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ABSTRACT

We study the relative effectiveness of two multi-unit forces, A and B,
fighting a successive series of duels between randomly seclected pairs of op-
posing units. A duel consists of a series of games — each of at most s units of
time - and the duel terminates as soon as one of the two duelists is hit. A
new independent duel then starts, and so on.

Each force is characterized by a common probability distribution func-
tion representing the time required by a single unit of the force to hit a
non-firing unit of the other force in a game of unbounded duration. The
relative effectiveness of force A with respect to force B is expressed by the
exchange rate, R(s), defined as the expected number of unit§ of force B hit
by a single unit of force A until unit A itself is hit.

We derive a general characterization of R(s) and develop analytic results
for several choices of pairs of families of time-to-hit distributions. We show
that the shape of the distributions can strongly affect the outcome of the
duels and that this effect changes with the duration of the duel. We further
show that duels are not necessarily transitive. Some Numerical results are
presented.

INTRODUCTION

We study the relative effectiveness of two forces, A and B, whose units

fight a series of sequential independent duels. A duel is a series of games,
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where in each game the two contestants fire at each other for at most s units
of time. As soon as one of the duelists is hit, the game and the entire duel
end. We consider as measure of effectiveness (MOE) the exchange rate, ie.,
the expected number of B-targets hit by a single unit of A., until A itself is
hit. This is an appropriate MOE when studying the relative effectiveness of
two forces, independent of their size. Our model and assumptions are some-
what different from those leading to the so-called “fundamental duel” [2].
We assume that each force is characterized by a common time-to-hit distri-
bution function representing an underlying firing process resulting from the
type of weapon being used. Such distributions may be empirical or analyt-
ical. Specifically, we consider the Gamma and Beta families of distribution
functions, as well as constant-time intervals between rounds. Nevertheless,
our method of analysis is general and may be applied to the study of other

distribution functions.

We show that the shape of the time-to-hit distributions can strongly
affect the outcome of duels even when the duelists have the same expected
time to hit and the same type of distribution function. We further show that
the effect of the shape of the distribution function on the outcome of dules is
not constant but changes with he duration of the duel. Moreover, we show
that duels are not necessarily transitive, that is, if A is “better” than B and
B is “better” than C, it does not necessarily follow that A is “better” than
c. -

In section 1 the model is presented and the basic formula for calculating
the exchange rate, R(s), is derived. In section 2 duels of Gamma versus
Gamma.are analyzed. We show that if the two distributions have the same
mean, the 'duelist with fewer exponential stages is superior for every s >
0. Section 3 studies duels of Beta versus Beta. It is shown that a duelist
with a uniform distribution, 8{1,1), is inferior to a duelist with distribu{tion

B(1,b), b > 1, and that R(s} = 1/b for all 0 < s < 1. Duels with fixed time
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intervals between rounds are studied in section 4. Some numerical results

are presented for the Gamma and Beta cases.

1. THE MODEL

The model deals with a sequence of duels between units of two opposiilg
forces. A duel is a firing process in which a single unit of force A fights a
single unit of force B. Each duel consists of a random number of games where
a game terminates as soon as one of the following two mutually exclusive
conditions is met: (i) a fighting unit is hit, or (ii) s units of time (0 < s < oo)
have elapsed and none of the fighting units has been hit. The entire duel
terminates only when one of the units is hit in the course of some game.
Following the termination of a given duel, 2 new duel starts between two
randomly selected units of A and B, and so on.

Let T be the time required for a .unit of A to hit a non-firing unit of B in
a game of unlimited duration (i.e., s = oo)l, and let G(t) = P(T < t) denote
the probability distribution function (pdf) of T, where G{t) = 0 for t < 0.

Similarly, let ¥ be the time required for a unit of B to hit a non-firing
unit of A in an unbounded-duration game, and let F(t) = P(Y < t) dendte
its pdf (F(t) = 0,t < 0). The duration of a game, then, is min(s, T, Y) where
T and Y are independent.

Now, for 0 < s < oo define by P[A(s)] the probability that a game ter-
minates with only B being hit (i.e. A“wins”); by P [ﬁ (s)] the probability that
a game terminates with only A being hit (B wins); and by P|D(s)] the prob-
ability that a game terminates with both A and B being hit simultaneously.
Then,

P[g(s)] = P[T < Y'|a duration of a game is bounded by s
’ s
= [ - rendcr (1)
0

PIB() = PIY <7h] = [ 1 - G(0ler() @)
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and

PIB = [ 160 - 6tler( = [P0 - FENa( -
Clearly, P[a game terminates with at least one hit]
=1- [1— G(s)][1 - F(s)} = G(s) + F(s) — G(s)F(s) .

Define
¢(s) = Pla game terminates with B being hit]

= PLA(s)] + PID(s)]

and
8(s) = Pla game terminates with A being hit]

~

= P[B(s)] + P(D(s)}.

We now derive a cha;'acterization of the inherent effectiveness of force
A relative to force B. As present‘ed in the Introduction, the measure of effec-
tiveness is the exchange rate, R(s), defined as the expected number of hits
made by an A dualist until he himself is hit. R(s) may be interpreted as the
ration between the number of “casualties” caused among units of force B,
and those caused among units of force A after a large number of duels has
taken place.

For simplification in presentation we assume for a while that the prob-
ability of simultaneous hits is null, i.e., P[ﬁ(s)] = 0. This is clearly the case
when G(-) and F() are continuous or when they are jump functions with
jumps—&t—ﬁon—coinciding instants of time. In such a case, ¢(s) = P[E(s)] and
0(s) =P (B(s)]. This assumption will later be relaxed when duels with fixed

time intervals between rounds are analyzed in Section 4.

1
Owur main result in this section is expressed in the following theorem.

Theo.rem 1: R(s) = gq(s)/0(s).




RELATIVE EFFECTIVENESS IN DUELS 177

Proof: Let a(s) be the probability that a duel is terminated with A hitting
B. Then,

afs) = Z[l = 8(s) ~ g(s) q(s) = a(s)/16(s) + q(s)] -

Let I, denote the number of units of B hit by a unit of A before A itself is
hit, i.e., I, is the number of duels in which A wins before his first (and last)
loss. Clearly, P(I, = 1) = {a(s)]'[1 — a(s)]. Hence,

"o oo

R(s) = E[L] = Zz‘P(Is = q) = Z 1o’ (s){1 — afs)]
= a(s)/[1 — a{s)] = g¢(s)/0(s) . Q.E.D.

This result has an intuitive explanation: The expected number of games
until unit A loses is 8(s) ™!, while ¢(s) is the probability that unit A wins a
given game. Thus, the expected number of duels won by A prior to its loss
is q(s)ﬁ(s)“‘j.

Substituting (1) and (2) in Theorem 1, yields

&

R(s) = [G(s) - / T F()dG®)/1F(s) - / G(1)dF (1)) (3)

Since g(s) = G(s) — G(s)F(s) + [, G(t)dF(t), it follows that R(s) > 1 if and
only if F(s) — G(s) + G(s)F(s) < Zf; G(t)dF(t). In particular, R(oo) > 1 if
and only if - -

8{c0) =1 ——v/(; G(t)dF(t) <1/2. (4)

However, whether or not R{s) > 1 depends on the combined properties of
G(-) and F(-). Thus, we proceed by studying various families of distribution

functions and focus our analysis on conditions under which R(s) > 1.
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2. DUELS OF GAMMA VERSUS GAMMA

In this section we study the properties of R(s) where the duels are
between units of forces having Gamma distributions as their probability dis-
tribution functions. Specifically, let T (A’s time-to~hit} possess the Gamma
distribution function with integer-valued shape parameter n and scale pa-
rameter 1/X (we write T ~ (G(n,A)). In this case T possesses a density
function g(t) = e *A"t""1/(n — 1)1,¢ > 0, with mean ET = n/A. Similarly,
let Y ~ G(k,u) with density function f(t) = e~Htpktk—1/(k —1)!,t > 0, and
mean EY = k/u.

Using F(t) =1 — kz—:1 e~#t(ut)*/i! and interchanging the order of inte-

i=0 |

gration and summation we derive

s k—1

(o) = [ 3 ey il (o — )l

k—1 ,. t t+nr—1 .
A " i+n—1 u ) ~(2+ [{(x+u)a)?
=\ — . -—_ 1- “)8'.—

Calculating 0(s) in a similar manner we get

(Y)ﬁ)n Zf:}} ({_H:"_l) (y’f‘;)t [1 — Z;__:S_l e—()\+u)sl_(,\-|-_;l:.)_s]i]
() i (74 () - S e et

R(s) =

In pa.rticulaf

o) 2o (1) () ()
o ) (=) ()

The expression for g{co) may be given the following probabilistic interpre-
tation: For T ~ G(n,A), the time-to-hit is the sum of n independent iden-

tically distributed exponential stages with common parameter A. Similary,
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Y ~ G(k,pz) is the sum of k i.i.d. exponential stages with the same param-
eter 1. The probability that a stage of T terminates before a stage of ¥ is
A/(A + ). Duelist A wins if he finishes n stages before B ﬁnisheé k stages.
The probability of n successes before k failures, in a sequence of Bernoulli
trials with'probability of success A/(A + p) in each trial, is given by the
negative biﬁomial distribution. That is,

- (1) () ()

=0

It is interesting to note that the expression for ¢{oco} is identical with the
expression p(k,n) in the linear law of Brown [4, p. 420] which describes the
probability that force A with k units hits all units of force B before all its
own units are hit, where in each stage of fight the probability of hitting a

unit of force B is A/ (A + p).
Using the relation (Brown [4])

k-1 . k—1
nt+t1— 1Y ; n n+k—1 1 ntk—1-1
E( : )p(l—P)iy( : )P(l‘P)+kl
=0 1=0

equation (6) is rewritten as
i k+n—1—i
k—1 (k4n—1
i e () (22)
- 7 Efn-1-1]
n—1 tk+n—1 )
[Zi:o ( i ) (?\Tp) ( ) }
The calculation of R{oc) in (7) may become easier by using the Normal ap-

proximation of the Binomial distribution. When (k+n—1) (T\i_u) (yﬁﬁ) >

9 we have (éee [1]),

o

s
&

_®{(k—1+ 3 — M)/o]
Rleo) ™ G 71 — M)/

where, ¢ = \/(k+n—1) (7\«—_’-\5) (ii_,u)’ M, = (k—}-n——l)y_f’i_z, M, =

(k +n — l)A—f‘—;ﬁ, and ®(-) is the Standard Normal distribution function.

————



180 FELDMAN AND YECHIALI

Setting z = [kA — np +3(p ~ A)]/+/(k+n — 1)Au the expression for R{co)
takes the form
R{co) = ®(2)/®(—2) -

Going back to (7) we wish to study the properties of R(o0) as a function
of the pafameters n, A,k and . We first show that whenever the expected
times to hit a passive target are equal, the force that possesses the Gamma

distribution with fewer number of stages is superior. We state

Theorem 2: Let ET- = EY (ie., n/A = k/u). Then, R{co) > 1 whenever

k>n.

Proof: As R(oo) = q(oc)/8(o0) and g(oo0) + #{c0) = 1, it suffices to show
that 0(00) < 1/2. Since /(X + p) = n/(n + k) we must show that

o) = 5 () (25) ()

< 1/2 whenever k > n.

i ntk—1 nt+k—1
Write a; = (“*" 1) (%) (n—_’f_-];) . Then, as 'Zo a; = 1, it is enough
| 1—
to show that _
n—1 n+k—1
doa< ), w | (8)
=0 1=n

Letting b; = (“+k l) ( ) relation (8) is equivalent to

nt+k—1
Zb < Yk (9)
1=0 i=n

We will now show that for all 7 =0,1,...,n — 1, byy;/bp_1¢ 2 L

;= b k+i)--ke(k—1 2i+1
For i =0, ba/buy = 1. For i 2 1, 2885 = {3ty ()

k — 2:+1 k[ &2 21+4+1 . .
= Hj_l %;n?';fj > (;;7;‘) (%) = 1, where the inequality

follows from the fact that for k >n > 1, %:—Ei‘;:— > —:i—; for ;j=1,...,n

The proof is concluded by noting that in relation (9) the number of .
terms in the right hand side is greater than the number of terms in the left

hand side, since k > n. ‘ Q.E.D.
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Note that the conclusion of Theorem 2 follows readily if one uses the
approximation R{co) = &(2)/®(—z) above. When n/X = k/u then 2 > 0 if
and only if 4 > A. In such a case R(00) >'1 as ®(z) > ®(—=2). But g > X if

and only if k= n,

Corollaries:

(i) If ET = EY, then there is an advéntage to the duelist having greater
chances of hitting at the beginning of the duel.

(ii) For the Gamma family there exists a transitivity property: if three forces
have the same mean of time-to-hit such that A is better than B (i.e.,
R{oo) > 1) and B is better than C, then A is also better than C.
However, this transitivity property is not true in general, as will be

evident from an example presented in the sequel.

An interesting implication of Theorem 2 and the transitivity property

within the Gamma family with same mean, is that effectiveness increases

with the variance of the hitting-time distribution. This follows since

VAR(T)/VAR(Y) = /X > 1 if and only if k > n.

So far we have dealt mainly with R{oo0). For the Gamma vs. Gamma

duel with n/A = k/p we claim the following:

Theorem 3: Let n/A =k/p. If k> n, then R(s) > 1for all 0 < 5 < oo.

Proof: Define g(t) = ¢{t)/[1 — G{t}] = A"t~ /[(n — 1)!ng::[(At)f/j!]] and
T(t) = f@)/[1 — F@)] = pk*1/{(k — V'S () /7). For mik > 1, the

=0

distributions G() and F(.) are IFR, ie., the failure rates g(fjand f(t) are
monotonically non-decreasing continuous functions (see {3],p. 75). If n < k
and n/X = k/u then (i} f(0) =0 for n > 1, and g(0) = X for n = 1, g(0) =0
for n > 1. (ii) tl_i.rgoﬁ(t) = A, and t&’i‘o flt) = p. (i) 1}1_13;1)[?@)/?[15)] = 00.

T ETETATE L T e
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From (iii) it follows that g(t) > F(t) for 0 < t < g, for small enough

¢ > 0. On the other hand, g(t) < f{t) for t large enough, since A < pand (i)

holds. As g(t) and f(t) are continuous, it follows that there exists a point g

such that g(te) = f(to) and () > f(¢) for 0 <t < to. Further, using the

fact that k > n, it can be shown that g(t) and 7(t) intersect exactly once in
(0, c0) so that gft) < F(t) for all t > to.
- Now, for all s <y, E(s) > 1 since

ol—F@)j[1 -G fo (1 - F@)[L — GE)[f(t)ds
Jol1—G() ]f(t)dt Jolt=G(O)]f(t)dt

R(s) =

The proof will be completed by showing that R(s) > 1for all s > t5. Suppose,
contrarily, that there exists s* > to such that R(s") < 1. Then, since
R(co) > 1 and R(s) is continuous, there exists z such that R{z) = 1 and
R'(z) > 0. However, ¢'(z) = [1-=F(2)]g(z), 0'(2) == [1—-G(2)]f(2) and hence,
£()/8'() — 7(z)/T(2). Therefore, R(2) = 10'(2)/6(=)][g(2) /() = ().
But, g(2)/F(z) < 1 for z > to, while E(z) = 1 and 0'(2)/8(z) > O for
all z > 0. Thus, R'{z) < 0, which -contradicts the above implication that
R'(2) 2 0. Hence, R(s*) £ 1. Q.E.D.

Remark: For the exponential distribution {n = k = 1) it is easy to see that
R(s) = A/p for all s > 0. Thus, A'is preferrable to B if and only if A > g,
e., if and only if ET<EY.
We conclude this section by demonstrating that properties which are
true within the Gamma family (see Corollaries above) do not necessarily

hold in general.

Example 1: ‘Duels are not transitive.
Consider three distinct forces characterized by the following distribution

functions.
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0, t<o0

A: G{t)=<{ a+t(l—a)t?, 0<t<], 0<a< g
1, t>1
0, t<o0

B: F(t)=<{b+3(1—-8t, 0<t<], O0<b<yig
1, t> %
0, t< 3

C: H(t) =3 3(t-3), §<t<1
1, t>1

Suppose s = co. Then, recalling (4), it readily follows that A is better than

B since

3

co 1 ‘ 4/3
/ G(t)dF(t) = f[a—k (1- a)tzl‘(l —b)- z—dt + / 4—(1 — b)dt

_1+a—b—ab;1
T2 2 2

Similarly, B is better than C since

0o 1
3 ) 3 i b 1
/F(t)dH(t) - /[b+ da-wgia=45>3
o 1/3 .
However, C is better than A since
T : 3 13 1
/G(t)dH(t) - [[a-i— (1- )t 3dt=at S(1-a) < =.
2 27 2
0 1/3

Example 2: ET = EY and greater chances of A hitting B at the beginning
do not imply R(co) > 1.
Let
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0, t<O
G(t)=4t% 0g5t<1 and
1, t>1
Clearly, ET = EY z%. Now,
| 1) 1-6(1
R(o0) = R(1) = ) = 0 _

L 6(1)

FELDMAN AND YECHIALI
0, t < el
Ft)=1{ 3(t-13), 35t<1
1, t>1
1 1 / i . 1 <1
2 h4 2 54

Numerical Results for Gamma vs. Gamma

In Table 1 values of R(s) are presented for a duel between G{n,A) and

G(4,4). The table demonstrates (as was shown above) that whenever ET=

n/A =1 =EY and n <k, R(s) > 1 for all s > 0. On the other hand, for

arbitrary values of n and A, the advantage may change as s increases. For

example,

better than A for higher values of s.

Table 1: R(s) for G(n, ) vs. G(4,4)

n A ET §=0.2
1 1.0 1 23.26
1 09  1.11 2082
1 0.8 1.25  18.40
1 0.7  1.43 16.01
2 20 1 7.05
2 1.8 111 581
2 16 125 11.68
3 30 1 2.57
3 27 111 195
3 24 125 1.43
4 40 1 1

4 36 111 0.70
4 32 125 0.46

5—=0.6

- 2,96
2.63
2.30
1.98

OOF OM= =
Gou
o w O

o =X
[,

s=1 s=1.4 s5=1.8
1.79 1.53 1.47
1.57 1.34 1.28
1.37 1.16 1.10
1.17 0.98 093
1.32 1.20 1.18
1.10 1.00 0.98
0.90 0.82 0.80
1.12 1.07 1.07
0.90 0.87 0.87
0.71 0.68 0.68
1 1 1
0.78 0.79 0.79
0.59 0.61 0.61

for n = 3, A = 2.7, A is better than B for s < 0.6, whereas B is

s—2.2 8=00

1.45 1.45
1.26 1.26
1.08 1.08
691 09
1.18 1.18
098 0.98
0.80 0.80
1.07 1.07
0.87 0.87
0.68 0.68
1 1

0.79 0.79
061 0.61
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3. BETA VERSUS BETA

In this section we consider duels between units of forces eharacterized
by the Beta distribution functions. Specifically, let T ~ 3 (m,m%;h density
g(t) = B~ Y(m,n)t™ (1 — )1, 0 < t < 1, and mean ET = m/f{m +
n), where B(m, n) = I‘(m)I‘(n /F(m + n). Similarly, let ¥ ~ f(a,b) with
distribution function F(z fo (a,0)t* 1 (1~t)b~1dt = I (a,b},0 < z <
1. It is well known ([1], p. 945] that for N and a integers I;(a, N—a+1) =

N _ .
> (M)x' (1 — )V Letting b= N — a+ 1 we get
i=a

.oat+b—1 _ . .
F(z) = I (a,b) = Z (‘Hlf 1)x'(1~z)°+"—‘i‘. (10)

, 1
1=a

Applying (1}, we derive

g{s) = /3 5 (a o 1) (1 — z)* P I B (my )2 (1 — 2)* Ve

a—1 .
1 a+b-—1 . .
=—-—§ - i)ls 2 Ti) -
= Bl izo( ; )B(m+z,r) (m + 4, 7)

where 7; = a+b—1 -1+ n. Repeated use of (10) leads to

1 S/adb-1 T v
- - o I — V7
= oy = (] )[B(m“’“"’“)j;“(j)s (1977 (1)
where vy =a+ b+ m+ n — 2. Hence,
1 S fat+b-1 . .
q(oo)zq(l‘):mz ; B(m+i,a+b-1-—1+n).
> i=0

Similarly,
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where £; = m+n — 1 —1¢+ b. Thus,

m-1

PV mAn - g rimin-1-4
ﬂ(m)—ﬁ(l)wB(a,b)z( ; )B(+, +n-—1—i+b).

=0

One can get more tractable expressions for (1) and 6(1), i.e

 mAa-D S (et+b-1!  (mAi— 1) —1)!
q(l)_(mwl)!(n—l)!;)i!(a-t—b—lwi]!.(a+b+m+n—2)!
= m+z—1 a+b—1+n-—2) ~
2 VLG e VN
and

0(1)5?;%1@-'—?—1) (’”"*””;_jfb_z) /(mt'l_l) |

Thus, R(coc) = R(1) :.q(l)/f)(l). In particular, for 8(1,1) vs. fS(a,b),
R(1) = a/b.
For 0 < s < oo, R(s) = g(s)/8(s) may be readily calculated by using

(11) and (12} above. Nevertheless, for a certain special case, we derive
Theorem 4: For 8(1,1) vs. 8(1,b) (4> 1), R(s) = %for allo < s < 1.

Proof: For 8(1,1),¢{z) = 1, for all 0 < z < 1, while for B(1,8), f(z) =
b(1 — x)*~1, 0 < z < 1. Hence,

ale) = f 1 F@lo(de = [ (-0 = gl = (-9,

8(s) = [:(1 (1 — 2PNz = 21— (1 - 9)*1],

b+1
and so R(s) =b"1forall0 <s <1 Q.E.D.

In a similar manner, for 8(1,1) vs. f(a,1) (a > 1), one gets R(s) = [(a +
1)s — s°11)/[(a + 1)s® ~ as®F1] for every 0 < s < 1, s0 that R(1) =a.
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Table 2: R{s) for f(m,n) vs. f(a,b)
for various cases where the advantage changes as s increases

EY 5=0.2 s=0.4 s=0.6 5=0.8 s=1.0

m n ET a b

1 1 0.50 2 3 0.40 119 0.80 069 0.67 0.67
1 1 0.50 3 4 0.43 2.30 1.03 08¢ 075 0.75
2 1 0.67 3 2 060 1.49 091 0.74 068 0.67
2 1 067 4 2 0.67 6.10 199 1.20 096 0.91
2 1 067 4 3 057 241 192 064 0.56 0.56
2 1 0.67 4 4 050 1.22 054 041 039 0.38°
2 2 0.50 3 4 043 1.07 0.76 069 0.68 0.68
3 2 060 4 3 0.57 162 102 0.87 0.83 0.83

To emphasize the significance of Theorem 4, note that ET/EY = (b +
1)/2. Thus, for b = 3, ET/EY= 2, which means that, on the average, a unit
of force B is twice as fast as a unit of force A. However, R(s} = 1/3, which

implies that, on the average, each .unit of B wins three duels before being

hit.

It is also interesting to observe that the advantage of a duelist with
respect to its opponent may change as s increases. This is demonstrated in
Table 2 where R(s) is calculated for various pairs of (m,n) and (a,b). R(s)

is greater than 1 for small s and drops below 1 for larger values of s.

4. DUELS WITH FIXED TIME INTERVALS
BETWEEN ROUNDS

In this section we consider duels where each game is comprised of several
rounds. Each round is a firing event where both units fire simultaneously at
each other. A game terminates as soon as one of the following two conditions
_ is satisfied: (i) one of the two fighting units is hit, or (ii) m rounds passed
with none of the units being hit. A duel terminates as socn as gt least one

of the units is hit.
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Let p;{g:) be the conditional probability that a unit of force A (B) hits
a unit of force B (A) at the i** round given that the game has not been
terminated before. Define also the following events:
N; = none of the units is hit after 1 rounds in a game (1 <i<m).
A;(B;) = the game terminates with A (B) hitting B (A) ofi the 1** round
(and A(B) is not being hit).

D; = the game is terminated at the 1** round with both units hit simul-

taneously.
Now, let A= U, A, B = Ur, B, D = U™, Di . It readily follows
that

pv) = [[a-p)(1~g)1<i<m;  PlA)=pi{l— gi}P(N:i—1);

P(Bi) = a:(l — p)P(Ni1);  P(D:) = pigiP(Nioy); and
P@ =S ruy  PE)=Y Py P =3 PO).

=1

Expected Number of Wins Until a Loss

Let 6(m) denote the probability that in a given game unit A is hit.
Then, 8(m) = P(B)+ P(D) = i ¢;P(N:_;). Let N(m) denote the number
of games elapsed until A is hit.l“(“lllearly, P[N(m) = n| = [1—8(m)|*~18(m),
n=1,23,.... If N(m)=n the probability that at the first n — 1 games A
hits £ units of B (0 < £ < n — 1) is given by

s =1 = () ) PR/ (L= 00m PN (L~ 0D

. Let R(m) be the expected number of hits by unit A until it is hit. Then,
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Z: M1~ 8(m)]™" IZb(ﬁn——l) ((B)) (e+1)§(%%)
= [P(A) + P(D)]/8{m) = q(rm)/8(m), C(13)

13

where g(m) = P(A) + P(D) = L pi P(N;_;) is the probability that B is hit
1=
in a given game.
Result (13) has an intuitive explanation similar to that of Theorem 1:

R(m} equals the expected number of games until A is hit |= 1/6(m)] times
the expected number of hits by A in a game [= P(4 ) + P(D)]

Improving Versus Constant Hit Probabilities

For any two (empirical of analytic) discrete distributions one can use
equation (13) to calculate and compare values of R(m). As an example we
present the case where unit B has the same hitting probability in all rounds,
while unit A improves its hitting probability from one round to the next.

Spec1ﬁca,11y, we assume that p; =1 —e¢ *,1>p> 0,i=1,2,..., while
1

¢ =q for all 4. Then, using {13} and notmg that P(N;..1) = ] (1 —p;}{1 -
7=1

g;) = (1 — g)* Y exp[-pi(t - 1) /2], we detive

m

(1)L - q) T exp[—pi(i — 1)/2]
R(m) . =1 _ .
q gl(l — q)*Lexp[—pi(s — 1)/2]
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