
Elevator-Type Polling Systems ∗

Ruth Shoham Uri Yechiali

Department of Statistics, School of Mathematical Science
Raymond and Beverly Sackler Faculty of Exact Sciences

Tel Aviv University, Tel Aviv 69978, Israel

November 1992

Abstract
The basic polling system is a configuration of N queues attended by

a single server, usually in a cyclic order. In an Elevator-type polling
scheme, instead of moving in a cyclic fashion, the server scans the
channels back and forth, residing in each queue for a duration of time
determined by the service discipline. Such systems have a wide variety
of applications in the areas of telecommunications, computer networks,
manufacturing, maintenance and repair, etc.

In this work we apply a unified approach to study four Elevator-
type polling systems, distinguished by their service regimes. The
system-models are called Elevator Exhaustive, Elevator Gated, El-
evator Globally-Quasi-Exhaustive and Elevator Globally-Gated (the
Exhaustive, Gated and Globally-Gated disciplines were partially stud-
ied in the literature). For each system we provide a comprehensive
analyses regarding cycle times in the up and down directions, server’s
sojourn times in the various channels in each direction, customers’
waiting times, and channels’ queue sizes. Furthermore, we derive con-
ditions under which the durations of the up and down cycles are the
same. The calculation of customers’ mean waiting times are based on
a derivation of a general relation-formula that can be used in conjunc-
tion with many other polling schemes.

∗Supported by a Grant from the France-Israel Scientific Cooperation (in Computer
Science and Engineering) between the French Ministry of Research and Technology and
the Israeli Ministry of Science and Technology, Grant Number 3321190.
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1 Introduction

Queueing systems consisting of N queues (channels) served by a single server
which incurs switch-over periods when moving from one queue to another
have been widely studied in the literature and used as a central model for the
analysis of a wide variety of applications in the areas of telecommunications,
computer networks, manufacturing, etc. Very often such applications are
modeled as a polling system in which the server visits the queues in a cyclic
order or according to some polling table (c.f. Baker & Rubin [1987]).

In many of these applications, as well as in most polling models, it is
common to control the amount of service given to each queue during the
server’s visit. Two widely used policies are the Exhaustive and the Gated
regimes, whose analysis (for queues with infinite buffers) has been exten-
sively studied in the literature (see Takagi [1986] and [1990]). Recently,
the Globally-Gated and the Globally-Quasi-Exhaustive service regimes were
proposed by Boxma, Levy & Yechiali [1992], who provided a thorough anal-
ysis of the cyclic Globally-Gated scheme. Boxma, Westsrate and Yechiali
[1993] further extended the Globally-Gated model to include server interrup-
tions, and applied it to a real-world repairman problem. A Globally-type
regime uses a time-stamp mechanism for its cyclic reservation: the server
performs a Hamiltonian tour through the queues, and uses the instant of
cycle-beginning as a reference point of time. If (n1, n2, . . . , nN) is the state-
vector of the number of customers present at the various queues at the start
of the Hamiltonian tour (when all gates are globally closed) then, under the
Globally-Gated regime, the server serves exactly ni customers at queue i,
whereas under the Globally-Quasi-Exhaustive discipline, the server resides
in queue i for the duration of ni ordinary busy periods.

In this paper we concentrate on the Elevator-Type (scan) polling scheme:
instead of moving cyclically through the channels, the server first serves
the channels in one direction, i.e. in the order 1, 2, ..., N (’up’ cycle) and
then reverses its orientation and serves the channels in the opposite direction
(’down’ cycle), i.e. going through channels N,N − 1, ..., 1. Then it changes
direction again, and keeps moving in this manner back and forth. This type
of polling mechanism is encountered in many applications, e.g. it models a
common scheme of addressing a hard disk for writing (or reading) information
on (or from) different tracks. The Elevator scheme ’saves’ the return walking
time from channel N to channel 1 (when compared to cyclic polling systems).
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Additional motivation for considering Elevator-type models emerges from
the results obtained by Browne & Yechiali [1989] when studying ”Dynamic
Priority Rules for Cyclic-Type Queues”. In that paper it is shown that the
total time to complete a Hamiltonian tour of the N channels, when the visit
order is given by the permutation π = (π(1), π(2), ..., π(N)), is

E(C) =
N∑
i=1

aπ(i)

N∏
r=i+1

(1 + απ(r)), (1)

where ai is the initial ’core’ of work at channel i, and αi is the ’growth
rate’ of work at that channel. This expression is minimized by following the
permutation based on ordering the stations in increasing values of the index
ai

αi
. Moreover, if a two-cycle horizon is considered, then, in expectation,

the length of this horizon is minimized if the server performs the second
Hamiltonian tour in the reverse order of the first tour. This implies an
Elevator type polling scheme (see also Yechiali [1991]).

Elevator (or scan) type polling systems have been already studied in the
literature. Coffman and Hofri [1982] analyzed the Exhaustive service regime
assuming constant service and switch-over (seek) times. They derived the
Probability-Generating-Functions (PGFs) of the number of customers (pack-
ets) at the various queues at polling instants, as well as at switch-over times.
Expressions for customers’ mean waiting times are then calculated. Swartz
[1982] considered a slotted-time model under the Gated service discipline and
obtained the PGF of the state of the system at polling instants. Takagi &
Murata [1986] further analyzed scan-type TDM and polling systems under
both the Exhaustive and Gated service regimes. They computed the mean
delay values of requests at the various stations and show that a discrimination
exists among the stations due to their relative positions. Models with a single
buffer for each queue has also been studied for a cyclic (Hamiltonian) type
polling scheme (Browne & Yechiali [1991]), as well as for heterogeneous scan
polling procedure (Bunday, Sztrik & Tapsir [1992]). Altman, Khamisy &
Yechiali [1992] introduced and studied the Elevator Globally-Gated scheme.
A surprising result for that system is that mean waiting times at all stations
are the same.

In this paper we employ a unified approach to study, analyze and extend
results for four service regimes under the Elevator type polling scheme. The
regimes are the Exhaustive, Gated, Globally-Quasi-Exhaustive and Globally-
Gated. We derive a new and general formula for calculating mean waiting
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times of customers in various queues in an arbitrary polling scheme (not nec-
essarily of Elevator-type), and use this formula for calculating performance
measures for each of the service regimes mentioned above. Furthermore, we
calculate the server’s sojourn times in each queue in the ’up’ and ’down’
directions, separately, and find conditions under which the ’up’ and ’down’
cycles are equal.

For the Globally-Gated regime we reestablish the surprising result (Alt-
man, Khamisy & Yechiali [1992]) that all mean waiting times are equal.
This is the only known non-symmetric polling scheme that achieves such a
’fairness’ phenomenon.

The structure of the paper is as follows: In Section 2 a general descrip-
tion of Elevator-type procedures (independent of the service discipline in
each channel) is presented. In Section 3 we derive a general formula for
calculating mean waiting times of customers in the various channels. In Sec-
tions 4, 5, 6 and 7 we provide analyses for the Elevator Exhaustive, Elevator
Gated, Elevator-Quasi-Exhaustive and Elevator Globally-Gated systems, re-
spectively.

2 The Model

We consider a polling system consisting of a single server and N independent
infinite-buffer queues (channels). Customers arrive at queue i (i = 1, 2, ..., N)
according to a Poisson process with rate λi. The server moves from one
channel to another in an elevator (scan) fashion: it first serves the channels in
one direction, i.e. in the order 1, 2, ..., N (’up’ direction), and then reverses its
orientation and serves the stations in the opposite (’down’) direction, going
through stationsN,N−1, ...., 1. The server stays at channel i (i = 1, 2, ...., N)
for a length of time determined by the service discipline and then moves
to channel i + 1 or i − 1, according to the polling orientation. It keeps
moving from one channel to another even when there are no customers in
the system. Each customer in channel i carries an independent random
service requirement distributed as Vi and having distribution function Gi(.).
The flow-rate of work to channel i is ρi = λiE(Vi), and the total flow-rate of
work into the system is ρ =

∑N
i=1 ρi.

When leaving channel i and before moving to the next channel the server
incurs a switch-over (walking time) period, the duration of which is a random
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variable. This variable denotes the switch-over time from channel i to channel
i + 1 in the up direction, and from channel i + 1 to channel i in the down
direction (θupi and θdowni , respectively). In various applications it is common
to assume that all switch-over times are independent, and for each i the up
and down switching distributions are the same, i.e. θi = θupi = θdowni . The
period during which the server moves up (down) is called an ’up’ (’down’)
cycle, and is denoted by C1 (C2). A full cycle is C = C1 + C2. Finally,
throughout the paper the Laplace-Stieltjes-Transform (LST) of a random
variable X is denoted by X̃(ω) = E{exp(−ωX)}.

3 A General Result For Mean Waiting Times

A common method for calculating mean waiting times incurred by customers
in the various queues in polling systems is presented in Takagi [1986], where
specific calculations for the cyclic Exhaustive and the cyclic Gated regimes
are performed. The method is based on obtaining a set of implicit equations
for the PGFs of the number of customers found at the various channels
at polling instants, differentiating these PGFs and deriving a set of linear
equations whose solution enables one to calculate the desired mean waiting
times.

We develop an alternative method for obtaining mean waiting times in an
arbitrary polling system. The method is based on a derivation of a general
equation for E(Wi), the mean waiting time of customer in queue i, which is
then used for each service regime according to its specific features. The mean
waiting times in all Elevator-Type schemes mentioned above are derived with
the aid of this equation by calculating the waiting time in the up cycle and
in the down cycle, separately. The mean waiting time is then given by a
weighted sum of the two means, where the weights are the probabilities of
finding the server in the up cycle or in the down cycle, respectively.

Consider the probability generating function, Qi(z) = E(zLi), of the num-
ber of customers, Li, left behind by an arbitrary departing customer from
channel i. As the distribution of number of customers in the system at
epochs of arrival and epochs of departure are identical, then by the well
known PASTA phenomenon (Poisson Arrivals See Time Averages), Qi(z)
also stands for the generating function of the number of customers at chan-
nel i in a steady state regime at an arbitrary point of time.
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Consider the system in steady-state. Let Ti be the total number of cus-
tomers served in channel i during a visit of the server to that channel, and
let Li(n) (n = 1, 2, ..., Ti), be the sequence of random variables denoting
the number of customers that the n-th departing customer from channel i
(counting from the moment that the channel was last polled) leaves behind
him. Then the PGF is given (see Takagi [1986], p. 78) by

Qi(z) =
E
(∑Ti

n=1 z
Li(n)

)
E (Ti)

(2)

Let X i
i denote the number of customers present at channel i at its polling

instant, and denote by Vi(n) the total service time of n customers in channel
i. Also let Ai(t) be the number of Poisson arrivals to channel i during a time
interval of length t. Then, Li(n) = X i

i −n+Ai(Vi(n)). Thus, the evaluation
of the expression for Qi(z) becomes:

Qi(z) =
1

E (Ti)
E

 Ti∑
n=1

zX
i
i−n+Ai(Vi(n))

 =
1

E (Ti)
E

zXi
i

Ti∑
n=1

z−n+Ai(Vi(n))


=

1

E (Ti)
E

zXi
i

Ti∑
n=1

z−ne−λiVi(n)(1−z)

 =
1

E (Ti)
E

zXi
i

Ti∑
n=1

[
Ṽi(λi(1− z))

z

]n

=
1

E (Ti)
E

zXi
i × Ṽi(λi(1− z))

z
×

1−
[
Ṽi(λi(1−z))

z

]Ti

1− Ṽi(λi(1−z))
z


=

1

E (Ti)
× 1

z − Ṽi(λi(1− z))
E
[
zX

i
i−TiṼi(λi(1− z))

(
zTi −

[
Ṽi(λi(1− z))

]Ti
)]

(3)
The average number of customers at channel i at an arbitrary point of

time is given by:

E(Li) =
∂Qi(z)

∂z

∣∣∣∣∣
z=1

=
E(T 2

i )− E(Ti)

2E(Ti)
(1 + ρi) +

E(X i
iTi)− E(T 2

i )

2E(Ti)
+ ρi (4)

Let Wi denote the waiting time of an arbitrary customer at queue i. The
Laplace Stieltjes Transform (LST) of Wi and its expectation are obtained
using the well known relations:

W̃i(λi(1− z))Ṽi(λi(1− z)) = Qi(z)
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λiE(Wi) + λiE(Vi) = E(Li) (5)

Thus, the average waiting time for an arbitrary customer at channel i is
given by

E(Wi) =
E(T 2

i )− E(Ti)

2λiE(Ti)
(1 + ρi) +

E(X i
iTi)− E(T 2

i )

2λiE(Ti)
(6)

The following theorem gives some insight into the result given by Eq. (6).

Theorem 1 Let Ai = Ai(Hi + Ri) and Xi = Ai(Hi) be two Poisson ran-
dom variables (each with intensity λi), representing the number of customers
that have arrived to channel i during some random periods Hi + Ri and Hi,
respectively. Then

E(A2
i )− E(Ai)

2E(Ai)
= λi

E
[
(Hi +Ri)

2
]

2E (Hi +Ri)
(7)

E(XiAi)− E(A2
i )

2E(Ai)
= −λiE(HiRi) + λiE(R2

i ) + E(Ri)

2E(Hi +Ri)
(8)

Proof: As Ai is Poisson, E(Ai) = λiE(Hi +Ri)

E(A2
i ) = E

[
(Ai(Hi +Ri))

2
]

= EHi,Ri

[
E
[
(Ai(Hi +Ri))

2
]]

=

EHi,Ri

[
λ2
i (Hi +Ri)

2 + λi(Hi +Ri)
]

= λ2
iE

[
(Hi +Ri)

2
]

+ λiE [Hi +Ri]

Thus,
E(A2

i )−E(Ai)

2E(Ai)
= λi

E[(Hi+Ri)
2]

2E[Hi+Ri]
. Also, as Ai(Hi + Ri) = Ai(Hi) + Ai(Ri),

we have

E(XiAi) = EHi,Ri

{
E
[
(Ai(Hi))

2 + Ai(Hi)Ai(Ri)
]}

= EHi,Ri

[
λ2
iH

2
i + λiHi + λ2

iHiRi

]
= λ2

iE(H2
i ) + λiE(Hi) + λ2

iE(HiRi)

Thus,
E(XiAi)− E(A2

i )

2E(Ai)
= −λiE(HiRi) + λiE(R2

i ) + E(Ri)

2E(Hi +Ri)
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Suppose that in some polling systems the number of customers present
in channel i at its polling instant, X i

i , is the number of Poisson arrivals to
that channel during some random time Hi, i.e X i

i = Ai(Hi), and Ti, the total
number of customers served during a visit to channel i is given by Ai(Hi+Ri).
Then, it follows from Theorem 1 that

E(Wi) =
E
[
(Hi +Ri)

2
]

2E [Hi +Ri]
(1 + ρi)−

λiE(HiRi) + λiE(R2
i ) + E(Ri)

2λiE [Hi +Ri]
(9)

That is, the mean waiting time is comprised of three elements, the first two
of which are

(i) The mean residual time of the random time period Hi + Ri (given by

α(H,R) ≡ E[(Hi+Ri)
2]

2E[Hi+Ri]
).

(ii) The service time required by customers who have arrived at that channel
during the past part of the period Hi+Ri, but before the arrival of the
specific customer (given by ρiα(H,R) ).

The last term in Eq. (9) is due to the dependence of the random variables
X i
i and Ti.

4 Elevator Exhaustive Scheme

In this section we analyze the Elevator-polling Exhaustive-service scheme.
We calculate expressions for the LST and means of the sojourn times of
the server in various queues in the up and down cycles, and derive explicit
expressions for the mean durations of the up and down cycles. Finally, we
obtain formulae for calculating mean waiting times of arbitrary customers in
the various queues, both in the up and down directions.

4.1 Cycle Times

Suppose that at time 0 the state of the system is (n1, n2, ...., nN), where ni is
the number of customers present in channel i. The server than starts its up
cycle serving each channel until it is empty, and then moves on to the next
channel. Upon completion service at channel N the server starts its down
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movement (at that moment, because of the Exhaustive service discipline,
channel N is empty). The down cycle is completed when channel 1 is ex-
hausted. A new full cycle then starts again. It is thus clear that n1 = nN = 0
in every future cycle. That is, the server visits channels 1 and N only once
in each full cycle, whereas channels 2, . . . , N − 1 are each visited twice.

Let Y
(1)
i and Y

(2)
i be the occupation time of the server in channel i in the

up and down directions, respectively. Then,

Y
(1)
i =

ni∑
j=1

Bij +

Ai(S
(1)
i−1)∑

j=1

Bij + θupi , i = 1, 2, ... , N (10)

where {Bij}∞j=1 is a sequence of i.i.d random variables all distributed as an
M/Gi/1-type busy period with mean E(Bi) = E(Vi)/(1−ρi), second moment
E(B2

i ) = E(V 2
i )/(1− ρi)3 and LST B̃i(ω). Ai(t) is a Poisson random variable

with rate λi, counting the number of arrivals to channel i during a time period
of length t. S

(1)
i−1 =

∑i−1
j=1 Y

(1)
j is the entrance time to channel i. The LST of

Y
(1)
i is thus given by

Ỹ
(1)
i (ω) =

[
B̃i(ω)

]ni

S̃
(1)
i−1

(
λi(1− B̃i(ω))

)
θ̃upi (ω), i = 1, 2, . . . , N. (11)

Eq. (11) leads to

E(Y
(1)
i ) =

niE(Vi)

1− ρi
+

ρi
1− ρi

i−1∑
j=1

E(Y
(1)
j ) + E(θupi ), i = 1, 2, . . . , N (12)

where ρi = λiE(Vi) is the amount of work flowing to channel i per unit time.

Using the definition Z
(1)
i = E(S

(1)
i ) and adding Z

(1)
i−1 to both sides of Eq.

(12), we obtain a set of difference equations in Z
(1)
i ,

Z
(1)
i −

1

1− ρi
Z

(1)
i−1 =

niE(Vi)

1− ρi
+ E(θupi ), i = 1, 2, . . . , N ; Z

(1)
0 = 0. (13)

The solution of Eq. (13) is

Z
(1)
i =

i∑
j=1

[
njE(Vj) + (1− ρj)E(θupj )

1− ρj

]
i∏

r=j+1

(1 +
ρr

1− ρr
), i = 1, 2, . . . , N.

(14)
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The mean duration of the up cycle is given by substituting i = N in Eq. (14):

E(C1) = Z
(1)
N =

N∑
j=1

[
njE(Vj) + (1− ρj)E(θupj )

1− ρj

]
N∏

r=j+1

(1 +
ρr

1− ρr
), (15)

Observing the system at the end of the up cycle, the system’s state is
(A1(θ

up
1 +S

(1)
N −S

(1)
1 ), A2(θ

up
2 +S

(1)
N −S

(1)
2 ) , ....., AN−1(θ

up
N−1 +S

(1)
N −S

(1)
N−1),

0). The length of time required by the server to move back from channel N

to channel i is
∑N−i−1
r=0 Y

(2)
N−r. Hence,

Y
(2)
i =

Ai

(
θup
i +S

(1)
N −S

(1)
i +

∑N−i−1

r=0
Y

(2)
N−r

)
∑
j=1

Bij + θdowni−1

=

Ai

(
θup
i +
∑N

r=i+1
(Y

(1)
r +Y

(2)
r )

)
∑
j=1

Bij + θdowni−1 , i = 1, 2, ... , N (16)

with LST

Ỹ
(2)
i (ω) =

E

exp

−λi(1− B̃i(ω))
N∑

r=i+1

(Y (1)
r + Y (2)

r )

 θ̃upi (
λi(1− B̃i(ω))

)
θ̃downi−1 (ω),

i = 1, 2, . . . , N. (17)

The mean value of Y
(2)
i is

E(Y
(2)
i ) = λiE(Bi)

 N∑
r=i+1

(
E(Y (1)

r ) + E(Y (2)
r )

)
+ E(θupi )

+ E(θdowni−1 ),

i = 1, 2, . . . , N. (18)

By adding Z
(2)
i+1 =

∑N
r=i+1E(Y (2)

r ) to both sides of Eq. (18) we obtain a
system of difference equations

Z
(2)
i −

1

1− ρi
Z

(2)
i+1 =

ρi
1− ρi

 N∑
r=i+1

E(Y (1)
r ) + E(θupi )

+ E(θdowni−1 ),
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i = 1, 2, . . . , N ; Z
(2)
N = 0 (19)

whose solution is

Z
(2)
i =

N∑
j=i

ρj
[∑N

r=j+1E(Y (1)
r ) + E(θupj )

]
+ (1− ρj)E(θdownj−1 )

1− ρj

 j−1∏
r=i

(1+
ρr

1− ρr
),

i = 1, 2, . . . , N. (20)

Now, the mean down cycle time is given by substituting i = 1 in Eq. (20):

E(C2) = Z
(2)
1 =

N∑
j=1

ρj
[∑N

r=j+1E(Y (1)
r ) + E(θupj )

]
+ (1− ρj)E(θdownj−1 )

1− ρj

 j−1∏
r=1

(1+
ρr

1− ρr
) (21)

As E(Y (1)
r ) = Z(1)

r − Z
(1)
r−1, Eq. (14) and Eq. (20) determine explicitly

the 2N values of Z(1)
r and Z(2)

r (r = 1, 2, ..., N) for any initial system-state
(n1, n2, ..., nN). The mean cycle time is given by the sum of the mean up
cycle and the mean down cycle ( Eq. (15) and Eq. (21) respectively).

In general the expected value of njE(Vj) is ρj[
∑j−1
r=1E(Y (2)

r ) + E(θdownj−1 )],
which is the expected amount of work flowing into channel j from the moment
the server leaves the channel in the down direction until it reenters it in its
up direction. Substituting the above expression for njE(Vj) in Eq. (15),
we express E(C1) in terms of E(Y (2)

r ), similarly to Eq. (21). In order to

find expressions for Y
(1)
i and Y

(2)
i for an arbitrary cycle, we note that the

number of customers present in queue i at the beginning of an up cycle is
ni = Ai

(
θdowni−1 +

∑i−1
r=1 Y

(2)
r

)
. Thus Eq. (10) is transformed into

Y
(1)
i =

Ai

(
θdown
i−1 +

∑i−1

r=1
(Y

(1)
r +Y

(2)
r )

)
∑
j=1

Bij + θupi , i = 1, 2, ..., N (22)

with LST

Ỹ
(1)
i (ω) =

E

{
exp

[
−λi(1− B̃i(ω))

i−1∑
r=1

(Y (1)
r + Y (2)

r )

]}
θ̃downi−1

(
λi(1− B̃i(ω))

)
θ̃upi (ω),
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i = 1, 2, . . . , N. (23)

Then

E(Y
(1)
i ) = λiE(Bi)

[
i−1∑
r=1

(
E(Y (1)

r ) + E(Y (2)
r )

)
+ E(θdowni−1 )

]
+ E(θupi ),

i = 1, 2, . . . , N. (24)

The server’s total mean occupation time at channel i during a full cycle
is

E(Y
(1)
i )+E(Y

(2)
i ) =

ρi
1− ρi

 N∑
j=1,j 6=i

(
E(Y

(1)
j ) + E(Y

(2)
j )

)
+ E(θdowni−1 ) + E(θupi )

+E(θdowni−1 )+E(θupi ),

i = 1, 2, . . . , N. (25)

It follows that

E(Y
(1)
i ) + E(Y

(2)
i ) = ρiE(C) + E(θdowni−1 ) + E(θupi ), i = 1, 2, . . . , N. (26)

Substituting Eq. (26) in Eq. (24) yields

E(Y
(1)
i ) =

ρi
1− ρi

[
i−1∑
r=1

(
E(θdownr−1 ) + E(θupr ) + ρrE(C)

)
+ E(θdowni−1 )

]
+E(θupi ), i = 1, 2, . . . , N.

(27)
In a similar manner, using Eq. (18),

E(Y
(2)
i ) =

ρi
1− ρi

 N∑
r=i+1

(
E(θupr ) + E(θdownr−1 ) + ρrE(C)

)
+ E(θupi )

+E(θdowni−1 ), i = 1, 2, . . . , N.

(28)

Clearly the mean up (down) cycle, E(C1) (E(C2)), is given by summing the
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expressions for E(Y
(1)
i ) (E(Y

(2)
i )). The total mean cycle time is derived by

summing the expressions from Eq. (26), and is given, as expected, by

E(C) =

∑N
i=1

[
E(θdowni−1 ) + E(θupi )

]
1−∑N

i=1 ρi
(29)

(See Watson [1984] for a general result, and Takagi & Murata [1986] for a
slotted model).

4.2 Comparison between the up and down cycles

We are interested in finding conditions under which the means of the up and
the down cycles are equal. We have

Proposition 4.1 In the Elevator-Exhaustive model, E(C1) = E(C2) when-
ever θupi = θdownN−i and ρi = ρN−i+1 (i = 1, . . . , N).

Proof: Using Eq. (27) and Eq. (28)

E(C1)− E(C2) =
N∑
i=1

(
E(Y

(1)
i )− E(Y

(2)
i )

)

=
N∑
i=1

ρi
1− ρi

[
i−1∑
r=1

(
E(θdownr−1 ) + E(θupr ) + ρrE(C)

)
+ E(θdowni−1 )

]

−
N∑
i=1

ρi
1− ρi

 N∑
r=i+1

(
E(θupr ) + E(θdownr−1 ) + ρrE(C)

)
+ E(θupi )

 (30)

Substituting θupi = θdownN−i and ρi = ρN−i+1 for i = 1, . . . , N , in the second
term of Eq. (30), setting k = N − i+ 1, and using

∑N
i=1 ρiE(θupi )/(1− ρi) =∑N

i=1 ρiE(θdowni )/(1− ρi), we get

E(C1)−E(C2) =
N∑
i=1

ρi
1− ρi

[
i−1∑
r=1

(
E(θdownr−1 ) + E(θupr ) + ρrE(C)

)
+ E(θdowni−1 )

]

−
N∑
i=1

ρN−i+1

1− ρN−i+1

[
N−i∑
k=1

(
E(θdownk−1 ) + E(θupk ) + ρkE(C)

)
+ E(θdowni−1 )

]
Substituting j = N − i+ 1, we readily have E(C1) = E(C2).
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4.3 Mean Waiting Times

The mean waiting time in the Elevator-Exhaustive system can be calculated
utilizing Eq. (6) derived in Section 3. Clearly, the total mean waiting time
in channel i is given by a weighted sum of the mean waiting times in the up
cycle, E(Wi|up), and the down cycle, E(Wi|down). Therefore,

E(Wi) =
1

E(C)
[E(C1)E(Wi|up) + E(C2)E(Wi|down)] (31)

To calculate E(Wi|up) we recall that the number of customers found by the
server at channel i at polling instant of that channel in the up direction,
X i
i (up), is the number of customers that have arrived at channel i during the

time interval starting from the moment the server finished serving channel i
in the down direction, until it first returns to that channel in the up direction.
That is,

X i
i (up) = Ai

(
θdowni−1 +

i−1∑
r=1

(
Y (2)
r + Y (1)

r

))
The number of customers served at channel i in the up direction, denoted by
Ti(up), is given by

Ti(up) = X i
i (up) + Ai

Xi
i (up)∑
j=1

Bij


Thus, the waiting time in the up direction in the Elevator-Exhaustive system
is given by Eq. (6) with X i

i (up) and Ti(up) replacing X i
i and Ti, respectively.

In a similar manner, denoting by X i
i (down), the number of customers

found by the server at channel i when polled in the down direction, and by
Ti(down) the number of customers served at channel i in the down direction,
we have

X i
i (down) = Ai

θupi +
N∑

r=i+1

(
Y (1)
r + Y (2)

r

)

Ti(down) = X i
i (down) + Ai

Xi
i (down)∑
j=1

Bij


Again, the waiting time in the down direction is given by substitutingX i

i (down)
and Ti(down) in Eq.(6).
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Using X i
i and Ti instead of X i

i (up) and Ti(up), respectively, we have

E(Ti) = E

X i
i + Ai

Xi
i∑

j=1

Bij

 = E(X i
i )+λiE(Bi)E(X i

i ) =
E(X i

i )

1− ρi

E(T 2
i ) = E


X i

i + Ai

Xi
i∑

j=1

Bij

2


= E
[
(X i

i )
2
]
+2

ρiE
[
(X i

i )
2
]

1− ρi
+λ2

iE(X i
i )V ar(Bi)+E

[
(X i

i )
2
]
λ2
i [E(Bi)]

2+
ρiE(X i

i )

1− ρi

= E
[
(X i

i )
2
] ( ρi

1− ρi

)2

+E(X i
i )

[
λ2
iV ar(Bi) +

ρi
1− ρi

]

and

E(X i
iTi) = E

X i
i

X i
i + Ai

Xi
i∑

j=1

Bij

 = E
[
(X i

i )
2
]
+λiE(Bi)E

[
(X i

i )
2
]

=
E
[
(X i

i )
2
]

1− ρi

Substituting in Eq. (6), we derive,

E(Wi|up) =
E
[
(X i

i (up))
2
]
λ2
i (E(Bi))

2 + E(X i
i (up)) [λ2

iV ar(Bi)− 1]

2λiE(X i
i (up))

(1− ρ2
i )

+
E
[
(X i

i (up))
2
]
− E(X i

i (up))

2λiE(X i
i (up))

. (32)

E(Wi|down) is obtained similarly with X i
i (down) replacing X i

i (up) in Eq.
(32).

In order to complete the evaluation of E(Wi) (as given by Eq.(31)), it is

just left to calculate E(X i
i ) and E

[
(X i

i )
2
]
.
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4.4 Generating Functions

The values of the first and the second moments of X i
i (up) and X i

i (down)
will now be derived from a set of N PGFs as follows. In a similar way to
the method used in Takagi [1986], we define Xj

i (up) and Xj
i (down) as the

number of customers at channel j at polling instant of channel i at the up
and down cycle, respectively. Recall that during a full cycle the server visits
each of the channels 2, 3, . . . , N − 1, twice (once in each direction), where
channels 1 and N are visited only once. Let F up

i (z) and F down
i (z) be the

generating functions describing the state-vector of the system at the polling
instant of channel i in the up and down directions, respectively. That is

F up
i (z)

def
= E

 N∏
j=1

z
Xj

i (up)
j

 , i = 2, . . . , N

F down
i (z)

def
= E

 N∏
j=1

z
Xj

i (down)
j

 , i = 1, 2, . . . , N − 1. (33)

The evolution of the state of the system in the up direction is described by

Xj
i+1(up) =


Xj
i (up) + Aj(θ

up
i ) + Aj

Xi
i (up)∑
j=1

Bij

 j 6= i

Ai(θ
up
i ) j = i

(34)

Thus,

F up
i+1(z) = E

 N∏
j=1

z
Xj

i+1(up)

j



= θ̃upi

 N∑
j=1

λj(1− zj)

F up
i

z1, ..., zi−1, B̃i

 N∑
j=1,j 6=i

λj(1− zj)

 , zi+1, ..., zN

 ,
i = 2, . . . , N − 1. (35)
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For i = 1

Xj
2(up) =


Xj

1(down) + Aj(θ
up
1 ) + Aj

X1
1 (down)∑
j=1

B1j

 j ≥ 2

A1(θ
up
1 ) j = 1

(36)

Then,

F up
2 (z) = θ̃up1

 N∑
j=1

λj(1− zj)

F down
1

B̃1

 N∑
j=1,j 6=1

λj(1− zj)

 , z2, ..., zN

 .
(37)

Note that there is no expression for F
(up)
1 (z), as there is no polling of channel

1 in the up direction. The evolution of the state of the system in the down
direction is

Xj
i−1(down) =


Xj
i (down) + Aj(θ

down
i−1 ) + Aj

Xi
i (down)∑
j=1

Bij

 j 6= i

Ai(θ
down
i−1 ) j = i

(38)

Xj
N−1(down) =


Xj
N(up) + Aj(θ

down
N−1 ) + Aj

XN
N (up)∑
j=1

BNj

 j ≤ N − 1

AN(θdownN−1 ) j = N
(39)

It follows that

F down
i−1 (z) = E

 N∏
j=1

z
Xj

i−1(down)

j



= θ̃downi−1

 N∑
j=1

λj(1− zj)

F down
i

z1, ..., zi−1, B̃i

 N∑
j=1,j 6=i

λj(1− zj)

 , zi+1, ..., zN

 ,
i = 2, . . . , N − 1. (40)
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F down
N−1 (z) = θ̃downN−1

 N∑
j=1

λj(1− zj)

F up
N

z1, z2, ..., zN−1, B̃N

N−1∑
j=1

λj(1− zj)


(41)

Results for the corresponding slotted model where obtained by Takagi & Mu-
rata [1986] without specific attention to the end points of the cycle (channels
1 and N).

Let fupi (j) =
∂Fup

i (z)

∂zj

∣∣∣
z=1

and fdowni (j) =
∂F down

i (z)

∂zj

∣∣∣∣
z=1

.

Clearly, E(Xj
i (up)) = fupi (j) and E(Xj

i (down)) = fdowni (j).
Taking derivatives, we obtain a set of 2N(N−1) equations in the 2N(N−1)
unknowns fupi (j) and fdowni (j):

fupi+1(j) = fupi (j)+λj [E(θupi ) + fupi (i)E(Bi)] , 2 ≤ i ≤ N−1, i 6= j

fupj+1(j) = λjE(θupj )

fup2 (j) = fdown1 (j)+λj
[
E(θup1 ) + fdown1 (1)E(B1)

]
(42)

fdowni−1 (j) = fdowni (j)+λj
[
E(θdowni−1 ) + fdowni (i)E(Bi)

]
, 2 ≤ i ≤ N−1, i 6= j

fdownj−1 (j) = λjE(θdownj−1 )

fdownN−1 (j) = fupN (j)+λj
[
E(θdownN−1 ) + fupN (N)E(BN)

]
(43)

¿From Eqs. (42) and (43) it follows, as expected, that fupj (j) + fdownj (j) =
λj(1 − ρj)E(C). That is, the total number of customers served at channel
j during a full cycle is equal to the number of customers arriving at that
channel while the server is away.

Let fupi (j, k) =
∂2Fup

i (z)

∂zj∂zk

∣∣∣∣
z=1

and fdowni (j, k) =
∂2F down

i (z)

∂zj∂zk

∣∣∣∣
z=1

. Then

the second moments of Xj
i (up) and Xj

i (down) are given by

E
[
X i
i (up)

2
]

= fupi (i, i) + fupi (i)

E
[
X i
i (down)

2
]

= fdowni (i, i) + fdowni (i).

fupi (i, i) and fdowni (i, i) are calculated by solving 2N2(N−1) equations in the
2N2(N − 1) unknowns fupi (j, k) and fupi (j, k). For i = 2, . . . , N − 1, we use
Eq. (35) to get (with some abuse of notation)

∂2F up
i+1(z)

∂zj∂zk

∣∣∣∣∣
z=1

=

[
∂2θ̃upi
∂zj∂zk

F up
i +

∂θ̃upi
∂zk
× ∂F up

i

∂zj
+
∂θ̃upi
∂zj
× ∂F up

i

∂zk
+ θ̃upi

∂2F up
i

∂zj∂zk

]
z=1
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where

∂2θ̃upi
∂zj∂zk

=


λjλkE((θupi )2) j 6= k

λ2
jE((θupi )2) j = k

∂2F up
i (z)

∂zj∂zk
=



fupi (i)λjλkE(B2
i ) + λkf

up
i (i, j)E(Bi)

+λjf
up
i (i, k)E(Bi) + fupi (j, k)+

fupi (i, i)λjλk(E(Bi))
2 i 6= j 6= k

fupi (i)λ2
jE(B2

i ) + 2λjf
up
i (i, j)E(Bi)+

fupi (j, j) + fupi (i, i)λ2
j(E(Bi))

2 i 6= j = k

0 i = j, i = k

∂θ̃upi
∂zk
× ∂F up

i

∂zj
= λkE(θupi )fupi (j)

∂θ̃upi
∂zj
× ∂F up

i

∂zk
= λjE(θupi )fupi (k)

Similar equations are derived from Eq. (37) using F up
2 (z). In the same manner

we use Eqs. (40) and (41) to derive the corresponding set of equations for
fdowni (j, k).

Finally, by substituting the desired expressions forE(X i
i (up)), E

[
X i
i (up)

2
]

in Eq.(32) one gets the value of E(Wi|up). The corresponding expression for
E(Wi|down) is obtained similarly. Substituting these two terms in Eq. (31)
yields the desired result for E(Wi).

5 Elevator Gated Scheme

In this section we analyze the Elevator-polling Gated-service scheme. We
calculate expressions for the LST and means of the sojourn times of the server
in each channel during the up and down cycles, separately, and derive explicit
expressions for the mean duration of a full cycle. Finally, we obtain formulae
for calculating mean waiting times of customers in the various queues, both
in the up and down directions, as well as in general.
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5.1 Cycle Times

The analysis of the Elevator-Gated system requires only a slight modification
of the corresponding analysis of the Elevator-Exhaustive scheme presented
in Section 4. Under the Elevator-Gated scheme the server moves upwards
along stations 1, 2, ..., N , serving in each channel only those customers present
upon entrance, and then moves in the opposite direction through stations
N,N − 1, ..., 1. In contrast with the Elevator-Exhaustive model, the server
may leave unserved customers behind when it exits a channel. Thus, the
server visits all channels (including channels 1 and N) twice in every full
cycle.

Let {Vij}∞j=1 denote a sequence of independent random service require-
ments in channel i having a common distribution function Gi(.) and LST

Ṽi(ω). Let Y
(1)
i and Y

(2)
i denote the total occupation time of the server in

channel i (from the moment that service begins until the end of the switch-
over to the next channel) in up and down directions, respectively. Suppose
that at the start of an up cycle the state of the system is (n1, n2, ..., nN).

Then Y
(1)
i is given by

Y
(1)
i =

ni∑
j=1

Vij +

Ai(S
(1)
i−1)∑

j=1

Vij + θupi , i = 1, 2, ... , N, (44)

with LST

Ỹ
(1)
i (ω) =

[
Ṽi(ω)

]ni

S̃
(1)
i−1

(
λi(1− Ṽi(ω))

)
θ̃upi (ω), i = 1, 2, . . . , N. (45)

where S
(1)
i =

∑i
j=1 Y

(1)
j . The mean value of Y

(1)
i is given by

E(Y
(1)
i ) = niE(Vi) + ρiE(S

(1)
i−1) + E(θupi ), i = 1, 2, . . . , N. (46)

Using the definition Z
(1)
i = E(S

(1)
i ) and adding Z

(1)
i−1 to both sides of Eq.

(46), we obtain a set of difference equations in
{
Z

(1)
i

}
, i.e.,

Z
(1)
i − (1 + ρi)Z

(1)
i−1 = niE(Vi) + E(θupi ), i = 1, 2, . . . , N ; Z

(1)
0 = 0 (47)

The system (47) yields the solution

Z
(1)
i =

i∑
j=1

[njE(Vj) + E(θupi )]
i∏

r=j+1

(1 + ρr), i = 1, 2, . . . , N. (48)
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Thus, the mean value of the up cycle is

E(C1) = Z
(1)
N =

N∑
j=1

[njE(Vj) + E(θupi )]
N∏

r=j+1

(1 + ρr). (49)

Now,

Y
(2)
i =

Ai

(
Y

(1)
i +

∑N

r=i+1
(Y

(1)
r +Y

(2)
r )

)
∑
j=1

Vij + θdowni−1 , i = 1, 2, ... , N (50)

with LST

Ỹ
(2)
i (ω) =

E

exp

−λi (1− Ṽi(ω)
)Y (1)

i +
N∑

r=i+1

(
Y (1)
r + Y (2)

r

) θ̃downi−1 (ω),

i = 1, 2, . . . , N. (51)

And mean value

E(Y
(2)
i ) = λiE(Vi)

E(Y
(1)
i ) +

N∑
r=i+1

(
E(Y (1)

r ) + E(Y (2)
r )

)+ E(θdowni−1 ),

i = 1, 2, . . . , N. (52)

This leads to

Z
(2)
i − (1 + ρi)Z

(2)
i+1 = ρi

N∑
r=i

E(Y (1)
r ) + E(θ

(down)
i−1 ),

i = 1, 2, . . . , N ; Z
(2)
N = 0 (53)

with solution

Z
(2)
i =

N∑
j=i

[
ρj
(
Z

(1)
N − Z

(1)
j−1

)
+ E(θdownj−1 )

] j−1∏
r=i

(1 + ρr), i = 1, 2, . . . , N. (54)

The mean value for the down cycle is

E(C2) = Z
(2)
1 =

N∑
j=1

[
ρj
(
Z

(1)
N − Z

(1)
j−1

)
+ E(θdownj−1 )

] j−1∏
r=1

(1 + ρr), (55)
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as if n
(2)
j = λj

(
Z

(1)
N − Z

(1)
j−1

)
is the number of customers at channel j at the

end of the up cycle.
In order to derive explicit expressions for Y

(1)
i and Y

(2)
i , we note that

ni, the number of customers present in queue i at the beginning of an up
cycle, is the number of customers that have arrived to channel i during the
time interval starting ¿From the moment the server has last entered channel
i in its down direction, until the end of the entire down cycle. Therefore,
ni = Ai

(∑i
r=1 Y

(2)
r

)
. Then,

Y
(1)
i =

Ai

(
Y

(2)
i +

∑i−1

r=1
(Y

(2)
r +Y

(1)
r )

)
∑
j=1

Vij + θupi (i = 1, 2, ... , N) (56)

with LST

Ỹ
(1)
i (ω) =

E

{
exp

[
−λi

(
1− Ṽi(ω)

)(
Y

(2)
i +

i−1∑
r=1

(
Y (2)
r + Y (1)

r

))]}
θ̃upi (ω),

i = 1, 2, . . . , N. (57)

And mean value

E(Y
(1)
i ) = λiE(Vi)

[
E(Y

(2)
i ) +

i−1∑
r=1

(
E(Y (2)

r ) + E(Y (1)
r )

)]
+ E(θupi ),

i = 1, 2, . . . , N. (58)

The total mean occupation time of the server at channel i is

E(Y
(1)
i )+E(Y

(2)
i )

= ρi

 N∑
j=1,j 6=i

(
E(Y

(1)
j ) + E(Y

(2)
j )

)
+ E(Y

(1)
i ) + E(Y

(2)
i )

+E(θdowni−1 ) +E(θupi )

= ρiE(C) + E(θdowni−1 ) + E(θupi ), i = 1, 2, . . . , N. (59)

Substituting the expression for E(Y
(1)
i ) + E(Y

(2)
i ) in Eq. (58) yields

E(Y
(1)
i ) = ρi

[
i−1∑
r=1

(
E(θdownr−1 ) + E(θupr ) + ρrE(C)

)
+ E(Y

(2)
i )

]
+ E(θupi ),
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i = 1, 2, . . . , N. (60)

The same applies for Y
(2)
i (using Eq. (52)),

E(Y
(2)
i ) = ρi

 N∑
r=i+1

(
E(θdownr−1 ) + E(θupr ) + ρrE(C)

)
+ E(Y

(1)
i )

+ E(θdowni−1 ),

i = 1, 2, . . . , N. (61)

Eqs. (60) and (61) yield a set of 2N equations in the 2N unknowns
{
Y

(1)
i , Y

(2)
i

}
,

whose solution is given by

E(Y
(1)
i ) =

1

1− ρ2
i

{
E(θupi ) + ρi

[
i−1∑
r=1

[
E(θdownr−1 ) + E(θupr ) + ρrE(C)

]

+ρi

 N∑
r=i+1

[
E(θupr ) + E(θdownr−1 ) + ρrE(C)

]+ E(θdowni−1 )

 (62)

E(Y
(2)
i ) =

1

1− ρ2
i

{
E(θdowni−1 ) + ρi

[
N−1∑
r=i

[
E(θdownr−1 ) + E(θupr ) + ρrE(C)

]

+ρi

[
i−1∑
r=1

[
E(θupr ) + E(θdownr−1 ) + ρrE(C)

]]
+ E(θupi )

]}
(63)

The mean total cycle time, is derived by summing over the occupation
times in Eq.(59) and again, as expected, is

E(C) =

∑N
i=1

[
E(θdowni−1 ) + E(θupi )

]
1−∑N

i=1 ρi
(64)

The mean up and down cycles are now calculated by setting E(C1) =∑N
i=1E(Y

(1)
i ) and E(C2) =

∑N
i=1E(Y

(2)
i ).

5.2 Comparison between the up and down cycles

Similarly to the result obtained for the Elevator-Exhaustive case (Proposition
4.1), we have,

Proposition 5.1 In the Elevator-Gated model, E(C1) = E(C2) whenever
θupi = θdownN−i and ρupi = ρdownN−i+1 (i = 1, . . . , N).
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5.3 Mean Waiting Times

In any Gated service regime, the number of customers served during a visit
of the server equals the number of customers present at the channel upon
arrival. That is X i

i = Ti. Thus, employing Eq. (6) for the classical (cyclic)
Gated regime we have

E(Wi|Cyclic Gated) =
E
[
(X i

i )
2
]
− E(X i

i )

2λiE(X i
i )

(1 + ρi). (65)

Accordingly, we can use Eq. (65) to calculate separately E(Wi|up) and
E(Wi|down) in the Elevator-Gated scheme. E(Wi) is then given by the
weighted sum of E(Wi|up) and E(Wi|down), Eq. (31).

The number of customers found by the server at channel i at a polling in-
stant to that channel in the up direction, X i

i (up), is the number of customers
that have arrived at that channel during the time interval starting from the
moment the server has last entered the channel in the down direction, until
its first return in the up direction. That is,

X i
i (up) = Ai

(
Y

(2)
i +

i−1∑
r=1

(
Y (2)
r + Y (1)

r

))

Thus, the waiting time in the up direction is given by Eq.(65) with X i
i (up)

replacing X i
i . , In a similar manner, denoting by X i

i (down) the number of
customers found by the server at channel i when polled in the down direction,
we write

X i
i (down) = Ai

Y (1)
i +

N∑
r=i+1

(
Y (1)
r + Y (2)

r

)
so that the waiting time in the down direction is given by substituting
X i
i (down) in Eq. (65).

To complete the evaluation of E(Wi) we turn to calculate the terms E(X i
i )

and E
[
(X i

i )
2
]

for both the up and down directions.
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5.4 Generating Functions

Using the same definitions as in section 4.4, but with respect to the Elevator-
Gated case, we write

F up
i (z)

def
= E

 N∏
j=1

z
Xj

i (up)
j

 , i = 1, . . . , N. (66)

The evolution of the state of the system in the up direction is described by

Xj
i+1(up) =


Xj
i (up) + Aj(θ

up
i ) + Aj

(
Vi(X

i
i (up))

)
j 6= i

Ai(θ
up
i ) + Ai

(
Vi(X

i
i (up))

)
j = i

(67)

where Vi(n) is the total time to serve n customers at channel i. Thus,

F up
i+1(z) = E

 N∏
j=1

z
Xj

i+1(up)

j



= θ̃upi

 N∑
j=1

λj(1− zj)

F up
i

z1, z2, ..., zi−1, Ṽi

 N∑
j=1

λj(1− zj)

 , zi+1, ..., zN

 ,
i = 1, . . . , N − 1. (68)

For X i
1(up),

Xj
1(up) =


Xj

1(down) + Aj
(
V1(X

1
1 (down))

)
j ≥ 2

A1

(
V1(X

1
1 (down))

)
j = 1

(69)

therefore,

F up
1 (z) = F down

1

Ṽ1

 N∑
j=1

λj(1− zj)

 , z2, ..., zN

 (70)

The PGFs of the system-state in the down direction are similarly defined as

F down
i (z)

def
= E

 N∏
j=1

z
Xj

i (down)
j

 , i = 1, 2, . . . , N. (71)
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and the evolution of the states

Xj
i−1(down) =


Xj
i (down) + Aj(θ

down
i−1 ) + Aj

(
Vi(X

i
i (down))

)
j 6= i

Ai(θ
down
i−1 ) + Ai

(
Vi(X

i
i (down))

)
j = i

(72)

Xj
N(down) =


Xj
N(up) + AN

(
VN(XN

N (up))
)

j ≤ N − 1

AN
(
VN(XN

N (up))
)

j = N

(73)
It follows that

F down
i−1 (z) = E

 N∏
j=1

z
Xj

i−1(down)

j



= θ̃downi−1

 N∑
j=1

λj(1− zj)

F down
i

z1, ..., zi−1, Ṽi

 N∑
j=1

λj(1− zj)

 , zi+1, ..., zN

 ,
i = 2, . . . , N (74)

F down
N (z) = F up

N

z1, z2, ..., zN−1, ṼN

 N∑
j=1

λj(1− zj)

 (75)

Let E(Xj
i (up)) = fupi (j) =

∂Fup
i (z)

∂zj

∣∣∣
z=1

and E(Xj
i (down)) = fdowni (j) =

∂F down
i (z)

∂zj

∣∣∣∣
z=1

.

Taking derivatives of F up
i (z) and F down

i (z), we get 2N2 equations in the
2N2 unknowns fupi (j) and fdowni (j) , j = 1, 2, . . . , N , as follows

fupi+1(j) = fupi (j)+λj [E(θupi ) + fupi (i)E(Vi)] , 1 ≤ i ≤ N−1, i 6= j

fupj+1(j) = λj
[
E(θupj ) + fupj (j)E(Vj)

]
fup1 (j) = fdown1 (j)+λjf

down
1 (1)E(V1), j 6= 1

fup1 (1) = λ1f
down
1 (1)E(V1)

(76)

fdowni−1 (j) = fdowni (j)+λj
[
E(θdowni−1 ) + fdowni (i)E(Vi)

]
, 2 ≤ i ≤ N, i 6= j
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fdownj−1 (j) = λj
[
E(θdownj−1 ) + fdownj (j)E(Vj)

]
fdownN (j) = fupN (j)+λjf

up
N (N)E(VN), j 6= N

fdownN (N) = λNf
up
N (N)E(VN)

(77)
The second moments of Xj

i (up) and Xj
i (down) are calculated with the aid

of the second derivatives. Define fupi (j, k) =
∂2Fup

i (z)

∂zj∂zk

∣∣∣∣
z=1

and fdowni (j, k) =

∂2F down
i (z)

∂zj∂zk

∣∣∣∣
z=1

, then,

E
[
X i
i (up)

2
]

= fupi (i, i) + fupi (i)

E
[
X i
i (down)

2
]

= fdowni (i, i) + fdowni (i) .

fupi (i, i) and fdowni (i, i) are obtained by solving 2N3 equations in the 2N3 vari-
ables for fupi (j, k) and fupi (j, k), i, j, k = 1, . . . , N . For i = 1, 2, . . . , N − 1
we use Eq. (68) to get

∂2F up
i+1(z)

∂zj∂zk

∣∣∣∣∣
z=1

=

[
∂2θ̃upi
∂zj∂zk

F up
i +

∂θ̃upi
∂zk
× ∂F up

i

∂zj
+
∂θ̃upi
∂zj
× ∂F up

i

∂zk
+ θ̃upi

∂2F up
i

∂zj∂zk

]
z=1

where

∂2θ̃upi
∂zj∂zk

=


λjλkE((θupi )2) j 6= k

λ2
jE((θupi )2) j = k

∂2F up
i (z)

∂zj∂zk
=



fupi (i)λjλkE(V 2
i ) + λkf

up
i (i, j)E(Vi)

+λjf
up
i (i, k)E(Vi) + fupi (j, k)+

fupi (i, i)λjλk(E(Vi))
2 j 6= k

fupi (i)λ2
jE(V 2

i ) + 2λjf
up
i (i, j)E(Vi)+

fupi (j, j) + fupi (i, i)λ2
j(E(Vi))

2 j = k

∂θ̃upi
∂zk
× ∂F up

i

∂zj
= λkE(θupi )fupi (j)

∂θ̃upi
∂zj
× ∂F up

i

∂zk
= λjE(θupi )fupi (k)
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Similar equations are derived from Eq. (70). In the same manner we use
Eqs. (74) and (75) to derive the corresponding set of 2N3 equations in the
unknowns fdowni (j, k).

By substituting the expressions for E(X i
i (up)) and E

[
X i
i (up)

2
]

in Eq.(65)

one calculates E(Wi|up). Using Eq. (65) again with respect to the down
cycle, the corresponding expression for E(Wi|down) is obtained. Finally,
E(Wi) is calculating via Eq. (31).

6 Elevator Globally-Quasi-Exhaustive Scheme

In this section we study the Elevator-polling, Globally-Quasi-Exhaustive ser-
vice regime. We calculate expressions for the mean occupation time of the
server in each channel, and obtain explicit expressions for the mean duration
of a cycle. Finally, we derive expressions for calculating the mean waiting
time of an arbitrary customer in the various queues, both in the up and down
directions, as well as in general.

6.1 Cycle Times

Suppose that when a cycle starts, the state of the system is L(1) = (L
(1)
1 , . . . , L

(1)
N ).

Then as was described in the Introduction, under the Elevator-polling, Globally-
Quasi-Exhaustive service regime the server moves along stations 1, 2, ..., N
(up direction), staying at channel i for the duration of L

(1)
i M/Gi/1-type

busy periods. That is, the server makes a ”global” decision at the start of
a cycle as to the sojourn time it is going to spend at each channel. At the
end of the up cycle the globally new state of the system is observed, say
L(2) = (L

(2)
1 , . . . , L

(2)
N ), and the server moves in the opposite (down) direc-

tion, through stations N,N − 1, ..., 1, staying at channel i for the duration
of L

(2)
i busy periods.

This type of polling scheme is an extension of the cyclic polling Globally-
Quasi-Exhaustive service discipline suggested by Boxma, Levy & Yechiali
[1992], and discussed by Moskovitch [1992].

Considering for a moment the above mentioned cyclic Globally-Quasi-
Exhaustive discipline, in which the server moves from channel to channel
in a cyclic fashion. If θi is the switch-over time from channel i, then it
is easily seen that the cycle duration is unchanged if we alter the order of
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service of the channels or the order of the switching times. This follows
from the fact that the number of busy periods that the server stays in each
channel is determined apriory at the beginning of the cycle, and is therefore
independent of any change in the order of visits to the channels. In particular,
if θup ≡ ∑N−1

i=1 θupi =
∑N−1
i=1 θdowni ≡ θdown, then the cycle duration remains

unchanged if the channels are served in the order 1, 2, ..., N or N,N−1, ..., 1.
Thus, the durations of the up cycle and the down cycle in the Elevator-
polling, Globally-Quasi-Exhaustive model are the same, and the entire cycle
duration is equal to the sum of two cyclic Globally-Quasi-Exhaustive cycles
with zero switch-over time from channel 1 to channel N .

Formally, to show the equality of the up and the down cycles we write

E
{

exp (−ωC1) |L(1)
}

= E

exp

−ω
N−1∑
i=1

θupi +
N∑
i=1

L
(1)
i∑

k=1

Bik





=
N−1∏
i=1

θ̃upi (ω)
N∏
i=1

B̃i(ω)
L

(1)
i = θ̃up(ω)

N∏
i=1

B̃i(ω)
L

(1)
i .

Thus,

C̃1(ω) = E {exp(−ωC1)} = θ̃up(ω)GL(1)

(
B̃1(ω), B̃2(ω), . . . , B̃N(ω)

)
, (78)

where GL(1)(z) = E
{∏N

i=1 z
L

(1)
i

i

}
. Similarly,

C̃2(ω) = E {exp(−ωC2)} = θ̃down(ω)GL(2)

(
B̃1(ω), B̃2(ω), . . . , B̃N(ω)

)
(79)

Now, if θup = θdown then, probabilistically, L(1) = L(2) and C1 = C2 so that all
cycles are (probabilisticly) the same and equal to the cycle duration, Cg, of
an equivalent cyclic Globally-Quasi-Exhaustive scheme with zero switch-over
time from channel 1 to channel N .

Hence, in order to find the cycle duration and the sojourn time of the
server at channel i in the Elevator-polling scheme, we first give a brief analysis
of the cyclic Globally-Quasi-Exhaustive model: Let (L1, L2, ..., LN) be the
state-vector of the system at the beginning of a cycle, where Li denotes the
number of customers present at channel i, then

E(Li) = λi

 N∑
j=1,j 6=i

E(Bj)E(Lj) +
N∑
j=1

E(θj)

 , i = 1, 2, ..., N. (80)
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where θi is the switch-over time required when moving from channel i to the
next channel. By adding λiE(Bi)E(Li) to both sides of Eq. (80) we have

E(Li) [1 + λiE(Bi)] = λi

 N∑
j=1

E(Bj)E(Lj) +
N∑
j=1

E(θj)

 ≡ λiE(Cg),

i = 1, 2, ..., N (81)

where Cg denotes the cycle time in the cyclic Globally-Quasi-Exhaustive
regime. Then,

E(Li) = λi(1− ρi)E(Cg) (82)

Let Yi denote the occupation time of the server at channel i calculated from
the moment the server enters the channel until the end of the switch-over
time to the next channel, and let Ri be the total net service time in channel
i. Then

E(Yi) = E(Ri) + E(θi) = E(Bi)E(Li) + E(θi) = ρiE(Cg) + E(θi),

i = 1, 2, ..., N, (83)

Clearly,

E(Cg) =
N∑
i=1

E(Yi) =
N∑
i=1

ρiE(Cg) +
N∑
i=1

E(θi) (84)

so that, as expected,

E(Cg) =

∑N
i=1E(θi)

1−∑N
i=1 ρi

(85)

Finally, setting C∗g as the cycle time in the cyclic Globally-Quasi-Exhaustive
regime with θN = 0, the mean of a full cycle in the Elevator scheme is

E(C) = E(C1) + E(C2) = 2E(C∗g ) =
2
∑N−1
j=1 E(θj)

1−∑N
j=1 ρi

. (86)

6.2 Mean Waiting Times

As C1 = C2,
E(Wi) = 0.5 [E(Wi|up) + E(Wi|down)] (87)

30



To obtain E(Wi|up) and E(Wi|down) we use Eq. (6) with the appropriate
terms for X i

i and Ti. Clearly,

Ti(up) = L
(1)
i + Ai

(
Mi(L

(1)
i )

)
where Mi(L) is the duration of L M/Gi/1− type busy periods all distributed
as Bi. X

i
i (up), the number of customers at station i at polling instant in the

up direction, equals L
(1)
i plus the number of arrivals to channel i ¿From the

beginning of the up cycle until the entrance time of the server. That is,

X i
i (up) = L

(1)
i + Ai

i−1∑
j=1

Y
(1)
j

 = L
(1)
i +

i−1∑
j=1

(
Ai(θ

up
j ) + Ai

(
Mj(L

(1)
j )

))
Hence,

E(Ti(up)) =
E(L

(1)
i )

1− ρi
(88)

E((Ti(up)
2) = E

[
(L

(1)
i )

2
] (

1

1− ρi

)2

+E(L
(1)
i )

[
λ2
iV ar(Bi) +

ρi
1− ρi

]
(89)

E
(
X i
i (up)Ti(up)

)

= E

L(1)
i +

i−1∑
j=1

(
Ai(θ

up
j ) + Ai

(
Mj(L

(1)
j )

))(L(1)
i + Ai

(
Mi(L

(1)
i )

))
= E

[L(1)
i

]2
+ L

(1)
i

(
Ai
(
Mi(L

(1)
i )

))
+ L

(1)
i

i−1∑
j=1

Ai(θ
up
j ) + L

(1)
i

i−1∑
j=1

Ai
(
Mj(L

(1)
j )

)

+Ai
(
Mi(L

(1)
i )

) i−1∑
j=1

Ai(θ
up
j ) + Ai

(
Mi(L

(1)
i )

) i−1∑
j=1

Ai
(
Mj(L

(1)
j )

)
= E

[
(L

(1)
i )

2
]
+λiE(Bi)E

[
(L

(1)
i )

2
]
+λiE(L

(1)
i )

i−1∑
j=1

E(θupj )+λ2
iE(L

(1)
i )E(Bi)

i−1∑
j=1

E(θupj )

+λi
i−1∑
j=1

E(Bj)E(L
(1)
i L

(1)
j ) + λ2

iE(Bi)
i−1∑
j=1

E(Bj)E(L
(1)
i L

(1)
j )
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Thus,

E
(
X i
i (up)Ti(up)

)
=
E
[
(L

(1)
i )

2
]

1− ρi
+λi

(
1

1− ρi

)
i−1∑
j=1

[
E(θupj )E(L

(1)
i ) + E(L

(1)
i L

(1)
j )E(Bj)

]
(90)

Substituting results (88), (89) and (90) in Eq. (6), we obtain

E(Wi|up) =

E

[
(L

(1)
i )

2
]

(1−ρi)
2 + E(L

(1)
i )

[
λ2
iV ar(Bi) + ρi

1−ρi

]
− E(L

(1)
i )

1−ρi

2λi
E(L

(1)
i )

1−ρi

(1+ρi)

+

E

[
(L

(1)
i )

2
]

1−ρi
+ λi

(
1

1−ρi

)∑i−1
j=1

[
E(θupj )E(L

(1)
i ) + E(L

(1)
i L

(1)
j )E(Bj)

]
2λi

E(L
(1)
i )

1−ρi

−

E

[
(L

(1)
i )

2
]

(1−ρi)
2 + E(L

(1)
i )

[
λ2
iV ar(Bi) + ρi

1−ρi

]
2λi

E(L
(1)
i )

1−ρi

Summing the first and third terms of the above equation, we have

E(Wi|up) =
ρiE

[
(L

(1)
i )

2
]

+ E(L
(1)
i )(1− ρi) [ρi(1− ρi)λ2

iV ar(Bi) + ρ2
i ]

2λi(1− ρi)E(L
(1)
i )

+
E
[
(L

(1)
i )

2
]

+ λi
∑i−1
j=1

[
E(θupj )E(L

(1)
i ) + E(L

(1)
i L

(1)
j )E(Bj)

]
2λiE(L

(1)
i )

(91)

E(Wi|down) is derived similarly by using Eq.(6) with Ti(down) andX i
i (down):

Ti(down) = L
(2)
i + Ai

(
Mi(L

(2)
i )

)
and

X i
i (down) = L

(2)
i +Ai

 N∑
j=i+1

Y
(2)
j

 = L
(2)
i +

N∑
j=i+1

(
Ai(θ

down
j−1 ) + Ai(Mj(L

(2)
j ))

)
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¿From the discussion above, when θup = θdown, the number of customers
present at the various channels at the beginning of an up cycle or a down
cycle are probabilistically the same. Thus, denoting by L∗i , the number of cus-

tomers present at channel i at the beginning of cycle C∗g , E(L
(1)
i ) = E(L

(2)
i ) =

E(L∗i ) and E
[
(L

(1)
i )

2
]

= E
[
(L

(2)
i )

2
]

= E
[
(L∗i )

2
]
. Therefore, the total wait-

ing time is given by substituting E(Wi|up) and E(Wi|down) in Eq. (87),

with L∗i replacing of L
(1)
i and L

(2)
i . Suppressing the stars from all L∗i and C∗g ,

we write

E(Wi) =
ρiE(L2

i ) + E(Li)(1− ρi) [ρi(1− ρi)λ2
iV ar(Bi) + ρ2

i ]

2λi(1− ρi)E(Li)

+
E(L2

i ) + λi
∑i−1
j=1

[
E(θupj Li) + E(LjLi)E(Bj)

]
4λiE(Li)

+
E(L2

i ) + λi
∑N
j=i+1

[
E(θdownj−1 Li) + E(LjLi)E(Bj)

]
4λiE(Li)

(92)

As

ELi

λiE
 N∑
j=1,j 6=i

E(Bi)LiLj +
i−1∑
j=1

θupj Li +
N∑

j=i+1

θdownj−1 Li

 = E(L2
i ),

we have,

E(Wi) =
ρiE(L2

i ) + E(Li)(1− ρi) [ρi(1− ρi)λ2
iV ar(Bi) + ρ2

i ]

2λi(1− ρi)E(Li)
+

E(L2
i )

2λiE(Li)
(93)

To complete the evaluation of E(Wi) (as given by Eq.(93) ), it is just left
to obtain E(L2

i ).

6.3 Generating Functions

Let (L
(1)
1 , L

(1)
2 , . . . , L

(1)
N ) be the vector state of the system at the beginning of

an up cycle, and let (L
(2)
1 , L

(2)
2 , . . . , L

(2)
N ) be the system’s state at the beginning

of the following down cycle (or vica verca). Then,

E
[
z
L

(2)
1

1 , z
L

(2)
2

2 , . . . , z
L

(2)
N

N

∣∣∣∣L(1)
1 , L

(1)
2 , . . . , L

(1)
N

]
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= E

exp

− N∑
j=1

λj(1− zj)

 N∑
k=1k 6=j

R
(1)
k + θ


= θ̃

 N∑
j=1

λj(1− zj)

 N∏
j=1

 N∏
k=1k 6=j

R̃
(1)
k (λj(1− zj))

 (94)

where R
(m)
k , the total net service time during a visit of channel k, is R

(m)
k =∑Lk

i=1Bki, (m = 1, 2). Therefore, R̃k(ω|Lk) =
[
B̃k(ω)

]Lk
, and

E
[
z
L

(2)
1

1 , z
L

(2)
2

2 , . . . , z
L

(2)
N

N

∣∣∣∣L(1)
1 , . . . , L

(1)
N

]
= θ̃

 N∑
j=1

λj(1− zj)

 N∏
j=1

N∏
k=1k 6=j

[
B̃k(λj(1− zj))

]L(1)
k .

However,

N∏
j=1

N∏
k=1k 6=j

[
B̃k(λj(1− zj))

]L(1)
k =

=

 N∏
j=1j 6=1

B̃1(λj(1− zj))

L
(1)
1
 N∏
j=1j 6=2

B̃2(λj(1− zj))

L
(1)
2

. . .

 N∏
j=1j 6=N

B̃N(λj(1− zj))

L
(1)
N

.

Setting, as before, L = L(1) = L(2), the generating function of the system’s
state at the beginning of a cycle is given by

E

 N∏
j=1

z
Lj

j

 = GL(z) = θ̃

 N∑
j=1

λj(1− zj)

E
 N∏
k=1

 N∏
j=1j 6=k

B̃k(λj(1− zj))

Lk


= θ̃

 N∑
j=1

λj(1− zj)

GL (δ1(z), . . . , δN(z)) (95)

where δk(z) =
∏N
j=1,j 6=k B̃k(λj(1 − zj)). Now, taking derivatives, we obtain

again the set of equations (80), leading to Eq. (82): E(Li) = λi(1−ρi)E(Cg).
That is, the total number of customers found by the server at channel i at the
beginning of a cycle is equal to the number of customers who have arrived
at that channel while the server was away. Setting γ(z) =

∑N
j=1 λj(1 − zj),

and recursively define δ(0) = z, δ(1)(z) = (δ1(z), δ2(z), . . . , δN(z)), δ(m)(z) =
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δ
(
δ(m−1)(z)

)
m = 2, 3, . . . , then, by iterating Eq. (95), we find, for every

M = 1, 2, . . .

GL(z) =
M−1∏
m=0

θ̃
(
γ
(
δ(m)(z)

))
GL

(
δ(M)(z)

)
(96)

It can be shown, similarly to the calculation in Boxma, Levy & Yechiali
[1992], that

limM→∞ δ
(M)(z) = 1 and that the infinite product

∏∞
m=0E

[
e−γ(δ

(m)(z))θ
]

con-

verges if ρ < 1. Hence,

GL(z) =
∞∏
m=0

θ̃
(
γ
(
δ(m)(z)

))
(97)

The moments of the Lk’s can be now calculated in the regular manner.

7 Elevator-Polling, Globally-Gated Service Regime

The cyclic-polling, Globally-Gated (GG) service regime was introduced and
studied by Boxma, Levy & Yechiali [1992]. Under the cyclic GG procedure,
at the start of each cycle, all customers present in the various queues are
marked, and those customers are the only ones to be served during this
cycle. Customers arriving in the middle of a cycle will be marked at the
beginning of the next cycle, and will be served during that cycle. Boxma,
Levy & Yechiali derived the LST of the cycle time, C, and obtained explicit
formulae for E(C) and E(C2). Not surprisingly, it was shown, once more,

that E(C) =
[∑N

i=1E(θi)
]
/(1 − ρ), where θi is the switch-over time from

channel i to channel i + 1. They also derived the LST of Wi(cyclic), the
waiting time at queue i, and obtained an explicit formula for E (Wi (cyclic)),
namely,

E (Wi (cyclic)) =

1 + 2
i−1∑
j=1

ρj + ρi

 E(C2)

2E(C)
+

i−1∑
j=1

θj (98)

Furthermore, using Eq. (98), it was shown that

E (W1 (cyclic)) < E (W2 (cyclic)) < . . . < E (WN (cyclic)) .

Altman, Khamisy &Yechiali [1992] then studied the Elevator-polling with
GG service regime. If θupi = θdowni , then, as in the Globally-Quasi-Exhaustive
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case, all up and down cycles are probabilisticly the same. Utilizing this fact
and result (98) they showed that, for the Elevator-GG model, mean waiting
times at all channels are the same, and equal to

E(W ) = (1 + ρ)
E(C2)

2E(C)
+
E(θ)

2
(99)

This is the only known nonsymetric polling scheme that achieves such a
’fairness’ phenomenon.

7.1 Cycle Times and Generating functions

In this section we extend the analysis given by Altman, Khamisy & Yechiali
[1992]. We will use the notation of previous sections.

The LSTs of the cycle times and the Generating Functions of L(1) and
L(2) are related to each other as follows.

E
{
e−ωC1|L(1)

}
= θ̃up(ω)

N∏
j=1

Ṽ
L

(1)
j

j (ω)

so that C̃1(ω) = θ̃up(ω)GL(1)

(
Ṽ1(ω), Ṽ2(ω), . . . , ṼN(ω)

)
. Also,

GL(1)(z) = EC2E

 N∏
j=1

Z
L

(1)
i

i |C2

 = EC2

exp

−
N∑
j=1

λj(1− zj)C2


 = C̃2

 N∑
j=1

λj(1− zj)

 .
Similarly, GL(2)(z) = C̃1

(∑N
j=1 λj(1− zj)

)
. Thus,

C̃1(ω) = θ̃up(ω)C̃2

 N∑
j=1

λj
(
1− Ṽj(ω)

) , (100)

and

C̃2(ω) = θ̃down(ω)C̃1

 N∑
j=1

λj
(
1− Ṽj(ω)

) . (101)

Hence,
C̃1(ω) = θ̃up(ω)θ̃down (δ(ω)) C̃1

(
δ(2)(ω)

)
(102)
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where, δ(ω) =
∑N
j=1 λj

(
1− Ṽj(ω)

)
, and δ(0)(ω) = ω; δ(m)(ω) = δ

(
δ(m−1)(ω)

)
,

m = 1, 2, 3, . . . Iterating, and noticing that limm→∞ δ
(m)(ω) = 0, so that

limm→∞ C̃1

(
δ(m)(ω)

)
= 1 (see Boxma, Levy & Yechiali [1992]), we finally

have

C̃1(ω) =
∞∏
m=0

θ̃up
(
δ(2m)(ω)

)
θ̃down

(
δ(2m+1)(ω)

)
(103)

Similarly,

C̃2(ω) =
∞∏
m=0

θ̃down
(
δ(2m)(ω)

)
θ̃up

(
δ(2m+1)(ω)

)
(104)

Now, if θup = θdown, then all up and down cycles are the same, and equal to
C1. ¿From Eq. (103) and (104),

E(C1) = E(θup) + ρE(C2) and E(C2) = E(θdown) + ρE(C1).

Hence,

E(C1) =
E(θup) + ρE(θdown)

1− ρ2
and E(C2) =

E(θdown) + ρE(θup)

1− ρ2
(105)

Clearly,

E(C) = E(C1) + E(C2) =
E(θup) + E(θdown)

1− ρ
(106)

It readily follows now that

E(L
(1)
i ) = λiE(C2), E(L

(2)
i ) = λiE(C1) (107)

and
E(Y

(1)
i ) = E(L

(1)
i )E(Vi) + E(θupi ) = ρiE(C2) + E(θupi ) (108)

E(Y
(2)
i ) = ρiE(C1) + E(θdowni ) (109)

7.2 Mean Waiting Times

We can use again Eqs. (6) and (31) to evaluate E(Wi). In order to calculate
E(Wi|up) consider an arrival K to channel i during an up cycle. K will be
served only during the following down cycle. Hence, the number of customers,
served at queue i during the server’s visit in which K is being served, is
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Ti = Ai(C1), while the number of customers present when the server enters

channel i is X i
i = Ti + Ai

(∑N
j=i+1 Y

(2)
j

)
. Thus, as E(Ti) = λiE(C2) and

E(T 2
i ) = λ2

iE(C2
1)+λiE(C1), the first term in (6) (when calculating E(Wi|up)

) is given by
E(C2

1 )

2E(C1)
(1 + ρ). (The probabilistic interruption of this term will

become apparent in the sequel). Now, the numerator of the second term of

(6) is given by E
(
Ai(C1)Ai

(∑N
j=i+1 Y

(2)
j

))
. Observe that Y

(2)
j and C1 are

dependent since Y
(2)
j =

∑Aj(C1)
j=1 Vjk + θdownj−1 .

We can complete the derivation in this manner, calculating similarly
E(Wi|down), but instead we choose to use a direct approach, applying argu-
ments similar to those in Boxma, Levy & Yechiali [1992].

Consider again our customer K. His waiting time is composed of:

(i) The residual part of the up cycle, CR
1 .

(ii) The service time of all customers who arrived at queues i+1, i+2, . . . , N
during the up cycle in which K arrives.

(iii) The switch over times of the server on its way down from channel N to
channel i.

(iv) The service time of all customers who have arrived at channel i during
the past part, CP

1 , of the up cycle in which K arrives.

Thus,

E(Wi|up) = E(CR
1 ) +

N∑
j=i+1

ρj
[
E(CP

1 ) + E(CR
2 )
]

+
N−1∑
j=i

E(θdownj ) + ρiE(CP
1 )

(110)

Since E(CP
1 ) = E(CR

1 ) =
E(C2

1 )

2E(C1)
, we have (see also Altman, Khamisy &

Yechiali [1992]),

E(Wi|up) =

1 + 2
N∑

j=i+1

ρj + ρi

E(CR
1 ) +

N−1∑
j=i

E(θdownj ) (111)

Similarly,

E(Wi|down) =

1 + 2
i−1∑
j=1

ρj + ρi

E(CR
2 ) +

i−1∑
j=1

E(θupj ) (112)
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E(Wi) is readily obtained by substituting results (111), (112), (105) and
(106) in Eq. (31). However, in order to complete the calculation we need to
evaluate E(C2

1) and E(C2
2). By differentiating (100) and (101) we get

E(C2
1) = E

(
(θup)2

)
+2ρE(θup)E(C2)+ρ2E(C2

2)+E(C2)
N∑
j=1

λjE(V 2
j ) (113)

E(C2
2) = E

(
(θdown)

2
)

+ 2ρE(θdown)E(C1) + ρ2E(C2
1) + E(C1)

N∑
j=1

λjE(V 2
j )

(114)
E(C2

1) and E(C2
2) are easily derived from (113) and (114) so that E(CR

1 ) and
E(CR

2 ) are readily calculated. Now, E(Wi) is completely determined.
In the case where θ = θup = θdown, then C1 = C2, so that E(C1) =

E(C2) = E(θ)
(1−ρ) and

E(C2
1) = E(C2

2) =
1

1− ρ2

E(θ2) +
2ρ[E(θ)]2

(1− ρ)
+

(∑N
j=1 λjE(V 2

j )
)
E(θ)

(1− ρ)


(115)

Then, with E(CR
1 ) = E(CR

2 ) we obtain

E(Wi|θup = θdown) = (1 + ρ)E(CR
1 ) +

E(θ)

2
(116)

That is, all mean waiting times are equal.
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