Polling Systems with Job Failures and with Station Failures

Merav Shomrony and Uri Yechiali
Department of Statistics and Operations Research School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
(mshomrony@elta.ac.il, uriy@post.tau.ac.il)

ABSTRACT

We consider a polling system with Exhaustive service policy subject to job failures or to station failures. Each of the N stations (nodes) comprising the system is, in isolation, an $M / G / 1$ - type queue. Failures at each node follow a Poisson process. A job failure causes the job to be rejected from the system, while a station failure (breakdown) causes the server to switch over to the next node. The case with job failures is transformed into a classical polling model. However, the case with station failures does not yield a solution when analyzed via the station occupancy approach. We therefore bring into use interpolation theory, never employed before in polling systems, and obtain explicit (approximated) solutions of key performance measures.

Key words: Polling; Exhaustive; Failures; Interpolation theory.

1. INTRODUCTION

This paper analyzes Polling systems with job failures and with station failures (breakdowns). Such systems (under various scenarios, described in the sequel) have been partially treated before in the literature (see, for example, Kofman and Yechiali $[1996,1997]$), but the analysis was incomplete because the Probability Generating Function $(P G F)$ and mean of a key variable: X_{i}^{i} - the number of customers present in queue i when the server polls this queue - could not be explicitly derived. In this work we overcome this shortcoming by bringing into use interpolation theory, a method never used before for the analysis of polling systems.

In classical polling models, customers (jobs) arrive, independently, to each of several $M / G / 1$ - type queues (stations) being attended by a single server that moves from one queue to another, incurring switch-over times. The server visits the stations in a cyclic order.

Consider however, a polling system subject to two types of failures, occurring when the server visits a queue: 1. a job failure, and 2. a station breakdown. Upon occurrence of a failure of the first type, service is interrupted to the currently processed job, which is rejected, while the server proceeds immediately
to serve the next job in the queue (if any). Examples for this type of failure are: an unsuccessful attempt of a job to access an unallocated memory, a transient fault of the communication system, or a short interruption in the power supply to the system, which is recovered immediately.

Upon occurrence of a station breakdown, the service at the queue being attended is stopped immediately, the current job is rejected and the server switches on to the next station. We assume that by the time the server visits this station again, the station has been recovered from its breakdown state. An example of such a failure is an undetected virus attack on the station.

Service policies control the amount of service given to each queue during a server's visit. We study in this work the Exhaustive service policy. In the classical Exhaustive policy, at each visit the server attends the queue until it becomes empty, and only then the server is allowed to move further. In contrast, in our model here, upon the occurrence of a station breakdown, the server immediately switches on to the next station, even if jobs are still present in the failed station.

Most of the results on polling systems until mid 80s are presented in a manuscript by Takagi [1986]. An update is given in Takagi [1990]. The Globally Gated regime was introduced by Boxma, Levy and Yechiali [1992]. Polling systems with breakdowns are treated in Kofman and Yechiali [1996, 1997] while polling systems involving both breakdowns and repairs were studied in Nakdimon and Yechiali [2003]. Issues of controlling polling systems are discussed in Yechiali [1993].

Our analysis is based on the laws of motion which connect between the occupancy variables $X_{i}^{j} s$, being the number of customers present in queue j at polling instant of queue i. The classical method of analysis utilizes joint multi-variate probability generating functions of the system's state (a vector of queue sizes) to derive a set of recursive equations for the means (and higher moments) of the variables $X_{i}^{j} s$.

As indicated, with station failures, the above method does not yield explicit solutions of $\widehat{X}_{i}^{i}(z)$, the PGF of X_{i}^{i}, and of $E\left[X_{i}^{j}\right]$ or $E\left[\left(X_{i}^{j}\right)^{2}\right]$, needed for the complete evaluation of the $P G F$ and mean of the stationary queue size at each station, as well as for the calculation of the moments of the waiting times. We therefore bring interpolation theory into use and approximate $\widehat{X_{i}^{i}}(z)$. This enables us to obtain explicit (approximated) solutions.

In section 2 we describe the underlying basic model and list the various symbols and notation. We further give some preliminary results, being used throughout the paper. Section 3 treats the Exhaustive policy. For each of the two failure scenarios we derive the multi-dimensional $P G F$ of the system's state at polling instants, and calculate the mean queue sizes at those moments. We also calculate the $P G F$ of the queue size in each station at an arbitrary moment, and derive the Laplace Stieltjes Transform $(L S T)$ of the waiting time of a customer in each queue. Numerical examples are presented, showing how the interpolation theory is used to obtain explicit results. We mention that the Gated and the Globally Gated (see Boxma et al [1992] and [1993] policies can be treated in a similar manner (see Shomrony and Yechiali [2005a]).

2. THE BASIC MODEL 2.1 Model description

We consider a polling system comprised of N stations (queues, channels), labeled $1,2, \ldots, N$, where customers (jobs, messages) arrive at station i according to a Poisson process with rate λ_{i}. However, the system is subject to random failures, independently of the arrival stream, and occurring at the station being served according to a Poisson process with rate γ_{i}. We consider two failure types: job failures and station failures, described in the introduction.

A single server renders service to the entire network by moving from one station to another, in a cyclic order, i.e. visiting the queues in the order $1,2, \ldots, N-1, N, 1,2, \ldots$. The server resides at a queue for a length of time determined by the service policy and by the failure type, and then moves on to the next station.

The server's switch-over duration to move from station i to the next is a random variable D_{i}. Each job in queue $i \quad(i=1,2, \ldots, N)$ is characterized by an independent random service requirement B_{i} with $E\left[B_{i}^{2}\right]<\infty$. We assume that a failure causes the job in service to leave the system immediately, without completing its service requirement.

2.2 Notation and definitions

$\widehat{X}(z)=E\left[z^{X}\right] \quad$ denotes the probability generating function $(P G F)$ of a discrete random variable X.
$\widetilde{Y}(s)=E\left[e^{-s Y}\right]$ denotes the Laplace Stieltjes transform $(L S T)$ of a non negative continuous random variable Y (with mean y and second moment $\left.y^{(2)}\right)$.
$X \sim Y \quad$ denotes two random variables having the same probability distribution function.
$X_{i}^{j} \quad$ Number of jobs present in queue j at polling instant of queue i. $f_{i}(j)=E\left[X_{i}^{j}\right]$
$\theta_{X_{i}^{i}}^{i}=\theta_{i}$ Sojourn time (busy period) of the server in station i, starting with X_{i}^{i} jobs.
$\Phi_{i} \quad$ Length of a busy period in a regular $M / G / 1$ queue with arrival rate λ_{i} and service times M_{i}.
$\phi_{i} \quad$ Length of a busy period in a regular $M / G / 1$ queue with arrival rate λ_{i} and service times B_{i}.
$T_{i} \quad$ Inter- arrival time of failures to station $i . T_{i} \sim \exp \left(\gamma_{i}\right)$.
$A_{i}(t) \quad$ Number of (Poisson with rate λ_{i}) arrivals to queue i during a time
interval of length t.
$G_{i}(\underline{z})=E\left[\prod_{j=1}^{N} z_{j}^{X_{i}^{j}}\right]$ The joint probability generating function $(P G F)$ of the system state vector $\underline{X_{i}}$, where $\underline{z}=\left(z_{1}, \ldots, z_{N}\right)$ and

$$
\underline{X_{i}}=\left(X_{i}^{1}, X_{i}^{2}, \ldots, X_{i}^{N}\right) .
$$

$B_{i} \quad$ Service requirement for a job in channel i, having a density function $f_{B_{i}}($.$) .$
$a_{i} \quad$ Probability that a service (in channel i) is completed before a failure occurs. $a_{i}=\widetilde{B_{i}}\left(\gamma_{i}\right)=P\left(B_{i} \leq T_{i}\right)$.
D_{i} Switch-over duration when moving from channel i to the next channel.
$D=\sum_{i=1}^{N} D_{i}$ Total switch-over duration during a cycle.
$M_{i}=\min \left\{B_{i}, T_{i}\right\} \quad$ Net service time of a customer in queue i.
$\rho_{i}=\lambda_{i} m_{i}$ The traffic load of queue i.
$\rho=\sum_{i=1}^{N} \rho_{i}$ The total traffic load of the system.
$K_{i}=K_{i}\left(X_{i}^{i}\right)$ Total number of customers successfully served in channel i during a visit of the server to that channel, while starting with X_{i}^{i} customers. That is, K_{i} is the number of customers whose service was not interrupted by a failure.
$\overline{K_{i}}=\overline{K_{i}}\left(X_{i}^{i}\right)$ Total number of service attempts (including unsuccessful attempts interrupted by a failure) in channel i during a visit of the server to that channel, while starting with X_{i}^{i} customers.
$N_{i} \quad$ Queue size at the end of a busy period.
$U_{i} \quad$ Duration of a successful (not interrupted) service time of a customer in queue i. That is, $U_{i} \sim B_{i} \mid B_{i} \leq T_{i}$.
$\overline{U_{i}} \quad$ The realized service time of an interrupted customer in queue i : $\overline{U_{i}} \sim T_{i} \mid T_{i}<B_{i}$.
$L_{i} \quad$ Number of customers left behind by an arbitrary departing customer from channel i. L_{i} also stands for the number of customers at channel i (in a steady-state) at an arbitrary point of time.
$W_{i} \quad$ Sojourn time of a customer in channel i.
$W q_{i} \quad$ Waiting (queueing) time of an arbitrary customer before service at channel i.
C Length of a cycle. That is, the time interval between two consecutive polling instants of a queue.
$\sigma=\sigma(\underline{z})=\sum_{j=1}^{N} \lambda_{j}\left(1-z_{j}\right)$

$$
\begin{aligned}
& \sigma_{i}=\sigma_{i}(\underline{z})=\sum_{\substack{j \\
(j \neq i)}} \lambda_{j}\left(1-z_{j}\right) \\
& \delta_{i}=\gamma_{i}+\lambda_{i}(1-z)
\end{aligned}
$$

2.3 Useful results

We now present a few results that will be useful in the sequel. Let $M_{i}=$ $\min \left\{B_{i}, T_{i}\right\}$ be the actual net service time of an arbitrary customer in queue i. Then, we have the following:

Result 1: The $L S T$, mean and second moment of M_{i} are given, respectively, by

$$
\begin{gather*}
\widetilde{M}_{i}(s)=\frac{\gamma_{i}+s \cdot \widetilde{B_{i}}\left(\gamma_{i}+s\right)}{\gamma_{i}+s} \tag{2.3-1}\\
m_{i}=E\left[M_{i}\right]=\frac{1-\widetilde{B_{i}}\left(\gamma_{i}\right)}{\gamma_{i}}=\frac{1-a_{i}}{\gamma_{i}} \tag{2.3-2}
\end{gather*}
$$

and

$$
\begin{equation*}
m_{i}^{(2)}=E\left[M_{i}^{2}\right]=\frac{2}{\gamma_{i}^{2}} \cdot\left(\gamma_{i} \widetilde{B}_{i}^{\prime}\left(\gamma_{i}\right)+1-\widetilde{B_{i}}\left(\gamma_{i}\right)\right) \tag{2.3-3}
\end{equation*}
$$

Proof: By conditioning on $P\left(B_{i} \leq T_{i}\right)$ and $P\left(B_{i}>T_{i}\right)$, (2.3-1) follows.
By differentiating (2.3-1) once and twice at $s=0$ we obtain, respectively, m_{i} and $m_{i}^{(2)}$.

Let U_{i} denote the duration of a successful (not interrupted) service time of a customer in queue i. That is, $U_{i} \sim B_{i} \mid B_{i} \leq T_{i}$. Then,

Result 2: The $L S T$ of U_{i} is given by

$$
\begin{equation*}
\widetilde{U_{i}}(s)=\frac{\widetilde{B_{i}}\left(\gamma_{i}+s\right)}{\widetilde{B_{i}}\left(\gamma_{i}\right)} \tag{2.3-4}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
\widetilde{U_{i}}(s) & =E\left[e^{-s U_{i}}\right]=E\left[e^{-s B_{i}} \mid B_{i} \leq T_{i}\right]=\frac{1}{P\left(B_{i} \leq T_{i}\right)} \cdot \int_{b=0}^{\infty} \int_{t=b}^{\infty} e^{-s b} \cdot \gamma_{i} e^{-\gamma_{i} t} \cdot f_{B_{i}}(b) d t d b \\
& =\frac{1}{\widetilde{B_{i}}\left(\gamma_{i}\right)} \cdot \int_{b=0}^{\infty} e^{-s b} e^{-\gamma_{i} b} \cdot f_{B_{i}}(b) d b=\frac{\widetilde{B_{i}}\left(\gamma_{i}+s\right)}{\widetilde{B_{i}}\left(\gamma_{i}\right)}
\end{aligned}
$$

Let $\overline{U_{i}}$ be the realized service time of an interrupted customer in queue i. That is, $\overline{U_{i}} \sim T_{i} \mid T_{i}<B_{i}$. Then,

Result 3: The $L S T$ of $\overline{U_{i}}$ is given by

$$
\begin{equation*}
\widetilde{U_{i}}(s)=\frac{\gamma_{i}}{\gamma_{i}+s} \cdot \frac{\left(1-\widetilde{B_{i}}\left(\gamma_{i}+s\right)\right)}{1-\widetilde{B_{i}}\left(\gamma_{i}\right)} \tag{2.3-5}
\end{equation*}
$$

Proof: Similar to the derivation of (2.3-4).

Result 4: For all models considered, the mean cycle time is given by

$$
\begin{equation*}
E[C]=\frac{d}{1-\rho} \tag{2.3-6}
\end{equation*}
$$

Proof Follows directly, as in many polling systems, from the balance equation:

$$
E[C]=\sum_{i=1}^{N} E\left[D_{i}\right]+\sum_{i=1}^{N} \lambda_{i} m_{i} E[C]=d+\left(\sum_{i=1}^{N} \rho_{i}\right) \cdot E[C]=d+\rho E[C]
$$

3. EXHAUSTIVE SERVICE POLICIES

In the basic Exhaustive service policy model, at every visit the server attends each queue until it becomes empty, and only then is allowed to move on. We consider two Exhaustive-type policies, denoted E1 and E2, as follows.

3.1 Case E1: job failures

3.1.1 Analysis

Under the $E 1$ model, upon occurrence of a failure, service is interrupted to the currently processed job, which is rejected, while the server proceeds immediately to serve the next job in the queue. That is, during a visit, the server attempts to serve all customers in the queue (including new arrivals), until it becomes empty.

The evolution of the system is given by the following law of motion,

$$
X_{i+1}^{j}=\left\{\begin{array}{lc}
X_{i}^{j}+A_{j}\left(\theta_{X_{i}^{i}}^{i}+D_{i}\right) & i \neq j \tag{3.1-1}\\
A_{i}\left(D_{i}\right) & i=j
\end{array}\right\}
$$

where $\quad \theta_{X_{i}^{i}}^{i}=\sum_{k=1}^{X_{i}^{i}} \Phi_{i k}$ and $\Phi_{i k}$ denote i.i.d busy periods in a regular $M / G / 1$
model with service times M_{i}, and arrival rate λ_{i}, all distributed like Φ_{i}.
Equation (3.1-1) is similar to the law of motion of the regular Exhaustive policy, with the only difference that $M_{i}=\min \left\{B_{i}, T_{i}\right\}$ replaces B_{i}. Thus (c.f. Takagi [1986], Yechiali [1993]),

$$
\begin{equation*}
G_{i+1}(\underline{z})=G_{i}\left(z_{1}, \ldots, z_{i-1}, \widetilde{\Phi_{i}}\left(\sigma_{i}\right), z_{i+1}, \ldots, z_{N}\right) \cdot \widetilde{D_{i}}(\sigma) \tag{3.1-2}
\end{equation*}
$$

where $\sigma_{i}=\sigma_{i}(\underline{z})=\sum_{\substack{j \\(j \neq i)}} \lambda_{j}\left(1-z_{j}\right)$
The mean number of customers in the various queues at polling instants is given by:

$$
f_{i+1}(j)=\left\{\begin{array}{ll}
f_{i}(j)+\lambda_{j} E\left[\Phi_{i}\right] f_{i}(i)+\lambda_{j} d_{i} & i \neq j \tag{3.1-3}\\
\lambda_{i} d_{i} & i=j
\end{array}\right\}
$$

where $E\left[\Phi_{i}\right]=m_{i} /\left(1-\rho_{i}\right)$ and $\rho_{i}=\lambda_{i} m_{i}$.
Equation (3.1-3) yields

$$
f_{i}(j)=\left\{\begin{array}{ll}
\lambda_{j}\left(\sum_{k=j+1}^{i-1} \rho_{k} \cdot \frac{d}{1-\rho}+\sum_{k=j}^{i-1} d_{k}\right) & i \neq j \tag{3.1-4}\\
\lambda_{i}\left(1-\rho_{i}\right) \cdot\left(\frac{d}{1-\rho}\right) & i=j
\end{array}\right\}
$$

where $E[C]=\frac{d}{1-\rho}$.
The expectation of $\overline{K_{i}}\left(X_{i}^{i}\right)$ can now be calculated:

$$
\begin{aligned}
& \overline{K_{i}}\left(X_{i}^{i}\right)=X_{i}^{i}+A_{i}\left(\sum_{k=1}^{X_{i}^{i}} \Phi_{i k}\right) \\
& \begin{aligned}
E\left[\overline{K_{i}}\left(X_{i}^{i}\right)\right]= & f_{i}(i)+\lambda_{i} \cdot f_{i}(i) \cdot E\left[\Phi_{i}\right]=f_{i}(i)+\frac{\lambda_{i} \cdot f_{i}(i) \cdot m_{i}}{1-\rho_{i}} \\
& =\frac{f_{i}(i)}{1-\rho_{i}}=\frac{\lambda_{i} \cdot\left(1-\rho_{i}\right) \cdot E[C]}{1-\rho_{i}}=\lambda_{i} \cdot E[C]
\end{aligned}
\end{aligned}
$$

3.1.2 Waiting times

Waiting times are calculated in section 3.2.2 together with the calculation of waiting times for model $E 2$.

3.2 Case E2: station failures

3.2.1 Analysis

Under the $E 2$ model, upon occurrence of a failure, the service at the queue being attended is stopped immediately, and the server switches on to the next station. In a busy period, the server attempts to serve all customers in the queue until a failure occurs.

The evolution of the system is given by the following law of motion,

$$
X_{i+1}^{j}=\left\{\begin{array}{lc}
X_{i}^{j}+A_{j}\left(\theta_{X_{i}^{i}}^{i}+D_{i}\right) & i \neq j \tag{3.2-1}\\
N_{i}\left(X_{i}^{i}\right)+A_{i}\left(D_{i}\right) & i=j
\end{array}\right\}
$$

where $N_{i}\left(X_{i}^{i}\right)$ is the number of jobs present in queue i at an instant of server's departure from that queue, given that there were X_{i}^{i} jobs at the beginning of the busy period.

In order to find the $P G F G_{i+1}(\underline{z})$, we first define the following joint distribution transform of $\left(\theta_{r}^{i}, N_{i}(r)\right): \Theta_{r}^{i}(w, z)=E\left[e^{-w \theta_{r}^{i}} \cdot z^{N_{i}(r)}\right]$

Conditioning on the first service time $B_{i, 1}$ in a busy period in queue i we have:

$$
\begin{equation*}
\Theta_{r}^{i}(w, z)=E\left[e^{-w \theta_{r}^{i}} \cdot z^{N_{i}(r)} \cdot 1_{B_{i, 1}<T_{i, 1}}\right]+E\left[e^{-w \theta_{r}^{i}} \cdot z^{N_{i}(r)} \cdot 1_{B_{i, 1} \geq T_{i, 1}}\right] \tag{3.2-2}
\end{equation*}
$$

and

$$
\left(\theta_{r}^{i}, N_{i}(r)\right) \stackrel{d}{=}\left\{\begin{array}{cc}
\left(B_{i, 1}+\theta_{r-1+A_{i}\left(B_{i, 1}\right)}^{i}, N_{i}\left(r-1+A\left(B_{i, 1}\right)\right),\right. & B_{i, 1}<T_{i, 1} \\
\left(T_{i, 1}, r-1+A_{i}\left(T_{i, 1}\right)\right), & B_{i, 1} \geq T_{i, 1}
\end{array}\right\}
$$

Following a derivation similar to Eliazar and Yechiali [1998] and Shomrony and Yechiali [2001] we get

$$
\begin{align*}
& E\left[e^{-w \theta_{r}^{i}} \cdot z^{N_{i}(r)} \cdot 1_{B_{i, 1}<T_{i, 1}}\right]= \\
& \quad=\sum_{j=0}^{\infty}\left(E\left[\frac{\left(\lambda_{i} B_{i}\right)^{j}}{j!} \cdot e^{-\left(w+\gamma_{i}+\lambda_{i}\right) B_{i}}\right] \cdot \Theta_{r+j-1}^{i}(w, z)\right) \tag{3.2-3}
\end{align*}
$$

and
$E\left[e^{-w \theta_{r}^{i}} \cdot z^{N_{i}(r)} \cdot 1_{B_{i, 1} \geq T_{i, 1}}\right]=\frac{\gamma_{i} z^{r-1}}{w+\gamma_{i}+\lambda_{i}(1-z)} \cdot\left(1-\widetilde{B_{i}}\left(w+\gamma_{i}+\lambda_{i}(1-z)\right)\right)$

By substituting (3.2-3) and (3.2-4) in (3.2-2) we obtain

$$
\Theta_{r}^{i}(w, z)=\left\{\begin{array}{ll}
\sum_{j=0}^{\infty}\left(a_{j}^{i}(w) \cdot \Theta_{r+j-1}^{i}(w, z)\right)+c^{i}(w, z) \cdot z^{r} & r \geq 1 \tag{3.2-5}\\
1 & r=0
\end{array}\right\}
$$

where $\quad a_{j}^{i}(w)=E\left[\frac{\left(\lambda_{i} B_{i}\right)^{j}}{j!} \cdot e^{-\left(w+\gamma_{i}+\lambda_{i}\right) B_{i}}\right] \quad$ and

$$
c^{i}(w, z)=\frac{\gamma_{i}}{z\left(w+\gamma_{i}+\lambda_{i}(1-z)\right)} \cdot\left(1-\widetilde{B}_{i}\left(w+\gamma_{i}+\lambda_{i}(1-z)\right)\right)
$$

The solution for the last set of equations (3.2-5) is

$$
\begin{equation*}
\Theta_{r}^{i}(w, z)=\varphi^{i}(w, z) \cdot z^{r}+\left(1-\varphi^{i}(w, z)\right) \cdot\left[\widetilde{\phi}_{i}\left(w+\gamma_{i}\right)\right]^{r} \tag{3.2-6}
\end{equation*}
$$

where ϕ_{i} is the length of a busy period in a regular $M / G / 1$ queue with arrival rate λ_{i} and service times B_{i}, and

$$
\varphi^{i}(w, z)=\frac{c^{i}(w, z) \cdot z}{z-\widetilde{B_{i}}\left(w+\gamma_{i}+\lambda_{i}(1-z)\right)}=\frac{\gamma_{i} \cdot\left(1-\widetilde{B_{i}}\left(w+\delta_{i}\right)\right)}{\left(w+\delta_{i}\right) \cdot\left(z-\widetilde{B_{i}}\left(w+\delta_{i}\right)\right)}
$$

where $\delta_{i}=\gamma_{i}+\lambda_{i}(1-z)$.
We now return to the derivation of $G_{i+1}(\underline{z})$. By using the law of motion (3.2-1) we get

$$
\begin{aligned}
G_{i+1}(\underline{z})= & E\left[\prod_{j=1}^{N} z_{j}^{X_{i+1}^{j}}\right]=E\left[\prod_{\substack{j \\
(j \neq i)}} z_{j}^{X_{i}^{j}+A_{j}\left(\theta_{X_{i}^{i}}^{i}+D_{i}\right)} \cdot z_{i}^{N_{i}\left(X_{i}^{i}\right)+A_{i}\left(D_{i}\right)}\right] \\
& =E\left[\prod_{\substack{j \\
(j \neq i)}} z_{j}^{X_{i}^{j}} \cdot \prod_{\substack{j \\
(j \neq i)}} z_{j}^{A_{j}\left(\theta_{X_{i}^{i}}^{i}\right)} \cdot z_{i}^{N_{i}\left(X_{i}^{i}\right)} \cdot \prod_{j=1}^{N} z_{j}^{A_{j}\left(D_{i}\right)}\right]
\end{aligned}
$$

$$
\begin{equation*}
=E_{\underline{X_{i}}}\left[\prod_{\substack{j \\(j \neq i)}} z_{j}^{X_{i}^{j}} \cdot E\left(\prod_{\substack{j \\(j \neq i)}} z_{j}^{A_{j}\left(\theta_{x_{i}^{i}}^{i}\right)} \cdot z_{i}^{N_{i}\left(X_{i}^{i}\right)} \mid \underline{X_{i}}\right)\right] \cdot \widetilde{D}_{i}(\sigma) \tag{3.2-7}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& E\left(\prod_{\substack{j \\
(j \neq i)}} z_{j}^{A_{j}\left(\theta_{X_{i}^{i}}^{i}\right)} \cdot z_{i}^{N_{i}\left(X_{i}^{i}\right)} \underline{X_{i}}\right)=E\left[E\left(\prod_{\substack{j \\
(j \neq i)}} z_{j}^{A_{j}\left(\theta_{X_{i}^{i}}^{i}\right)} \cdot z_{i}^{N_{i}\left(X_{i}^{i}\right)} \underline{X_{i}}, N_{i}\left(X_{i}^{i}\right), \theta_{X_{i}^{i}}^{i}\right)\right] \\
= & E\left[\prod_{\substack{j \\
(j \neq i)}} e^{-\lambda_{j}\left(1-z_{j}\right) \theta_{X_{i}^{i}}^{i} \cdot z_{i} N_{i}\left(X_{i}^{i}\right)}\right]=E\left[e^{-\sum_{\substack{j \\
j \neq i)}} \lambda_{j}\left(1-z_{j}\right) \theta_{X_{i}^{i}}^{i}} \cdot z_{i}^{N_{i}\left(X_{i}^{i}\right)}\right]=\Theta_{X_{i}^{i}}^{i}\left(\sigma_{i}, z_{i}\right)
\end{aligned}
$$

By substituting this last result and the solution (3.2-6) in (3.2-7) we get

$$
\begin{equation*}
G_{i+1}(\underline{z})=E_{\underline{X_{i}}}\left[\prod_{\substack{j \\(j \neq i)}} z_{j}^{X_{i}^{j}} \cdot \Theta_{X_{i}^{i}}^{i}\left(\sigma_{i}, z_{i}\right)\right] \cdot \widetilde{D_{i}}(\sigma) \tag{3.2-8}
\end{equation*}
$$

$=E_{\underline{X_{i}}}\left[\prod_{\substack{j \\(j \neq i)}} z_{j}^{X_{i}^{j}} \cdot\left(\varphi^{i}\left(\sigma_{i}, z_{i}\right) \cdot z_{i}^{X_{i}^{i}}+\left(1-\varphi^{i}\left(\sigma_{i}, z_{i}\right)\right) \cdot\left[\widetilde{\phi}_{i}\left(\sigma_{i}+\gamma_{i}\right)\right]^{X_{i}^{i}}\right)\right] \cdot \widetilde{D_{i}}(\sigma)$ $=\left[\varphi^{i}\left(\sigma_{i}, z_{i}\right) \cdot G_{i}(\underline{z})+\left(1-\varphi^{i}\left(\sigma_{i}, z_{i}\right)\right) \cdot G_{i}\left(z_{1}, \ldots, z_{i-1}, \widetilde{\phi}_{i}\left(\sigma_{i}+\gamma_{i}\right), z_{i+1}, \ldots, z_{N}\right)\right] \cdot \widetilde{D_{i}}(\sigma)$
where $\varphi^{i}\left(\sigma_{i}, z_{i}\right)=\frac{\gamma_{i} \cdot\left(1-\widetilde{B_{i}}\left(\sigma+\gamma_{i}\right)\right)}{\left(\sigma+\gamma_{i}\right) \cdot\left(z_{i}-\widetilde{B_{i}}\left(\sigma+\gamma_{i}\right)\right)}$
By differentiating (3.2-8), the set of first moments $\left\{f_{i}(j)=E\left[X_{i}^{j}\right]\right\}$ is given by

$$
f_{i+1}(j)=\left\{\begin{array}{ll}
f_{i}(j)+\frac{\lambda_{j}}{\gamma_{i}} \cdot\left(1-\widehat{X_{i}^{i}}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right)\right)+\lambda_{j} d_{i} & i \neq j \tag{3.2-9}\\
f_{i}(i)+\left(\frac{\lambda_{i}}{\gamma_{i}}-\frac{1}{1-\widetilde{B}_{i}\left(\gamma_{i}\right)}\right) \cdot\left(1-\widehat{X_{i}^{i}}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right)\right)+\lambda_{i} d_{i} & i=j
\end{array}\right\}
$$

Unfortunately, in contrast to case $E 1$, equations (3.2-9) do not lead to an explicit solution for the $f_{i}(j)$'s.

However, by summing equations (3.2-9) over i, for every $j=1, \ldots, N$, we derive
$\frac{1-\widehat{X_{j}^{j}}\left(\widetilde{\phi_{j}}\left(\gamma_{j}\right)\right)}{1-\widetilde{B_{j}}\left(\gamma_{j}\right)}=\lambda_{j} \cdot d+\lambda_{j} \cdot \sum_{k=1}^{N} \frac{1-\widehat{X_{k}^{k}}\left(\widetilde{\phi_{k}}\left(\gamma_{k}\right)\right)}{\gamma_{k}}$
Defining $x_{k}=\frac{1-\widehat{X_{k}^{k}}\left(\widetilde{\phi_{k}}\left(\gamma_{k}\right)\right)}{\gamma_{k}}$
and $\quad \alpha_{j}=\frac{\gamma_{j}}{\lambda_{j}\left(1-\widetilde{B_{j}}\left(\gamma_{j}\right)\right)}-1=\frac{1}{\lambda_{j} m_{j}}-1=\frac{1-\rho_{j}}{\rho_{j}}$,
the above equations can be written, for every $j=1, \ldots, N$, as

$$
\begin{equation*}
d=-\sum_{\substack{i \\(i \neq j)}} x_{i}+\frac{\gamma_{j}}{\lambda_{j}\left(1-\widetilde{B_{j}}\left(\gamma_{j}\right)\right)} \cdot x_{j}-x_{j}=-\sum_{\substack{i \\(i \neq j)}} x_{i}+\alpha_{j} x_{j} i \tag{3.2-10}
\end{equation*}
$$

In a matrix form, equations (3.2-10) can be expressed as $A \underline{x}=\underline{d}$, where A is a square matrix of order $N, \underline{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T}$ and $\underline{d}=d \cdot \underline{1}$.

That is,

$$
\left[\begin{array}{cccccc}
\alpha_{1} & -1 & \ldots & \ldots & -1 & -1 \\
-1 & \alpha_{2} & -1 & \ldots & -1 & -1 \\
& & & & & \\
-1 & -1 & \ldots & -1 & \alpha_{N-1} & -1 \\
-1 & -1 & \ldots & \ldots & -1 & \alpha_{N}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
\\
x_{N-1} \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
d \\
d \\
\cdots \\
d \\
d
\end{array}\right]
$$

By subtracting the bottom row of A from each of the upper rows $i=$ $1,2, \ldots, N-1$, and then adding each row $i(i=1,2, \ldots, N-1)$ multiplied by $\left(\alpha_{i}+1\right)^{-1}$ to the bottom row, A is modified to an upper triangular matrix, so that

$$
\left[\begin{array}{cccccc}
\alpha_{1}+1 & 0 & \ldots & \ldots & 0 & -\left(1+\alpha_{N}\right) \tag{3.2-11}\\
0 & \alpha_{2}+1 & 0 & \ldots & 0 & -\left(1+\alpha_{N}\right) \\
& 0 & & & 0 & \cdots \\
0 & 0 & \ldots & 0 & \alpha_{N-1}+1 & -\left(1+\alpha_{N}\right) \\
0 & 0 & \ldots & \ldots & 0 & a_{N, N}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
\\
x_{N-1} \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
0 \\
d
\end{array}\right]
$$

Using $m_{i}=\frac{1-a_{i}}{\gamma_{i}}$, we have

$$
a_{N, N}=\alpha_{N}+\frac{-\left(1+\alpha_{N}\right)}{1+\alpha_{1}}+\frac{-\left(1+\alpha_{N}\right)}{1+\alpha_{2}}+\ldots+\frac{-\left(1+\alpha_{N}\right)}{1+\alpha_{N-1}}=\frac{1-\rho}{\rho_{N}}
$$

Since $\alpha_{i}+1=\frac{1}{\rho_{i}} \neq 0$, a unique solution exists if and only if $a_{N, N} \neq 0$, which is equivalent to $\rho \neq 1$.

The solution of the equations $A \underline{x}=\underline{d}$ is
$x_{N}=\frac{d}{a_{N, N}}=\frac{d \rho_{N}}{1-\rho}$,
$x_{j}=\frac{1+\alpha_{N}}{1+\alpha_{j}} \cdot x_{N}=\frac{\rho_{j}}{\rho_{N}} \cdot \frac{d \rho_{N}}{1-\rho}=\frac{d \rho_{j}}{1-\rho}$, for $j=1, \ldots, N-1$
That is, for every $j=1, \ldots, N$,

$$
\begin{equation*}
x_{j}=\frac{d \rho_{j}}{1-\rho}, \tag{3.2-12}
\end{equation*}
$$

leading to

$$
\widehat{X_{j}^{j}}\left(\widetilde{\phi_{j}}\left(\gamma_{j}\right)\right)=1-x_{j} \gamma_{j}=1-\frac{\lambda_{j} m_{j} \gamma_{j} d}{1-\rho}=1-\frac{\lambda_{j}\left(1-\widetilde{B_{j}}\left(\gamma_{j}\right)\right) d}{1-\rho} .
$$

By substituting in equation (3.2-9) we get

$$
f_{i+1}(j)=\left\{\begin{array}{ll}
f_{i}(j)+\frac{\lambda_{j} \rho_{i} d}{1-\rho}+\lambda_{j} d_{i} & i \neq j \tag{3.2-13}\\
f_{i}(i)+\frac{\lambda_{i} \rho_{i} d}{1-\rho}-\frac{\lambda_{i} d}{1-\rho}+\lambda_{i} d_{i} & i=j
\end{array}\right\}
$$

Note that, although the set (3.2-13) looks 'nicer' than (3.2-9), we still can not solve it for the $f_{i}(j)^{\prime} s$, since it is a non independent set. Thus, although $\widehat{X}_{i}^{i}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right)$ is now known, we need the distribution of X_{i}^{i}, namely $\widehat{X_{i}^{i}}(z)$, in order to be able to obtain $f_{i}(i)$. A procedure for obtaining $\widehat{X_{i}^{i}}(z)$, using interpolation theory, is developed in section 3.2.3. .

3.2.2 Waiting times

3.2.2.1 Derivation of $\widehat{L_{i}}(z)$

We first derive the $P G F$ of the queue size at an arbitrary moment in queue i. This will enable us to derive the $L S T$ of the waiting time of an arbitrary customer in that queue. (See also Eliazar and Yechiali [1998] and Shomrony and Yechiali [2001]).

For brevity, in the following derivation and in equations (3.2-14) to (3.2-16), we suppress the index i, indicating the queue number, and use the subscript n to indicate the $n-t h$ departing customer from that queue.

Define
$\tau_{n}-$ instant of the $n-t h$ departure, starting from time $t=0$
L_{n} - queue size at time $\tau_{n}+0$
I_{n} - the event: $\left\{\right.$ at time τ_{n} the server leaves the queue \}
\bar{X}_{n}, \bar{N}_{n} - queue sizes at the beginning and the end, respectively, of the busy period containing instant τ_{n}
X_{n}^{*} - queue size at the beginning of the busy period containing instant τ_{n} as its first departure. i.e. $X_{n}^{*} \sim\left[\bar{X}_{n} \mid I_{n-1}\right]$

$$
p_{n}=P\left(I_{n}\right) ; 1-p_{n}=P\left(I_{n}^{C}\right)
$$

By conditioning on the event I_{n-1}, we write,

$$
\begin{equation*}
E\left[z^{L_{n}}\right]=E\left[z^{L_{n}} \mid I_{n-1}^{C}\right] \cdot\left(1-p_{n-1}\right)+E\left[z^{L_{n}} \mid I_{n-1}\right] \cdot p_{n-1} \tag{3.2-14}
\end{equation*}
$$

Observe that, if I_{n-1} occurs, then the next departure (the $n-t h$) will be the first in the next busy period, starting with \bar{X}_{n} customers, so that $L_{n}=$ $\bar{X}_{n}-1+A\left(M_{n}\right)$.
(Attention: M_{n} here is the length of the service time of the $n-t h$ departing customer in queue $i ; M_{n}=\min \{B, T\}$ where B is the service time in queue i and T is the inter-arrival time of failures in queue i).

Otherwise, if I_{n-1}^{c} occurs, then $L_{n}=L_{n-1}-1+A\left(M_{n}\right)$.
Hence, (3.2-14) becomes:

$$
\begin{align*}
& E\left[z^{L_{n}}\right]=E\left[z^{L_{n-1}-1+A\left(M_{n}\right)} \mid I_{n-1}^{C}\right] \cdot\left(1-p_{n-1}\right)+E\left[z^{\bar{X}_{n}-1+A\left(M_{n}\right)} \mid I_{n-1}\right] \cdot p_{n-1} \\
& =\frac{\widetilde{M}(\lambda(1-z))}{z} \cdot\left[E\left[z^{L_{n-1}}\right]-E\left[z^{\bar{N}_{n-1}}\right] \cdot p_{n-1}+E\left[z^{X_{n}^{*}}\right] \cdot p_{n-1}\right] \tag{3.2-15}
\end{align*}
$$

We repeat the above computation for L_{n} instead of $z^{L_{n}}$:

$$
\begin{align*}
E\left[L_{n}\right]= & {\left[E\left[A\left(M_{n}\right)\right]-1+E\left[L_{n-1} \mid I_{n-1}^{C}\right]\right] \cdot\left(1-p_{n-1}\right)+\left[E\left[A\left(M_{n}\right)\right]-1+E\left[X_{n}^{*}\right]\right] \cdot p_{n-1} } \\
& =\lambda m-1+E\left[L_{n-1}\right]-E\left[\bar{N}_{n-1}\right] \cdot p_{n-1}+E\left[X_{n}^{*}\right] \cdot p_{n-1} \tag{3.2-16}
\end{align*}
$$

Since the Markov chain, embedded at service completion instants, converges in distribution, taking $n \longrightarrow \infty$ in (3.2-15) and in (3.2-16) implies, respectively:

$$
\begin{gather*}
E\left[z^{L}\right] \cdot(z-\widetilde{M}(\lambda(1-z)))=\widetilde{M}(\lambda(1-z)) \cdot\left[E\left[z^{X^{*}}\right]-E\left[z^{\bar{N}}\right]\right] \cdot p \tag{3.2-17}\\
1-\lambda m=\left[E\left[X^{*}\right]-E[\bar{N}]\right] \cdot p \tag{3.2-18}
\end{gather*}
$$

in which L, X^{*}, \bar{N} and p are the steady state limits of $L_{n}, X_{n}^{*}, \bar{N}_{n}$ and p_{n}, respectively.

From the last two equations we obtain:

$$
\begin{equation*}
\widehat{L}(z)=(1-\rho) \cdot \frac{\widetilde{M}(\lambda(1-z))}{z-\widetilde{M}(\lambda(1-z))} \cdot \frac{E\left[z^{X^{*}}\right]-E\left[z^{\bar{N}}\right]}{E\left[X^{*}\right]-E[\bar{N}]} \tag{3.2-19}
\end{equation*}
$$

Since $X^{*} \sim X|X \geq 1, \bar{N} \sim N| X \geq 1$ and $N \mid\{X=0\}=0$, we get, (see definition of N_{i} in section 3.2.1; X replaces the original X_{i}^{i})

$$
\frac{E\left[z^{X}\right]-E\left[z^{N}\right]}{E[X]-E[N]}=\frac{E\left[z^{X^{*}}\right]-E\left[z^{\bar{N}}\right]}{E\left[X^{*}\right]-E[\bar{N}]}
$$

Substituting the last equation in (3.2-19) yields the $P G F$ for L_{i} at epochs of departure

$$
\begin{equation*}
\widehat{L_{i}}(z)=\left(1-\rho_{i}\right) \cdot \frac{\widetilde{M}_{i}\left(\lambda_{i}(1-z)\right)}{z-\widetilde{M}_{i}\left(\lambda_{i}(1-z)\right)} \cdot \frac{E\left[z^{X_{i}^{i}}\right]-E\left[z^{N_{i}}\right]}{E\left[X_{i}^{i}\right]-E\left[N_{i}\right]} \tag{3.2-20}
\end{equation*}
$$

Note that this decomposition is similar to the Fuhrmann and Cooper decomposition result [1985] for the steady state queue size L, of a nonpreemptive $M / G / 1$ queue with general vacation, i.e.,

$$
\widehat{L}(z)=\widehat{L}_{M / G / 1}(z) \cdot \chi(z)
$$

where $\widehat{L}_{M / G / 1}(z)=(1-\rho) \cdot \frac{\widetilde{M}(\lambda(1-z)) \cdot(z-1)}{z-\widetilde{M}(\lambda(1-z))} \quad$ is the steady state queue size of a regular $M / G / 1$ queue, and $\chi(z)$ is the $P G F$ of the queue size at an arbitrary instant during the vacation. Later, Borst [1995] has shown that $\chi(z)=\frac{1}{z-1} \cdot \frac{E\left[z^{X}\right]-E\left[z^{N}\right]}{E[X]-E[N]}$.

We now obtain the distribution of N_{i} for the $E 2$ model by using (3.2-6):

$$
\widehat{N}_{i}(r)(z)=E\left[z^{N_{i}(r)}\right]=\Theta_{r}^{i}(0, z)=\varphi^{i}(0, z) \cdot z^{r}+\left(1-\varphi^{i}(0, z)\right) \cdot\left[\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right]^{r}
$$

where,

$$
\varphi^{i}(0, z)=\frac{\left.\gamma_{i} \cdot\left(1-\widetilde{B_{i}}\left(\delta_{i}\right)\right)\right)}{\delta_{i} \cdot\left(z-\widetilde{B_{i}}\left(\delta_{i}\right)\right)}
$$

By putting X_{i}^{i} instead of r and taking expectation, we get the $L S T$ of the number of customers at the end of a busy period in queue i :

$$
\begin{align*}
& \widehat{N}_{i}(z)=E\left[z^{N_{i}}\right]=E_{X_{i}^{i}}\left[E\left[z^{N_{i}\left(X_{i}^{i}\right)} \mid X_{i}^{i}\right]\right]=E_{X_{i}^{i}}\left[\varphi^{i}(0, z) \cdot z^{X_{i}^{i}}+\left(1-\varphi^{i}(0, z)\right) \cdot\left[\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right]^{X_{i}^{i}}\right] \\
& =\frac{\widehat{X_{i}^{i}}(z) \cdot \gamma_{i} \cdot\left(1-\widetilde{B_{i}}\left(\delta_{i}\right)\right)+\widehat{X_{i}^{i}}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right) \cdot\left[\delta_{i} z-\gamma_{i}-\widetilde{B_{i}}\left(\delta_{i}\right) \cdot \lambda_{i}(1-z)\right]}{\delta_{i} \cdot\left(z-\widetilde{B_{i}}\left(\delta_{i}\right)\right)} \tag{3.2-21}
\end{align*}
$$

Also, (by comparing (3.2-1) and (3.2-13)):

$$
\begin{equation*}
E\left[N_{i}\right]=E\left[N_{i}\left(X_{i}^{i}\right)\right]=f_{i}(i)+\frac{\lambda_{i} \rho_{i} d}{1-\rho}-\frac{\lambda_{i} d}{1-\rho}=E\left[X_{i}^{i}\right]-\frac{\lambda_{i} d}{1-\rho} \cdot\left(1-\rho_{i}\right) \tag{3.2-22}
\end{equation*}
$$

Now, from (3.2-21) and (3.2-22) we get:

$$
\begin{equation*}
\frac{E\left[z^{X_{i}^{i}}\right]-E\left[z^{N_{i}}\right]}{E\left[X_{i}^{i}\right]-E\left[N_{i}\right]}=\frac{\left[\widehat{X_{i}^{i}}(z)-\widehat{X_{i}^{i}}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right)\right] \cdot\left[\delta_{i} z-\gamma_{i}-\widetilde{B_{i}}\left(\delta_{i}\right) \cdot \lambda_{i}(1-z)\right]}{\delta_{i} \cdot\left(z-\widetilde{B_{i}}\left(\delta_{i}\right)\right) \cdot \frac{\lambda_{i} d}{1-\rho} \cdot\left(1-\rho_{i}\right)} \tag{3.2-23}
\end{equation*}
$$

Using (2.3-1),

$$
\begin{equation*}
\frac{\widetilde{M}_{i}\left(\lambda_{i}(1-z)\right)}{z-\widetilde{M}_{i}\left(\lambda_{i}(1-z)\right)}=\frac{\frac{\gamma_{i}+\lambda_{i}(1-z) \cdot \widetilde{B_{i}}\left(\delta_{i}\right)}{\delta_{i}}}{z-\frac{\gamma_{i}+\lambda_{i}(1-z) \cdot \widetilde{B_{i}}\left(\delta_{i}\right)}{\delta_{i}}}=\frac{\gamma_{i}+\lambda_{i}(1-z) \cdot \widetilde{B_{i}}\left(\delta_{i}\right)}{\delta_{i} z-\gamma_{i}-\lambda_{i}(1-z) \cdot \widetilde{B}_{i}\left(\delta_{i}\right)} \tag{3.2-24}
\end{equation*}
$$

Substituting (3.2-23) and (3.2-24) in (3.2-20) yields,

$$
\begin{equation*}
\widehat{L}_{i}(z)=\frac{\left[\widehat{X_{i}^{i}}(z)-\widehat{X_{i}^{i}}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right)\right] \cdot\left[\gamma_{i}+\lambda_{i}(1-z) \cdot \widetilde{B_{i}}\left(\delta_{i}\right)\right]}{\delta_{i} \cdot\left(z-\widetilde{B_{i}}\left(\delta_{i}\right)\right) \cdot \frac{\lambda_{i} d}{1-\rho}} \tag{3.2-25}
\end{equation*}
$$

Note that, as in many $M / G / 1$-type queues, L_{i} also stands for the number of customers at channel i (under a steady-state condition) at an arbitrary instant of time.

Calculation of the PGF of L_{i} for the $E 1$ case
From (3.1-4): $E\left[X_{i}^{i}\right]=\frac{\lambda_{i}\left(1-\rho_{i}\right) d}{1-\rho}, \quad N_{i}=0, E\left[N_{i}\right]=0$
Hence, from (3.2-20):

$$
\begin{equation*}
\widehat{L_{i}}(z)=\frac{\widetilde{M}_{i}\left(\lambda_{i}(1-z)\right)}{z-\widetilde{M}_{i}\left(\lambda_{i}(1-z)\right)} \cdot \frac{\widehat{X_{i}^{i}}(z)-1}{\frac{\lambda_{i} d}{1-\rho}} \tag{3.2-26}
\end{equation*}
$$

which is consistent with the result for the regular Exhaustive regime but with service times M_{i}.

3.2.2.2 Derivation of $\widetilde{W}_{i}(s)$

Let $W_{q_{i}}$ be the waiting time of a customer in queue i, and let its sojourn time be $W_{i}=W_{q_{i}}+M_{i}$. Then, by using the standard argument that the number of customers left behind in queue i by a department customer equals the number of arrivals during W_{i} one gets

$$
\widehat{L}_{i}(z)=\widetilde{W}_{i}\left(\lambda_{i}(1-z)\right)=\widetilde{W q_{i}}\left(\lambda_{i}(1-z)\right) \cdot \widetilde{M}_{i}\left(\lambda_{i}(1-z)\right)
$$

Thus, based on (3.2-25) we have,

$$
\begin{equation*}
\widetilde{W}_{i}(s)=\widehat{L_{i}}\left(1-\frac{s}{\lambda_{i}}\right)=\frac{\left[\widehat{X_{i}^{i}}\left(1-\frac{s}{\lambda_{i}}\right)-\widehat{X_{i}^{i}}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right)\right] \cdot\left[\gamma_{i}+s \cdot \widetilde{B_{i}}\left(\gamma_{i}+s\right)\right] \cdot(1-\rho)}{\left(\gamma_{i}+s\right) \cdot\left(1-\frac{s}{\lambda_{i}}-\widetilde{B_{i}}\left(\gamma_{i}+s\right)\right) \cdot \lambda_{i} d} \tag{3.2-27}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{W q_{i}}(s)=\frac{\widehat{X_{i}^{i}}\left(1-\frac{s}{\lambda_{i}}\right)-\widehat{X_{i}^{i}}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right)}{1-\frac{s}{\lambda_{i}}-\widetilde{B_{i}}\left(\gamma_{i}+s\right)} \cdot \frac{1-\rho}{\lambda_{i} d} \tag{3.2-28}
\end{equation*}
$$

Finally, one can substitute $\widehat{X_{i}^{i}}\left(\widetilde{\phi_{i}}\left(\gamma_{i}\right)\right)=1-\frac{\lambda_{i}\left(1-\widetilde{B_{i}}\left(\gamma_{i}\right)\right) d}{1-\rho}$ in equations (3.2-25) , (3.2-27) and (3.2-28).

3.2.3 Solution for the $P G F \widehat{X_{i}^{i}}(z)$ by interpolation

3.2.3.1 Probability distribution relation

As indicated, equations (3.2-13) do not yield an explicit solution for the means $f_{i}(j)=E\left[X_{i}^{j}\right]$. Therefore, we have to turn back to finding the PGF

We will find $\widehat{X_{i}^{i}}(z)$ by using an interpolation method. For simplicity we consider a symmetric system.

Equation (3.2-8) relates the $P G F G_{i}\left(z_{1}, \ldots, z_{N}\right)$ to the $P G F G_{i+1}\left(z_{1}, \ldots, z_{N}\right)$.
We claim that in a symmetrical case, the following relation holds:

$$
\begin{equation*}
G_{i+1}\left(z_{1}, \ldots, z_{N}\right)=G_{i}\left(z_{2}, \ldots, z_{N}, z_{1}\right) \tag{3.2-29}
\end{equation*}
$$

This follows since $X_{i}^{j} \sim X_{i+k}^{j+k}$ for every $i, j=1, \ldots, N$ and $k=1,2,3, \ldots$ (where the counting of k is in a cyclic manner - modulo N). In particular, $X_{i}^{j} \sim X_{i+1}^{j+1}$. That is, $z^{X_{i}^{j}} \sim z^{X_{i+1}^{j+1}}$, so that

$$
z_{1}^{X_{i+1}^{1}} \cdot z_{2}^{X_{i+1}^{2}} \cdot \ldots \cdot z_{N}^{X_{i+1}^{N}} \sim z_{1}^{X_{i}^{N}} \cdot z_{2}^{X_{i}^{1}} \cdot \ldots \cdot z_{N}^{X_{i}^{N-1}}
$$

Therefore,

$$
\begin{aligned}
& G_{i+1}\left(z_{1}, \ldots, z_{N}\right)=E\left[z_{1}^{X_{i+1}^{1}} \cdot z_{2}^{X_{i+1}^{2}} \cdot \ldots \cdot z_{N}^{X_{i+1}^{N}}\right]=E\left[z_{1}^{X_{i}^{N}} \cdot z_{2}^{X_{i}^{1}} \cdot \ldots \cdot z_{N}^{X_{i}^{N-1}}\right] \\
& \quad=G_{i}\left(z_{2}, \ldots, z_{N}, z_{1}\right)
\end{aligned}
$$

Using the relation (3.2-29), equation (3.2-8) becomes

$$
\begin{align*}
& \quad G_{i}\left(z_{2}, \ldots, z_{N}, z_{1}\right)= \\
& =\left[\varphi^{i}\left(\sigma_{i}, z_{i}\right) \cdot G_{i}(\underline{z})+\left(1-\varphi^{i}\left(\sigma_{i}, z_{i}\right)\right) \cdot G_{i}\left(z_{1}, \ldots, z_{i-1}, \widetilde{\phi}_{i}\left(\sigma_{i}+\gamma_{i}\right), z_{i+1}, \ldots, z_{N}\right)\right] \cdot \widetilde{D}_{i}(\sigma) \tag{3.2-30}
\end{align*}
$$

where $\varphi^{i}\left(\sigma_{i}, z_{i}\right)$ is defined in section 3.2.1.

3.2.3.2 Approximating $G_{i}\left(z_{1}, z_{2}, \ldots, z_{N}\right)$ using polynomial interpolation

According to interpolation theory (see e.g. Atkinson [1989]) a function $h(x)$ with $n+1$ continuous derivatives can be approximated by a polynomial sum:
$P(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m} \quad(m \leq n)$.
The coefficients $a_{0}, a_{1}, \ldots, a_{m}$ are uniquely evaluated when knowing the values of the function $h(x)$ at some distinct $m+1$ points: x_{0}, \ldots, x_{m}.

This is done by extracting the coefficients values from $m+1$ equations, each equating the polynomial expression to the function value $h\left(x_{i}\right), i=0,1, \ldots, m$.

The approximation error at a point t is expressed by: $\frac{\left(t-x_{0}\right) \cdot \ldots \cdot\left(t-x_{m}\right)}{(m+1)!}$. $h^{(m+1)}(\xi)$, where ξ is a point lying in the minimal interval connecting the points $t, x_{0}, x_{1}, \ldots, x_{m}$, and $h^{(m+1)}$ is the $(m+1)$ st derivative of $h(\cdot)$.

The error gets smaller as t approaches one of the points x_{0}, \ldots, x_{m} and when m becomes larger.

The method is extended to multi-variate functions and polynomials.
Since our goal is to approximate the multi-variate function $G_{i}(\underline{z})$, we now introduce a modification to the interpolation method in order to solve cases in which, instead of knowing values of the function $G_{i}(\underline{z})$ at distinct points, we have a relation (equation (3.2-30)), involving three values of the function $G_{i}(\cdot)$ at three separate points.

According to the method, a polynomial sum is substituted instead of $G_{i}(\cdot)$ in the above relation. Then, the coefficients a_{0}, a_{1}, \ldots are calculated in a similar way to the original method by the following steps (which will be illustrated by numerical examples):

1. Insert the polynomial expression (with unknown coefficients) instead of $G_{i}(\underline{z})$ in the given relation.
2. Substitute a chosen value for \underline{z} in the equation.
3. Repeat step 2, several times (according to the polynomial degree) and get a system of independent equations with unknown parameters (the polynomial coefficients).
4. Solve for the unknown parameters and get the approximation to $G_{i}(\underline{z})$.

While approximating a generating function, one of the equations must be the normalizing equation: $G_{i}(\underline{1})=1$.

Since the error of the approximation is smaller at the vicinity of any one of the sampled points, we will carry the sampling of those points as close as possible to points in which we want the approximation to hold.

First order approximation
We begin by approximating $G_{i}\left(z_{1}, z_{2}, \ldots, z_{N}\right)$ by using a polynomial of first degree with unknown parameters μ_{0}, \ldots, μ_{N} :

$$
\begin{equation*}
G_{i}\left(z_{1}, z_{2}, \ldots, z_{N}\right) \cong \mu_{0}+\mu_{1} z_{1}+\ldots+\mu_{N} z_{N} \tag{3.2-31}
\end{equation*}
$$

From which we have,

$$
\begin{equation*}
\widehat{X}_{i}{ }_{i}(z)=G_{i}(1,1, \ldots, z, \ldots, 1) \cong \mu_{0}+\mu_{1}+\cdots+\mu_{i-1}+\mu_{i} z+\mu_{i+1}+\cdots+\mu_{N} \tag{3.2-32}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left[X_{i}^{i}\right] \cong \mu_{i} \tag{3.2-33}
\end{equation*}
$$

Numerical example 1

We assume exponential service times and exponential switch-over times.
The following values for the system variables are used:
Number of queues: $N=3$; Poisson rates of customer arrivals and of failures: $\lambda_{i}=1, \gamma_{i}=1$, respectively. Service times: $B_{i} \sim \exp (4)$, with $E\left[B_{i}\right]=b_{i}=\frac{1}{4}$

Switch over times: $D_{i} \sim \exp (10)$, with $E\left[D_{i}\right]=d_{i}=0.1$
Starting with queue $i=2$, the first order approximation for the function $G_{2}\left(z_{1}, z_{2}, z_{3}\right)$ is:

$$
\begin{equation*}
G_{2}\left(z_{1}, z_{2}, z_{3}\right) \cong \mu_{0}+\mu_{1} z_{1}+\mu_{2} z_{2}+\mu_{3} z_{3} \tag{3.2-34}
\end{equation*}
$$

Substituting (3.2-34) in (3.2-30) yields,

$$
\mu_{0}+\mu_{1} z_{2}+\mu_{2} z_{3}+\mu_{3} z_{1}=
$$

$$
=\widetilde{D_{2}}(\sigma) \cdot\left[\begin{array}{c}
\varphi^{2}\left(\sigma_{2}, z_{2}\right) \cdot\left(\mu_{0}+\mu_{1} z_{1}+\mu_{2} z_{2}+\mu_{3} z_{3}\right)+ \tag{3.2-35}\\
\left(1-\varphi^{2}\left(\sigma_{2}, z_{2}\right)\right) \cdot\left(\mu_{0}+\mu_{1} z_{1}+\mu_{2} \cdot \widetilde{\phi_{2}}\left(\sigma_{2}+\gamma_{2}\right)+\mu_{3} z_{3}\right)
\end{array}\right]
$$

where $\sigma=\sigma(z)=\sum_{j=1}^{3} \lambda_{j}\left(1-z_{j}\right)=3-z_{1}-z_{2}-z_{3}$ and $\widetilde{D}_{2}(\sigma)=10 /(10+\sigma)$.
Since $B_{i} \sim \exp \left(1 / b_{i}\right)$, we have,

$$
\varphi^{2}\left(\sigma_{2}, z_{2}\right)=\frac{\gamma_{2} \cdot\left(1-\frac{\frac{1}{b_{2}}}{\sigma+\gamma_{2}+\frac{1}{b_{2}}}\right)}{\left(\sigma+\gamma_{2}\right) \cdot\left(z_{2}-\frac{\frac{1}{b_{2}}}{\sigma+\gamma_{2}+\frac{1}{b_{2}}}\right)}=\frac{1-\frac{4}{\sigma+5}}{(\sigma+1)\left(z_{2}-\frac{4}{\sigma+5}\right.}=\frac{1}{(\sigma+5) z_{2}-4}
$$

In addition, since ϕ_{i} is the length of a busy period in a regular $M / G / 1$ queue, we have: $\widetilde{\phi}_{i}(s)=\widetilde{B_{i}}\left(s+\lambda_{i}\left(1-\widetilde{\phi}_{i}(s)\right)\right)$.

In particular, for the $M / M / 1$ queue, since $\widetilde{B}_{i}(s)=\left(1 / b_{i}\right) /\left[1 / b_{i}+s\right]$, we get

$$
\widetilde{\phi}_{i}(s)=\frac{\frac{1}{b_{i}}}{\frac{1}{b_{i}}+s+\lambda_{i}\left(1-\widetilde{\phi}_{i}(s)\right)} .
$$

The solution for $\widetilde{\phi}_{i}(s)$ is

$$
\widetilde{\phi}_{i}(s)=\frac{s+\lambda_{i}+\frac{1}{b_{i}}-\sqrt{\left(s+\lambda_{i}+\frac{1}{b_{i}}\right)^{2}-4 \lambda_{i} \cdot \frac{1}{b_{i}}}}{2 \lambda_{i}} \quad i=1,2,3
$$

In particular, $\sigma_{2}=2-z_{1}-z_{3}$
and $\widetilde{\phi}_{2}\left(\sigma_{2}+\gamma_{2}\right)=\frac{1}{2}\left[\left(8-z_{1}-z_{3}\right)-\sqrt{\left(8-z_{1}-z_{3}\right)^{2}-16}\right]$.
In order to solve for the unknowns parameters $\mu_{0}, \mu_{1}, \mu_{2}$ and μ_{3} in (3.2-34), we use the normalization equation $G_{2}(1,1,1)=\mu_{0}+\mu_{1}+\mu_{2}+\mu_{3}=1$, and substitute 3 different values of the point \underline{z} in equation (3.2-35).

Aiming at mean values, we approximate $G(\underline{z})$ at points close to $\underline{z}=\underline{1}$ in order to obtain a good approximation. We note that this approximation may be less accurate at other points of \underline{z}, which are far from $\underline{z}=\underline{1}$. With $\underline{z}=(1,1.2,1)$, $(1,1,1.1)$ and $(1.1,1.1,1)$ we get a set of 4 linear equations, whose solution is: $\mu_{0}=-0.2685 ; ~ \mu_{1}=0.1439 ; ~ \mu_{2}=0.7009 ;$ and $\mu_{3}=0.4237$.

Hence, from (3.2-34),
$G_{2}\left(z_{1}, z_{2}, z_{3}\right) \cong-0.2685+0.1439 z_{1}+0.7009 z_{2}+0.4237 z_{3}$
Now,

$$
\widehat{X_{2}^{2}}(z)=G_{2}(1, z, 1) \cong 0.2991+0.7009 z
$$

$\operatorname{and} E\left[X_{2}^{2}\right]=f_{2}(2) \cong 0.7009$ By the symmetry assumption, $E\left[X_{i}^{i}\right]=E\left[X_{2}^{2}\right]$ for all i.Finally, all $f_{i}(j)$'s are determined from equation (3.2-13).

Second order approximation

In order to get more accurate results we now use a polynomial of second degree:

$$
\begin{align*}
& G_{i}\left(z_{1}, z_{2}, \ldots, z_{N}\right) \cong \mu_{0}+\mu_{1} z_{1}+\ldots+\mu_{N} z_{N}+\mu_{11} z_{1}^{2}+\cdots+\mu_{N N} z_{N}^{2} \\
& \quad+\mu_{12} z_{1} z_{2}+\cdots+\mu_{i j} z_{i} z_{j}+\cdots+\mu_{N-1, N} z_{N-1} z_{N} \tag{3.2-36}
\end{align*}
$$

That is, in the general case there are $1+2 N+\binom{N}{2}$ unknown parameters, implying that this same number of distinct points are used for the parameters evaluation.

Also,

$$
\begin{gather*}
\widehat{X X}_{i}(z)=G_{i}(1,1, \ldots, z, \ldots, 1) \cong \mu_{0}+\mu_{1}+\cdots+\mu_{i} z_{i}+\cdots+\mu_{N}+\mu_{11}+\cdots+\mu_{i i} z^{2}+\cdots+\mu_{N N} \\
+\mu_{12}+\cdots+\mu_{i j} z+\cdots+\mu_{N-1, N} \tag{3.2-37}\\
E\left[X_{i}^{i}\right] \cong \mu_{i}+2 \mu_{i i}+\sum_{j \neq i} \mu_{i j} \tag{3.2-38}
\end{gather*}
$$

Numerical example 2

We use the same values as in numerical example 1. For queue $i=2$, the polynomial turns out to be

$$
\begin{align*}
& G_{2}\left(z_{1}, z_{2}, z_{3}\right) \cong \mu_{0}+\mu_{1} z_{1}+\mu_{2} z_{2}+\mu_{3} z_{3}+\mu_{11} z_{1}^{2}+\mu_{22} z_{2}^{2}+\mu_{33} z_{3}^{2} \\
& \quad \quad+\mu_{12} z_{1} z_{2}+\mu_{13} z_{1} z_{3}+\mu_{23} z_{2} z_{3} \tag{3.2-39}
\end{align*}
$$

Substituting (3.2-39) in the left-hand-side of (3.2-30) yields

$$
\begin{aligned}
& G_{2}\left(z_{2}, z_{3}, z_{1}\right) \cong \mu_{0}+\mu_{1} z_{2}+\mu_{2} z_{3}+\mu_{3} z_{1}+\mu_{11} z_{2}^{2}+\mu_{22} z_{3}^{2}+\mu_{33} z_{1}^{2}+\mu_{12} z_{2} z_{3}+\mu_{13} z_{2} z_{1} \\
& \quad+\mu_{23} z_{3} z_{1}=\widetilde{D}_{2}(\sigma) \cdot\left[\varphi ^ { 2 } (\sigma _ { 2 } , z _ { 2 }) \cdot \left(\mu_{0}+\mu_{1} z_{1}+\mu_{2} z_{2}+\mu_{3} z_{3}+\mu_{11} z_{1}^{2}+\mu_{22} z_{2}^{2}\right.\right. \\
& \left.\quad+\mu_{33} z_{3}^{2}+\mu_{12} z_{1} z_{2}+\mu_{13} z_{1} z_{3}+\mu_{23} z_{2} z_{3}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\left(1-\varphi^{2}\left(\sigma_{2}, z_{2}\right)\right) \cdot\left(\mu_{0}+\mu_{1} z_{1}+\mu_{2} \widetilde{\phi}_{2}\left(\sigma_{2}+\gamma_{2}\right)+\mu_{3} z_{3}+\mu_{11} z_{1}^{2}+\mu_{22}\left[\widetilde{\phi}_{2}\left(\sigma_{2}+\gamma_{2}\right)\right]^{2}+\mu_{33} z_{3}^{2}\right. \\
& \left.\left.+\mu_{12} z_{1} \widetilde{\phi}_{2}\left(\sigma_{2}+\gamma_{2}\right)+\mu_{13} z_{1} z_{3}+\mu_{23} \widetilde{\phi}_{2}\left(\sigma_{2}+\gamma_{2}\right) z_{3}\right)\right] \tag{3.2-40}
\end{align*}
$$

By substituting 9 different points $\underline{z}=\left(z_{1}, z_{2}, z_{3}\right)$ in equation (3.2-40) and using the normalizing equation $G_{2}(\underline{1})=1=\sum_{i=0}^{3} \mu_{i}+\sum_{i, j} \mu_{i j}$ we get a system of 10 linear equations from which we calculate the unknown parameters μ_{i} 's and $\mu_{i j}^{\prime}$'s.

The resulting values are

$$
\begin{aligned}
& \mu_{0}=1.9254 ; \mu_{1}=-0.3509 ; \mu_{2}=-1.9174 ; \mu_{3}=-1.2515 ; \mu_{11}=0.11414 \\
& \mu_{22}=0.809 ; \mu_{33}=0.41114 ; \mu_{12}=0.2763 ; \mu_{13}=0.16786 ; \mu_{23}=0.81576
\end{aligned}
$$

leading to

$$
\begin{align*}
& \widehat{X}_{2}^{2}(z)=G_{2}(1, z, 1) \cong \mu_{0}+\mu_{1}+\mu_{3}+\mu_{11}+\mu_{33}+\mu_{13}+\left(\mu_{2}+\mu_{12}+\mu_{23}\right) z \\
& \quad+\mu_{22} z^{2}=1.01645-0.82534 z+0.809 z^{2} \tag{3.2-41}
\end{align*}
$$

Hence, $E\left[X_{2}^{2}\right] \cong \mu_{2}+\mu_{12}+\mu_{23}+2 \mu_{22}=0.79266$
Again, by the symmetry assumption, $E\left[X_{i}^{i}\right]=E\left[X_{2}^{2}\right], i=1,3$.
Now, using (3.2-41), $E\left[X_{2}^{2}\left(X_{2}^{2}-1\right)\right] \cong 2 \mu_{22}=1.618$, we get, $E\left[\left(X_{2}^{2}\right)^{2}\right] \cong$ 2.41066 .

To calculate the PGF of L_{2}, the following are needed:

$$
\begin{aligned}
& \left.m_{i}=\frac{1-\widetilde{B}_{i}\left(\gamma_{i}\right)}{\gamma_{i}}=\frac{1}{5} ; \quad \rho=\frac{3}{5} ; \quad \widehat{X}^{i}{ }_{i}\left(\widetilde{\phi}_{i}\left(\gamma_{i}\right)\right)=0.85 \text { (using }(3.2-12)\right) ; \\
& \delta_{i}=2-z ; \quad \widetilde{B}_{i}\left(\delta_{i}\right)=\frac{4}{6-z} .
\end{aligned}
$$

Now, substituting (3.2-41) in (3.2-25) and using the above, we get
$\widehat{L}_{2}(z) \cong \frac{\left[\left(1.01645-0.82534 z+0.809 z^{2}\right)-0.85\right]\left[1+(1-z) \frac{4}{6-z}\right]}{(2-z)\left(z-\frac{4}{6-z}\right) 0.75}=\frac{5.39 z^{2}-5.5 z+1.11}{-z^{2}+6 z-4}$

Differentiating at $z=1$, leads to $E\left[L_{2}\right] \cong 1.2815$.
Finally,

$$
\widetilde{W}_{2}(s)=\widetilde{L}_{2}\left(1-\frac{s}{\lambda_{2}}\right)=\cong \frac{20}{3} \cdot \frac{0.809 s^{2}-0.7927 s+0.15}{-s^{2}-4 s+1}
$$

with $E\left[W_{2}\right] \cong 1.2815$ and $E\left[W_{q_{2}}\right] \cong E\left[W_{2}\right]-m_{2}=1.0815$.

Conclusion

Applying the traditional station occupancy approach in studying polling systems subject to job failures or station breakdowns may lead to situations where the analysis can't be completed due to the lack of knowledge of the $P G F$ $\widehat{X_{i}^{i}}(z)$ of the key variable, X_{i}^{i} - number of customers present in queue i when polled. To overcome this difficulty we use interpolation theory, never before utilized in the analysis of polling systems. The new approach enables one to obtain a polynomial approximation whose accuracy increases with the increase of the order of the polynomial function. We use the method to approximate the unknown PGF $\widehat{X}_{i}^{i}(z)$. Substituting the approximated value of $\widehat{X_{i}^{i}}(z)$ in the various derived formulae for the $P G F$ of the queue size and the $L S T$ of the waiting time $\left(\widehat{L_{i}}(z)\right.$ and $\widetilde{W q}_{i}(s)$, respectively) leads to an approximated closed-form formulae for those performance measure functions, and result in a complete solution of the models.

In this work we have restricted ourselves to the cases where failures or breakdowns may occur only when a station is visited by the cyclically moving server. In a related work (Shomrony and Yechiali [2005b]) we study the case where failures may occur at all stations, whether being attended by the server or not. This leads us to the notion of 'negative customers' (see e.g. Gelenbe [1991,1993] and Gelenbe and Fourneau [2002]), whose arrival 'kill' jobs queueing in the various stations. The analysis of such systems is complex and requires the use of transient probabilities of the system's state.

References

Atkinson, K.E., (1978) An introduction to numerical analysis, Wiley
Borst, S.C., (1995) Polling systems with multiple coupled servers. Queueing systems 20:369-393.
Boxma, O.J., Levy, H., Yechiali, U., (1992) Cyclic reservations schemes for efficient operation of multiple queue single server systems. Annals of Operations Research 35:187-208.

Boxma, O.J., Weststrate, J.W., Yechiali, U., (1993) A Globally Gated polling system with server interruptions and applications to the repairman problem. Probability in the engineering and informational sciences 7:187-208.

Eliazar, I., Yechiali, U., (1998) Randomly timed Gated queueing systems. SIAM journal on applied mathematics 59:423-441.

Fuhrmann, S.W., Cooper, R.B., (1985) Stochastic decomposition in the $\mathrm{M} / \mathrm{G} / 1$ queue with generalized vacations. Operation Research 33:1117-1129

Gelenbe, E., (1991) Queues with negative arrivals. Journal of applied probability 28:245-250.

Gelenbe, E., (1993) G-networks with triggered customer movement. Journal of applied probability 30:742-748.

Gelenbe, E., Fourneau, J.M., (2002) G-networks with resets. Performance Evaluation 49:179-191.
Kofman, D., Yechiali, U., (1996) Polling systems with station breakdowns. Performance Evaluation 27\&28:647-672.

Kofman, D., Yechiali, U., (1997) Queueing networks with station breakdowns and Globally Gated service regime. In "Teletraffic contribution for the information age" (Ramaswamy, V. and Wirth, P.E., Eds.), North Holland, pp. 285-296.
Nakdimon, O., Yechiali, U., (2003) Polling systems with breakdowns and repairs. European journal of Operational Research 149:588-613.
Shomrony, M., Yechiali, U., (2001) Burst arrival queues with server vacations and random timers. Mathematical Methods of Operations Research 53:117-146.

Shomrony, M., Yechiali, U., (2005a) Polling systems with job failures and with station failures, Technical report, Dept. of Statistics and Operations Research, Tel Aviv University, Israel.
Shomrony, M., Yechiali, U., (2005b) Polling systems with positive and negative customers. Submitted for publication.

Takagi, H., (1986) Analysis of polling systems, The MIT Press.
Takagi, H., (1990) Queueing analysis of polling models: An update. In "Stochastic analysis of computer and communications systems" (Takagi, H., Ed.), North Holland, pp. 267-318.

Yechiali, U., (1993) Analysis and control of polling systems. In "Performance Evaluation of Computer and Communication Systems" (L. Donatiello and R. Nelson, Eds.), Springer-Verlag, pp. 630-650.

