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AbstractThis work analyzes various polling systems with both random breakdowns andrepairs. A few works in the literature investigated polling networks with failing nodes,but none has treated the associated repair process or the combined e�ect of breakdownsand repairs on such systems.We consider three service mechanisms: Gated, Exhaustive and Globally-Gated.For each service regime we study several variations, di�ering from each other by (i)whether the arrival process to a queue being repaired continues or stops during therepair process, and (ii) whether the failure is observed immediately when it occurs oronly at the end of a service duration.For each of the twelve models studied we provide analyses regarding the systemstate at polling instants (law of motion, probability generating functions, �rst andsecond order moments) and derive expressions for several performance measures, suchas (distribution and mean of) number of customers at the di�erent queues, their waitingand sojourn times, server's cycle times, etc. We derive stability conditions for thevarious models and express all results in a uni�ed generalized form.
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1 IntroductionOnly a few works in the literature deal with the important phenomenon of nodes breakdownsin polling systems. Recently Kofman and Yechiali studied models with failing nodes, analyz-ing the Gated and Exhaustive [8], as well as the Globally Gated [9] service regimes. However,we know of no works studying the combined e�ect of breakdowns and the associated repairprocesses on such systems. This work addresses this issue.Queueing systems consisting of N queues (stations, nodes, or channels) served by a singleserver who incurs switchover periods when moving from one queue to another have beenstudied widely in the literature and used as a central model for the analysis of a large varietyof applications in the areas of telecommunication systems, computer networks, multipleaccess protocols, multiplexing schemes in ISDN, readerhead movements in a computer'shard disk, manufacturing systems, road traÆc control, repair problems, etc. Very often,such applications are modeled as polling systems in which the server visits the queues in acyclic or some other order.In many of these applications, as well as in most polling models, it is customary to controlthe amount of service time allocated to each queue during the server's visit. Two commonservice policies are the Gated and the Exhaustive regimes. Under the Gated regime, in eachcycle only customers who are present when the server polls the queue are served during itscurrent visit, while customers arriving when the queue is attended will be served during thenext visit. Under the Exhaustive regime, at each visit the server attends the queue until itbecomes completely empty, and only then is the sever allowed to move on. There is extensiveliterature on the theory and applications of these models (see Takagi [10],[11], Yechiali [12]and references there).Another service regime is the Globally-Gated, introduced by Boxma, Levy and Yechiali[1] and extended in Boxma, Weststrate and Yechiali [2]. Under this regime, the server usesthe instant of cycle beginning as a reference point of time, serving in each queue, duringeach cycle, only those customers that were present there at the cycle-beginning.In this work we consider a polling system with N in�nite-capacity stations, where cus-tomers arrive to the various queues according to independent Poisson processes, requiringgeneral independent service times. A single server visits the stations in a cyclic order, in-curring random switchover times when moving from one station to another. A station beingserved may fail due to a breakdown process (described in the sequel), and a repair processis initiated immediately after such a failure is observed. We assume that during the repairprocess the server stays dormant in the station, and once the repair is completed, the servercontinues serving customers in that station, starting anew with the interrupted customer.2



We study two models, di�ering from each other by the behavior of the arrival processto queues being repaired: In the �rst model, called Arrival Continues [AC], the arrivalprocesses continue even when a station is being repaired, while in the second, called ArrivalStops [AS], the arrival process to the station being repaired stops for the entire repair period.We also distinguish between two versions for determining when the breakdowns (failures)are observed. In the �rst version a failure is observed immediately when it occurs, while inthe second version it is observed only at the end of the service. We analyze these systemsunder each of the above mentioned regimes, namely the Gated, Exhaustive and GloballyGated service protocols.The [AC] model may be viewed as a regular polling model, with N M=G=1-type queuesand a single server, where each customer requires a generalized service time, composedof several unsuccessful and one successful service attempts. Therefore, once the requiredexpressions for such a generalized service time are derived, we can use well known resultsand apply them in the analysis of this model.The [AS] model is the more interesting one in this work. We introduce a new parameterof the system, �, which is the \loss" of potential customers to a queue during a service ofa customer, due to arrival stoppage. Using � in the results, rather than using repair timeexpressions, makes the [AS] model a generalization of the [AC] model. Moreover, the [AS]model is a generalized polling model, which may be reduced to the standard one when themean time to breakdown tends to in�nity (implying � ! 0). An important generalization isof the queue work rate: we show that if one de�nes a generalized work-load rate,� = (arrival rate)�(mean service time)1+� , then � preserves its characteristics as work rate in allrelevant expressions.The structure of the paper is as follows: In section 2 we present the general descriptionof the models along with a set of assumptions, de�nitions and notations used throughout thework. In section 3 we derive some general results, independent of the service regime, for meannumber of service attempts of a customer, Laplace-Stieltjes transforms, means and secondmoments of successful and unsuccessful service attempts (for both versions), etc. In sections4 and 5 we analyze the Gated and Exhaustive service regimes, respectively. In section 6we obtain expressions { common to all models, versions and service regimes discussed in theprevious sections { for various important performance measures, such as mean number ofcustomers at polling instants and mean cycle time. In addition, stability conditions arederived. Section 7 concludes the paper with the analysis of the Globally Gated serviceregime.
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2 Model and NotationWe consider a polling system consisting of N in�nite-capacity queues (stations, channels,nodes), labeled 1; 2; : : : ; N , and a single server. Customers arrive to queue i according toa Poisson process with rate �i. The server visits (polls) the queues in a cyclic order. Eachcustomer in queue i requires a random service time, distributed as Bi, with Laplace-StieltjesTransform (LST) B�i (�), mean bi and second moment b (2)i . The random switchover time fromqueue i to queue i + 1 is denoted by Di, with LST D�i (�), mean di and second moment d(2)i .If the server enters a non-empty station and starts serving customers present there, thestation may fail due to a breakdown process. There are two versions for determining whenthe breakdowns are observed: (i) the breakdown is observed immediately when it occurs;(ii) the breakdown is observed only at the end of the current service (such as in packettransmission applications). In both versions, a repair process is initiated immediately afterthe breakdown is observed. The repair time for station i is Vi, with LST V �i (�), mean viand second moment v(2)i . During the repair process the server stays dormant in the station,and only when the repair is completed the server continues serving customers in the station,starting anew with the interrupted customer (whose service time is resampled) until it movesto the next station, following the Gated, Exhaustive or Globally-Gated service discipline,whichever applies.The time to breakdown of station i is denoted by Ti and is distributed Exponentiallywith parameter i. This process is regenerated at the beginning of every new visit of theserver to the station and after the completion of every repair.We consider two models: in the �rst, the arrival processes to the various stations neverstop, while in the second, the arrival process to the station being repaired stops for theentire repair period, whereas the arrival streams to other queues continue uninterruptedly.We denote the �rst model by [AC] (Arrival Continues), and the second by [AS] (ArrivalStops).We assume that the underlying arrival processes, the service times, the breakdown pro-cesses, the repair times and the switchover times are all mutually independent.We use the following notation:� S�(!) � E[e�!S] = LST of a non-negative continuous random variable S.� Xji = number of jobs present in queue j at a polling instant of queue i.� X i � (X1i ; X2i ; : : : ; XNi ) = state of the system at a polling instant of queue i.� Fi(z) = Fi(z1; : : : ; zN ) � Eh NQj=1 zXjij i = Probability Generating Function (PGF) of X i.4



� Ai(t) = number of Poisson arrivals to queue i during a random time interval of lengtht, in which the arrival process doesn't stop.3 Some General Results3.1 Number of Service Attempts of a CustomerLet ai be the probability of a successful service attempt in queue i, i.e., the probability thatno breakdown occurs during a service time of a customer. Then,ai = P (Bi < Ti) = E[P (Bi < TijBi)] = E[e�iBi ] = B�i (i) : (1)Due to the memoryless property of the exponential distribution, we can assume that the`timer' of the breakdown process is initiated each time a service starts.Let Ki be the number of unsuccessful service attempts of a customer in queue i beforea successful service completion. Then P (Ki = k) = (1 � ai)kai (k = 0; 1; 2; : : : ). Ki is ashifted Geometric variable with parameter ai. Thus,E[Ki] = 1� aiai ; (2)E[K2i ] = (1� ai)(2� ai)a2i ; (3)and E[Ki(Ki � 1)] = E[K2i ]� E[Ki] = 2 ��1� aiai �2 = 2 � [E(Ki)]2 : (4)3.2 A Successful Service AttemptLet S+i be the duration of a successful service attempt. Then (for both versions), S+i �BijBi<Ti. Hence,S+i �(!) = E[e�!S+i ] = E[e�!Bi jBi < Ti] = E[e�!BiP (Bi < TijBi)]P (Bi < Ti) == 1aiE[e�!Bie�iBi ] = 1aiE[e�(!+i)Bi ] = B�i (! + i)ai : (5)Therefore, E[S+i ] = �B�0i (i)ai ; E[(S+i )2] = B�00i (i)ai : (6)5



3.3 An Unsuccessful Service AttemptLet S�i be the duration of an unsuccessful service attempt. S�i is distributed di�erently foreach version:In version (i) the service is interrupted whenever a breakdown occurs, thus S�i � TijBi>Ti ,and S�i �(!) = E[e�!S�i ] = E[e�!Ti jBi > Ti] = E[e�!TiP (Bi > TijTi)]P (Bi > Ti) : (7)Now, with fBi(�) denoting the probability density function of Bi,E[e�!TiP (Bi > TijTi)] = 1Zt=0 e�!t� 1Zx=t fBi(x)dx�ie�itdt = i 1Zx=0 � xZt=0 e�(!+i)tdt�fBi(x)dx= i! + i 1Z0 �1� e�(!+i)x� � fBi(x)dx = i! + i [1� B�i (! + i)] :(8)Substituting (8) in (7) we get, for version (i),S�i �(!) = i! + i � 1� B�i (! + i)1� ai : (9)Hence, E[S�i ] = B�0i (i)1� ai + 1i ; E[(S�i )2] = 22i + 2B�0i (i)i(1� ai) � B�00i (i)1� ai : (10)In version (ii) the failure is observed only upon service completion. Thus, S�i � Bi���Bi>Ti ,and S�i �(!) = E[e�!Bi jBi > Ti] = E[e�!BiP (Bi > TijBi)P (Bi > Ti)= E[e�!Bi(1� e�iBi)]1� ai = B�i (!)� B�i (! + i)1� ai : (11)Hence, for version (ii),E[S�i ] = bi +B�0i (i)1� ai ; E[(S�i )2] = b(2)i � B�00i (i)1� ai : (12)
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3.4 A Generalized Service and Repair TimeFor both versions, let Bi denote the total length of time starting from the moment a serviceof a type-i customer is initiated until he leaves the system (after a successful completionof service). Let bi and b (2)i denote the mean and second moment of Bi, respectively. Tocalculate the LST of Bi we use a similar approach to the one used in [3] when studyingthe residence time of a job in a queue under a preemptive repeat rule with resampling.Considered as a generalized service time, Bi can be expressed asBi = KiXj=1 [S�(j)i + V (j)i ] + S+i ; (13)where S�(j)i � S�i , V (j)i � Vi for j = 1; : : : ; Ki and fS�(j)i gKij=1 ; fV (j)i gKij=1; S+i are allmutually independent. Therefore:Ehe�!BijKi = ki = E"e�! kPj=1(S�(j)i +V (j)i )e�!S+i i = kYj=1 hE�e�!S�(j)i � � E�e�!V (j)i �i � Ehe�!S+i i= �S�i �(!) � V �i (!)�k � S+i �(!) : (14)Hence,B�i (!) = 1Xk=0(1� ai)kai�S�i �(!)V �i (!)�kS+i �(!) = aiS+i �(!)1� (1� ai)S�i �(!)V �i (!) : (15)Substituting (5) in (15) we getB�i (!) = B�i (! + i)1� (1� ai)S�i �(!)V �i (!) : (16)The �rst and second moments of Bi may be calculated by taking derivatives of (16), ordirectly from (13), using (2),(4) and (6):bi = E[Ki] �E[S�i + Vi] + E[S+i ] = 1� aiai � (E[S�i ] + vi) � B�0i (i)ai (17)b (2)i = E[(S+i )2] + 2E[Ki] � E[S+i (S�i + Vi)] + E[Ki] � E[(S�i + Vi)2] + E[Ki(Ki � 1)] � [E(S�i ) + vi]2= B�00i (i)ai + 2bihbi + B�0i (i)ai i + 1� aiai � nE[(S�i )2] + v(2)i + 2E[S�i ] � vio : (18)Substituting (9) and (10) for version (i), and (11) and (12) for version (ii), respectively, in(16), (17) and (18) yields: 7



Version (i):B�i (!) = B�i (! + i)1 � i!+i [1� B�i (! + i)]V �i (!) ; (19)bi = 1� aiai  B�0i (i)1� ai + 1i + vi! � B�0i (i)ai = 1� aiai �  1i + vi! (20)That is, E[Bi] = E[Ki] � � 1i + vi�, which is the mean number of unsuccessful serviceattempts (E[Ki]) multiplied by (E[Ti] + vi).b (2)i = 2b 2i + 2h B�0i (i)ai(1� ai) + 1iibi + 1� aiai v(2)i (21)(Clearly, when i ! 0; bi ! bi, since limi!0 1�aii = �B�0i (0), while B�0i (i)ai�(1�ai) + 1i ��!i!0 b(2)i �2b2i2bi ,implying that b (2)i ! b(2)i ).Version (ii):B�i (!) = B�i (! + i)1� [B�i (!)�B�i (! + i)] � V �i (!) (22)bi = 1� aiai � �bi +B�0i (i)1� ai + vi� � B�0i (i)ai = biai + 1� aiai � vi : (23)That is, the mean generalized service time is comprised of the total service time devoted toa customer, namely bi � E[Ki + 1], augmented by E[Ki] times the mean length of a repair,vi. The second moment of Bi is given byb (2)i = 2b2i + b(2)i + (1� ai)v(2)i + 2vibiai + 2bi + viai B�0i (i) (24)It is clear that in version (ii), as in version (i), when i ! 0, bi ! bi and b (2)i ! b(2)i .Similarly to the de�nition of Bi, we de�ne V i = KiPj=1V (j)i as the generalized repair time inqueue i. That is, the period of time, out of Bi, in which the station is being repaired. Now,V �i (!) = 1Xk=0 P (Ki = k) �E[e�!V ijKi = k]= 1Xk=0(1� ai)kai � [V �i (!)]k = ai1� (1� ai) � V �i (!) (25)vi � E[V i] = E[Ki] � E[Vi] = 1� aiai � vi : (26)8



De�ne bBi as the e�ective time, out of Bi, in which customers arrive to queue i, anddenote the mean and second moment of bBi by bbi and bb (2)i , respectively. Clearly, in the [AC]model, bBi = Bi. To �nd the distribution of bBi in the [AS] model, we apply the generalresults for Bi to the special case where Vi � 0() V �i (!) � 1; vi = v(2)i � 0):In the [AS] model, version (i), Eqs. (19),(20) and (21) are reduced, respectively, tobB�i (!) = B�i (! + i)1 � i!+i [1� B�i (! + i)] (27)bbi = 1� aiai � 1i (28)and bb(2)i = 2a2i 2i [1� ai + iB�0i (i)] (29)In the [AS] model, version (ii), Eqs. (22),(23) and (24) are reduced, respectively, tobB�i (!) = B�i (! + i)1� [B�i (!)� B�i (! + i)] (30)bbi = biai (31)and bb (2)i = 2bia2i [bi +B�0i (i)] + b(2)iai (32)Again bb (2)i ! b (2)i as i ! 0.Note that for both versions, from the de�nitions of Bi, V i and bBi, the following relationshold: bBi = (Bi; [AC] modelBi � V i; [AS] modelIn the sequel, we will need the value E[Bi bBi]. (Clearly, since bBi is stochastically smallerthan Bi, bb (2)i � E[Bi bBi] � b (2)i .)In the [AC] model, E[Bi bBi] = b (2)i , because bBi = Bi.In the [AS] model, using the de�nitions of V i, equations (13), (2) and (3):E[Bi bBi] = E[ bB2i + V i bBi] = bb (2)i + E[E(V i bBijKi)] (33)= bb (2)i + EhKivi � �E(S+i ) +KiE(S�i )�i = bb (2)i + 1� aiai vi[E(S+i ) + 2� aiai E(S�i )]9



Thus, in version (i), by substituting (6),(10) and (29) in (33) we getE[Bi bBi] = 1a2i �vi + 2i��B�0i (i) + 1� aii �+ �1� aiai �2 vii ; (34)while in version (ii), by substituting (6),(12) and (32) in (33) we obtainE[Bi bBi] = b(2)iai + 2b2i + [2B�0i (i) + (2� ai)vi] � bi + viB�0i (i)a2i (35)Clearly, when i ! 0, E[Bi bBi]! b(2)i for both versions.4 The Gated Regime4.1 System-State: Law of Motion, PGFs and First MomentsIn the Gated service regime, in each visit the server serves only those customers that werepresent in the queue at the polling instant.For the [AC] model, the evolution law of the system-state is given by:Xji+1 = 8>>><>>>:Xji + Aj� XiiPm=1B (m)i � + Aj(Di); j 6= iAi� XiiPm=1B (m)i � + Ai(Di); j = i (36)where B (m)i � Bi for every m, and are mutually independent. Since the server moves in acyclic order, all summations throughout the paper are cyclic ones. This model is actuallythe classical gated polling scheme, with N M=G=1-queues and a single server, where eachcustomer in queue i requires a (generalized) service time of Bi. Therefore, for i = 1; 2; : : : ; Nand for j = 1; 2; : : : ; N the PGF of X i+1 is given by (see Takagi [10], Yechiali [12]):Fi+1(z) = Fi�z1; : : : ; zi�1; B �i h NXk=1 �k(1� zk)i; zi+1; : : : ; zN� �D�i � NXk=1 �k(1� zk)� (37)Setting fi(j) � E[Xji ] ; �i � �ibi ; � � NXk=1 �k ; d � NXk=1 dkthe �rst moments satisfyfi+1(j) = ( fi(j) + �jbifi(i) + �jdi j 6= i (38)�ibifi(i) + �idi; j = i10



implying that fi(j) = 8>>><>>>:�j � i�1Xk=j ��k d1� � + dk� ; j 6= i (39)�i � d1� � ; j = i (40)In the [AS] model, the evolution of the state of the system is given by:Xji+1 = 8>>><>>>:Xji + Aj� XiiPm=1B (m)i � + Aj(Di); j 6= iAi� XiiPm=1 bB (m)i � + Ai(Di); j = i (41)where B (m)i � Bi and bB(m)i � bBi for every m. Note that nB(m)i oXiim=1 are independent ofeach other and so are n bB(m)i oXiim=1. However, B(m)i and bB (m)i are not independent.Then,Fi+1(z) = Eh NYj=1 zXji+1j i = E" NYj=1j 6=i zXji +Aj( XiiPm=1B(m)ij ! � zAi( XiiPm=1 bB(m)i )i � NYj=1 zAj(Di)j #
= E" NYj=1j 6=i zXjij ! � E zAi� XiiPm=1 bB(m)i �i NYj=1j 6=i zAj ( XiiPm=1B(m)ij �����X i!# �Eh NYj=1 zAj(Di)j # : (42)Let �(z) � NPj=1�j(1� zj) and �i(z) � NPj=1j 6=i �j(1� zj). Then, as the arrival is Poissonian,E" NYj=1 zAj(Di)j # = D�i (�(z)) : (43)We now use (13) and the fact that bBi = KiPj=1S�(j)i + S+i and writeE"zAi( XiiPm=1 bB (m)i )i  NYj=1j 6=i zAj( XiiPm=1Bi(m))j !�����X i# = (E"zAi( bBi)i NYj=1j 6=i zAj(Bi)j #)Xii
= ( 1Xk=0(1� ai)kai � E"zAi�S+i + kPm=1S�(m)i �i NYj=1j 6=i zAj�S+i + kPm=1[S�(m)i +V (m)i ]�j #)Xii
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= ( 1Xk=0(1� ai)kai � S+i �(�(z)) � hS�i �(�(z)) � V �i (�i(z))ik)Xii (44)= ( aiS+i �(�(z))1� (1� ai)S�i �(�(z)) � V �i (�i(z)))Xii :Combining (42), (43) and (44), we get:Fi+1(z) = D�i (�(z)) � E" NYj=1j 6=i zXjij ! � n aiS+i �(�(z))1� (1� ai)S�i �(�(z)) � V �i (�i(z))oXii# (45)= D�i (�(z)) � Fi�z1; : : : ; zi�1 ; aiS+i �(�(z))1� (1� ai)S�i �(�(z)) � V �i (�i(z)) ; zi+1; : : : ; zN� :Since fi(j) � E[Xji ] = @Fi(z)@zj �����z=1, we get, by taking derivatives of (45) or directly from (41),the following relations between the �rst-order moments of fXji g:fi+1(j) = ( fi(j) + �jbifi(i) + �jdi; j 6= i�ibbifi(i) + �idi; j = i (46)Let �i denote the \loss" of potential customers to queue i, during a generalized service timeof a customer, due to arrival stoppage. That is �i � �i(bi �bbi). Thus, for j = i, we can write(46) as: fi+1(i) = �ibifi(i)� �ifi(i) + �idi : (47)We can use (46) and (47) to express ffi(j)gi6=j in terms of ffi(i)g:fi(j) = �j i�1Xk=j (bkfk(k) + dk)� �jfj(j) : (48)Thus, �nding ffi(i)gNi=1 readily gives all values of ffi(j)g.Summing (46) over all i, and using (47), we get:NXi=1 fi(j) = NXi=1 fi+1(j) = NXi=1i6=j fi(j) + �j NXi=1 bifi(i)� �jfj(j) + �jd ;implying that fj(j) + �jfj(j) = �j�d+ NPi=1 bifi(i)�. That is,fj(j) = �j1 + �j �d+ NXi=1 bifi(i)� : (49)12



Multiplying (49) by bj and summing over all j lead toNXj=1 bjfj(j) = �d+ NXi=1 bifi(i)� NXj=1 �jbj1 + �j : (50)Let �j � �jbj1+�j . Note that for the [AC] model we have already de�ned �j as �jbj. Nevertheless,the de�nition here for the [AS] model holds for the [AC] model as well, where, by its de�nition,�j � 0. We again use � to denote NPj=1 �j. (In section 6 we'll show that � represents the totaltraÆc load of the system). Thus, Eq. (50) is expressed asNXj=1 bjfj(j) = �d+ NXi=1 bifi(i)�� ; leading toNXi=1 bifi(i) = d�1� � : (51)Substituting (51) in (49), we getfj(j) = �j1 + �j�d+ d�1� �� = �j1 + �j � d1� � : (52)It will be shown that for all models, the mean cycle time is given by E[C] = d1�� . Hencefj(j) = �j1 + �jE[C] for j = 1; 2; : : : ; N :Substituting the values of ffi(i)g from (52) and (48) yieldsfi(j) = �j" i�1Xk=j ��k d1� � + dk� � �j1 + �j d1� �# : (53)4.2 Second-Order MomentsThe second-order moments of fXji g are derived from the PGFs (37) for the [AC] model and(45) for the [AS] model. Letfi(j; k) = E[XjiXki ] = @2Fi(z)@zj@zk �����z=1 (i; j; k = 1; : : : ; N ; j 6= k) ;fi(j; j) = E[Xji (Xji � 1)] = @2Fi(z)@z2j �����z=1 (i; j = 1; : : : ; N) : (54)13



Eqs. (54) de�ne a set of N3 linear equations, that its solution gives the values of the second-order moments ffi(j; k)g.In the [AC] model, Eqs. (54) are given by (see also Takagi [10])fi+1(i; i) = �2i d(2)i + �2i fi(i) � [2dibi + b(2)i ] + �2i b 2i fi(i; i)fi+1(i; j) = �i�jd(2)i + �i�jfi(i) � [2dibi + b (2)i ] + �i�jb 2i fi(i; i)+ �idifi(j) + �ibifi(i; j) ) j 6= ifi+1(j; k) = �j�kd(2)i + �j�kfi(i) � [2dibi + b (2)i ] + �j�kb 2i fi(i; i)+ �jdifi(k) + �kdifi(j) + �kbifi(i; j) + �jbifi(i; k)+ fi(j; k) 9>>=>>; j 6= ik 6= i
9>>>>>>>>>>>=>>>>>>>>>>>; (55)

In the [AS] model, Eqs. (54) become (after a lengthy calculation)fi+1(i; i) = �2i d(2)i + �2i fi(i) � [2dibbi +bb(2)i ] + �2ibb 2i fi(i; i)fi+1(i; j) = �i�jd(2)i + �i�jfi(i) � [di(bi +bbi) + E(Bi bBi)] + �i�jbibbifi(i; i)+ �idifi(j) + �ibbifi(i; j) ) j 6= ifi+1(j; k) = �j�kd(2)i + �j�kfi(i) � [2dibi + b (2)i ] + �j�kb 2i fi(i; i)+ �jdifi(k) + �kdifi(j) + �kbifi(i; j) + �jbifi(i; k)+ fi(j; k) 9>>=>>; j 6= ik 6= i
9>>>>>>>>>>>=>>>>>>>>>>>; (56)

Note the following:(i) The expressions for fi+1(i; i) are similar in the [AC] and [AS] models, except that inthe latter the moments of bBi replace those of Bi in the former.(ii) The expressions for fi+1(j; k) when j 6= i and k 6= i are the same for both models.The symmetric case.When all stations are (stochastically) identical, we set, for all i.�i = �0; di = d0; d(2)i = d(2)0 ;bi = b0; b (2)i = b (2)0 ; bbi = bb0; bb (2)i = bb (2)0 ;�i = �0; �i = �0; E[Bi bBi] = E[B0 bB0] :Now, in the [AC] model, fi(i; i) is given by (see Hashida [6], Takagi [10]:fi(i; i) = N�20(1 + �0) � (1� �)(d(2)0 + (N � 1) � d201� � + 2Nd20�01� � + N�0d0b (2)01� � ) ; (57)14



and in the [AS] model we get:fi(i; i) = (58)N�20(1 + �0bb0)(1� �)(1 + �0)(d(2)0 + (N � 1) � d201� � + 2Nd201� � �0bb01 + �0 + N�0d01� � �1 + �0)where � is the following convex combination of b (2)0 , bb (2)0 and E[B0 bB0]:� = (N � 1) � (1� �0)N b (2)0 + 1� (N � 1) � �0N bb (2)0 + 2(N � 1) � �0N E[B0 bB0] : (59)4.3 Number of Customers at Departing InstantsLet Li be the number of customers left behind by an arbitrary departing customer fromqueue i, and let Qi(z) be its PGF. Let Mi be the total number of customers served in queuei during a visit of the server to that queue, and let Li(n) be the sequence of random variablesdenoting the number of customers that the n-th departing customer from queue i (in thecurrent visit of the server) leaves behind him (n = 1; 2; : : : ;Mi). Then it is well known (cf.Takagi [10]) Qi(z) = Eh MiPn=1 zLi(n)iE[Mi] : (60)Let Gi(z) � E[zXii ] = Fi(1; : : : ; 1; z; 1; : : : ; 1) (where z is in the i-th coordinate).In the [AC] model the PGF of Li and its expected value are given by (see Takagi [10],Yechiali [12]):Qi(z) = 1� ��id � B�i (�i � �iz)z �B�i (�i � �iz) � [Gi(z)�Gi(B�i (�i � �iz))] (61)and E[Li] = �i + (1 + �i)fi(i; i)(1� �)2�id = �i + (1 + �i)fi(i; i)2fi(i) : (62)In the [AS] model:Li(n) = X ii � n+ Ai� nXm=1 bB (m)i � and Mi = X ii ; where bB (m)i � bBi :Hence,Eh MiXn=1 zLi(n)i = E"E� XiiXn=1 zXii�n+Ai( nPm=1 bB (m)i )�����X ii�# = E"zXii XiiXn=1 �E[zAi( bBi)]z �n#15



= E"zXii � bB�i (�i � �iz)z � 1� � bB �i (�i��iz)z �Xii1� bB �i (�i��iz)z # (63)= bB�i (�i � �iz)z � bB�i (�i � �iz) � EhzXii � ( bB�i (�i � �z))Xiii= bB�i (�i � �iz)z � bB�i (�i � �iz) � hGi(z)�Gi( bB�i (�i � �iz))iand E[Mi] = E[X ii ] = fi(i) : (64)Combining (52), (60), (63) and (64), we getQi(z) = 1 + �i�i � 1� �d bB�i (�i � �iz)z � bB�i (�i � �iz) � hGi(z)�Gi( bB�i (�i � �iz))i : (65)Di�erentiating (65) and performing the required calculations lead toE[Li] = Q0i(1) = �ibbi + (1 + �ibbi)fi(i; i)2fi(i)= �ibbi + 1 + �i�i � 1� �d (1 + �ibbi)fi(i; i)2 : (66)Note the similarity between (66) and (62) where bbi replaces bi.In the symmetric case, the mean number of customers is given for the [AC] model byE[Li] = �0 + �0d(2)02d0 + (N � 1) � �0d02(1� �) + N�0d0�01� � + N�20b (2)02(1� �) ; (67)and in the [AS] model it becomesE[Li] = �0bb0 + �0d (2)02d0 + (N � 1) � �0d02(1� �) + N�20d0bb0(1� �)(1 + �0) + N�20�2(1� �)(1 + �0) : (68)4.4 Waiting and Sojourn TimesLet Wqi denote the waiting time (excluding service time) of an arbitrary customer at queuei, and let cWqi denote the period of time, out of Wqi, in which the arrival process to queue iis active. 16



In the [AC] model cWqi = Wqi, and their LST and expected value are given by (seeTakagi [10], Yechiali [12]):W �qi(!) = 1� ��id � Gi(1� !=�i)�Gi(B�i (!))1� !=�i �B�i (!) (69)and E[Wqi] = 1� �d � (1 + �i)fi(i; i)2�2i (70)In the [AS] model:The number of customers left behind by a departing customer from queue i is the numberof arrivals to that queue during the sojourn time of this customer in the system. ThereforeQi(z) = cW �qi(�i � �iz) � bB�i (�i � �iz) : (71)Hence, from (65),cW �qi(!) = Qi(1� !=�i)bB�i (!) = 1 + �i�i � 1� �d � Gi(1� !=�i)�Gi( bB�i (!))1� !=�i � bB�i (!) (72)To �nd the expected value of cWqi, we can di�erentiate (72) or use Little's Law:E[cWqi] = �cW �0qi (0) = E[Li]�i � bbi = 1 + �ibbi2�i � fi(i; i)fi(i) : (73)Li is also the number of customers found in the queue by an arriving customer. Thisfollows since the system-state changes by unit jumps (see Kleinrock [7]). Then the waitingtime of a customer in queue i is cWqi with the addition of the arrival stoppage periods thattook place during the service periods of all the customers who where present in the systemwhen he arrived: Wqi =cWqi + LiXj=1 hB (j)i � bB (j)i i : (74)Thus, E[Wqi] = EhcWqii + E[Li] �EhBi � bBii = E[Li]�i � bbi + E[Li] � (bi �bbi)= E[Li] � 1 + �i�i � bbi : (75)17



Substituting E[Li] from (66) in (75) we get:E[Wqi ] =  �ibbi + 1 + �i�i � 1� �d � (1 + �ibbi)fi(i; i)2 ! � 1 + �i�i � bbi= �1 + �i�i �2 � 1� �d � (1 + �ibbi)fi(i; i)2 + �ibbi : (76)In the symmetric case, the mean waiting time is given for the [AC] model byE[Wqi] = d(2)02d0 + (N � 1) � d02(1� �) + Nd0�01� � + N�0b (2)02(1� �) ; (77)and in the [AS] model, using (75) and (68), it becomesE[Wqi] = (1 + �0) � d(2)02d0 + (N � 1) � (1 + �0) � d02(1� �) + N�0d0bb01� � + N�0�2(1� �) + �0bb0 : (78)Finally, the mean sojourn time of an arbitrary customer in queue i is given byE[Wi] = E[Wqi] + bi = E[Li] � 1 + �i�i � bbi + bi= E[Li] � (1 + �i) + �i�i : (79)5 The Exhaustive Regime5.1 System-State: Law of Motion, PGFs and First MomentsIn the exhaustive regime, in each visit, the server leaves a station only when it becomesempty.Let �i denote the length of a `busy period' generated by a single customer in queue i.Let ��i (�), �i and �(2)i denote the LST of �i, its mean and its second moment, respectively.The evolution laws for the system-state are:Xji+1 = 8><>:Xji + Aj� XiiPm=1�(m)i � + Aj(Di); j 6= iAi(Di); j = i (80)where �(m)i � �i for every m, and they are mutually independent. Then (see Takagi [10],Yechiali [12]) Fi+1(z) = Fi[z1; : : : ; zi�1;��i (�i(z)); zi+1; : : : ; zN ] �D�i (�(z)) ; (81)18



and by di�erentiating (81) or directly from (80),fi+1(j) = (fi(j) + �j�ifi(i) + �jdi; j 6= i�idi; j = i (82)In the [AC] model, �i is a regular busy period of an M=G=1 type, but with service timesBi to customers in queue i. It is well known (see [7]) that��i (!) = B�i [! + �i � (1���i (!))] ; (83)�i = E[�i] = bi1� �i ; (84)�(2)i = E[�2i ] = b (2)i(1� �i)3 : (85)Therefore, the corresponding polling model may be viewed as a `standard' one for which (see[10], [12]) fi(j) = 8><>:�j � " d1�� � i�1Pk=j+1 �k + i�1Pk=j dk#; j 6= i (86a)�i(1� �i) d1�� ; j = i (86b)In the [AS] model: �i = Bi + Ai( bBi)Xm=1 �(m)i : (87)Hence, ��i (!) = En 1Xn=0 P [Ai( bBi) = nj bBi] � E[e�!�i jBi; bBi;Ai( bBi) = n]o= E( 1Xn=0 e��i bBi (�i bBi)nn! � e�!Bi � E"e�! nPm=1�(m)i #) (88)= E(e��i bBi�!Bi 1Xn=0 (�i bBi��i (!))nn! ) = Ehe�!Bi��i(1���i (!)) bBii :Using (13), the de�nition of bBi, and by conditioning on Ki we get��i (!) = 1Xk=0(1� ai)kaiE"e�!hS+i + kPm=1(S�(m)i +V (m)i )i��i(1���i (!))hS+i + kPm=1S�(m)i i#19



= aiS+i �[! + �i(1� ��i (!))] � 1Xk=0(1� ai)k � fS�i �[! + �i(1� ��i (!))]gk � [V �i (!)]k= aiS+i �[! + �i(1� ��i (!))]1� (1� ai) � S�i �[! + �i(1� ��i (!))] � V �i (!) : (89)The �rst and second moments of the busy period in the [AS] model can be calculated bydi�erentiating (89), or directly from (87), as follows:�i = bi + �ibbi�i ; implying�i = bi1� �ibbi : (90)�(2)i = E[�2i ] = b (2)i + 2�iE[Bi bBi] � �i + �ibbi�(2)i + EhAi( bBi) � �Ai( bBi)� 1�i � �2i : (91)Using (90) and the de�nition of �i, we get:�i�i = �ibi1� �ibbi = �ibi1 + �i, 1� �ibbi1 + �i ! = �i, 1 + �i � �ibi1 + �i ! = �i1� �i : (92)Now, EhAi( bBi) � �Ai( bBi)� 1�i = E bBi" 1Xk=0 k(k � 1) � e��i bBi (�i bBi)kk! #
= E bBi"(�i bBi)2e��i bBi 1Xk=2 (�i bBi)k�2(k � 2)! # = �2i �bb(2)i : (93)By combining (91), (92) and (93), we get:�(2)i = b (2)i + 2�i1� �iE[Bi bBi] + �ibbi� (2)i + � �i1� �i�2bb (2)ileading to �(2)i = (1� �i)2b (2)i + 2�i(1� �i)E[Bi bBi] + � 2i bb (2)i(1� �ibbi) � (1� �i)2= (1� �i)2b (2)i + 2�i(1� �i)E[Bi bBi] + � 2i bb (2)i(1 + �i) � (1� �i)3 (94)(Note, while comparing to (85), that the numerator of (94) is a convex combination ofb (2)i ;bb (2)i and E[Bi bBi]). Summing (82) over all i givesNXi=1 fi+1(j) = NXi=1i6=j fi(j) + �j NXi=1i6=j �ifi(i) + �jd) fj(j) = �j NXi=1 �ifi(i)� �j�jfj(j) + �jd :20



Thus, fj(j) = �j1 + �j�j � �d+ NXi=1 �ifi(i)� : (95)Multiplying (95) by �j and summing over all j yieldNXj=1 �jfj(j) = �d+ NXi=1 �ifi(i)� � NXj=1 �j�j1 + �j�j : (96)Using (92) for the expression of �j�j, we get�j�j1 + �j�j = �j1� �j, 11� �j = �j : (97)Substituting (97) in (96) leads toNXj=1 �jfj(j) = �d+ NXi=1 �ifi(i)� � �from which NXi=1 �ifi(i) = d�1� � : (98)Now, using (92) again, �j1 + �j�j = �j, 11� �j = �j(1� �j) : (99)Substituting results (98) and (99) in (95) we getfj(j) = �j(1� �j) � �d+ d�1� �� = �j(1� �j) � d1� � : (100)Using (82) and by proper summation we havefi(j) = �j � h i�1Xk=j+1 �kfk(k) + i�1Xk=j dki : (101)Combining (92) with (100) leads to:�kfk(k) = �k d1� � ; (102)and therefore, using (101), fi(j) = �jh d1� � � i�1Xk=j+1 �k + i�1Xk=j dki (103)Note that expressions (100) and (103) for the �rst-order moments in the [AS] model nowlook `the same' as in the [AC] model. (See (86b) and (86a).) However, the values of the f�igin each model are di�erent . 21



5.2 Second-Order MomentsIn both [AC] model and [AS] model, Eqs. (54) have the `same' expressions (of course, �iand �(2)i have di�erent values in each model). After lengthy calculations we derive:fi+1(i; i) = �2i d(2)ifi+1(i; j) = �i�jd(2)i + �idi[fi(j) + �j�ifi(i)]o j 6= ifi+1(j; k) = �j�kd(2)i + �i�kfi(i) � [2di�i + �(2)i ] + �j�k� 2i fi(i; i)+ �jdifi(k) + �kdifi(j) + �k�ifi(i; j) + �j�ifi(i; k)+ fi(j; k) 9>>=>>; j 6= ik 6= i
9>>>>>>>>=>>>>>>>>; (104)

In the symmetric case, in both [AC] model and [AS] model, using similar de�nitionsas for the Gated regime, we obtain:fi(i; i) = N�20(1� �0)(1� �) � nd(2)0 + (N � 1) � d201� � + (N � 1) � �0do(1� �0)21� � �(2)0 o ; (105)where we set �i = �0 and �(2)i = �(2)0 for i = 1; 2; : : : ; N .5.3 PGF and Mean of Number of CustomersWe use (60) again to �nd the PGF of Li and its expected value. In the [AC] model, theexpressions are given by (see [10], [12])Qi(z) = 1� ��id � B�i (�i � �iz)z � B�i (�i � �iz) � [Gi(z)� 1] ; (106)E[Li] = �i + �2i � b (2)i2(1� �i) + 1� �d � fi(i; i)2�i(1� �i) = �i + �2i � b (2)i2(1� �i) + fi(i; i)2fi(i) : (107)The [AS] model requires additional calculations: Let b�i denote the period of time, outof �i, in which customers arrive to queue i, and let b��i (�) and b�i denote its LST and itsexpected value, respectively. Then, as in (83) and (84),b��i (!) = bB�i [! + �i � (1� b��i (!))] (108)and b�i = E[b�i] = bbi1� �ibbi : (109)Now, using (100), and (109),E[Mi] = fi(i) � [1 + �ib�i] = �i(1� �i) d1� �h1 + �ibbi1� �ibbi i22



= �i1� �ibbi1 + �i � d1� � � 11� �ibbi = �i1 + �i � d1� � : (110)Eh MiXn=1 zLi(n)i = Pi(z)z � Pi(z) [Gi(z)� 1] (see Takagi [10]) ; (111)where Pi(z) is the PGF of the number of customers arrived to queue i during a (generalized)service time of a single customer. Then, for the [AS] model,Pi(z) = bB�i (�i(1� z)) : (112)Combining (60), (110), (111) and (112) gives the PGF of Li:Qi(z) = 1 + �i�i � 1� �d � bB�i (�i � �iz)z � bB�i (�i � �iz) [Gi(z)� 1] : (113)Di�erentiating (113) and performing some calculations lead toE[Li] = Q0i(1) = �ibbi + �2i �bb (2)i2(1� �ibbi) + fi(i; i)2fi(i) (114)= �ibbi + �2i �bb (2)i2(1� �ibbi) + 1� �d � fi(i; i)2�i(1� �i) :In the symmetric case, the mean number of customers is given for the [AC] model by(see Takagi [10]): E[Li] = �0 + �0d(2)02d0 + (N � 1)�0d02(1� �) + N�20b (2)02(1� �) ; (115)and in the [AS] model it becomesE[Li] = �0bb0 + �0d(2)02d0 + (N � 1)�0d02(1� �) + N�20�2(1� �)(1 + �0) : (116)5.4 Waiting and Sojourn TimesIn the [AC] model the LST and the expected value of the waiting times are given by (see[10], [12]): W �qi(!) = 1� ��id � Gi(1� !=�i)� 11� !=�i �B�i (!) ; (117)E[Wqi] = �ib (2)i2(1� �i) + 1� �d � fi(i; i)2�2i (1� �i) : (118)23



In [AS] model, de�ne cWqi (as in the Gated regime) to be the period of time out of Wqi,in which the arrival process to queue i is active.Then, using the general relation (71) and (113),cW �qi(!) = Qi(1� !=�i)bB�i (!) = 1 + �i�i � 1� �d � Gi(1� !=�i)� 11� !=�i � bB�i (!) (119)To �nd the expected value of cWqi, we can di�erentiate (119) or use Little's Law:E[cWqi] = �cW �0qi (0) = E[Li]�i � bbi = �ibb (2)i2(1� �ibbi) + fi(i; i)2�ifi(i) : (120)By substituting E[Li] from (114) in (75), we �nally obtain:E[Wqi] = ��ibbi + �2i �bb (2)i2(1� �ibbi) + fi(i; i)2fi(i) � � 1 + �i�i �bbi= � �2i �bb (2)i2(1� �ibbi) + 1� �d � fi(i; i)2�i(1� �i)� � 1 + �i�i + �ibbi : (121)In the symmetric case, the mean waiting time is given for the [AC] model by (see Hashida[5], Takagi [10]): E[Wqi ] = d(2)02d0 + (N � 1) � d02(1� �) + N�0b (2)02(1� �) ; (122)and in the [AS] model, using (75) and (116), it becomes:E[Wqi] = (1 + �0) � d(2)02d0 + (N � 1) � (1 + �0) � d02(1� �) + N�0�2(1� �) + �0bb0 : (123)The above results have the following important consequence:It follows from (77) and (122), as well as from (78) and (123), that for the symmetriccases in both modelsE[Wqi (Gated)] = E[Wqi (Exhaustive)] + N�0d0bb01� � (124)(remember that in the [AC] model �0 = �0b0 = �0bb0). That is, for both models, as in theregular symmetric polling schemesE[Wqi (Exhaustive)] < E[Wqi (Gated)] : (125)24



6 Common ResultsCombining the above results, it follows that for both regimes (Gated and Exhaustive), forboth models ([AC] and [AS]) and for both versions (breakdown observation upon occurrenceor at end of service), we can derive a common (generalized) expression for fi(i), the meannumber of customers in a queue at a polling instant of that queue (see Eq. (126) below).As a result of that, we obtain some generalized expressions for other important parameters.With bi having the corresponding values for each version, and with �i expressing the meanbusy period generated by a customer (which for the Gated regime equals the mean servicetime of a single customer) we construct the following table:Regime Model �i �i fi(i)AC �ibi bi �i � d1��Gated AS �ibi1+�i bi �i1+�i � d1��AC �ibi bi1��i �i(1� �i) � d1��Exhaustive AS �ibi1+�i bi1��ib̂i �i(1� �i) � d1��It follows that in all cases, for i = 1; 2; : : : ; N ,fi(i) = �i�i � d1� � : (126)By using (126) the mean cycle time (for all models, all versions and all regimes) is givenby a common expression:E[C] = d+ NXi=1 fi(i) � �i = d+ d1� � NXi=1 �i�i � �i = d+ d1� � � � = d1� � : (127)It follows from (127) that a necessary condition for stability is � < 1. Now, from (126),fi(i) = �i�i � E[C]; (128)and therefore, the mean sojourn time of the server at queue i isfi(i) � �i = �i � E[C] : (129)Thus, �i is the fraction of time the server resides in queue i. We use this result to calculatethe mean arrival rate to queue i, �i, which is composed of weighted e�ective arrival rates,25



with weights �i and (1� �i), respectively:�i = �i � hbbibi � �i + �1 � bbibi� � 0i+ (1� �i) � �i = �ih1� �i�1� bbibi�i= �ih1 � �ibi1 + �i � bi �bbibi i = �ih1 � �i1 + �ii = �i1 + �i = �ibi : (130)Accordingly, the work rate (traÆc load) of queue is�ibi = �i ; (131)and the total traÆc load of the system is indeed the generalized � (see remark after equation(50)). It follows (see Fricker and Ja��bi [4]) that � < 1 is not only a necessary condition forstability, but also a suÆcient one. >From (129), the mean number of customers served inqueue i during a cycle is E[Mi] = �i � E[C]bi = �i1 + �i � E[C] ; (132)which coincides with the results obtained separately for each of the regimes (Eqs. (52) and(64) for the Gated, and Eq. (110) for the Exhaustive).7 The Globally-Gated RegimeIn the (cyclic) Globally-Gated (GG) regime ([1], [2]), as in the Gated and Exhaustive regimes,the server visits the queues in a cyclic order. However, at the initiation of every new cycleall gates are simultaneously closed, so that only those customers present in the system atthat instant are served during that cycle.We assume, without loss of generality, that a cycle starts from queue 1.Let Xj � Xj1 = the number of customers at queue j at a cycle-beginning. Let fj �E(Xj) � f1(j).In the [AC] model (see Yechiali [12]):C�(!) = D�(!) � C�h NXj=1 �j(1�B�j(!))i (133)E[C] = d1� � ; (134)E[C2] = 11� � 2 � hd(2) + �2d�+ NXj=1 �jb (2)j � � E[C]i ; (135)26



where D � NPj=1Dj and d(2) is its second order moment.In both models, the number of customers present at queue j at a cycle-beginning is thenumber of customers that arrived at queue j during a (previous) cycle. However, in the[AS] model, the arrival process to queue j stops during repair times at that queue, andtherefore, in steady state, Xj = Aj�C � XjXk=1 �B (k)j � bB (k)j )� (136)where B (k)j � Bj and bB (k)j � bBj for every k. It follows thatfj = �j � (E[C]� fj(bj �bbj)) = �jE[C]� fj�j; leading tofj = �jE[C]1 + �j (137)Now, C = D + NXj=1 XjXk=1 B (k)j : (138)Hence, with F1(z) � Eh NQj=1 zXjj i, we getC�(!) = D�(!) � F1(B�i (!); B�2(!); : : : ; B�N(!)) ; (139)and, E[C] = d+ NXj=1 fj � bj : (140)Substituting fj from (137), we haveE[C] = d+ NPj=1 �jbj1+�j E[C] = d+ � � E[C], leading to, as in the other regimes,E[C] = d1� � (141)Thus, fj = �j1 + �j � d1� � : (142)That is, f1(j)GG = fj(j)Gated. 27



Waiting TimesTo be able to obtain expressions for the mean waiting time of a customer in queue i in thetwo models we need an expression for the second-order moment of a cycle. >From (138) weget: E[C2] = EnD2 + 2D NXj=1 XjXk=1 B (k)j + � NXj=1 XjXk=1 B (k)j �2o : (143)After some algebraic manipulations (see Appendix) we obtain:E[C2] = d(2) + h2d�+ NPj=1��jb (2)j1+�j + �j� 2j1��j (b (2)j � 2E[Bj bBj] +bb (2)j )�i � E[C]1� � 2 (144)Now, for both models, let CP and CR denote, respectively, the past and residual duration ofa cycle. Then (see Boxma, Levy and Yechiali [1]):C�P (!) = C�R(!) = 1� C�(!)!E[C] (145)and E[CP ] = E[CR] = E[C2]2E[C] : (146)Consider an arbitrary customer J at queue j. His waiting time is composed of(i) a residual cycle time CR,(ii) the service times of all customers who arrive at queues 1; 2; : : : ; j � 1 during the cyclein which J arrives,(iii) the switchover times of the server between queues 1; 2; : : : ; j � 1 and j, and(iv) the service times of all customers who arrived at queue j before J , i.e. during the pastpart CP of the cycle in which J arrives.Then, E[Wqj ] = E[CR] + j�1Xk=1 E[Ak(CP + CR)] � bk + j�1Xk=1 dk + E[Aj(CP )] � bj : (147)
28



In the [AC] model Eq. (147) becomes (see [1])E[Wqj ] =  1 + 2 j�1Xk=1 �k + �j! � E[CR] + j�1Xk=1 dk : (148)In the [AS] model the calculation of E[Ak(CP )] is much more complicated. In orderto �nd E[Ak(CP )] we consider the three possible cases for the position of the server at theinstant of arrival of customer J .(1) the server is before queue k;(2) the server is in queue k; and(3) the server has passed queue k.The probabilities for these cases are, respectively, skE[C], �k and �1� �k � skE[C]�, wheresk is the mean time from the start of a cycle until the server enters queue k. From (129),sk = k�1Pm=1(�mE[C] + dm). The arrival rate to queue k when the server is in that queue is�k bbkbk , and it equals �k when the server is not in queue k. Therefore, an approximation toE[Ak(CP )], based on an assumption of independence between the various elements, is givenby:E[Ak(CP )] = skE[C] � �kE[CP ] + �k � "�ksk + �kbbkbk � (E[CP ]� sk)#+  1� �k � skE[C]! � "�kbbkbk � �kE[C] + �k � (E[CP ]� �kE[C])#= �k �( �kbbkbk + 1� �k! � E[CP ] + �k 1� bbkbk![2sk � E[C] � (1� �k)])= �k �(E[CP ]� �k1 + �k � E[CP ] + �k1 + �k [2sk � E[C] � (1� �k)])= �k1 + �k � [E(CP ) + 2�ksk � �k(1� �k) � E(C)] : (149)In a similar way,E[Ak(CR)] = skE[C] � "�kbbkbk � �kE[C] + �k � (E[CR]� �kE[C])#29



+ �k � "�k � [(1� �k)E[C]� sk] + �kbbkbk � [E[CR]� (1� �k)E[C] + sk]#+ �1� �k � skE[C]� � �kE[CR] (150)= �k �(��kbbkbk + 1� �k� � E[CR]� �k�1� bbkbk�[2sk � E[C] � (1� �k)])= �k �(E[CR]� �k1 + �k � E[CR]� �k1 + �k [2sk � E[C] � (1� �k)])= �k1 + �k � [E(CR)� 2�ksk + �k(1� �k) � E[C)] :Substituting (149) and (150) in (147) while using (146) and (148), we get, for the [AS]model:E[Wqj (AS)] = E[CR] + j�1Xk=1 2 �kbk1 + �kE[CR] + j�1Xk=1 dk+ �jbj1 + �j [E(CR) + 2�jsj � �j(1� �j) � E(C)] (151)= �1 + 2 j�1Xk=1 �k + �j� � E[CR] + j�1Xk=1 dk + �j�j � [2sj � (1� �j) � E(C)]= EhWqj(AC)i+ �j�j � [2sj � (1� �j) � E[(C)]which generalizes (148) since �j = 0 in the [AC] model. Note, however, that E[CjAC ] 6=E[CjAS].8 ConclusionsWe have studied the combined e�ects of breakdowns and repairs on the performance measuresof polling systems operating under the Gated, Exhaustive or Globally-Gated regimes. Twelvemodels were analyzed in a generalized and uni�ed manner. The results can be applied tovarious manufacturing and communication systems and used as stepping stones for furtheranalysis of complex polling models.
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Appendix: Calculation of E[C2] for the GG RegimeObserving Eq. (143) we �rst calculate:E"� NXj=1 XjXk=1 B (k)j �2#= E( NXj=1 " XjXk=1(B (k)j )2 + XjXk=1 XjX̀=16̀=k B (k)j B (`)j + XjXk=1 B (k)j NXm=1m6=j XmX̀=1 B (`)m #)= NXj=1 ( �j1 + �j E[C] � b (2)j + E[Xj(Xj � 1)] � b 2j + �jbj1 + �j NXm=1m6=j �mbm1 + �m E[C2]) :Similarly to the derivation of Eq. (93), we get,E[Xj(Xj � 1)] = �2j � E" C � XjXk=1(B (k)j � bB (k)j )!2i
= �2j � E"C2 � 2C XjXk=1(B (k)j � bB (k)j ) + XjXk=1(B (k)j � bB (k)j )2#+ �2j � E" XjXk=1 XjXm=1m6=k(B (k)j � bB (k)j ) � (B (m)j � bB (m)j )#= �2j � "E[C2]� 2 �j1 + �j (bj �bbj) � E[C2] + �j1 + �jE[C] � [b (2)j � 2E[Bj bBj] +bb (2)j ]#+ �2j � hE[Xj(Xj � 1)] � (bj �bbj)2i) E[Xj(Xj � 1)] = �2j1� �2j (1� �j1 + �jE[C2] + �j1 + �jE[C] � [b (2)j � 2E[Bj bBj] +bb (2)j ])) E[Xj(Xj � 1)] � b 2j = � 2j � E[C2] + �j1� �j � 2j � E[C]hb (2)j � 2E[Bj bBj] +bb (2)j i) E" NXj=1 XjXk=1 B (k)j !2#

= NXj=1 (�jb (2)j1 + �jE[C] + � 2j E[C2] + �j� 2j1� �j�b (2)j � 2E[Bj bBj] +bb (2)j � �E[C]) (A1)31



+ � 2 � NXj=1 � 2j! � E[C2]By substituting (A1) in (143) we getE[C2] = d(2) + 2dpE[C]+ NXj=1 (�jb (2)j1 + �j + �j� 2j1� �j (b (2)j � 2E[Bj bBj] +bb (2)j )) � E[C] + � 2E[C2] (A2)which leads to Equation (144).
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