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Abstract 

We derive performance measures for burst arrival  (e.g. messages of variable length packets) 

MK / G / 1 queues with server vacations, controlled by the, so called, Randomly Timed Gated 

(RTG) protocol, operating as follows : Whenever the server returns from a ( general-type ) 

vacation and initiates a busy period, a Timer with random duration T is activated. If the server 

empties the queue before time T, he leaves for another vacation. Otherwise ( i.e. if there are 

still customers (packets) in the system when the timer expires ), two versions of terminating 

the busy period, each leading to a different model, are studied :  (i).  The server completes 

service (e.g. transmission) only to the customer being served at time T and leaves. (ii). The 

server leaves immediately.  We derive both state-dependent and steady-state  performance 

measures as a function of the (vacation-type dependent variable) number of customers present 

at the initiation of a busy period. When the vacation policy is specified ( i.e. Multiple or Single 

), we obtain explicit formulas for the various performance measures, derive the distribution 

and mean of the waiting and sojourn times of a customer, and compare between the two 

versions. 

Analysis of the conditions for stability concludes the paper. 
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1. Model and Notation 

We study a burst arrival  (such as messages comprised of variable length packets) MK / G / 1 

queues with general server vacations controlled by the Randomly Timed Gated (RTG) 

protocol ( Eliazar and Yechiali [1998] ), operating as follows : Whenever the server returns 

from a (general-type) vacation and initiates a busy period, a Timer with random duration T is 

activated. If the server empties the queue before time T, he leaves for another vacation. 

Otherwise ( i.e. if there are still customers (e.g. packets) in the system when the timer expires 

), two versions of terminating the busy period, each leading to a different model, are studied : 

Version 1 : The server completes service (e.g. transmission) only to the customer (packet) 

                   being served at time T and leaves. At the next busy period the service starts with 

the 

                   next customer in queue. 

Version 2 : The server leaves immediately for a vacation. The service of the preempted  

                   customer will have to be repeated (resampled). 

Bulk queues have been studied extensively in the literature and a wealth of results is contained 

in books by Cohen [1982] , Chaudhry and Templeton [1983] , Medhi [1984] and Takagi 

[1991], as well as in various papers such as  Baba [1986], and Rosenberg and Yechiali [1993]. 

In modern communication networks, batch arrivals models may be used to represent bursty 

traffic (such as variable-size messages), while the RTG regime may be considered as either a 

time-limit on the duration of each busy period (e.g. transmission duration), or as a failing 

process that affects the operation of the system. 

The regular  MK / G / 1 queueing system is characterized by a Poisson arrival process (with 

rate λ ) of i.i.d random batches of customers (e.g. packets), where each batch (message) size,  

K,  has a probability mass function  P( K = n )  =  fn    , ( n ≥1 ). Customers are served one by 

one by a single server and the service times of individual customers ,V , are i.i.d continuous 

random variables with density fV ( )⋅  . 

Batches (messages) are admitted to service according to the First Come First Served ( FCFS ) 

order. Within a batch,  customers (packets) are served (transmitted) according to their inner 

order. However, under the RTG protocol, the length of each busy period is governed by a 

random - duration Timer T, as described above. T is distributed Exponentially with density 

f t eT
t( ) = −µ µ . At the termination of a busy period, the server leaves for a random vacation of 

duration U. Distinct vacations are i.i.d continuous random variables having density fU ( )⋅ . We 

denote by A(t)  the number of batches arriving in  ( 0,t ]  and assume that the Poisson arrival 
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process { A(t) }t ≥  0 , the sequence of service times , the Timer T and the sequence of vacations 

are mutually independent. 

We define the following : 

Busy period : the time interval from the moment when the server starts serving the queue, after  

                      returning from a vacation, until he leaves the system for another vacation. 

Cycle :           the time interval between two consecutive moments in which the server ‘enters’ 

                      the system. 

If, upon returning from a vacation, the system is not empty, the server starts immediately a 

new busy period. Otherwise, if the system is empty, we analyze in the sequel two policies, 

known as: 1.  Multiple vacation and  2. Single vacation ( see Levy and Yechiali  [1975] ,  

Kella and Yechiali [1988] , Takagi [1991] ) . 

We also use the following notation : 

$ ( )M z = E zM[ ]  :  probability generating function ( PGF ) of a discrete random variable M,  

               where ⎥ z⎥  ≤  1. 
~ ( )M w  = E e wM[ ]−  :  Laplace-Stieltjes transform ( LST ) of a non negative random variable 

M,  

               where  Re(w) ≥ 0. 

Br  :   length of  a busy period initiated by r waiting customers ( r ≥ 0 ) 

Yr  :   queue size at the end of a busy period initiated by r waiting customers ( r  ≥ 0) 

Nr :   number of customers whose service has been fully completed during a busy period  

        initiated by r waiting customers ( r  ≥ 0) 

For Version 2 , we also define Br
eff and Yr

eff  as follows : Br
eff is the effective part of  Br , 

i.e. the time interval from the beginning of Br  until the last full service completion in Br . Yr
eff  

is the queue size at the end of Br
eff . 

The structure of the paper and the main results are the following : 

In section 2  we develop the joint distribution of  the state-dependent pair ( Br , Yr )  for each 

of the two versions. In section 3 we analyze the system in steady state and obtain the following 

performance measures : (1)  LST and mean of the length of a busy period , B. (2)  PGF and 

mean of the number of customers , Y, left behind at the end of a busy period . (3)  Mean 

number of customers , N, served during a busy period . (4)  Mean length of a cycle , C.  (5)  

Pbusy , the probability that the server is busy, and  Peff , the proportion of time that he is 

working effectively. (6)  PGF and mean of  L , the queue size at service completion instants. 
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Each of these measures is expressed as a function of the variable X, number of customers 

present at the beginning of a busy period. This variable depends heavily on the vacation 

policy. 

In particular , in section 4, we consider the Multiple and Single vacations policies and find the 

distribution of X ,  from which we derive explicit expressions for the X -dependent general 

measures obtained earlier in section 3. Mean values of certain measures are compared between 

the two versions. In section 5 we develop an expression for the queue size at an arbitrary 

moment. Note that, since the arrivals are in batches, PASTA is not valid here, and the above 

expression differs from L. In section 6 we derive the LST and mean of the waiting time of a 

customer, as well as the LST and mean of its sojourn time in the system, for each  version and 

vacation type. We conclude by deriving necessary and sufficient conditions for stability for 

both versions. 

 

2. The joint distribution of ( Br , Yr ) 

In this section we develop the joint distribution of the random pair  ( Br , Yr ),   r = 1,2,3,...  for 

each of the two versions. ( Note that   B0 = Y0 = N0 = 0 ). We will later use these results to 

obtain the joint distribution and performance measures for the system in steady state. 

Define the joint t: 

                   
Φ

Φ

r
wB Y

r
eff wB Y

w z E e z

w z E e z

r r

r
eff

r
eff

( , ) [ ]

( , ) [ ]

=

=

−

−
       ,    Re(w) ≥ 0,  |z| ≤ 1                         (2.1)      

By observing the process at the first service completion within Br , we can analyze Versions 1 

and 2 simultaneously. 

Indeed, if  T >V1  , at time V1  the process regenerates itself with  r K i
i

A V
− +

=
∑1

1

1( )
  waiting 

customers, where { }Ki i=
∞

1  are i.i.d , all distributed like K . 

Therefore, for  r ≥ 1: 

(i)  if  T >V1  , then for both versions :  

                                            ( Br , Yr ) = +
∑ ∑− + − +
= =

d

r K r K
V B Y

i
i

A V

i
i

A V( , )( ) ( )1
1 1

1

1

1

1  

where the equality holds also for ( , )B Yr
eff

r
eff  . 
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(ii) if  T ≤ V1  , then,       for  Version 1 :                  ( Br , Yr ) = − +
=
∑

d
i

i

A V
V r K( ),

( )

1
1

1
1

                  

                                       for  Version 2 :                  ( Br , Yr ) = +
=
∑

d
i

i

A T
T r K( , )

( )

1
 

                                                                                 ( , )B Yr
eff

r
eff  =

d
r( , )0  

Derivation of w z E e zr
wB Yr rΦ ( , ) [ ]= −  

We write 

E e zwB Yr r[ ]− = E e z T V P T VwB Yr r[ ] ( )− ≤ ⋅ ≤ +1 1 E e z T V P T VwB Yr r[ ] ( )− > ⋅ >1 1   

                                                                                                                                        (2.2) 

For the two versions, suppressing the index from V1 , and setting  R r Ki
i

A v

= − +
=
∑1

1

( )

, we get 

E e z T V P T VwB Yr r[ ] ( )− > ⋅ >1 1  = E e z T t V v f t d t f v d vwB Y
T V

t vv

r r[ , ] ( ) ( )−

=

∞

=

∞

= = ⋅ ⋅∫∫
0

 

= ⋅ ⋅ ⋅ ⋅− −

=

∞

=

∞

∫∫ e E e z f t dt f v dvwv w B Y
T V

t vv

R R[ ] ( ) ( )
0

 

= ⋅ ⋅ ⋅ = ⋅ = ⋅ ⋅−

=

∞

=

∞
−

==

∞

=

∞

∑∑ ∑∫∫ − + − +e E e z P K k P A v j f t d t f v dvwv

k jj

w B Y
i

i

j

T V
t vv

r k r k

0 10

1 1[ ] ( ) ( ( ) ) ( ) ( )  

= e w z P K k
v
j

f v dvw v
r k i

i

j j

k jj
V

v

− + +
− +

==

∞

=

∞

=

∞

⋅ ⋅ = ⋅ ⋅∑∑∑∫ ( ) ( , ) ( )
( )

!
( )λ µ λ

Φ 1
100

 

= ⋅ = ⋅ ⋅− +
=

∞
− + +

==
∑ ∑∑Φ r k
k

i
w V

j

i

j

j

k

w z P K k E e
V
j1

0 10
( , ) ( ) [

( )
!

]( )λ µ λ
 

From the above we obtain 

E e z T V P T VwB Yr r[ ] ( )− > ⋅ >1 1 = Φr k k
k

w z a w− +
=

∞

⋅∑ 1
0

( , ) ( )                                     (2.3)              

where 

a w P K k E e
V
jk i

w V
j

i

j

j

k

( ) ( ) [
( )

!
]( )≡ = ⋅ ⋅− + +

==
∑∑ λ µ λ

10
                                                    (2.4) 

Again, the last equality stands also for E e z T V P T VwB Yr
eff

r
eff

[ ] ( )− > ⋅ >1 1  with 

Φ r
eff replacing Φ r . 

Now, when  T ≤ V1 , the derivation is carried out for each version separately. 
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Version 1 

E e z T V P T VwB Yr r[ ] ( )− ≤ ⋅ ≤1 1  = E e z T t V v f t dt f v dvwB Y
T V

t

v

v

r r[ , ] ( ) ( )−

==

∞

= = ⋅ ⋅∫∫
00

 

= ⋅
∑

⋅ ⋅−
− +

==

∞

=∫∫ e E z f t dt f v dvwv
r K

T V
t

v

v

i
i

A v

[ ] ( ) ( )

( )

1

00

1

= ⋅ − ⋅ ⋅ = ⋅
∑

⋅− − −

=

∞

=

∞

=∑∫z e e P A v j E z f v dvr v wv
K

V
jv

i
i

j

1

00

1 1( ) ( ( ) ) [ ] ( )µ  

= ⋅ − ⋅ ⋅
⋅

⋅ ⋅− − −
−

=

∞

=

∞

∑∫z e e
e v

j
K z f v dvr v wv

v j
j

V
jv

1

00

1( )
( )
!

[ $ ( ) ] ( )µ
λ λ

 

= ⋅ − ⋅ ⋅ ⋅− − − +

=

∞

∫z e e e f v dvr v w v vK z

v
V

1

0

1( ) ( )( ) $ ( )µ λ λ  

[ ]= ⋅ + − − + + −−z V w K z V w K zr 1 1 1~( ( $ ( ))) ~( ( $ ( )))λ µ λ                                                         (2.5) 

Version 2 

E e z T V P T VwB Yr r[ ] ( )− ≤ ⋅ ≤1 1  = E e z T t V v f t dt f v dvwB Y
T V

t

v

v

r r[ , ] ( ) ( )−

==

∞

= = ⋅ ⋅∫∫
00

 

= ⋅ ⋅
∑

⋅ ⋅− −

==

∞

=∫∫ e z E z e dt f v dvwt r
K

t
V

t

v

v

i
i

A t

[ ] ( )

( )

1

00

µ µ  

= ⋅ ⋅ ⋅− + +

==

∞

∫∫z e e dt f v dvr w t t K z
V

t

v

v

( ) $ ( ) ( )λ µ λµ
00

 

= ⋅
+ + −

⋅ − ⋅− + + −

=

∞

∫z
w K z

e f v dvr w K z v
V

v

µ
µ λ

µ λ

( $ ( ))
( ) ( )( ( $ ( )) )

1
1 1

0

 

=
⋅ − + + −

+ + −
µ µ λ

µ λ
z V w K z

w K z

r [ ~( ( $ ( )) ) ]
( $ ( ))

1 1
1

                                                                         (2.6) 

Also, 

E e z T V P T VwB Yr
eff

r
eff

[ ] ( )− ≤ ⋅ ≤1 1   = ⋅ ⋅−

==

∞

∫∫ z e dt f v dvr t
V

t

v

v

µ µ ( )
00

 

= ⋅ − ⋅ = ⋅ −−

=

∞

∫z e f v dv z Vr v
V

r

v

( ) ( ) ( ~( ) )1 1
0

µ µ                                                              (2.7) 

To conclude the calculation we substitute results (2.2) through (2.7) in (2.1) and obtain infinite 

sets of equations : 
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Φ

Φ Φ

0

1
0

1

0

( , )

( , ) ( , ) ( ) ( , ) ,

w z

w z w z a w c w z z rr r k k
r

k

=

= ⋅ + ⋅ >

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥− +

=

∞

∑                                           (2.8) 

Φ

Φ Φ

0

1
0

1

0

eff

r
eff

r k
eff

k
eff r

k

w z

w z w z a w c w z z r

( , )

( , ) ( , ) ( ) ( , ) ,

=

= ⋅ + ⋅ >

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥− +

=

∞

∑
 

where  ak(w) is given by (2.4) and 

[ ]
c w z

z V w K z V w K z Version

V w K z

w K z
Version

( , )
[ ~( ( $ ( ))) ~( ( $ ( ))) ]

~( ( $ ( )))

( $ ( ))

=
⋅ + − − + + −

⋅ − + + −

+ + −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

−1 1 1 1

1 1

1
2

λ µ λ

µ µ λ

µ λ

                                                    

c w z Veff ( , ) ~( )= −1 µ  

Solution of the set  (2.8) 

It has been shown by Eliazar and Yechiali [1998] that the set of equations of the form (2.8) 

admits a unique solution. In reference [13] we show (and it can be also be verified by 

substitution) that the solution of  (2.8) is 

Φ r
r rw z w z z w z w z( , ) ( , ) ( ( , ) ) [ ( , )]= ⋅ + − ⋅ϕ ϕ β1                                                    (2.9) 

where 

             ϕ
µ λ

( , )
( , )

~( ( $ ( )))
w z

c w z z
z V w K z

=
⋅

− + + −1
                                                            (2.10) 

and 

            β β µ λ θ µ( , ) ( ) ~( ( ~ ( )) )w z w V w wK= = + + − +1 . 
~ ( )θ K w  is the LST of the length of a busy period in MK / G / 1 model, initiated by an arrival of 

a batch into an empty system, and it is known  ( see Rosenberg and Yechiali [1993] )  that : 

           ~ ( ) $ ( ~ ( ( ~ ( ) )) )θ λ θK Kw K V w w= + −1                                                                  (2.11) 

By substituting c(w,z) in  (2.10)  and setting σ µ λ≡ + + −w K z( $ ( ))1  we get  

Version 1                                                                                                               

ϕ
σ µ σ

σ
( , )

~( ) ~( )
~( )

w z
V V

z V
=

− −
−

                                                                                     (2.12) 
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Version 2  

ϕ
µ σ
σ σ

ϕ
µ
σ

( , )
( ~( ) )
( ~( ) )

( , )
( ~( ) )

~( )

w z
z V

z V

w z
z V

z V
eff

=
⋅ −
⋅ −

=
⋅ −
−

1

1
                                                                                        (2.13) 

 

3. System in steady state 

In this section we derive various performance measures for the system in steady state 

(conditions are discussed in section 7 ). We define the following : 

C - Cycle length. 

B - Length of a busy period during a cycle ( B may be 0, depending on the particular vacation  

       regime applied in the system). 

N - Number of customers successfully served during a busy period. 

X - Queue size at the start of a busy period. 

Y - Queue size at the end of a busy period. 

Now, from (2.9),  the joint transform of  ( B,Y) is given by                                    

[ ][ ] [ ]
[ ]

Φ Φ( , ) [ ] ( , )

( , ) [ ] ( ( , )) [ ~( ( ~ ( ))) ]

( , ) $ ( ) ( ( , )) $ ( ~( ( ~ ( )) ) )

w z E e z E E e z X E w z

w z E z w z E V w w

w z X z w z X V w w

wB Y
X

wB Y
X X

X
K

X

K

= = =

= ⋅ + − ⋅ + + − +

= ⋅ + − ⋅ + + − +

− −

ϕ ϕ µ λ θ µ

ϕ ϕ µ λ θ µ

1 1

1 1

         (3.1) 

Equation (3.1) implies that the joint distribution of  (B,Y) , as well as the marginal 

distributions of  B and Y, are explicitly given in terms of $ ( )X ⋅  , the PGF of X (which, by 

itself, depends heavily on the type of vacation policy being employed and on the busy period 

termination version ). 

 

3.1 Performance Measures  

Set   δ µ λ θ µ α λ≡ + − ≡ −~( ( ~ ( ))) , ( $ ( ))V K zK1 1 .    Then from (3.1) : 

  ~( ) ( , ) ( , ) ( ( , )) $ ( ~( ( ~ ( ))))B w w w w X V w wK= = + − ⋅ + + − +Φ 1 1 1 1 1ϕ ϕ µ λ θ µ                (3.2) 

$( ) ( , ) ( , ) $ ( ) ( ( , )) $ ( )Y z z z X z z X= = ⋅ + − ⋅Φ 0 0 1 0ϕ ϕ δ                                                     (3.3) 

Version 1 

By taking derivatives of  (3.2) and (3.3), while using (2.12) we obtain 

E B
E V X

V
[ ]

[ ] ( $ ( ) )
~( )

=
⋅ −
−

1
1

δ
µ

                                                                                             (3.4) 
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E Y E X
E V E K X

V
[ ] [ ]

( [ ] [ ] ) ( $ ( ) )
~( )

= −
− ⋅ −

−
1 1

1
λ δ

µ
                                                        (3.5) 

Version 2     In a similar manner, by using (2.13), 

E B X[ ] ( $ ( ) )= ⋅ −
1

1
µ

δ                                                                                                    (3.6) 

[ ]E Y E X X
E K V V

V
[ ] [ ] $ ( )

[ ] ( ~( ) ) ~( )
( ~( ) )

= + − ⋅
⋅ − −

−

⎡

⎣
⎢

⎤

⎦
⎥1

1
1

δ
λ µ µ µ

µ µ
                                     (3.7)    

E B
V X

V
eff[ ]

~ ( ) [ $ ( ) ]
~( )

=
′ ⋅ −

−
µ δ

µ
1

1
                                                                                     (3.8)  

E Y E X
E K V V X

V
eff[ ] [ ]

[ [ ] ~ ( ) ~( ) ] [ $ ( ) ]
~( )

= +
⋅ ′ + ⋅ −

−
λ µ µ δ

µ
1

1
                                        (3.9)  

where ~ ( ) ~( )′ = =V
d

dw
V w wµ µ  .  

We now calculate E[N], E[C], Pbusy and Peff  for both versions. 

Version 1 

E[N] is calculated by using  Wald’s identity and (3.4).  Clearly, B Vi
i

N

=
=
∑ ,

1
 leading to 

                E N
E B
E V

X
V

[ ]
[ ]
[ ]

$ ( )
~( )

= =
−
−

1
1

δ
µ

                                                                    (3.10) 

Since in steady state   E[A(C)] = E[N]   we get    λE K E C E N[ ] [ ] [ ]= .   That is, 

E C
E N
E K

X
E K V

[ ]
[ ]
[ ]

$ ( )
[ ] ( ~( ) )

= =
−
⋅ −λ

δ
λ µ

1
1

                                                                   (3.11) 

Define  Pbusy   as the proportion of time that the server is busy . Then, 

P E B
E C

E V E Kbusy = = ≡
[ ]
[ ]

[ ] [ ]λ ρ                                                                            (3.12) 

Clearly, in Version 1, the rate of work flowing into the system,  ρ  , must be equal to the 

fraction of time the server is busy. 

Version 2 

Define S, the duration of a successful service attempt, as 

S V V T Then E S
V
V

~ . , [ ]
~ ( )
~( )

< = −
′ µ
µ

 

Now,   B Seff
i

i

N
=

=
∑

1
,   where Si  are i.i.d  as S. 
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Hence, by using (3.8) 

E N
E B

E S
V X

V

eff

[ ]
[ ]

[ ]

~( ) [ $ ( ) ]
~( )

= =
⋅ −
−

µ δ
µ

1
1

                                                                (3.13) 

E C
E N
E K

V X
E K V

[ ]
[ ]
[ ]

~( ) [ $ ( )]
[ ] ( ~( ) )

= =
⋅ −
⋅ −λ

µ δ
λ µ

1
1

                                                                     (3.14) 

P E B
E C

E K V
Vbusy = =
⋅ −[ ]

[ ]
[ ] ( ~( ) )

~( )
λ µ

µ µ
1                                                                       (3.15) 

For Version 2 we also define Peff  as the proportion of time the server is working ‘effectively’. 

i.e.    P
E B
E Ceff

eff

=
[ ]
[ ]

.    Using (3.8) and (3.14) we have 

P
V
V

E K E K E Seff = −
′

⋅ =
~ ( )
~( )

[ ] [ ] [ ]
µ
µ

λ λ                                                                     (3.16) 

Indeed, the mean number of individual arrivals is λE K[ ] , each being effectively served 

exactly once, requiring  E[S]  units of time. 

 

3.2 Queue size at service completion instants 

We now present results regarding $( )L z ,  the PGF of the steady state queue size at service 

completion instants. The derivations are omitted and may be found in reference [13]. 

Version 1 

$( ) ( )
~( ( $ ( )))

~( ( $ ( )))

$ ( ) $( )
[ ] [ ]

L z
V K z

z V K z
X z Y z
E X E Y

= − ⋅
−

− −
⋅

−
−

1
1

1
ρ

λ
λ

                                              (3.17) 

Note that, for the regular MK / G / 1  queue, Cohen ( [1982] Eq. (2.10) , p. 386), has shown 

that the PGF of the number of customers left behind in the system by a departing customer is 

given by 

$ ( ) ( )
~( ( $ ( )))

~( ( $ ( )))

$ ( )
[ ]/ /

L z
V K z

z V K z
K z

E KM GK 1
1

1
1

1
= − ⋅

−
− −

⋅
−

ρ
λ
λ

                                                   (3.18) 

It follows that for the RTG regime 

$( ) $ ( )
[ ]

$ ( )

$ ( ) $( )
[ ] [ ]/ /

L z L z
E K

K z
X z Y z
E X E YM GK= ⋅

−
⋅

−
−1 1

                                                                 (3.19) 

If  K≡1, Eq. (3.19) coincides with the Fuhrmann - Cooper decomposition [1985] 

(see also Borst [1995] ). 
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In order to obtain expressions for $( )L z in terms of  $ ( )X ⋅  alone, we use (3.3), (2.12), (3.5) and 

get 

$( ) ( ~( ) )
~( )

[ ~( ) ]
[ $ ( ) $ ( ) ]

[ $ ( ) ]
L z V

V
z V

X z X
X

= − ⋅
− +

⋅
−

−
1

1
µ

α
α µ

δ
δ

                                                 (3.20) 

Differentiating, 

E L
E X

X
P V

V
eff[ ]

[ ]
$ ( )

~( )
~( )

= +
−

−
− ⋅

−
ρ

δ

µ
µ1

1
1

                                                                 (3.21) 

Version 2  

$( )
~( )

~( )

~( )
[ ~( ) ]

[ $ ( ) $ ( ) ]
[ $ ( ) ]

L z
V

V
V

z V
X z X

X
=

−
⋅

+
− +

⋅
−

−
1

1
µ

µ
α µ
α µ

δ
δ

                                                    (3.22) 

E L
E X

X
P

V
eff[ ]

[ ]
$ ( ) ~( )

=
−

−
−

−1
1

1δ µ
                                                                                   (3.23) 

To summarize, all performance measures derived in this section are given in terms of the PGF 

and mean of  X,  the queue size at the beginning of a busy period. However, as mentioned,  X 

itself depends heavily on the characteristics of the vacation policy. 

We therefore turn to study two common vacation regimes, namely, the Multiple and Single 

vacation policies.  

 

4. Multiple and Single Vacation Policies 

When the vacation policy is specified, it becomes possible to obtain explicit expressions for 

the various performance measures derived previously. In what follows we consider the 

Multiple and Single vacation policies ( see Levy and Yechiali,  [1975], Takagi [1991] ). 

 

4.1  Multiple Vacation 

If, upon returning from a vacation, the system is not empty, the server starts immediately a 

busy period. Otherwise, if the system is empty, we say that the length of the initiated busy 

period is B0 = 0  and the server leaves immediately for another random vacation. All vacations 

are i.i.d, distributed as a random variable U, and are independent of the other underlying 

processes. 

The server continues in this manner until, upon return, he finds at least one batch waiting and 

starts a nongenerate busy period.  

For both versions,   Y K Xi
i

A U
+ =

=
∑

1

( )
.      Hence ( )recall that K zα λ= −( $ ( ))1 , 
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$ ( ) [ ] $( ) ~( ( $ ( ))) $( ) ~( )

( )

X z E z Y z U K z Y z U
Y Ki

i

A U

=
∑

= ⋅ − = ⋅
+

=1 1λ α                                     (4.1) 

Substituting $( )Y z  from (3.3) in (4.1) yields 

[ ]$ ( ) ( , ) $ ( ) ( ( , ) ) $ ( ) ~( ) ,X z z X z z X U implying= ⋅ + − ⋅ ⋅ϕ ϕ δ α0 1 0  

$ ( )
( ( , )) $ ( ) ~( )

( , ) ~( )
X z

z X U
z U

=
− ⋅ ⋅

− ⋅
1 0

1 0
ϕ δ α

ϕ α
                                                                                (4.2) 

Since in both versions  ϕ( , )0 1 =1 , by using L’hospital’s  rule in (4.2) ,  we obtain  

1 1

0

0

1

1

= =
⋅ −
⎛
⎝
⎜

⎞
⎠
⎟

− −

=

=

$ ( )

$ ( )
( , )

( , )
[ ] [ ]

X
X

z
z

z
z

E U E K

z

z

δ
∂ϕ
∂

∂ϕ
∂

λ
                                                                  (4.3) 

4.1.1 Version 1 

∂ϕ
∂

ρ
µ

( , )
~( )

. , ( . )
0 1

1
4 31

z
z V

Thus fromz= =
−

−
 

$ ( )
[ ] [ ] ( ~( ) )

X
E U E K V

δ
λ µ

ρ
= −

⋅ −
−

1
1

1
                                                                        (4.4) 

Substituting (4.4) and (2.12) in (4.2) leads to 

[ ]
[ ]

$ ( )

~( )
[ ] [ ] ( ~( )) ~( )

~( ) ~( ) ~( ) ~( )
X z

z V
E U E K V

U

z V V V U
=

− ⋅ −
⋅ −

−
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

− + − − + ⋅

α
λ µ

ρ
α

α µ α α µ α

1
1

1
                                             (4.5)       

Moments of  X ( in particular E[X] ) can now be derived by differentiating $ ( )X z  in (4.5). 

Performance Measures 

Using equations (4.4) and (4.5), we derive explicit expressions for various performance 

measures. 

From (3.4), (3.5), (3.10)  and (3.11) we get 

E B E V E U E K V
V

E U[ ] [ ] [ ] [ ] ( ~( ) )
( ) ( ~( ) )

[ ]
= ⋅

⋅ −
− ⋅ −

=
−

λ µ
ρ µ

ρ
ρ

1
1 1 1

                                                    (4.6) 

E Y E X E U E K[ ] [ ] [ ] [ ]= − λ                                                                                          (4.7) 

E N E U E K[ ] [ ] [ ]
=

−
λ

ρ1
                                                                                                   (4.8) 

E C E U[ ] [ ]
=

−1 ρ
                                                                                                                (4.9) 

Clearly, E[C] can also be obtained by setting E[C] = E[B] + E[U]. 
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Note that for Version 1 with Multiple vacations, E[B] , E[N]  and  E[C] do not depend on the 

Timer T and have the same values as in  the regular (no timer)  Multiple vacations  MK / G / 1 

queue. 

This follows since, under Version 1, there is no loss of effective work. 

Calculation of L z$( )  

Using equations (4.2), (4.4) and (3.20) we obtain 

[ ] [ ]
( )[ ]

$( )
~( )

[ ] [ ]
[ ] [ ] ( ~( )) ~( )

~( ) ~( ) ~( ) ~( )
L z

V
E U E K

E U E K V U

z V V V U
= ⋅

− − ⋅ − ⋅ −

− + − − + ⋅

α
λ

ρ λ µ α

α µ α α µ α

1 1 1
                            (4.10) 

4.1.2 Version 2 

 Similarly to the derivation for Version 1, one gets 

$ ( )
[ ] [ ] ( ~( ) )

~( ) [ ] ( ~( ) )
X

E U E K V
V E K V

δ
λ µ µ
µ µ λ µ

= −
⋅ −

− ⋅ −
1

1
1

                                                                (4.11) 

                                                                                                                                      (4.12) 

$ ( )

( ) ( ~( )) ( ~( ))
( ) ( ~( ) )

[ ] [ ] ( ~( ))
~( ) [ ] ( ~( ))

~( )

( ~( ) )
( ) ( ~( ) )

~
X z

z V z V
z V

E U E K V
V E K V

U

z V
z V

=

+ ⋅ − + − − +
+ ⋅ − +

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ −

⋅ −
− ⋅ −

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

−
− +

+ ⋅ − +

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

µ α µ α µ µ α
µ α µ α

λ µ µ
µ µ λ µ

α

µ µ α
µ α µ α

1
1

1
1

1
1

U ( )α

Performance Measures 

By using (4.11) and (4.12) in (3.6),(3.7),(3.8),(3.9),(3.13) and (3.14), we get 

E B
E U E K V

V E K V
[ ]

[ ] [ ] ( ~( ) )
~( ) [ ] ( ~( ) )

=
⋅ −

− ⋅ −
λ µ

µ µ λ µ
1

1
                                                                        (4.13) 

E Y E X E U E K[ ] [ ] [ ] [ ]= − λ                                                                                       (4.14) 

E B E U E K V
V E K V

eff[ ] [ ] [ ] ~ ( )
~( ) [ ] ( ~( ) )

=
− ⋅ ′

− ⋅ −
λ µ µ

µ µ λ µ1
                                                                    (4.15) 

( )
E Y E X

E U E K E K V V

V E K V
eff[ ] [ ]

[ ] [ ] [ ] ~ ( ) ~( )
~( ) [ ] ( ~( ) )

= −
⋅ ⋅ ⋅ ′ +

− ⋅ −

λ µ λ µ µ

µ µ λ µ1
                                    (4.16) 

E N V E U E K
V E K V

[ ]
~( ) [ ] [ ]

~( ) [ ] ( ~( ) )
=

⋅
− ⋅ −

µ µ λ
µ µ λ µ1

                                                                         (4.17) 

E C V E U
V E K V

[ ]
~( ) [ ]

~( ) [ ] ( ~( ) )
=

⋅
− ⋅ −
µ µ

µ µ λ µ1
                                                                          (4.18) 

It should be emphasized that, in distinct to Version 1, all performance measures for Version 2  

do depend on the parameter µ  of the Timer. 
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Calculation of L z$( )  

Using equations (4.2) and (4.11) and inserting the result for  
$ ( ) $ ( )

$ ( )
X z X

X
−

−
δ

δ1
 in (3.22), yield 

[ ] [ ]
[ ]

$( )
~( )

~( ) [ ] [ ]

~( ) [ ] ( ~( ) ) ( [ ]) ~( )

( ) ( ~( ) ) ( ~( ) ) ~( )
L z

V
V E U E K

V E K V E U U

z V z V U
=

+
⋅

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

− ⋅ − ⋅ + ⋅ −

+ ⋅ − + − − + ⋅

α µ
µ µ λ

µ µ λ µ µ α

α µ α µ µ α µ α

1 1 1

1
 

                                                                                                                                      (4.19) 

4.1.3  A Limiting case : the Exhaustive Regime 

The regular Exhaustive regime becomes a limiting case of the general RTG regime when 

µ → 0 . 

That is, the server leaves for a vacation if and only if the system is empty. This clearly holds 

for both versions since, without a Timer, both coincide. We have, for both versions, 

$ ( ) ~( ( $ ( ))X z U K zµ λ→⎯ →⎯⎯ −0 1                    E X E U E K[ ] [ ] [ ]µ λ→⎯ →⎯⎯0  

~( ) ~( ( ~ ( )) )B w U wK
µ λ θ→⎯ →⎯⎯ −0 1               E B

E U
[ ]

[ ]µ ρ
ρ

→⎯ →⎯⎯
−

0

1
 

$( )
( ) ~( )

~( )
( ~( ) )

[ ] [ ]
$ ( )

( ~( ) )
[ ] ( $ ( ) )/ /

L z
V

V z
U

E U E K
L z

U
E U K zM GK

µ ρ α
α

α
λ

α
λ

→⎯ →⎯⎯
− ⋅

−
⋅

−
= ⋅

−
⋅ −

0
1

1 1 1
1

      (4.20) 

Where $ ( )
/ /

L z
M GK 1

 is the PGF of the queue size at service completions  in   MK / G / 1 queue 

with no vacations ( see (3.18) ). For K=1, result (4.20) reduces to Takagi’s result ( [1991] , vol 

1 , Eq. (2.12c) , p. 122 )  for simple  M / G / 1 queue with Multiple vacations. 

Equation (4.20) exhibits a decomposition phenomenon. Let RU  be the ‘remaining time’ of a 

random variable U. It is well known that the LST of  RU  is   ~ ( )
~( )
[ ]

R w
U w

wE UU =
−1

. 

The PGF of the total number of arrivals during  RU  is given by : 

~ ( ( $ ( )))
~( ( $ ( )))

( $ ( )) [ ]
R K z

U K z
K z E UU λ
λ

λ
1

1 1
1

− =
− −
− ⋅

                                                                      (4.21) 

Thus, when µ→0, (4.20) implies that  L L ARM GK= +/ / 1
,  where AR is the total number of 

individual customers arriving during  RU. 

By using  L’hospital’s  rule, we get from (4.20) 

E L
E K E V E K K

E K
E K E U

E U
[ ]

[ ] [ ]
( )

[ ( )]
[ ] ( )

[ ] [ ]
[ ]

µ ρ
λ

ρ ρ
λ→⎯ →⎯⎯ +

⋅ ⋅
⋅ −

+
−

⋅ −
+

⋅0
2 2 2 2

2 1
1

2 1 2
          (4.22) 
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Again, by setting  K = 1 , equation (4.22) reduces to the corresponding result for  M / G / 1 

queue ( see Levy and Yechiali  [1975] ). 

Finally, when µ→0, (4.17) and (4.18) coincide with (4.8) and (4.9) respectively : 

E N E U E K E C E U[ ] [ ] [ ] , [ ] [ ]µ µλ
ρ ρ

→ →⎯ →⎯⎯
−

⎯ →⎯⎯
−

0 0

1 1
 

4.1.4 Comparison between the two Versions 

Comparing equations (4.6) and (4.13), it follows that 

E B version E B version E V V V[ ] [ ] [ ] ~( ) ~( )1 2 1≤ ⇔ ⋅ ≤ −µ µ µ   

For  V  having the Gamma distribution with scale parameter γ  and shape parameterα  (such 

that E V[ ] = α γ  )  this conditon reduces to    1 1+ ≤ +
⎛
⎝
⎜

⎞
⎠
⎟µ

α
γ

µ
γ

α

. 

This implies that, for  α = 1  (i.e. V  Exponential with mean γ −1  ), equality holds, i.e. the 

mean length of a busy period is equal in both versions. However, for α > 1 (e.g. family of 

Erlang distributions with α ≡ 2 3, ,...  ),  µ µ µE V V V[ ] ~( ) ~( )⋅ < −1  ( which is also the case for 

V  Deterministic with  E[V]= γ −1  ).  That is   E B version E B version[ ] [ ]1 2< . 

On the other hand, ifα < 1 , the inequality reverses its orientation. Similar conclusions hold for 

E[N] and E[C]. 

Note that, although the actual value of a busy period under each version does depend on the 

vacation variable U, their ratio depends only on the distribution of the service time V and the 

Timer parameter µ. 

 

4.2 Single vacation 

If the server returnes from a vacation and finds no customers waiting  ( X = 0 ), he waits idle 

for the first batch to arrive, upon which he starts a busy period. Otherwise ( X ≥ 1 ), he 

immediately starts a busy period. 

The computation of [ ]Φ r
wB Yw z E e zr r( , ) = −  in section 2 remains the same, since the length   

of a busy period initiated by r customers ( Br )  and the number of customers at the end of this 

busy period ( Yr )  do not depend on the type of vacation. The only difference is that in a 

Single vacation,  r > 0. Nevertheless, we set here the same starting condition, Φ0 1( , )w z =  , 

for  r = 0. 
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The steady state equation (3.1)  for [ ]Φ Φ( , ) ( , )w z E w zx X=   is valid here too, and so are the 

measures in section 3 for the variables  B , Y , N , C and  L  ( as functions of  X ). 

For both versions : 

X
Y K if Y K

K if Y K

i
i

A U

i
i

A U

i
i

A U=
+ + >

+ =

⎧

⎨
⎪⎪

⎩
⎪
⎪

= =

=

∑ ∑

∑
1 1

1

0

0

( ) ( )

( )                                       (4.23) 

Thus , 

                                                                                                                                      (4.24) 

$ ( ) ( ) ( )
( ) ( ) ( ) ( )

X z E z Y K P Y K E z Y K P Y KX
i

i

A U

i
i

A U
X

i
i

A U

i
i

A U

= + >
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ + > + + =

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ + =

= = = =
∑ ∑ ∑ ∑

1 1 1 1
0 0 0 0                    

Using (3.3), (2.12) and (2.13),   one gets (after some calculations), 

Version 1     ( )$ ( ) ~( )
~( ) $ ( )

~( )
$ ( ) $( ) ~( )X z U

V X
V

K z Y z U= ⋅
⋅
+

⋅ − + ⋅λ
λ δ
λ µ

α1                        (4.25) 

Version 2     ( )$ ( ) ~( ) $ ( ) $ ( ) $( ) ~( )X z U X K z Y z U= ⋅ ⋅ − + ⋅λ δ α1                                   (4.26) 

4.2.1 Version 1 

Substituting $( )Y z  from (3.3) in (4.26) and rearranging , yield 

( ) ( )
$ ( ) $ ( )

~( ) ~( )
~( )

$ ( ) ( , ) ~( )

( , ) ~( )
X z X

U V
V

K z z U

z U
= ⋅

⋅
+

⋅ − + − ⋅

− ⋅
δ

λ λ
λ µ

ϕ α

ϕ α

1 1 0

1 0
                                 (4.27) 

 where, in a similar way to the Multiple vacation case, we derive, 

$ ( )
[ ] [ ] ( ~( ) )

~( ) ~( ) [ ] ( ~( ) )
~( )

( )
X

E U E K V
V U E K V

V

δ
ρ λ µ

λ λ µ
λ µ

ρ
=

− − ⋅ −
⋅ ⋅ ⋅ −

+
+ −

1 1
1

1
                                                (4.28) 

Performance measures 

Inserting $ ( ) $ ( )X z and X δ  suitably in the relevant equations of section 3, we obtain explicit 

expressions for E[B], E[N] and E[C]. 

Note that E[C] can also be computed through 

E C E B E U P K P Y E B E U U
V X

Vi
i

A U

[ ] [ ] [ ] ( ) ( ) [ ] [ ] ~( )
~( ) $ ( )

~( )

( )

= + + ⋅ = ⋅ = = + + ⋅ ⋅
⋅
+=

∑1
0 0

1
1λ λ

λ
λ δ
λ µ

 

This follows since the mean idle time (while waiting for the first group to arrive)  is  1
λ

 . 
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Calculation of L z$( )  

Using equations (4.27) and (4.28) and inserting the result for   
$ ( ) $ ( )

$ ( )
X z X

X
−

−
δ

δ1
  in (3.20)  lead to 

( ) [ ]
$( )

~( )
~( )

~( ) ~( )
~( )

$ ( ) ~( ) [ ] [ ] ( ~( ))

~( ) ~( )
~( )

~( )
~( ) ~( ) [ ]

~( )
[ ] [

L z

V
z V

U V
V

K z U E U E K V

V V
z V

U
U V E K

V
E U E K

=
− +

⋅
⋅
+

⋅ − + −
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ − − ⋅ −

−
− +

− +
⋅

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

⋅ ⋅
+

+

α
α µ

λ λ
λ µ

α ρ λ µ

α α µ
α µ

α
λ λ

λ µ
λ

1 1 1 1

1 ]
⎡

⎣
⎢

⎤

⎦
⎥

 

                                                                                                                                      (4.29) 

4.2.2 Version 2 

Similarly to Version 1 , 

( ) ( )
$ ( ) $ ( )

~( ) $ ( ) ( , ) ~( )
( , ) ~( )

X z X
U K z z U

z U
= ⋅

⋅ − + − ⋅

− ⋅
δ

λ ϕ α
ϕ α
1 1 0

1 0
                                           (4.30) 

where, 

$ ( )

~( ) [ ] ( ~( ) )
( ~( ) )

[ ] [ ]

~( ) [ ]
~( ) [ ] ( ~( ))

( ~( ) )

X

V E K V
V

E U E K

U E K
V E K V

V

δ

µ µ λ µ
µ µ

λ

λ
µ µ λ µ

µ µ

=

− ⋅ −
−

−

⋅ +
− ⋅ −

−

1
1

1
1

                                       (4.31) 

Performance measures 

Again, explicit formulas for E[B], E[N] and E[C] are obtained by inserting the above results 

for $ ( )X z  and $ ( )X δ in the appropriate equations of section 3. 

Calculation of L z$( )  

Using equations (4.30) and (4.31) while inserting the resulting expression for  
$ ( ) $ ( )

$ ( )
X z X

X
−

−
δ

δ1
 

in (3.22) lead to 

                                                                                                                                      (4.32) 

[ ] ( )[
( )[ ]

$( )
~( )

~( ) ( ~( ))

~( ) [ ] ( ~( ) ) ( [ ]) ~( ) $ ( ) ~( )

( ~( ) ) ~( )
( ) ( ~( ))

~( ) [ ] [ ]
L z

V
V z V

V E K V E U U K z U

z V U
z V

U E U E K
=

+
⋅ − +

⋅
− ⋅ − ⋅ + ⋅ ⋅ − + −

−
− + ⋅

+ ⋅ − +

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ + ⋅

α µ
µ α µ

µ µ λ µ µ λ α

µ α µ α
α µ α µ

λ λ µ

1 1 1 1

1
1

4.2.3 A Limiting case 

When µ → 0  ,  the results are readily reduced to those for the  MK / G / 1 system with Single 

vacations  ( no Timer ). 

For both versions, 
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$ ( ) ~( ) ( $ ( ) ) ~( ( $ ( ) ))X z U K z U K zµ λ λ→⎯ →⎯⎯ ⋅ − + −0 1 1                   

( )E X U E U E K[ ] ~( ) [ ] [ ]µ λ λ→⎯ →⎯⎯ + ⋅0  

( )~( ) ~( ) ~ ( ) ~( ( ~ ( )) )B w U w U wK K
µ λ θ λ θ→⎯ →⎯⎯ ⋅ − + −0 1 1  

( )
E B

E V E K U E U E V
E X[ ]

[ ] [ ] ~( ) [ ] [ ]
lim [ ]µ

µ

λ λ
ρ ρ

→

→
⎯ →⎯⎯

⋅ +

−
=

−
⋅0

01 1
 

( )[ ]
( )

$( )
( ) ~( )

~( )

~( ) $ ( ) ~( )
~( ) [ ] [ ]

L z
V

z V

U K z U

U E U E K
µ ρ α

α

λ α

λ λ
→⎯ →⎯⎯

− ⋅
−

⋅
⋅ − + −

+ ⋅
0 1 1 1

                             (4.33) 

By using  L’hospital’s  rule, 

E L
E K E V E K E U

U E U
E K K
E K

[ ]
[ ] [ ]
( )

[ ] [ ]
( ~( ) [ ] )

[ ( )]
[ ] ( )

µ ρ
λ

ρ
λ

λ λ ρ
→⎯ →⎯⎯ +

⋅ ⋅
⋅ −

+
⋅ ⋅

⋅ +
+

−
⋅ −

0
2 2 2 2 2

2 1 2
1

2 1
 (4.34) 

Again, for K=1, results (4.34) and (4.33) reduce respectively to those of Levy and Yechiali  

( [1975],  p. 206 )  and  Takagi ( [1991], Eq (2.23),  p. 125 ).  

( )
E N

E U U E K
E X

E C
U E U

E B

[ ]
[ ] ~( ) [ ]

lim [ ]

[ ]

~( ) [ ]
lim [ ]

µ

µ

µ

µ

λ λ
ρ ρ

λ
λ

ρ ρ

→

→

→

→

⎯ →⎯⎯
+ ⋅

−
=

−
⋅

⎯ →⎯⎯
+

−
= ⋅

0

0

0

0

1
1

1
1

1
1

 

 

5. Queue size at an arbitrary moment 

In this section we derive the PGF of the queue size at an arbitrary moment for the two 

versions, each under both the Multiple and Single vacation policies ( Note that $( )L z  is the 

PGF of the queue size at service completion instants). 

First we define the PGFs of the following variables : 

PGF                     Variable 

F(z)  -  queue size at an arbitrary moment. 

V(z)  -  queue size at an arbitrary moment during a vacation. 

S(z)  -  queue size at an arbitrary moment during a service time. 

g1(z)  -  number of customers arriving during RV , the ‘remaining’ part of a service time. 

g2(z)  -  number of customers arriving during RU , the ‘remaining’ part of a vacation time. 

We also define the probabilities : 

P1 =  P( the server is serving) 

P2 =  P( the server is on a vacation ) 
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5.1 Multiple Vacation 

For both versions the following relations hold : 

F z S z P V z P( ) ( ) ( )= ⋅ + ⋅1 2                                                                                              (5.1) 

V z g z X z( ) ( ) $ ( )⋅ =2                                                                                                         (5.2) 

S z g z
z

L z( ) ( ) $( )⋅ ⋅ =1

1
                                                                                                     (5.3) 

Substituting (5.2) and (5.3) in (5.1) yields 

F z P
z L z
g z

P
X z
g z

( )
$( )
( )

$ ( )
( )

= ⋅
⋅

+ ⋅1
1

2
2

                                                                                   (5.4) 

Where, ( see (4.21) ), 

g z
V K z

K z E V1

1 1
1

( )
~( ( $ ( )))

( $ ( )) [ ]
=

− −
− ⋅
λ

λ
                         g z

U K z
K z E U2

1 1
1

( )
~( ( $ ( )))

( $ ( )) [ ]
=

− −
− ⋅
λ

λ
 

Now, for Version 1 , 

From (3.12), 

P P P Pbusy1 2 11 1= = = − = −ρ ρ,  ,   while $( ) $ ( )L z and X z  are taken from (4.10) 

and (4.5), respectively. 

For Version 2 , 

From (3.15), 

P P
E K V

V
P Pbusy1 2 1

1
1= =

⋅ −
= −

λ µ
µ µ

[ ] ( ~( ))
~( )

,  , while $( ) $ ( )L z and X z  are taken from 

(4.19) and (4.12), respectively. 

 

5.2 Single vacation 

We add the following definitions : 

h(z) -  PGF of the number of customers arriving during a vacation. 

I(z)  -  PGF of the queue size at an arbitrary moment during ‘idle time’. 

( the server enters the ‘idle time’ period at the end of a vacation  if and only if at this instant 

the system is empty ). 

P3  =  P( the server is idle ) 

V z( )  - PGF of the queue size at the end of a vacation. 

For both versions, the following relations hold, 

F z S z P V z P I z P( ) ( ) ( ) ( )= ⋅ + ⋅ + ⋅1 2 3                                                                            (5.5) 
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( Clearly,  I(z)=1 ). 

V z Y z h z( ) $( ) ( )= ⋅                                                                                                            (5.6) 

V z g z V z( ) ( ) ( )⋅ =2                                                                                                         (5.7) 

Equation (5.3) holds here, as well. 

Substituting (5.3) and (5.7) in(5.5) and using (5.6) yields 

F z P
z L z
g z

P
Y z h z

g z
P( )

$( )
( )

$( ) ( )
( )

= ⋅
⋅

+ ⋅
⋅

+1
1

2
2

3                                                                  (5.8) 

Where  h z U K z( ) ~( ( $ ( )))= −λ 1 . 

Now, for both versions, 

( )P
E B
E C

for version P
E U
E C

P
E I
E C1 2 31= = = =

[ ]
[ ]

;
[ ]
[ ]

;
[ ]
[ ]

ρ  

while $( ) $( )L z and Y z  are taken, respectively ( with the relevant ϕ and $ ( )X ⋅  ),  from (4.29) 

and (3.3)  for Version 1, and from (4.32) and (3.3) for Version 2. 

 

6. Waiting and Sojourn times 

In this section we derive explicit formulas for the LSTs and means of the waiting and sojourn 

times of an arbitrary customer for both versions and for both vacation policies. The results are 

summerized in tables 1 and 2 in the sequel. 

The sojourn time of an arbitrary customer is composed of three components : 

W1  - time from arrival of the customer’s group (batch) until the group starts service. 

          Clearly, W1  depends on the vacations policy. 

W2  - time from the instant that the group starts service until the customer’s service is 

initiated. 

W3  - time from the beginning of service of the customer until the customer leaves the system. 

The waiting (queueing) time of a customer before first service initiation is  W = W1 + W2 . 

A customer’s  sojourn time is  W + W 3 , and since W  and  W3  are independent, its LST is the 

product  ~( ) ~ ( )W s W s⋅ 3  . We now calculate those distributions. 

 

6.1 The Distribution of W 2  

Define Wk
2  to be W2  for the kth  customer in a group.  

The following recursive relations hold : 
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Version

W
V W V W V T

k

V U W T U W V T
k

k k

k k

1 2

22
1 1

2
1 1

2
1

1 1
2 2

1

=

+ + <

≥

+ + + + ≥

⎧

⎨
⎪

⎩
⎪

− −

−

,

,

              (6.1) 

    W1
2 0=                                                                                                                          

In order to calculate the LST of  Wk
2   we write 

~ ( ) [ ] [ ] ( ) [ ] ( )W s E e E e T V P T V E e T V P T Vk
sW sW sWk k k2

1 1 1 1
2 2 2

= = > ⋅ > + ≤ ⋅ ≤− − −  (6.2) 

When  T >V1   we have, for both versions    ( where V1 ~ V ), 

E e T V P T VsWk[ ] ( )− > ⋅ >
2

1 1 [ ]= ⋅ ⋅− +

=

∞

=

∞

−∫∫ E e f t d t f v d vs v W
T

t v
V

v

k( ) ( ) ( )1
2

0

 

= ⋅ ⋅ ⋅− −
−

=

∞

∫ e e W s f v d vsv v
k V

v

µ ~ ( ) ( )1
2

0

= + ⋅ −
~( ) ~ ( )V s W skµ 1

2                                                   (6.3) 

When  T ≤ V1  we have, 

Version 1 

E e T V P T V E e f t d t f v d vsW s v U W
T V

t

v

v

k k[ ] ( ) [ ] ( ) ( )( )− − + +

==

∞

≤ ⋅ ≤ = ⋅ ⋅−∫∫
2

1
2

1 1
00

 

= − ⋅ ⋅ ⋅ ⋅− −

=

∞

−∫ ( ) ( ) ~ ( ) ~( )1
0

1
2e e f v d v W s U sv sv

V
v

k
µ = ⋅ ⋅ − +−

~ ( ) ~( ) ( ~( ) ~( ) )W s U s V s V sk 1
2 µ        (6.4) 

Version 2 

E e T V P T VsWk[ ] ( )− ≤ ⋅ ≤
2

1 1 = ⋅ ⋅ ⋅ ⋅− −

==

∞

∫∫ e U s W s e d t f v d vst
k

t
V

t

v

v

~( ) ~ ( ) ( )2

00

µ µ

=
+

⋅ − ⋅ ⋅ ⋅− +

=

∞

∫
µ

µ
µ

s
e f v d v W s U ss v

V
v

k( ) ( ) ~ ( ) ~( )( )1
0

2 =
+

⋅ ⋅ ⋅ − +
µ

µ
µ

s
W s U s V sk
~ ( ) ~( ) [ ~( ) ]2 1  (6.5) 

By inserting  (6.3) and (6.4) or (6.5) into (6.2) for each version, respectively, we get 

Version 1 

[ ]
~ ( ) ~( ) ~ ( ) ~ ( ) ~( ) [ ~( ) ~( )]

~ ( ) ~( ) ~( ) [ ~( ) ~( ) ]

W s V s W s W s U s V s V s

W s V s U s V s V s

k k k

k

2
1

2
1

2

1
2

= + ⋅ + ⋅ ⋅ − +

= ⋅ + + ⋅ − +

− −

−

µ µ

µ µ
 

 
[ ]
[ ]

= ⋅ + + ⋅ − + = =

= ⋅ + + ⋅ − +

−

−

~ ( ) ~( ) ~( ) [ ~( ) ~( ) ]
~ ( ) ~( ) ~( ) [ ~( ) ~( ) ]

W s V s U s V s V s

W s V s U s V s V s
k

k

2
2 2

1
2 1

µ µ

µ µ

L
 

Hence, since W1
2 0= , 



 21

[ ]~ ( ) ~( ) ~( ) [ ~( ) ~( ) ] ,W s V s U s V s V s kk
k2 1 1= + + ⋅ − + ≥−µ µ                            (6.6) 

By differentiation, 

[ ]E W k E V V E Uk[ ] ( ) [ ] ( ~( ) ) [ ]2 1 1= − ⋅ + − ⋅µ                                                               (6.7) 

Version 2 

~ ( ) ~( ) ~ ( ) ~ ( ) ~( ) [ ~( ) ]

~ ( )
~( )

~( ) [ ~( ) ]

W s V s W s
s

W s U s V s

W s V s
U s V s

k k k

k
s

2
1

2 2

1
2

1

1 1

= + ⋅ +
+

⋅ ⋅ ⋅ − +

= ⋅
+

− ⋅ ⋅ − +

−

−
+

µ µ
µ

µ

µ
µµ

µ

 

Hence, 

~ ( )
~( )

~( ) [ ~( ) ]
,W s V s

U s V s
kk

s

k

2

1

1 1
1=

+

− ⋅ ⋅ − +

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

≥
+

−
µ

µµ
µ

                                       (6.8) 

This implies, 

( )E W k
V

V
E Uk[ ] ( )

~( )
~( )

[ ]2 11
1

= − ⋅
−

⋅ +
µ

µ µ                                                                     (6.9) 

Define , 

Pk  = P{ a customer is in the kth position in his group } 

f j  = P{ size of a group is j } = P( K = j ) 

It is known, ( see Burke [1975] ,  Rosenberg and Yechiali [1993]  ) that 

P
E K

P K j
E K

fk
j k

j
j k

= ⋅ = = ⋅
=

∞

=

∞

∑ ∑1 1
[ ]

( )
[ ]

 

Since, with probability  Pk  ,  W Wk
2 2=  , We have, 

~ ( ) [ ] [ ] ~ ( )
[ ]

~ ( )W s E e P E e P W s
E K

f W ssW
k

sW
k k

kk
j

j k
k

k

k2 2

11

2

1

2 2 1
= = ⋅ = ⋅ = ⋅ ⋅− −

=

∞

=

∞

=

∞

=

∞

∑∑ ∑∑  

By substituting (6.6) and  (6.8) in the above, we get : 

Version 1 

[ ]~ ( )
[ ]

~( ) ~( ) [ ~( ) ~( ) ]W s
E K

f V s U s V s V sj
k

j kk

2 1

1

1
= ⋅ ⋅ + + ⋅ − + −

=

∞

=

∞

∑∑ µ µ  

[ ]= ⋅ ⋅ + + ⋅ − + −

==

∞

∑∑1 1

11E K
f V s U s V s V sj

k

k

j

j[ ]
~( ) ~( ) [ ~( ) ~( )]µ µ  
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[ ]
[ ]

= ⋅ ⋅
− + + ⋅ − +

− + + ⋅ − +

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥=

∞

∑1 1

11E K
f

V s U s V s V s

V s U s V s V s
j

j

j[ ]

~( ) ~( ) [ ~( ) ~( ) ]
~( ) ~( ) [ ~( ) ~( )]

µ µ

µ µ
 

Thus, 

( )
[ ]( )

~ ( )
$ ~( ) ~( ) [ ~( ) ~( ) ]

[ ] ~( ) ~( ) [ ~( ) ~( ) ]
W s

K V s U s V s V s

E K V s U s V s V s
2

1

1
=

− + + ⋅ − +

⋅ − + + ⋅ − +

µ µ

µ µ
                        (6.10) 

Now, 

[ ]E W P E W E V V E U
E K K

E Kk k
k

[ ] [ ] [ ] ( ~( )) [ ]
[ ( )]

[ ]
2 2

1
1

1
2

= ⋅ = + − ⋅ ⋅
−

=

∞

∑ µ                           (6.11) 

Note that  E V V E U[ ] ( ~( )) [ ]+ − ⋅1 µ    (see also below) is the mean time interval between two 

consecutive services in a group, while  
E K K

E K
[ ( )]

[ ]
−1

2
   is the equivalent of mean ‘remaining’ 

time for the group size variable , K. 

Version 2 

In a similar manner, 

~ ( )

$
~( )

~( ) [ ~( ) ]

[ ]
~( )

~( ) [ ~( ) ]

W s

K
V s

U s V s

E K
V s

U s V s

s

s

2

1
1 1

1
1 1

=

−
+

− ⋅ ⋅ − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅ −
+

− ⋅ ⋅ − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

+

µ
µ

µ
µ

µ
µ

µ
µ

                                            (6.12) 

( )E W
V

V
E U

E K K
E K

[ ]
~( )

~( )
[ ]

[ ( )]
[ ]

2 11 1
2

=
−

⋅ + ⋅
−µ

µ µ                                                         (6.13) 

It is important to indicate that, for each version , ~ ( )W s2  is the same for both vacation regimes. 

By taking  µ → 0 in equations (6.10) and (6.12) we get 

( )
( )

~ ( )
$ ~( )

[ ] ~( )
W s

K V s

E K V s
2

1

1
=

−

⋅ −
 

which is the same result as in Baba [1986] for the regular  MK / G / 1 queue. 

 

6.2 The Distribution of  W 1   

Each group may be considered as a ‘super’ customer, with service time being the time interval 

extending from the instant at which the service of the group’s  first customer  starts, through 

the instant at which its last customer leaves the system.  This service time will be noted as 

Vg . 
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We therefore have a  M / G / 1 queue with vacations ( Multiple or Single ) and service times 

distributed as Vg . The waiting time of the super customer in such a system is identical to W1. 

First  we compute ~ ( ) , .V s the LST of Vg g  

Define Vg
m   to be  Vg  for a group of size m. 

We have the following recursive relation : 

Version

V
V V V V V T

m

V U V T U V V T

g
m

g
m

g
m

g
m

g
m

1 2

1
1 1 1 1 1

1 1 1

=
+ + <

≥

+ + + + ≥

⎧

⎨
⎪

⎩
⎪

− −

−

,

,

 

( Vg
0 0=  ) 

This last relation is identical to the expression for  Wk
2  in  (6.1) , where  V g

m  here replaces 

Wk
2  there  ( except for  m=1).  Hence, the solution is : 

Version 1 

[ ]~ ( ) ~ ( ) ~( ) ~( ) [ ~( ) ~( )]V s V s V s U s V s V sg
m

g
m= ⋅ + + ⋅ − +−1 µ µ  

             [ ]= = ⋅ + + ⋅ − +... ~ ( ) ~( ) ~( ) [ ~( ) ~( ) ]V s V s U s V s V sg m
0 µ µ  

Thus, 

[ ]~ ( ) ~( ) ~( ) [ ~( ) ~( )] ,V s V s U s V s V s mg
m

m= + + ⋅ − + ≥µ µ 1                      (6.14) 

Version 2 

~ ( )
~( )

~( ) [ ~( )]
,V s V s

U s V s
mg

m
s

m

=
+

− ⋅ ⋅ − +

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

≥
+

µ
µµ

µ1 1
1                      (6.15) 

For both versions, for  m ≥ 1,      V V with probability fg g
m m= .   Hence, 

~ ( ) ~ ( )V s f V sg
m

g
m

m
= ⋅

=

∞

∑
1

 

By inserting (6.14) and (6.15) in the above , we obtain : 

Version 1 

[ ]~ ( ) ~( ) ~( ) [ ~( ) ~( ) ]V s f V s U s V s V sg
m

m

m= ⋅ + + ⋅ − +
=

∞

∑
1

µ µ  

           ( )= + + ⋅ − +$ ~( ) ~( ) [ ~( ) ~( ) ]K V s U s V s V sµ µ                                                     (6.16) 
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and by differentiation, 

[ ]E V E K E V V E Ug[ ] [ ] [ ] ( ~( ) ) [ ]= ⋅ + − ⋅1 µ                                                                 (6.17) 

Indeed, the mean time interval between the start of two consecutive services in a group is 

given by : 

( )E V V T P V T E V V T E U P V T E V V E U[ ] ( ) [ ] [ ] ( ) [ ] ( ~( )) [ ]≤ ⋅ ≤ + > + ⋅ > = + − ⋅1 µ  

Since the mean size of a batch is E[K] , result (6.17) follows. 

Version 2 

~ ( )
~( )

~( ) [ ~( ) ]
$

~( )
~( ) [ ~( ) ]

V s f
V s

U s V s
K

V s
U s V s

g
m

m s

m

s

= ⋅
+

− ⋅ ⋅ − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+

− ⋅ ⋅ − +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

∞

+ +
∑

1 1 1 1 1
µ

µ
µ

µµ
µ

µ
µ

(6.18) 

and 

E V E K
V

V E Ug[ ] [ ]
~( )

( ~( ) ) ( [ ])= ⋅ − ⋅ +
µ

µ µ1 1                                                                        (6.19) 

The LST for the waiting time of the super customer is given for the Multiple vacation and the 

Single vacation by Equations (36) and (22), respectively, of  Levy and Yechiali [1975]  as 

follows : 

For Multiple vacation  :     ~ ( ) [ ]
[ ]

~( )
~ ( ) ( )

W s E V
E U

U s
V s

g

g s
1 1 1

1
=

−⎡

⎣
⎢

⎤

⎦
⎥ ⋅

−
− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

λ
λ λ

                        (6.20) 

Note that if we substitute for  Vg  and take  µ → 0  in (6.20),  we get, for the two versions, 

E V E K E V V s K V sg g[ ] [ ] [ ] , ~ ( ) $ ( ~( ) )= ⋅ =  ,   which leads to  

~ ( )
[ ] [ ]
[ ]

~( )
$ ( ~( ) ) ( )

W s
E K E V
E U

U s
K V s s

1 1 1
1

=
−⎡

⎣
⎢

⎤

⎦
⎥ ⋅

−
− −

⎡

⎣
⎢

⎤

⎦
⎥

λ
λ λ

 . 

This result is the same as in Baba [1986] , for the regular  MK / G / 1 model. 

For Single vacation   : ~ ( ) [ ]
~( ) [ ]

~( )
~ ( ) ( )

~( )

W s E V
U E U

U s s

V s

g U

g s
1 1 1

1
=

−
+

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

− + ⋅

− −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

λ
λ λ

λ
λ

λ

                       (6.21) 

The LST of the waiting time of a customer is  ~ ( ) ~ ( ) ~ ( )W s W s W s= ⋅1 2   . 

Table 1 below gives the prescription of  how to calculate  ~( )W s  for each of the four cases. 

                            

Case Product of equations ~ ( )V sg  is given by E[Vg]  is given by 

Multiple, Version 1 (6.10)*(6.20) (6.16) (6.17) 

Multiple, Version 2 (6.12)*(6.20) (6.18) (6.19) 
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Single,    Version 1 (6.10)*(6.21) (6.16) (6.17) 

Single,    Version 2 (6.12)*(6.21) (6.18) (6.19) 

                           Table 1 : Calculation of ~( ) ~ ( ) ~ ( )W s W s W s= ⋅1 2  

 

6.3 The Distribution of W3   

Version 1 

In this version W3 = V since there are no service preemptions. 

Version 2 

W
V V T

T U W V T

3

3

=
<

+ + ≥

⎧

⎨
⎪

⎩
⎪

,

,

                                                                           (6.22) 

E e T V P T V e f t d t f v d vsW sv
T V

t vv

[ ] ( ) ( ) ( )− −

=

∞

=

∞

> ⋅ > = ⋅ ⋅∫∫
3

0

 

= ⋅ ⋅ = +− −

=

∞

∫ e e f v d v V ssv v
V

v

µ µ( ) ~( )
0

                                                                        (6.23) 

E e T V P T V E e f t d t f v d vsW s t U W
T V

t

v

v

[ ] ( ) [ ] ( ) ( )( )− − + +

==

∞

≤ ⋅ ≤ = ⋅ ⋅∫∫
3 3

00

 

=
+

⋅ − ⋅ ⋅ ⋅− +

=

∞

∫
µ

µ
µ

s
e f v d v W s U ss v

V
v

( ) ( ) ~ ( ) ~( )( )1
0

3 =
+

⋅ ⋅ ⋅ − +
µ

µ
µ

s
W s U s V s~ ( ) ~( ) [ ~( ) ]3 1   (6.24) 

Combining (6.23) and (6.24) we get 

~ ( ) ~( ) ~ ( ) ~( ) [ ~( ) ] ,W s V s
s

W s U s V s which leads to3 3 1= + +
+

⋅ ⋅ ⋅ − +µ
µ

µ
µ  

~ ( )
~( )

~( ) [ ~( )]
W s V s

U s V ss

3

1 1
=

+

− ⋅ ⋅ − ++

µ
µµ

µ

                                                                   (6.25) 

By differentiating  (6.25)  we get 

[ ]E W
V

V E U[ ] ~( )
~( ) ( [ ] )3 11 1= ⋅ − ⋅ +

µ
µ µ                                                                    (6.26) 

Clearly, (6.26) can be obtained directly by taking expectations on (6.22), or by setting  k=2  in 

(6.9).  This follows since W3 in this version is the time interval between the start of two 

consecutive services in a group, so that W3  is distributed as W2
2  . Also , by comparing (6.26) 

with (6.19) , we see that E V E K E Wg[ ] [ ] [ ]= ⋅ 3 . 
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We further note that W2 , as well as W3 , has the same distribution in the the two vacation  

models ( Multiple and Single ). This follows since during such a period ( W2 or W3 ) the 

system is not empty  and the two regimes are indistinguishable. Note that Vg  , the service 

time of a group,  is also the same in both vacation models. 

What distinguishes between the waiting times in the two models is W1 , which depends on the  

vacation regime. 

The results regarding  E[W1], E[W2] and  E[W3] are summerized in Table 2 below. 

 

 Multiple vacation Single vacation 

 Version 1 Version 2 Version 1 Version 2 

E[W1] λ
λ

λE V
E V

E U
E U

g

g

[( ) ]
( [ ])

[ ]
[ ]

2 2

2 1 2−
+  

 

λ
λ

λ
λ λ

E V
E V

E U
U E U

g

g

[( ) ]
( [ ])

[ ]
( ~( ) [ ])

2 2

2 1 2−
+

+
 

E[W2] η⋅Ω  ξ ⋅Ω  η⋅Ω  ξ ⋅Ω  

E[W3] E[V] ξ  E[V] ξ  

Ω =
−E K K
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[ ]
1
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 , ξ

µ
µ µ

=
−

⋅ +
⎛
⎝
⎜

⎞
⎠
⎟

1 1~( )
~( )

[ ]
V

V
E U  , η µ= + − ⋅E V V E U[ ] ( ~( ) ) [ ]1  

Table 2: Mean Waiting Times 

 

( E[Vg] is given for the  two versions respectively, by equations (6.17) and (6.19), while 

E[(Vg)2] can be calculated by differentiating (6.16) and (6.18) ). 

A quick calculation reveals that, for sufficiently large E[U], 

E W version E W version[ ] [ ]2 21 2<   and  E W version E W version[ ] [ ]3 31 2< . 

 

7. Stability Conditions 

In this section we derive stability conditions for both versions. We first use conditions 

applicable only to work - conserving systems (Version1) and then use the notion of super 

customer to derive conditions for both versions. 

 

Conditions for Version 1 

In this case we can use Fricker and Jaibi’s  (FJ) result  [1994]  regarding  necessary and 

sufficient condition for stability. Note that our model is a polling system with a single queue 
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and batch arrivals. The switchover times in FJ are taken here to be the vacation times, and the 

service policies are work conserving, where for Single vacation model, the switching time 

includes the length of  time in which the server waits for the first group to arrive after a 

vacation ( whenever the system is empty ). 

Thus, the necessary and sufficient condition for stability is : 

                                            ρ
λ

+ ⋅ <
E K

E G
E D

[ ]
[ ]

[ ] 1                                                  (7.1) 

Where ρ λ= E K E V[ ] [ ]   is the traffic load of the system,  λE[K]  is the arrival rate to the 

queue, G  is the number of customers served during an imaginary busy period which is 

initiated by infinite number of waiting customers,  and D is the total switchover time between 

queues (vacations). In our case, 

G Geometric~ ( )ϕ    where ϕ µ= ≤ = −P T V V( ) ~( )1 .      Hence, 

E G
V

[ ] ~( )
= =

−
1 1

1ϕ µ
                                                                                               (7.2) 

E[G] can also be obtained by using the performance measure  E[N]  from equation (3.10) : 

E G E N
X
V VX X

[ ] lim [ ] lim
$ ( )
~( ) ~( )

= =
−
−

=
−→∞ →∞

1
1

1
1

δ
µ µ

   , 

since lim $ ( )
X

X for
→∞

= < <δ δ0 0 1   where δ is defined in Section 3.1. 

We now compute  E[D] seperately for the Multiple and Single vacation regimes. 

Multiple vacation D U: =  

Single vacation E D E U P no arrivals during U P Y: [ ] [ ] ( ) ( )= + ⋅ ⋅ =1 0λ       (7.3) 

                                             = + ⋅ ⋅
⋅
+

E U U
V X

V
[ ] ~( )

~( ) $ ( )
~( )

1
λ λ

λ δ
λ µ

      ( Since P Y Y( ) $( )= =0 0  )  

By substituting (7.2) and (7.3) in (7.1) we get the conditions : 

Multiple vacation 

( )
ρ λ µ

λ µ

+ ⋅ − ⋅ <

⋅ + − ⋅ <

E K V E U

That is E K E V V E U

[ ] ( ~( ) ) [ ]

, [ ] [ ] ( ~( )) [ ]

1 1

1 1
                                            (7.4) 

Single vacation 

ρ λ µ λ
λ δ
λ µλ+ ⋅ − ⋅ + ⋅ ⋅
⋅
+

⎛

⎝
⎜

⎞

⎠
⎟ <E K V E U U

V X
V

[ ] ( ~( ) ) [ ] ~( )
~( ) $ ( )

~( )
1 11  

Substituting $ ( )X δ  from (4.28) in the above equation we get, 
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( )
1

1 1 1

1 1
1+

− ⋅ + ⋅ + ⋅ − −

⋅ ⋅ ⋅ − + − ⋅ +
<

( ) ~( ) [ ] [ ] ( ~( ) )
~( ) ~( ) [ ] ( ~( ) ) ( ) ~( )

ρ λ µ ρ λ µ

λ λ µ ρ λ µ

V E K E U V

V U E K V V
 

Since  ρ < 1, the last condition reduces to 

( )
ρ λ µ

λ µ

+ ⋅ − − <

⋅ + − ⋅ <

E K E U V

That is E K E V V E U

[ ] [ ] ( ~( ) )

, [ ] [ ] ( ~( )) [ ]

1 1 0

1 1
                                         (7.5) 

Comparing (7.5) to (7.4), we see that the stability condition is the same for the two vacation 

regimes. 

Another aproach applicable for both versions is the following, 

 

Conditions for Version 1 and Version 2 

Since the service policy in Version 2 is not work conserving, one has to use a different 

approach (which can be applied to both versions) in order to get the stability conditions. 

As mentioned previously in this section, both versions can be looked upon as variations of the 

standard  M / G / 1  queue, where each group is considered to be a super customer which loads 

the system with an actual service time of length  Vg . The mean of  Vg  is given in (6.17) and 

(6.19), for Version  1 and Version 2, respectively 

A necessary and sufficient condition is λ E V g[ ] < 1. That is, 

Version 1  

( )λ µE K E V V E U[ ] [ ] ( ~( )) [ ]⋅ + − ⋅ <1 1                                                                       (7.6)    

Clearly, this condition is identical with (7.4). 

Version 2 

( )λ
µ

µ µ
E K

V
V E U

[ ]
~( )

( ~( ) ) [ ]⋅ − ⋅ + <1 11                                                                          (7.7) 

As mentioned, Vg is independent of the vacation type and therefore results (7.6) and (7.7) hold 

for both vacation regimes. 
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