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ABSTRACT

We consider a polling system with Exhaustive service policy subject to job
failures or to station failures. Each of the N stations (nodes) comprising the
system is, in isolation, an M/G/1- type queue. Failures at each node follow a
Poisson process. A job failure causes the job to be rejected from the system,
while a station failure (breakdown) causes the server to switch over to the next
node. The case with job failures is transformed into a classical polling model.
However, the case with station failures does not yield a solution when analyzed
via the station occupancy approach. We therefore bring into use interpolation
theory, never employed before in polling systems, and obtain explicit (approxi-
mated) solutions of key performance measures.
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1. INTRODUCTION

This paper analyzes Polling systems with job failures and with station fail-
ures (breakdowns). Such systems (under various scenarios, described in the
sequel) have been partially treated before in the literature (see, for example,
Kofman and Yechiali [1996,1997]), but the analysis was incomplete because the
Probability Generating Function (PGF ) and mean of a key variable: Xi

i - the
number of customers present in queue i when the server polls this queue - could
not be explicitly derived. In this work we overcome this shortcoming by bring-
ing into use interpolation theory, a method never used before for the analysis of
polling systems.

In classical polling models, customers (jobs) arrive, independently, to each of
several M/G/1− type queues (stations) being attended by a single server that
moves from one queue to another, incurring switch-over times. The server visits
the stations in a cyclic order.

Consider however, a polling system subject to two types of failures, occurring
when the server visits a queue: 1. a job failure, and 2. a station breakdown.
Upon occurrence of a failure of the first type, service is interrupted to the
currently processed job, which is rejected, while the server proceeds immediately
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to serve the next job in the queue (if any). Examples for this type of failure are:
an unsuccessful attempt of a job to access an unallocated memory, a transient
fault of the communication system, or a short interruption in the power supply
to the system, which is recovered immediately.

Upon occurrence of a station breakdown, the service at the queue being
attended is stopped immediately , the current job is rejected and the server
switches on to the next station. We assume that by the time the server visits
this station again, the station has been recovered from its breakdown state. An
example of such a failure is an undetected virus attack on the station.

Service policies control the amount of service given to each queue during
a server’s visit. We study in this work the Exhaustive service policy. In the
classical Exhaustive policy, at each visit the server attends the queue until it
becomes empty, and only then the server is allowed to move further. In contrast,
in our model here, upon the occurrence of a station breakdown, the server
immediately switches on to the next station, even if jobs are still present in the
failed station.

Most of the results on polling systems until mid 80s are presented in a
manuscript by Takagi [1986]. An update is given in Takagi [1990]. The Glob-
ally Gated regime was introduced by Boxma, Levy and Yechiali [1992]. Polling
systems with breakdowns are treated in Kofman and Yechiali [1996, 1997] while
polling systems involving both breakdowns and repairs were studied in Nakdi-
mon and Yechiali [2003]. Issues of controlling polling systems are discussed in
Yechiali [1993].

Our analysis is based on the laws of motion which connect between the
occupancy variables Xj

i s, being the number of customers present in queue j
at polling instant of queue i . The classical method of analysis utilizes joint
multi-variate probability generating functions of the system’s state (a vector of
queue sizes) to derive a set of recursive equations for the means (and higher
moments) of the variables Xj

i s.

As indicated, with station failures, the above method does not yield explicit
solutions of X̂i

i (z), the PGF of Xi
i , and of E[Xj

i ] or E[(Xj
i )2], needed for the

complete evaluation of the PGF and mean of the stationary queue size at each
station, as well as for the calculation of the moments of the waiting times.
We therefore bring interpolation theory into use and approximate X̂i

i (z). This
enables us to obtain explicit (approximated) solutions.

In section 2 we describe the underlying basic model and list the various
symbols and notation. We further give some preliminary results, being used
throughout the paper. Section 3 treats the Exhaustive policy. For each of
the two failure scenarios we derive the multi-dimensional PGF of the system’s
state at polling instants, and calculate the mean queue sizes at those moments.
We also calculate the PGF of the queue size in each station at an arbitrary
moment, and derive the Laplace Stieltjes Transform (LST ) of the waiting time
of a customer in each queue. Numerical examples are presented, showing how
the interpolation theory is used to obtain explicit results. We mention that the
Gated and the Globally Gated (see Boxma et al [1992] and [1993] policies can
be treated in a similar manner (see Shomrony and Yechiali [2005a]).
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2. THE BASIC MODEL

2.1 Model description

We consider a polling system comprised of N stations (queues, channels),
labeled 1, 2, . . . , N , where customers (jobs, messages) arrive at station i accord-
ing to a Poisson process with rate λi. However, the system is subject to random
failures, independently of the arrival stream, and occurring at the station being
served according to a Poisson process with rate γi. We consider two failure
types: job failures and station failures, described in the introduction.

A single server renders service to the entire network by moving from one
station to another, in a cyclic order, i.e. visiting the queues in the order
1, 2, . . . , N − 1, N, 1, 2, . . . . The server resides at a queue for a length of time
determined by the service policy and by the failure type, and then moves on to
the next station.

The server’s switch-over duration to move from station i to the next is a
random variable Di. Each job in queue i (i = 1, 2, . . . , N) is characterized by
an independent random service requirement Bi with E[B2

i ] < ∞ . We assume
that a failure causes the job in service to leave the system immediately, without
completing its service requirement.

2.2 Notation and definitions

X̂(z) = E[zX ] denotes the probability generating function (PGF ) of a
discrete random variable X .

Ỹ (s) = E[e−sY ] denotes the Laplace Stieltjes transform (LST ) of a non
negative continuous random variable Y (with mean y and
second moment y(2)).

X ∼ Y denotes two random variables having the same probability
distribution function.

Xj
i Number of jobs present in queue j at polling instant of queue i.

fi(j) = E[Xj
i ]

θi
Xi

i
= θi Sojourn time (busy period) of the server in station i, starting

with Xi
i jobs.

Φi Length of a busy period in a regular M/G/1 queue with arrival rate
λi and service times Mi .

φi Length of a busy period in a regular M/G/1 queue with arrival rate
λi and service times Bi .

Ti Inter- arrival time of failures to station i. Ti ∼ exp(γi).

Ai(t) Number of (Poisson with rate λi ) arrivals to queue i during a time
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interval of length t.

Gi (z) = E

[
N∏

j=1

z
Xj

i
j

]
The joint probability generating function (PGF ) of

the system state vector Xi, where z = ( z1, ..., zN ) and

Xi =
(
X1

i , X2
i , ..., XN

i

)
.

Bi Service requirement for a job in channel i, having a density function
fBi

(.).

ai Probability that a service (in channel i) is completed before a failure
occurs. ai = B̃i(γi) = P (Bi ≤ Ti).

Di Switch-over duration when moving from channel i to the next channel.

D =
N∑

i=1

Di Total switch-over duration during a cycle.

Mi = min{Bi, Ti} Net service time of a customer in queue i.

ρi = λimi The traffic load of queue i .

ρ =
N∑

i=1

ρi The total traffic load of the system.

Ki = Ki(Xi
i ) Total number of customers successfully served in channel i

during a visit of the server to that channel, while starting with Xi
i

customers. That is, Ki is the number of customers whose service
was not interrupted by a failure.

Ki = Ki(Xi
i ) Total number of service attempts (including unsuccessful

attempts interrupted by a failure) in channel i during a visit of the
server to that channel, while starting with Xi

i customers.

Ni Queue size at the end of a busy period.

Ui Duration of a successful (not interrupted) service time of a customer
in queue i. That is, Ui ∼ Bi | Bi ≤ Ti .

Ui The realized service time of an interrupted customer in queue i:
Ui ∼ Ti | Ti < Bi .

Li Number of customers left behind by an arbitrary departing customer
from channel i. Li also stands for the number of customers
at channel i (in a steady-state) at an arbitrary point of
time.

Wi Sojourn time of a customer in channel i .

Wqi Waiting (queueing) time of an arbitrary customer before service at
channel i.

C Length of a cycle. That is, the time interval between two consecutive
polling instants of a queue.

σ = σ (z) =
N∑

j=1

λj(1− zj)
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σi = σi (z) =
∑
j

(j 6=i)

λj(1− zj)

δi = γi + λi(1− z)

2.3 Useful results

We now present a few results that will be useful in the sequel. Let Mi =
min{Bi, Ti} be the actual net service time of an arbitrary customer in queue i.
Then, we have the following:

Result 1: The LST, mean and second moment of Mi are given, respec-
tively, by

M̃i(s) =
γi + s · B̃i(γi + s)

γi + s
(2.3-1)

mi = E[Mi] =
1− B̃i(γi)

γi
=

1− ai

γi
(2.3-2)

and

m
(2)
i = E[M2

i ] =
2
γ2

i

·
(
γiB̃i

′
(γi) + 1− B̃i(γi)

)
(2.3-3)

Proof: By conditioning on P (Bi ≤ Ti) and P (Bi > Ti), (2.3-1) follows.

By differentiating (2.3-1) once and twice at s = 0 we obtain, respectively,
mi and m

(2)
i .

Let Ui denote the duration of a successful (not interrupted) service time of
a customer in queue i. That is, Ui ∼ Bi | Bi ≤ Ti . Then,

Result 2: The LST of Ui is given by

Ũi(s) =
B̃i(γi + s)

B̃i(γi)
(2.3-4)

Proof:

Ũi(s)=E[e−sUi ]=E[e−sBi |Bi≤Ti] =
1

P (Bi≤Ti)
·
∞∫

b=0

∞∫
t=b

e−sb·γie
−γit·fBi(b)dtdb

=
1

B̃i(γi)
·
∞∫

b=0

e−sbe−γib · fBi
(b)db =

B̃i(γi + s)

B̃i(γi)

Let Ui be the realized service time of an interrupted customer in queue i.
That is, Ui ∼ Ti | Ti < Bi . Then,
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Result 3: The LST of Ui is given by

Ũi(s) =
γi

γi + s
· (1− B̃i(γi + s))

1− B̃i(γi)
(2.3-5)

Proof: Similar to the derivation of (2.3-4).

Result 4: For all models considered, the mean cycle time is given by

E[C] =
d

1− ρ
(2.3-6)

Proof Follows directly, as in many polling systems, from the balance equa-

tion:

E[C] =
N∑

i=1

E[Di] +
N∑

i=1

λimiE[C] = d +
(

N∑
i=1

ρi

)
· E[C] = d + ρE[C]

3. EXHAUSTIVE SERVICE
POLICIES

In the basic Exhaustive service policy model, at every visit the server attends
each queue until it becomes empty, and only then is allowed to move on. We
consider two Exhaustive-type policies, denoted E1 and E2, as follows.

3.1 Case E1: job failures

3.1.1 Analysis

Under the E1 model, upon occurrence of a failure, service is interrupted to
the currently processed job, which is rejected, while the server proceeds imme-
diately to serve the next job in the queue. That is, during a visit, the server
attempts to serve all customers in the queue (including new arrivals), until it
becomes empty.

The evolution of the system is given by the following law of motion,

Xj
i+1 =

{
Xj

i + Aj(θi
Xi

i
+ Di) i 6= j

Ai(Di) i = j

}
(3.1-1)

where θi
Xi

i
=

Xi
i∑

k=1

Φik and Φik denote i.i.d busy periods in a regular M/G/1
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model with service times Mi, and arrival rate λi, all distributed like Φi .

Equation (3.1-1) is similar to the law of motion of the regular Exhaustive
policy, with the only difference that Mi = min {Bi, Ti} replaces Bi . Thus (c.f.
Takagi [1986], Yechiali [1993]),

Gi+1 (z) =Gi

(
z1, ..., zi−1, Φ̃i(σi), zi+1, ..., zN

)
· D̃i(σ) (3.1-2)

where σi = σi (z) =
∑
j

(j 6=i)

λj(1− zj)

The mean number of customers in the various queues at polling instants is
given by:

fi+1(j) =
{

fi(j) + λjE [Φi] fi(i) + λjdi i 6= j
λidi i = j

}
(3.1-3)

where E [Φi] = mi /(1− ρi) and ρi = λimi .

Equation (3.1-3) yields

fi(j) =


λj

(
i−1∑

k=j+1

ρk ·
d

1− ρ
+

i−1∑
k=j

dk

)
i 6= j

λi(1− ρi) ·
(

d

1− ρ

)
i = j

 (3.1-4)

where E[C] =
d

1− ρ
.

The expectation of Ki(Xi
i ) can now be calculated:

Ki(Xi
i ) = Xi

i + Ai(
Xi

i∑
k=1

Φik)

E
[
Ki(Xi

i )
]

= fi(i) + λi · fi(i) · E [Φi] = fi(i) +
λi · fi(i) ·mi

1− ρi

=
fi(i)
1− ρi

=
λi · (1− ρi) · E[C]

1− ρi
= λi · E[C]

3.1.2 Waiting times

Waiting times are calculated in section 3.2.2 together with the calculation
of waiting times for model E2.
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3.2 Case E2: station failures

3.2.1 Analysis

Under the E2 model, upon occurrence of a failure, the service at the queue
being attended is stopped immediately, and the server switches on to the next
station. In a busy period, the server attempts to serve all customers in the
queue until a failure occurs.

The evolution of the system is given by the following law of motion,

Xj
i+1 =

{
Xj

i + Aj(θi
Xi

i
+ Di) i 6= j

Ni(Xi
i ) + Ai(Di) i = j

}
(3.2-1)

where Ni(Xi
i ) is the number of jobs present in queue i at an instant of server’s

departure from that queue, given that there were Xi
i jobs at the beginning of

the busy period.

In order to find the PGF Gi+1 (z), we first define the following joint distri-
bution transform of (θi

r , Ni(r)): Θi
r(w, z) = E

[
e−wθi

r · zNi(r)
]

Conditioning on the first service time Bi,1 in a busy period in queue i we
have:

Θi
r(w, z) = E

[
e−wθi

r · zNi(r) · 1Bi,1<Ti,1

]
+ E

[
e−wθi

r · zNi(r) · 1Bi,1≥Ti,1

]
(3.2-2)

and

(θi
r , Ni(r))

d=


(Bi,1 + θi

r−1+Ai(Bi,1)
, Ni(r − 1 + A(Bi,1)) , Bi,1 < Ti,1

(Ti,1, r − 1 + Ai(Ti,1)), Bi,1 ≥ Ti,1


Following a derivation similar to Eliazar and Yechiali [1998] and Shomrony

and Yechiali [2001] we get

E
[
e−wθi

r · zNi(r) · 1Bi,1<Ti,1

]
=

=
∞∑

j=0

(
E

[
(λiBi)

j

j!
· e−(w+γi+λi)Bi

]
·Θi

r+j−1(w, z)

)
(3.2-3)
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and

E
[
e−wθi

r · zNi(r) · 1Bi,1≥Ti,1

]
=

γiz
r−1

w + γi + λi(1− z)
·
(
1− B̃i(w + γi + λi(1− z))

)
(3.2-4)

By substituting (3.2-3) and (3.2-4) in (3.2-2) we obtain

Θi
r(w, z) =


∞∑

j=0

(
ai

j(w) ·Θi
r+j−1(w, z)

)
+ ci(w, z) · zr r ≥ 1

1 r = 0


(3.2-5)

where ai
j(w) = E

[
(λiBi)

j

j!
· e−(w+γi+λi)Bi

]
and

ci(w, z) =
γi

z(w + γi + λi(1− z))
·
(
1− B̃i(w + γi + λi(1− z))

)

The solution for the last set of equations (3.2-5) is

Θi
r(w, z) = ϕi(w, z) · zr + (1− ϕi(w, z)) ·

[
φ̃i(w + γi)

]r
(3.2-6)

where φi is the length of a busy period in a regular M/G/1 queue with
arrival rate λi and service times Bi , and

ϕi(w, z) =
ci(w, z) · z

z − B̃i(w + γi + λi(1− z))
=

γi ·
(
1− B̃i(w + δi)

)
(w + δi) ·

(
z − B̃i(w + δi)

)
where δi = γi + λi(1− z) .

We now return to the derivation of Gi+1 (z). By using the law of motion
(3.2-1) we get

Gi+1 (z) = E

[
N∏

j=1

z
Xj

i+1
j

]
= E

 ∏
j

(j 6=i)

z
Xj

i + Aj(θ
i

Xi
i
+Di)

j · zNi(X
i
i)+Ai(Di)

i



= E

 ∏
j

(j 6=i)

z
Xj

i
j ·

∏
j

(j 6=i)

z
Aj(θ

i

Xi
i
)

j · zNi(X
i
i)

i ·
N∏

j=1

z
Aj(Di)

j
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= EXi

∏
j

(j 6=i)

z
Xj

i
j · E

∏
j

(j 6=i)

z
Aj(θ

i

Xi
i
)

j · zNi(X
i
i)

i |Xi


 · D̃i(σ) (3.2-7)

Now,

E

 ∏
j

(j 6=i)

z
Aj(θ

i

Xi
i
)

j · zNi(X
i
i)

i |Xi

 = E

E

 ∏
j

(j 6=i)

z
Aj(θ

i

Xi
i
)

j · zNi(X
i
i)

i |Xi, Ni(Xi
i ), θ

i
Xi

i




= E

 ∏
j

(j 6=i)

e
−λj(1−zj)θ

i

Xi
i ·zNi(X

i
i)

i

 = E

e

−
P

j
(j 6=i)

λj(1−zj)θ
i

Xi
i

· zNi(X
i
i)

i

 = Θi
Xi

i
(σi, zi)

By substituting this last result and the solution (3.2-6) in (3.2-7) we get

Gi+1 (z) = EXi

∏
j

(j 6=i)

z
Xj

i
j ·Θi

Xi
i
(σi, zi)

 · D̃i(σ) (3.2-8)

= EXi

 ∏
j

(j 6=i)

z
Xj

i
j ·

(
ϕi(σi, zi)·z

Xi
i

i +(1−ϕi(σi, zi))·
[
φ̃i(σi+γi)

]Xi
i

) ·D̃i(σ)

=
[
ϕi(σi, zi) ·Gi(z) +(1− ϕ

i(σi, zi)) ·Gi

(
z1, ..., zi−1, φ̃i(σi + γi), zi+1, ..., zN

)]
·D̃i(σ)

(1)

where ϕi(σi, zi) =
γi ·
(
1− B̃i(σ + γi)

)
(σ + γi) ·

(
zi − B̃i(σ + γi)

)
By differentiating (3.2-8), the set of first moments {fi(j) = E[Xj

i ]} is given by

fi+1(j) =


fi(j) +

λj

γi
·
(
1− X̂i

i

(
φ̃i(γi)

))
+ λjdi i 6= j

fi(i) +

(
λi

γi
− 1

1− B̃i(γi)

)
·
(
1− X̂i

i

(
φ̃i(γi)

))
+ λidi i = j


(3.2-9)

Unfortunately, in contrast to case E1, equations (3.2-9) do not lead to an
explicit solution for the fi(j)’s.
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However, by summing equations (3.2-9) over i, for every j = 1, ..., N , we
derive

1− X̂j
j

(
φ̃j(γj)

)
1− B̃j(γj)

= λj · d + λj ·
N∑

k=1

1− X̂k
k

(
φ̃k(γk)

)
γk

Defining xk =
1− X̂k

k

(
φ̃k(γk)

)
γk

and αj =
γj

λj(1− B̃j(γj))
− 1 =

1
λjmj

− 1 =
1− ρj

ρj
,

the above equations can be written, for every j = 1, ..., N , as

d = −
∑

i
(i6=j)

xi +
γj

λj(1− B̃j(γj))
· xj − xj = −

∑
i

(i6=j)

xi + αjxji (3.2-10)

In a matrix form, equations (3.2-10) can be expressed as Ax = d, where A
is a square matrix of order N , x = (x1, x2, ..., xN )T and d = d · 1 .

That is,
α1 −1 ... ... −1 −1
−1 α2 −1 ... −1 −1

−1 −1 ... −1 αN−1 −1
−1 −1 ... ... −1 αN

 ·


x1

x2

...

xN−1

xN

 =


d
d
...

d
d


By subtracting the bottom row of A from each of the upper rows i =

1, 2, ..., N − 1 , and then adding each row i (i = 1, 2, ..., N − 1) multiplied by
(αi + 1)−1 to the bottom row, A is modified to an upper triangular matrix, so
that


α1 + 1 0 ... ... 0 −(1 + αN )

0 α2 + 1 0 ... 0 −(1 + αN )
0 ...

0
0 0 ... 0 αN−1 + 1 −(1 + αN )
0 0 ... ... 0 aN,N

 ·


x1

x2

...

xN−1

xN

 =


0
0
...

0
d


(3.2-11)

Using mi =
1− ai

γi
, we have

aN,N = αN +
−(1 + αN )

1 + α1
+
−(1 + αN )

1 + α2
+...+

−(1 + αN )
1 + αN−1

=
1− ρ

ρN

Since αi + 1 =
1
ρi

6= 0, a unique solution exists if and only if aN,N 6= 0,

which is equivalent to ρ 6= 1.
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The solution of the equations Ax = d is

xN =
d

aN,N
=

dρN

1− ρ
,

xj =
1 + αN

1 + αj
· xN =

ρj

ρN
· dρN

1− ρ
=

dρj

1− ρ
, for j = 1, ..., N − 1

That is, for every j = 1, ..., N ,

xj =
dρj

1− ρ
, (3.2-12)

leading to

X̂j
j

(
φ̃j(γj)

)
= 1− xjγj = 1− λjmjγjd

1− ρ
= 1− λj(1− B̃j(γj))d

1− ρ
.

By substituting in equation (3.2-9) we get

fi+1(j) =


fi(j) +

λjρid

1− ρ
+ λjdi i 6= j

fi(i) +
λiρid

1− ρ
− λid

1− ρ
+ λidi i = j

 . (3.2-13)

Note that, although the set (3.2-13) looks ’nicer’ than (3.2-9), we still can
not solve it for the fi(j)′s, since it is a non independent set. Thus, although
X̂i

i (φ̃i(γi)) is now known, we need the distribution of Xi
i , namely X̂i

i (z),
in order to be able to obtain fi(i). A procedure for obtaining X̂i

i (z), using
interpolation theory, is developed in section 3.2.3. .

3.2.2 Waiting times

3.2.2.1 Derivation of L̂i(z)

We first derive the PGF of the queue size at an arbitrary moment in queue
i. This will enable us to derive the LST of the waiting time of an arbitrary
customer in that queue. (See also Eliazar and Yechiali [1998] and Shomrony
and Yechiali [2001]).

For brevity, in the following derivation and in equations (3.2-14) to (3.2-16),
we suppress the index i, indicating the queue number, and use the subscript n
to indicate the n− th departing customer from that queue.

Define
τn − instant of the n− th departure, starting from time t = 0

Ln − queue size at time τn + 0

In − the event: { at time τn the server leaves the queue }

Xn , Nn − queue sizes at the beginning and the end, respectively, of the
busy period containing instant τn

12



X∗
n − queue size at the beginning of the busy period containing instant τn

as its first departure. i.e. X∗
n ∼

[
Xn|In−1

]
pn = P (In) ; 1− pn = P (IC

n )

By conditioning on the event In−1, we write,

E[zLn ] = E[zLn |IC
n−1] · (1− pn−1) + E[zLn |In−1] · pn−1 (3.2-14)

Observe that, if In−1 occurs, then the next departure (the n − th) will be
the first in the next busy period, starting with Xn customers, so that Ln =

Xn − 1 + A(Mn) .

(Attention: Mn here is the length of the service time of the n−th departing
customer in queue i ; Mn = min{B, T} where B is the service time in queue

i and T is the inter-arrival time of failures in queue i) .

Otherwise, if I c
n−1 occurs, then Ln = Ln−1 − 1 + A(Mn) .

Hence, (3.2-14) becomes:

E[zLn ] = E[zLn−1−1+A(Mn)|IC
n−1]·(1− pn−1)+E[zXn−1+A(Mn)|In−1]·pn−1

=
M̃(λ(1− z))

z
·
[
E[zLn−1 ]− E[zNn−1 ] · pn−1 + E[zX∗

n ] · pn−1

]
(3.2-15)

We repeat the above computation for Ln instead of zLn :

E[Ln]=
[
E[A(Mn)]−1+E[Ln−1|IC

n−1]
]
· (1−pn−1) + [E[A(Mn)]−1+E[X∗

n]] ·pn−1

= λm− 1 + E[Ln−1]− E[Nn−1] · pn−1 + E[X∗
n] · pn−1 (3.2-16)

Since the Markov chain, embedded at service completion instants, converges
in distribution, taking n −→∞ in (3.2-15) and in (3.2-16) implies, respectively:

E[zL] ·
(
z − M̃(λ(1− z))

)
= M̃(λ(1− z)) ·

[
E[zX∗

]− E[zN ]
]
· p (3.2-17)

1− λm =
[
E[X∗]− E[N ]

]
· p (3.2-18)

in which L , X∗ , N and p are the steady state limits of Ln , X∗
n , Nn and

pn , respectively.

From the last two equations we obtain:
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L̂(z) = (1− ρ) · M̃(λ(1− z))

z − M̃(λ(1− z))
· E[zX∗

]− E[zN ]
E[X∗]− E[N ]

(3.2-19)

Since X∗ ∼ X|X ≥ 1, N ∼ N |X ≥ 1 and N | {X = 0} = 0, we get,

(see definition of Ni in section 3.2.1; X replaces the original Xi
i )

E[zX ]− E[zN ]
E[X]− E[N ]

=
E[zX∗

]− E[zN ]
E[X∗]− E[N ]

Substituting the last equation in (3.2-19) yields the PGF for Li at epochs
of departure

L̂i(z) = (1− ρi) ·
M̃i(λi(1− z))

z − M̃i(λi(1− z))
· E[zXi

i ]− E[zNi ]
E[Xi

i ]− E[Ni]
(3.2-20)

Note that this decomposition is similar to the Fuhrmann and Cooper de-
composition result [1985] for the steady state queue size L , of a nonpreemptive
M/G/1 queue with general vacation, i.e.,

L̂(z) = L̂M/G/1(z) · χ(z)

where L̂M/G/1(z) = (1 − ρ) · M̃(λ(1− z)) · (z − 1)

z − M̃(λ(1− z))
is the steady state

queue size of a regular M/G/1 queue, and χ(z) is the PGF of the queue size

at an arbitrary instant during the vacation. Later, Borst [1995] has shown that

χ(z) =
1

z − 1
· E[zX ]− E[zN ]

E[X]− E[N ]
.

We now obtain the distribution of Ni for the E2 model by using (3.2-6):

N̂i(r)(z) = E[zNi(r)] = Θi
r(0, z) = ϕi(0, z) · zr + (1− ϕi(0, z)) ·

[
φ̃i(γi)

]r
where,

ϕi(0, z) =
γi ·
(
1− B̃i(δi))

)
δi ·
(
z − B̃i(δi)

)
By putting Xi

i instead of r and taking expectation, we get the LST of the
number of customers at the end of a busy period in queue i:

N̂i(z) = E[zNi ] = EXi
i

[
E
[
zNi(X

i
i )|Xi

i

]]
= EXi

i

[
ϕi(0, z) · zXi

i + (1− ϕi(0, z)) ·
[
φ̃i(γi)

]Xi
i

]

=
X̂i

i (z) · γi ·
(
1− B̃i(δi)

)
+ X̂i

i (φ̃i(γi)) ·
[
δiz − γi − B̃i(δi) · λi(1− z)

]
δi ·
(
z − B̃i(δi)

)
(3.2-21)
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Also, (by comparing (3.2-1) and (3.2-13)):

E[Ni] = E[Ni(Xi
i )] = fi(i)+

λiρid

1− ρ
− λid

1− ρ
= E[Xi

i ]−
λid

1− ρ
· (1− ρi) (3.2-22)

Now, from (3.2-21) and (3.2-22) we get:

E[zXi
i ]− E[zNi ]

E[Xi
i ]− E[Ni]

=

[
X̂i

i (z)− X̂i
i (φ̃i(γi))

]
·
[
δiz − γi − B̃i(δi) · λi(1− z)

]
δi ·
(
z − B̃i(δi)

)
· λid

1− ρ
· (1− ρi)

(3.2-23)

Using (2.3-1),

M̃i(λi(1− z))

z − M̃i(λi(1− z))
=

γi + λi(1− z) · B̃i(δi)
δi

z − γi + λi(1− z) · B̃i(δi)
δi

=
γi + λi(1− z) · B̃i(δi)

δiz − γi − λi(1− z) · B̃i(δi)

(3.2-24)

Substituting (3.2-23) and (3.2-24) in (3.2-20) yields,

L̂i(z) =

[
X̂i

i (z)− X̂i
i (φ̃i(γi))

]
·
[
γi + λi(1− z) · B̃i(δi)

]
δi ·
(
z − B̃i(δi)

)
· λid

1− ρ

(3.2-25)

Note that, as in many M/G/1-type queues, Li also stands for the number of
customers at channel i (under a steady-state condition) at an arbitrary instant
of time.

Calculation of the PGF of Li for the E1 case

From (3.1-4): E[Xi
i ] =

λi(1− ρi)d
1− ρ

, Ni = 0 , E[Ni] = 0

Hence, from (3.2-20):

L̂i(z) =
M̃i(λi(1− z))

z − M̃i(λi(1− z))
· X̂i

i (z)− 1
λid

1− ρ

(3.2-26)

which is consistent with the result for the regular Exhaustive regime but
with service times Mi .
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3.2.2.2 Derivation of W̃i(s)

Let Wqi
be the waiting time of a customer in queue i, and let its sojourn time

be Wi = Wqi
+ Mi. Then, by using the standard argument that the number of

customers left behind in queue i by a department customer equals the number
of arrivals during Wi one gets

L̂i(z) = W̃i(λi(1− z)) = W̃ qi(λi(1− z)) · M̃i(λi(1− z))

Thus, based on (3.2-25) we have,

W̃i(s) = L̂i(1−
s

λi
) =

[
X̂i

i (1−
s

λi
)− X̂i

i (̃φi(γi))
]
·
[
γi + s · B̃i(γi + s)

]
· (1− ρ)

(γi + s) ·
(

1− s

λi
− B̃i(γi + s)

)
· λid

(3.2-27)
and

W̃ qi(s) =
X̂i

i (1−
s

λi
)− X̂i

i

(
φ̃i(γi)

)
1− s

λi
− B̃i(γi + s)

· 1− ρ

λid
(3.2-28)

Finally, one can substitute X̂i
i (φ̃i(γi)) = 1− λi(1− B̃i(γi))d

1− ρ
in equations

(3.2-25) , (3.2-27) and (3.2-28) .

3.2.3 Solution for the PGF X̂i
i (z) by interpolation

3.2.3.1 Probability distribution relation

As indicated, equations (3.2-13) do not yield an explicit solution for the
means fi(j) = E[Xj

i ]. Therefore, we have to turn back to finding the PGF
X̂i

i (z), from which fi(i) and fi(j) can be determined.
We will find X̂i

i (z) by using an interpolation method. For simplicity we
consider a symmetric system.

Equation (3.2-8) relates the PGF Gi(z1, ..., zN ) to the PGF Gi+1(z1, ..., zN ).

We claim that in a symmetrical case, the following relation holds:

Gi+1(z1, ..., zN ) = Gi(z2, ..., zN , z1) (3.2-29)

This follows since Xj
i ∼ Xj+k

i+k for every i, j = 1, ..., N and k = 1, 2, 3, ...

(where the counting of k is in a cyclic manner - modulo N ). In particular,
Xj

i ∼ Xj+1
i+1 . That is, zXj

i ∼ zXj+1
i+1 , so that

z
X1

i+1
1 · zX2

i+1
2 · ...· z

XN
i+1

N ∼ z
XN

i
1 · zX1

i
2 · ...· z

XN−1
i

N

Therefore,
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Gi+1(z1, ..., zN ) = E

[
z

X1
i+1

1 · zX2
i+1

2 · ... · zXN
i+1

N

]
= E

[
z

XN
i

1 · zX1
i

2 · ... · zXN−1
i

N

]
= Gi(z2, ..., zN , z1)

Using the relation (3.2-29), equation (3.2-8) becomes

Gi(z2, ..., zN , z1) =

=
[
ϕi(σi, zi)·Gi(z) +(1− ϕ

i(σi, zi))·Gi

(
z1, ..., zi−1, φ̃i(σi + γi), zi+1, ..., zN

)]
·D̃i(σ)

(3.2-30)

where ϕi(σi, zi) is defined in section 3.2.1 .

3.2.3.2 Approximating Gi(z1, z2, ..., zN ) using polynomial interpolation

According to interpolation theory (see e.g. Atkinson [1989]) a function h(x)
with n + 1 continuous derivatives can be approximated by a polynomial sum:

P (x) = a0 + a1x + ... + amxm (m ≤ n) .

The coefficients a0, a1, ..., am are uniquely evaluated when knowing the val-
ues of the function h(x) at some distinct m + 1 points: x0, ..., xm .

This is done by extracting the coefficients values from m+1 equations, each
equating the polynomial expression to the function value h(xi) , i = 0, 1, ...,m.

The approximation error at a point t is expressed by:
(t− x0) · ... · (t− xm)

(m + 1)!
·

h(m+1)(ξ) , where ξ is a point lying in the minimal interval connecting the

points t, x0, x1, ..., xm , and h(m+1) is the (m + 1)st derivative of h(·).

The error gets smaller as t approaches one of the points x0, ..., xm and when
m becomes larger.

The method is extended to multi-variate functions and polynomials.

Since our goal is to approximate the multi-variate function Gi(z), we now
introduce a modification to the interpolation method in order to solve cases in
which, instead of knowing values of the function Gi(z) at distinct points, we
have a relation (equation (3.2-30)), involving three values of the function Gi(·)
at three separate points.

According to the method, a polynomial sum is substituted instead of Gi(·)
in the above relation. Then, the coefficients a0, a1, ... are calculated in a similar
way to the original method by the following steps (which will be illustrated by
numerical examples):

1. Insert the polynomial expression (with unknown coefficients) instead of
Gi(z) in the given relation.

2. Substitute a chosen value for z in the equation.
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3. Repeat step 2, several times (according to the polynomial degree) and
get a system of independent equations with unknown parameters (the
polynomial coefficients).

4. Solve for the unknown parameters and get the approximation to

Gi(z).

While approximating a generating function, one of the equations must be
the normalizing equation: Gi(1) = 1.

Since the error of the approximation is smaller at the vicinity of any one
of the sampled points, we will carry the sampling of those points as close as
possible to points in which we want the approximation to hold.

First order approximation

We begin by approximating Gi(z1, z2, ..., zN ) by using a polynomial of first
degree with unknown parameters µ0, ..., µN :

Gi(z1, z2, ..., zN ) ∼= µ0 + µ1z1 + ... + µNzN (3.2-31)

From which we have,

X̂i
i(z) = Gi(1, 1, ..., z, ..., 1) ∼= µ0+µ1+· · ·+µi−1+µiz+µi+1+· · ·+µN (3.2-32)

and
E[Xi

i ] ∼= µi (3.2-33)

Numerical example 1

We assume exponential service times and exponential switch-over times.

The following values for the system variables are used:

Number of queues: N = 3; Poisson rates of customer arrivals and of failures:

λi = 1, γi = 1, respectively. Service times: Bi ∼ exp(4), with E[Bi] = bi =
1
4

Switch over times: Di ∼ exp(10), with E[Di] = di = 0.1

Starting with queue i = 2, the first order approximation for the function
G2(z1, z2, z3) is:

G2(z1, z2, z3) ∼= µ0 + µ1z1 + µ2z2 + µ3z3 (3.2-34)

Substituting (3.2-34) in (3.2-30) yields,
µ0 + µ1z2 + µ2z3 + µ3z1 =
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= D̃2(σ)·

[
ϕ2(σ2, z2) · (µ0 + µ1z1 + µ2z2 + µ3z3) +

(1− ϕ
2(σ2, z2)) ·

(
µ0 + µ1z1 + µ2 · φ̃2(σ2 + γ2) + µ3z3

) ]
(3.2-35)

where σ = σ(z) =
∑3

j=1 λj(1−zj) = 3−z1−z2−z3 and D̃2(σ) = 10/(10+σ).

Since Bi ∼ exp(1/bi), we have,

ϕ2(σ2, z2) =

γ2 ·

1−

1
b2

σ + γ2 +
1
b2



(σ + γ2) ·

z2 −

1
b2

σ + γ2 +
1
b2


=

1− 4
σ + 5

(σ + 1)(z2 −
4

σ + 5

=
1

(σ + 5)z2 − 4

In addition, since φi is the length of a busy period in a regular M/G/1
queue, we have: φ̃i(s) = B̃i

(
s + λi(1− φ̃i(s))

)
.

In particular, for the M/M/1 queue, since B̃i(s) = (1/bi)/[1/bi + s], we get

φ̃i(s) =

1
bi

1
bi

+ s + λi(1− φ̃i(s))
.

The solution for φ̃i(s) is

φ̃i(s) =
s + λi +

1
bi
−

√(
s + λi +

1
bi

)2

− 4λi ·
1
bi

2λi
i = 1, 2, 3

In particular, σ2 = 2− z1 − z3

and φ̃2(σ2 + γ2) = 1
2 [(8− z1 − z3)−

√
(8− z1 − z3)2 − 16].

In order to solve for the unknowns parameters µ0, µ1, µ2 and µ3 in (3.2-34),
we use the normalization equation G2(1, 1, 1) = µ0 + µ1 + µ2 + µ3 = 1, and

substitute 3 different values of the point z in equation (3.2-35).
Aiming at mean values, we approximate G(z) at points close to z = 1 in

order to obtain a good approximation. We note that this approximation may be
less accurate at other points of z, which are far from z = 1. With z = (1, 1.2, 1),
(1, 1, 1.1) and (1.1, 1.1, 1) we get a set of 4 linear equations, whose solution is:
µ0 = −0.2685 ; µ1 = 0.1439 ; µ2 = 0.7009 ; and µ3 = 0.4237.

Hence, from (3.2-34),

G2(z1, z2, z3) ∼= −0.2685 + 0.1439z1 + 0.7009z2 + 0.4237z3

Now,

X̂2
2 (z) = G2(1, z, 1) ∼= 0.2991 + 0.7009z
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andE[X2
2 ] = f2(2) ∼= 0.7009 By the symmetry assumption, E[Xi

i ] = E[X2
2 ]

for all i.Finally, all fi(j)’s are determined from equation (3.2-13).

Second order approximation

In order to get more accurate results we now use a polynomial of second
degree:

Gi(z1, z2, ..., zN ) ∼= µ0 + µ1z1 + ... + µNzN + µ11z
2
1 + · · ·+ µNNz2

N

+ µ12z1z2 + · · ·+ µijzizj + · · ·+ µN−1,NzN−1zN (3.2-36)

That is , in the general case there are 1+2N +
(

N

2

)
unknown parameters,

implying that this same number of distinct points are used for the parameters
evaluation.

Also,

X̂i
i(z) = Gi(1, 1, ..., z, ..., 1) ∼= µ0 + µ1 + · · ·+ µizi + · · ·+ µN + µ11 + · · ·+ µiiz

2 + · · ·+ µNN

+ µ12 + · · ·+ µijz + · · ·+ µN−1,N (3.2-37)

E[Xi
i ] ∼= µi + 2µii +

∑
j 6=i

µij (3.2-38)

Numerical example 2

We use the same values as in numerical example 1. For queue i = 2, the
polynomial turns out to be

G2(z1, z2, z3) ∼= µ0 + µ1z1 + µ2z2 + µ3z3 + µ11z
2
1 + µ22z

2
2 + µ33z

2
3

+ µ12z1z2 + µ13z1z3 + µ23z2z3 (3.2-39)

Substituting (3.2-39) in the left-hand-side of (3.2-30) yields

G2(z2, z3, z1) ∼= µ0 + µ1z2 + µ2z3 + µ3z1 + µ11z
2
2 + µ22z

2
3 + µ33z

2
1 + µ12z2z3 + µ13z2z1

+ µ23z3z1 = D̃2(σ) ·

[
ϕ2(σ2, z2) · (µ0 + µ1z1 + µ2z2 + µ3z3 + µ11z

2
1 + µ22z

2
2

+ µ33z
2
3 + µ12z1z2 + µ13z1z3 + µ23z2z3)
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+
(
1− ϕ2(σ2, z2)

)
·
(
µ0 + µ1z1 + µ2φ̃2(σ2 + γ2) + µ3z3 + µ11z

2
1 + µ22[φ̃2(σ2 + γ2)]2 + µ33z

2
3

+µ12z1φ̃2(σ2 + γ2) + µ13z1z3 + µ23φ̃2(σ2 + γ2)z3

)]
(3.2-40)

By substituting 9 different points z = (z1, z2, z3) in equation (3.2-40) and

using the normalizing equation G2(1) = 1 =
3∑

i=0

µi +
∑
i,j

µij we get a system of

10 linear equations from which we calculate the unknown parameters µi’s and
µ′ij ’s.

The resulting values are

µ0 = 1.9254;µ1 = −0.3509;µ2 = −1.9174;µ3 = −1.2515;µ11 = 0.11414;
µ22 = 0.809;µ33 = 0.41114;µ12 = 0.2763;µ13 = 0.16786;µ23 = 0.81576,

leading to

X̂2
2 (z) = G2(1, z, 1) ∼= µ0 + µ1 + µ3 + µ11 + µ33 + µ13 + (µ2 + µ12 + µ23)z

+ µ22z
2 = 1.01645− 0.82534z + 0.809z2 (3.2-41)

Hence, E[X2
2 ] ∼= µ2 + µ12 + µ23 + 2µ22 = 0.79266

Again, by the symmetry assumption, E[Xi
i ] = E[X2

2 ], i = 1, 3.

Now, using (3.2-41), E
[
X2

2

(
X2

2 − 1
)] ∼= 2µ22 = 1.618, we get, E[(X2

2 )2] ∼=
2.41066.

To calculate the PGF of L2, the following are needed:

mi =
1− B̃i(γi)

γi
=

1
5
; ρ =

3
5
; X̂i

i

(
φ̃i(γi)

)
= 0.85 (using (3.2-12));

δi = 2− z; B̃i(δi) =
4

6− z
.

Now, substituting (3.2-41) in (3.2-25) and using the above, we get

L̂2(z) ∼=
[(1.01645− 0.82534z + 0.809z2)− 0.85][1 + (1− z)

4
6− z

]

(2− z)
(

z − 4
6− z

)
0.75

=
5.39z2 − 5.5z + 1.11

−z2 + 6z − 4

(3.2-42)

Differentiating at z = 1, leads to E[L2] ∼= 1.2815.

Finally,

W̃2(s) = L̃2

(
1− s

λ2

)
=∼=

20
3
· 0.809s2 − 0.7927s + 0.15

−s2 − 4s + 1

with E[W2] ∼= 1.2815 and E[Wq2 ] ∼= E[W2]−m2 = 1.0815.
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Conclusion

Applying the traditional station occupancy approach in studying polling
systems subject to job failures or station breakdowns may lead to situations
where the analysis can’t be completed due to the lack of knowledge of the PGF

X̂i
i (z) of the key variable, Xi

i - number of customers present in queue i when
polled. To overcome this difficulty we use interpolation theory, never before
utilized in the analysis of polling systems. The new approach enables one to
obtain a polynomial approximation whose accuracy increases with the increase
of the order of the polynomial function. We use the method to approximate
the unknown PGF X̂i

i (z). Substituting the approximated value of X̂i
i (z) in

the various derived formulae for the PGF of the queue size and the LST of
the waiting time (L̂i(z) and W̃ qi(s), respectively) leads to an approximated
closed-form formulae for those performance measure functions, and result in a
complete solution of the models.

In this work we have restricted ourselves to the cases where failures or break-
downs may occur only when a station is visited by the cyclically moving server.
In a related work (Shomrony and Yechiali [2005b]) we study the case where
failures may occur at all stations, whether being attended by the server or not.
This leads us to the notion of ’negative customers’ (see e.g. Gelenbe [1991,1993]
and Gelenbe and Fourneau [2002]), whose arrival ’kill’ jobs queueing in the
various stations. The analysis of such systems is complex and requires the use
of transient probabilities of the system’s state.
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