.2),

P00 = E[D]

E[C]

= (1 − ρ)
E

[∫ U
0

e−�(t)dt
]

E[B]
(
E[�(U )] + E

[
e−�(U )

])
+ (1 − ρ)

(
E[U ] + E

[
e−�(U )

] /
λ
) (6.6)

while the fraction of time in which the server is ready to serve

but there are no customers present in the system is

P10 = E
[
e−�(U )

] /
λ

E[C]
(6.7)

Finally,

P1• = E[�]

E[C]
.

Remark (Exponentially distributed service, vacation and

impatience times).

In the case where B ∼ Exp(μ), U ∼ Exp(γ ) and T ∼
Exp(ξ ), similarly to the derivation in Section 3.4.1,

E

[∫ U

t=0

e−�(t)dt

]
= K

ξ
, E

[
e−�(U )

] = γ
K

ξ
(6.8)

Using (3.31), it follows that eq.(6.6) reduces to (5.12).

6.3. Number of customers at a service completion

instant

Define Xn and P0 as in section 3.5. Then, for a given U ,

Xn+1 =d

×

⎧⎪⎪⎨⎪⎪⎩
Xn − 1 + A(B) if Xn ≥ 1

N (U )
∣∣

N (U )≥1
− 1 + A(B) if Xn = 0, N (U ) ≥ 1

A(B)
∣∣

N (U )=0
if Xn = 0, N (U ) = 0

(6.9)

Thus, in steady state, the PGF of X is given by

X̂ (z) = (1 − P0)E[zX |X > 0]z−1 B∗[λ(1 − z)]

+ P0 · E[E[zN (U )|N (U ) > 0]z−1 B∗[λ(1 − z)]

P(N (U ) > 0) + e−�(U ) B∗[λ(1 − z)]]

= (X̂ (z) − P0)z−1 B∗[λ(1 − z)]

+ P0 · E{[N̂ (U ) − e−�(U )]z−1 B∗[λ(1 − z)]

+ e−�(U ) B∗[λ(1 − z)]}
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That is,

X̂ (z) = P0

U ∗[λ(1 − z)] − (1 − z)E[e−�(U )] − 1

z − B∗[λ(1 − z)]

× B∗[λ(1 − z)] (6.10)

P0 is given by

P0 = 1 − ρ

λE[U ] + E
[
e−λ(U )

] . (6.11)

Finally,

X̂ (z) = (1 − ρ)
U ∗[λ(1 − z)] − (1 − z)E

[
e−�(U )

] − 1(
λE[U ] + E

[
e−�(U )

])
(z − B∗[λ(1 − z)])

× B∗[λ(1 − z)]. (6.12)

6.4. Proportion of customers served

The proportion of customers served without abandoning the

system is defined as in equation (3.29). Then

P(served) = E[�]/E[B]

λE[C]
= P(busy)

ρ

Using (6.2) and (6.3) we have

P(served) = E[�(U )] + E
[
e−�(U )

]
(1 − ρ)

[
ρ

1−ρ

(
E[�(U )] + E

[
e−�(U )

])
+ λE[U ] + E

[
e−�(U )

]]
= E[�(U )] + E

[
e−�(U )

]
ρE[�(U )] + E

[
e−�(U )

] + λ(1 − ρ)E[U ]

(6.13)

Again, when ρ → 1, then P(served) → 1. For U ∼
Exp(γ ) and T ∼ Exp(ξ ), we have from (3.31) that

E[�(U )] = λ
ξ+γ

, and from (6.8) that E
[
e−�(U )

] = γ K
ξ

.

Thus,

P(served) =
λ

ξ + γ
+ γ K

ξ

ρλ

ξ + γ
+ γ K

ξ
+ λ(1 − ρ)

γ

(6.14)

Comparing (6.14) with (3.32), it follows that

P(served|single vacation) > P(served|multiple vacations).

7. Single vacation: M/M/c queue with exponentially
distributed vacation and impatience times

7.1. The Model

In this section we consider an M/M/c-type queue, similar to

the one described in section 4.1, but with each server taking

only a single vacation at a time.

7.2. Balance equations

As in section 4.2, the pair (J, L) defines a continuous-

time Markov process where, now, for every j , the state

space consists of all n ≥ 0 for every j , rather than only

of n ≥ j . Specifically, let Pjn = P{J = j, L = n} (0 ≤ j ≤
c; n ≥ 0). Then, the set of balance equations is given as fol-

lows:

j = 0

⎧⎪⎪⎨⎪⎪⎩
n = 0 (λ + cγ )P00 = μP11 + ξ P01

n ≥ 1 (λ + nξ + cγ )P0n = λP0,n−1

+ (n + 1)ξ P0,n+1

(7.1)

1 ≤ j ≤ c − 1

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n = 0 [λ + (c − j)γ ]Pj0

= (c − j + 1)γ Pj−1,0

+ μPj+1,1

1 ≤ n ≤ j − 1 [λ + nμ + (c − j)γ ]Pjn

= λPj,n−1

+ (c − j + 1)γ Pj−1,n

+(n + 1)μPj+1,n+1

n = j [λ + jμ + (c − j)γ ]Pjn

= λPj,n−1

+ (c − j + 1)γ Pj−1,n

+ jμPj+1,n+1

+( j + 1)μPj+1,n+1

n > j [λ + jμ + (c − j)γ ]Pjn

= λPj,n−1

+ (c − j + 1)γ Pj−1,n

+ jμPj,n+1

(7.2)
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j = c

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n = 0 λPc0 = γ Pc−1,0

1 ≤ n ≤ c − 1 (λ + nμ)Pcn

= λPc,n−1 + γ Pc−1,n

n ≥ c (λ + cμ)Pcn

= λPc,n−1 + γ Pc−1,n + cμPc,n+1

(7.3)

7.3. Generating functions

Similarly to section 4.3 (multiple vacation case) we define,

for every 0 ≤ j ≤ c, the (partial) Generating Function G j (z)

and the marginal probability Pj• = G j (1), where

G j (z) =
∞∑

n=0

Pjnzn. (7.4)

By multiplying by zn and summing over n we obtain:

From (7.1), for j = 0:

ξ (1 − z)G ′
0(z) = [λ(1 − z) + cγ ]G0(z) − μP11. (7.5)

From (7.2), for 1 ≤ j ≤ c − 1

[(λz − jμ)(1 − z) + (c − j)γ z]G j (z)

− (c − j + 1)γ zG j−1(z)

= − jμ(1 − z)

j∑
n=0

Pjnzn − (c − j + 1)γ z Pj−1,0

− μz
j∑

n=0

n Pjnzn + μ

j+1∑
n=1

n Pj+1,nzn.

(7.6)

From (7.3), for j = c

[(λz − cμ)(1 − z)]Gc(z) − γ zGc−1(z) =

− μz
c−1∑
n=1

n Pcnzn − cμ(1 − z)
c−1∑
n=0

Pcnzn − cμPcczc. (7.7)

The set (7.6) and (7.7) can be written in a matrix form, sim-

ilarly to (4.19), as

Q(z)g(z) = d(z)

where Q(z) is exactly the same matrix defined in section 4.6

with the same a j (z) for

1 ≤ j ≤ c, and dT = (d1(z), b2(z), b3(z), ..., bc(z)), where,

as before, d1(z) = b1(z) + cγ zG0(z), but,

b j (z) = − jμ(1 − z)

j∑
n=0

Pjnzn − (c + j + 1)γ z Pj−1,0

− μz
j∑

n=0

n Pjnzn + μ

j+1∑
n=1

n Pj+1,nzn

(1 ≤ j ≤ c − 1).
(7.8)

and

bc(z) = −μz
c−1∑
n=1

n Pcnzn − cμ(1 − z)
c−1∑
n=0

Pcnzn

−cμPcczc. (7.9)

7.4. Solution of the differential equation and

calculation of the unknown probabilities

The differential equation (7.5) is similar to the differential

equation (4.5), implying that the former’s solution is given

by equation (4.9) with the only modification that the term

μP11 replaces the term Ac = cγ P00 + μP11. That is,

G0(z) = e
λ
ξ

z(1 − z)−
cγ
ξ

(
P00 − μP11

ξ

×
∫ z

s=0

(1 − s)
cγ
ξ

−1e
−λ
ξ

sds

)
. (7.10)

Furthermore, similarly to (4.10)

P00 = μP11

ξ

∫ 1

0

(1 − s)
cγ
ξ

−1e− λ
ξ

sds = μP11

ξ
Kc. (7.11)

From equations (7.10) and (7.11), similarly to the derivation

of (2.13) and (4.21),

P0• = ξ

cγ Kc
P00 = μ

cγ
P11 (7.12)

which can also be obtained directly from (7.5) by setting

z = 1.

By setting z = 1 in equations (7.3) and (7.7) we get, re-

spectively, for 1 ≤ j ≤ c − 1

(c − j)γ Pj• − (c − j + 1)γ Pj−1,•

= (c − j + 1)γ Pj−1,0 − μ

j∑
n=1

n Pjn

+ μ

j+1∑
n=1

n Pj+1,n (7.13)
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and for j = c

Pc• − γ Pc−1,• = −μ

c−1∑
n=1

n Pcn − cμPcc. (7.14)

Equations (7.12), (7.13) and (7.14) comprise a set of (c + 1)

equations involving the (c + 1) marginal probabilities Pj•
(0 ≤ j ≤ c) and the ‘boundary’ probabilities {Pjn} for 0 ≤
j ≤ c, 0 ≤ n ≤ j , excluding P00.

From (7.5), letting z → 1 and using L’Hopital’s rule, we

get

E[L0] = −λG0(1) + cγ G ′
0(1)

−ξ
= λP0•

cγ + ξ
. (7.15)

Since equation (4.18) holds here too (although with different

b j (z), see (7.8) and (7.9)), equations (4.25) and (4.26) hold

here also but, instead of (4.27) and (4.28) we have, respec-

tively,

b′
j (1) = jμ

j∑
n=0

Pjn − (c + j + 1)γ Pj−1,0

− μ

j∑
n=1

n Pjn − μ

j∑
n=1

n2 Pjn + μ

j+1∑
n=1

n2 Pj+1,n (7.16)

and

b′
c(1) = −μ

c−1∑
n=1

n Pcn − μ

c∑
n=1

n2 Pcn + cμ
c−1∑
n=0

Pcn. (7.17)

The unknown probabilities are {Pjn} for 0 ≤ j ≤ c, 0 ≤
n ≤ c; {Pj•} for 0 ≤ j ≤ c; and E[L j ] for 0 ≤ j ≤ c. Alto-

gether there are ((c + 1) + 1)(c + 1)/2 + 2(c + 1) = (c2 +
7c + 6)/2 unknowns. They are solved by the combination

of equations (7.11), (7.12), (7.15); (4.25) with the updated

b′
j (1); c − 1 equations are derived from the roots of Q(z);

equations (7.13) and (7.14); (c + 1)c/2 balance equations

for the ‘boundary’ probabilities {Pjn}, where 1 ≤ j ≤ c, 0 ≤
n ≤ j − 1; and the ‘total probability’ equation

∑c
j=1 Pj• =

1. That is, there are 1 + 1 + 1 + c + (c − 1) + c + (c +
1)c/2 + 1 = 3c + 3 + (c + 1)c/2 = (c2 + 7c + 6)/2 equa-

tions.

Compared with the M/M/c multiple vacation case, the

solution for the single vacation model requires additional

(c + 1)c/2 equations for the unknown probabilities {Pjn}
where 1 ≤ j ≤ c, 0 ≤ n ≤ j − 1.

8. Conclusion

We have introduced and analyzed in this paper a new type of

impatience behavior in which customers become impatient

(and may leave the system) when the server goes on vacation.

This is in contrast with previously studied impatience behav-

ior which did not consider server vacations and where cus-

tomers may become impatient when the number of customers

or the amount of workload queued in front of them is large.

We analyzed both the single and the multiple vacations

cases. We studied both Markovian models (the M/M/1 and

the M/M/c queues with exponentially distributed vacation

and impatience times) as well as the M/G/1 case with gener-

ally distributed impatience and vacation times. For the M/M/1
case, we derived explicit expressions for the PGF of the

number of customers (conditioned on the server state) in

the system. For the M/G/1 model, we obtained the PGF of

the number of customers at various embedded instants (end

of service, start of a busy period); we calculated the mean

number of customers in the system at an arbitrary moment,

and we derived other performance measures, including the

proportion of customers being served. For the M/M/c queue

we derived explicit expressions for the PGF of the number

of customers (conditioned on the server state) in terms of

several constants, which are derived by finding the roots of a

2c-degree polynomial being the determinant of a certain ma-

trix whose entries are functions of the system’s parameters.

In many queueing problems, working with the PGF of

number of customers in the system (or with the LST of the

workload) allows one to transform difference equations (resp.

differential equations) that represent the balance equations

for the steady state probabilities, into algebraic equations.

Interestingly, in the Markovian models we introduced in this

paper, the difference equations describing the balance equa-

tions does not transform into algebraic equations for the PGF:

the PGF is characterized by a solution of a differential equa-

tion which we solved explicitly for each model.
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