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Abstract

We study Polling Systems (POLS) with both positive and negative cus-
tomers, a direction not yet pursued in the literature on POLS. We analyze the
Gated, Exhaustive and Globally-Gated service regimes and derive expressions
for the Probability Generating Functions (PGFs) of the system’s states and
for the Laplace-Stieltjes Transforms of the waiting times. Since the transforms
depend on an unknown PGF of a key variable, we bring into use Interpolation
Theory, never before exploited in the analyses of POLS, and obtain (approx-
imated) explicit results for the PGFs and means of the variables involved.
Numerical examples are presented, demonstrating the use of the solution pro-
cedure.

Key words: Polling, negative customers, gated, exhaustive, globally gated,
Interpolation theory.

1. Introduction
We study single-server polling systems where, in addition to the regular

arrival stream of positive customers, there is a flow of ’negative’ arrivals. A
negative customer does not receive service and has the effect of removing a
(positive) customer from the queue. If it arrives when the queue is empty, it
has no effect on the system and it is lost.

Networks with positive and negative arrivals, called G-networks, were in-
spired by neural networks that communicate via ’impulse’ signals. A positive
customer is interpreted as ’excitation’ while a negative one as ’inhibition’. The
goal of this work is to study and analyze polling systems with both positive
and negative arrivals, a direction not yet pursued in the literature on polling
systems.

Polling systems consisting of N queues (channels), receiving independent
streams of positive arrivals and served by a single server which incurs switch-
over periods when moving from one channel to another, have been widely studied
in the literature and used as a central model for the analysis of a large variety
of applications in the areas of computer networks, telecommunication systems,
manufacturing, traffic control, etc. What makes these systems even more com-
plex is the polling table according to which the single server visits the various
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queues. In most studies, however, the visit order is assumed to be cyclic (Round
Robin).

Common service policies, which control the amount of service given to each
queue during a server’s visit, are the Exhaustive, Gated (locally and globally)
and Limited regimes. Under the Exhaustive regime, at each visit to a queue, the
server continues serving until the queue becomes empty, and only then the server
is allowed to move further. Under the (locally) Gated regime, the customers
that are served during the current visit in a certain queue are only those present
when the server starts visiting (polls) the queue. Customers arriving while the
queue is attended by the server will be served only during the next server’s
visit. Under the Globally Gated regime only customers present at the start of

the cycle are served during the current visit, while under the Ki-Limited service
discipline only a limited number of jobs (at most Ki) are served at each server’s
visit to queue i.

Most of the results on polling systems until mid 80s are presented in the
excellent manuscript by Takagi [1986]. An update is given in Takagi [1990].
The Globally Gated regime was introduced by Boxma, Levy and Yechiali [1992]
and further studied by Boxma, Weststrate and Yechiali [1993]. Polling systems
with breakdowns are treated in Kofman and Yechiali [1996, 1997] while polling
systems involving both breakdowns and repairs were analyzed in Nakdimon
and Yechiali [2003]. The randomly timed gated regime has been studied by
Eliazar and Yechiali [1998a, 1998b]. Pseudo conservation laws were established
by Boxma and Groenndijk [1987], while optimal visit-orders of the server are
discussed in Browne and Yechiali [1989] and in Yechiali [1993]. G-networks have
been introduced by Gelenbe [1991a, 1991b] and extended to networks with resets
in Gelenbe and Fourneau [2002].

As indicated above, our aim is to extend the analysis spectrum of polling
systems to include both positive and negative customers so as to construct
a framework for G- type polling networks. Our analysis method is based on
the ’laws of motion’ which connect the occupancy variables Xj

i s (number of
customers present in queue j at polling instant of queue i). The traditional
method of analysis utilizes joint multi-variable probability generating functions
(PGFs) of the system state to derive a set of recursive equations for the means
(and higher moments) of the variables Xj

i s. However, in the models presented
here this method does not yield a complete solution. We thus bring into use (a
version of) the “interpolation theory” numerical method. This approach is new
and has not been used before for the analysis of polling systems.

In this work we analyze the Gated, Exhaustive and Globally-Gated service
regimes. The organization of the paper is the following. In chapter 2 we present
the basic model, set the notation and derive some preliminary results which are
used in the sequel. In chapter 3 we study the Gated service discipline under the
following assumptions: (i) Positive customers and their service times generate,
in each queue, a M/G/1- type queue. (ii) negative customers arrive continu-
ously and independently at all queues. Their arrival process is independent of
the positive arrival stream. A negative arrival to a queue attended by the server,
’kills’ the customer being served. The server then takes the next customer in
line. Arrival of a negative customer at a queue not attended by the server, kills
the first customer in line, if any. If the queue is empty, the negative customer
has no effect on the system. We derive the multi-dimensional Probability Gen-
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erating Function (PGF ) of the system state (a vector of queue sizes) at polling
instants, and calculate the mean queue sizes at those moments. We also cal-
culate the PGF of the queue size in each station at an arbitrary moment of
time, and derive the Laplace Stieltjes Transform (LST ) of the waiting time of a
positive customer in each queue. The explicit derivation of the PGF of X i

i , the
queue size in queue i at polling instant, employs techniques used in interpolation
theory. Furthermore, the analysis requires the use of transient solutions for the
M/M/1 queue, involving Bessel functions. Numerical examples are presented,
demonstrating the calculation method. Chapter 4 deals with the Exhaustive
service discipline. We consider the same scenario as for the Gated regime and
derive the system’s various PGFs, LSTs and means. Again, transient solu-
tions for the M/M/1 queue are used, interpolation theory is employed and a
numerical example is presented. Chapter 5 studies the Globally-Gated regime.

2. The Basic Model
2.1 Model description

We consider a polling system comprised of N channels (stations, queues),
labeled 1, 2, . . . , N , with both positive (regular) and negative customers. Positive
customers (messages, jobs) arrive at channel i according to a Poisson process
with rate λi, while negative customers arrive at channel i, independently of the
positive customers, according to a Poisson process with rate γi.

A single server renders service to the entire network by moving from one
channel to another, in a cyclic order, i.e., visiting the queues in the order
1, 2, . . . , N − 1, N, 1, 2, . . . . The server resides at a queue for a length of time
determined by the service discipline and then moves (switches over) to the next
channel. The switch-over duration from channel i to the next is a random vari-
able Di, independent of the other processes. Flows of positive and negative
customers are independent of the server’s position.

Each positive job in channel i is characterized by an independent random
service requirement Bi.

A negative customer arriving to a channel being attended by the server
causes the positive customer in service to leave the system immediately. That
is, the service of the latter is not completed. The negative customer has no
other effect on the system. If a negative customer arrives to a queue not being
attended by the server, it removes the first positive customer in the queue (if
any) from the system. If a negative customer arrives to an empty queue, it has
no effect.

2.2 Notation and definitions

X̂(z) = E[zX ] denotes the probability generating function (PGF ) of a discrete
random variable X .

Ỹ (s) = E[e−sY ] denotes the Laplace Stieltjes transform (LST ) of a non-negative
continuous random variable Y .
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X ∼ Y denotes two random variables having the same probability distribution
function.

Xj
i Number of jobs present in queue j at polling instant of queue i. fi(j) =

E[Xj
i ].

Ti Inter-arrival time of negative jobs to station i. Ti ∼ Exp(γi).

Bi Service requirement of a positive job in channel i (with mean bi, second

moment b
(2)
i and density function fBi

(.)).

Mi = min{Bi, Ti} Attained service time of a customer in queue i (with mean

mi and second moment m
(2)
i ).

Ai(t) Number of (Poisson with rate λi) positive arrivals to queue i during a
time interval of length t.

Gi(z) = E

[
N∏

j=1

z
X

j

i

j

]
The joint probability generating function (PGF ) of the

system state vector Xi, where z = (z1, . . . , zN ) and Xi = (X1
i , X2

i , . . . , XN
i ).

Di Switch-over duration when moving from channel i to the next channel (with

mean di and second moment d
(2)
i ).

D =
∑N

i=1 Di Total switch-over duration during a cycle (with mean d and sec-
ond moment d(2).

ρi = λimi Traffic load of queue i.

ρ =
∑N

i=1 ρi Total traffic load of the system.

θi
Xi

i

= θi Sojourn time (busy period) of the server in station i, starting with X i
i

jobs.

Φi Length of a busy period in a regular M/G/1 queue with arrival rate λi and
service times Mi.

Ki = Ki(X
i
i ) Total number of positive customers successfully served in channel

i during a visit of the server to that channel, when starting with X i
i

customers. That is, Ki is the number of customers whose service was not
interrupted by an arrival of a negative customer.

Ki = Ki(X
i
i ) Total number service attempts (including unsuccessful attempts

interrupted by negative customers) in channel i during a visit of the server
to that channel, when starting with X i

i positive customers.

Li Number of positive customers left behind by an arbitrary departing customer
from channel i.
Li also represents the steady-state number of positive customers at channel
i at an arbitrary epoch of time.

Ni Queue size in channel i at the end of a busy period.

Wi Sojourn time of a positive customer in channel i.
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Wqi Waiting (queueing) time of an arbitrary positive customer (before start of
service) at channel i.

Si(z) PGF of queue size in channel i at service beginning instant.

Si(z) PGF of queue size in channel i at service termination instant.

Si(z) PGF of queue size, Si, in channel i at an arbitrary moment during a

service time.

Vi(z) PGF of queue size, Vi, in channel i at an arbitrary moment when the
queue is not being served.

C Length of a cycle. That is, the time interval between two consecutive polling
instants of a queue.

σ = σ(z) =
N∑

j=1

λj(1 − zj)

σi = σi(z) =
∑
j

(j 6=i)

λj(0 − zj)

δi = γi + λi(1 − z)

Hi =
∑
j

(j 6=i)

θj +
N∑

j=1

Dj

Γi =
i−1∑
j=1

(θj + Dj)

Ψi =
N∑

j=i+1

θj +
N∑

j=i

Dj

Θi
r(w, z) = E[e−wθi

r · zNi(r)] Joint transform of θi
r (busy period at queue i start-

ing with r jobs) and Ni(r) (number of customers in queue i at the end of
that busy period).

Λ̃i(w, s) = E[e−wHi · e−sθ
i ]

∆̃i(s1, s2, s3) = E[e−s1Γi · e−s2θi · e−s3Ψi ]

Ω̃i(s1, s2) = E[e−s1Γi · e−s2θi ] = ∆̃i(s1, s2, 0)

3. Gated Service Discipline
In this section we analyze the Gated regime. According to this regime, when

a queue is polled, only customers present there at that moment are candidates
to be served during the current server’s visit.

As indicated in the Introduction, upon arrival of a negative customer to a
queue being served, the service of the positive customer is interrupted and this
customer leaves the system immediately. The server then starts serving the next
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customer in line (among the ’candidates’). This implies that the actual attained
service of each gated customer in queue i is Mi = min(Bi,Ti).

However, when a negative customer arrives at an unattended queue, he
removes a positive waiting customer from that queue (if any). If a negative
customer arrives at an empty queue, it has no effect whatsoever.

3.1 Analysis
A key observation is the following: Since Ti, the inter-arrival time of neg-

ative customers to queue i, is exponentally distributed with parameter γi, the
behavior of the system during the time when queue i is not attended is that of
a time-dependent M(λi)/M(γi)/1 queue.

For an M(λ)/M(γ)/1 queue, let R(k, t) be the number of customers in the
queue at time t > 0, given that k customers were present there at time t = 0.

The distribution of R(k, t) is given by (see Takacs [1962]) as:

P (R(k, t) = j) = Pkj(t) = e
−(λ+γ)t

·

2

6

6

6

6

6

6

6

4

„

λ

γ

«(j−k)/2

· Ij−k (2
√

λγt)

+

„

λ

γ

«(j−k+1)/2

· Ij+k+1 (2
√

λγt)

+(1 −
λ

γ
) ·

„

λ

γ

«j

·

∞
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r=k+j+2

„

λ

γ

«

−(r/2)
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√

λγt)
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7

7

7

7

7

7
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(3-1)

where Ir(x) (r = 0,±1,±2, . . . ) is the Bessel function of order r defined by

Ir(x) =
∞∑

j=0

(x/2)r+2j

j!(j + r)!
, r ≥ 0 , and I−r(x) = Ir(x).

As a result of rejection of positive customers by negative arrivals, we can-
not make use of the classical approach of writing ‘law of motion’ relating vari-
ables Xj

i+1: number of positive customers in queue j when queue i + 1 is

polled, with the variables Xj
i , and then express the PGF of the vector Xi+1 =(

X1
i+1, X

2
i+1, . . . , X

N
i+1

)
as a function of the PGF of the vector Xi =

(
X1

i , X2
i , . . . , XN

i

)
.

Instead, we derive the joint PGF of the N variables X i
i = Xi (i = 1, 2, . . . , N)

and then use interpolation theory to closely approximate the above PGF ′s.
We make use of the function R(k, t) in writing the following law of motion:

Xi
d
= Ri (Ai(θi), Hi) i = 1, . . . , N (3-2)

where Hi =
∑
j

(j 6=i)

θj +
N∑

j=1

Dj is the time interval from the end of a busy period

in queue i until the next polling instant there.

Here Ri(Ai(θi), Hi) is the number of positive customers at time t = Hi in a
M(λi)/M(γi)/1 queue, starting with Ai(θi) customers at time t = 0. θi is the
length of a busy period in queue i when starting with Xi positive customers.

The explanation to equation (3-2) is the following: at the end of a busy
period in queue i (when the server leaves that queue), the queue size is equal
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to the number of arrivals during that busy period, which is Ai(θi). The server
then returns to that queue after visiting all other queues, that is, after Hi units
of time, and finds there Xi jobs. During the length of time Hi, queue i is not
served, and therefore, due to arrivals of negative customers, it behaves like a
time-dependent M(λi)/M(γi)/1 queue.

Note that Xi appears in both sides of equation (3-2) (in the right hand side
implicitly, through θi = θi

Xi
i

). We now derive its distribution.

For this goal, we define the following functions and obtain some relations
between them.

The joint PGF for the system’s queue sizes at their polling instants is de-
noted by

G(z1, . . . , zN) = E

[ N∏

i=1

zXi

i

]

The joint LST of the busy periods in the N queues is denoted by

θ̃(s1, . . . , sN ) = E

[ N∏

j=1

e−sjθj

]

We have:

θ̃(s1, . . . , sN ) = E


e

−
N
P

j=1
sjθj


 = EX1,...,XN

[
E

[
exp

{
−

N∑
j=1

sjθj

}
|X1, . . . , XN

]]

= EX1,...,XN

[
E

[
exp

{
−

N∑
j=1

sj

Xj∑
k=1

Mjk

}
|X1, . . . , XN

]]
= EX1,...,XN

[
N∏

j=1

[
M̃j(sj)

]Xj

]

This follows since, for each queue j, θj =
Xj∑
k=1

Mjk, where Mjk ∼ Mj .

Hence,

θ̃(s1, . . . , sN ) = G
(
M̃1(s1), . . . , M̃N(sN )

)
(3-3)

Note that in the classical Gated model, with no negative arrivals, the corre-
sponding joint LST is similar to (3-3) but with B′

j s instead of M ′
j s.

Next we define, for every queue i, the joint LST of the variables Hi and θi:

Λ̃i(w, s) = E
[
e−wHi · e−sθi

]

We have:

Λ̃i(w, s) = E


exp




−w



∑
j

(j 6=i)

θj+
N∑

j=1

Dj


− sθi






 = E


e

−w
P

j
(j 6=i)

θj−sθi

 ·

E


e

−w
N
P

j=1

Dj


 = θ̃(w, . . . , w, s, w, . . . , w) ·

N∏

j=1

D̃j(w) (3-4)

where the ′s′ in the expression θ̃(w, ...w, s, w, . . . , w) is located at the ith place.
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We utilize equation (3-2) to express the PGF of Xi as a function of the (yet
unknown) joint density function, fHi,θi

(· , ·), of the variables Hi and θi:

X̂i(z) = E[zXi ] =
∞∑

x=0
zx · P (Xi = x) =

∞∑
x=0

zx · P (Ri (Ai(θi), Hi) = x)

=
∞∑

x=0

zx ·
∞∫

t=0

∞∫
h=0

P (Ri (Ai(t), h) = x) · fHi,θi
(h, t)dhdt

=

∞∑

x=0

zx ·

∞∫

t=0

∞∫

h=0

∞∑

k=0

P (Ri (k, h) = x) ·
e−λit(λit)

k

k!
· fHi,θi

(h, t)dhdt (3-5)

In what follows we apply the modified polynomial interpolation theory to
equation (3-5) in order to obtain an approximation to the PGF G(z1, . . . , zN ).

3.2 Approximating G(z1, z2, . . . , zN ) using
polynomial interpolation

Interpolation theory (see e.g. Atkinson [1989]) states that a function h(x)
with n + 1 continuous derivatives can be approximated by a polynomial sum

P (x) = a0 + a1x + ... + amxm (m ≤ n).

The coefficients a0, a1, . . . , am are uniquely evaluated when knowing the val-
ues of the function h(x) at some distinct m + 1 points x0, . . . , xm. This is done
by extracting the coefficients values from m + 1 equations, each equating the
polynomial expression to the function value h(xi), i = 0, 1, . . . , m.

The approximation error at a point t is expressed by:
(t − x0) · ... · (t − xm)

(m + 1)!
·

h(m+1)(ξ), where ξ is a point lying in the minimal interval connecting the points
t, x0, x1, . . . , xm, and h(m+1) is the (m + 1)st derivative of h(·). The error gets
smaller as t approaches one of the points x0, . . . , xm and when m gets larger.

The method is extended to multi-variate functions and polynomials.
Since our goal is to approximate the multi-variate function G (z) , we now

introduce a modification to the interpolation method in order to solve cases in
which, instead of knowing values of the function G (z) at distinct points, we
have a formula (equation (3-5)), equating the value of the function G (z) at a
certain point to an expression involving its values at the entire domain, as well
as the parameters of the model.

Accordingly, a polynomial sum is substituted instead of G (·) in the above
formula. Then, the coefficients a0, a1, ... are calculated. When approximating
a generating function, one of the equations must be the normalizing equation:
G(1) = 1. Furthermore, since the error of the approximation is smaller at the
vicinity of any one of the sampled points, we will carry the sampling of those
points as close as possible to points where the approximation is required.

8



The method consists of the following steps:

1. Construct a polynomial approximation of order n to the PGF G(z1, . . . , zN)
with unknown coefficients.

2. Replace the left-hand side of equation (3-5), namely X̂i(z), by the poly-
nomial approximation to G(1, . . . , 1, z, 1, . . . , 1).

3. Given the distribution of the Mi
′s and using equation (3-3), find θ̃(s1, . . . , sN )

in terms of the (unknown) coefficients of the polynomial from step 1.

4. Using θ̃(s1, . . . , sN) from step 3, and equation (3-4), derive an expression

for Λ̃i(w, s) in terms of the polynomial coefficients.

5. Derive the joint density function fHi,θi
(h, t), which is the inverse LST

transform of Λ̃i(w, s), namely: fHi,θi
(h, t) = L−1

{
Λ̃i(w, s)

}
. (In some

cases step 5 may be done by using the method of partial fraction expan-
sion).

6. Insert the expression of fHi,θi
(h, t) into the right-hand side of equation

(3-5).

7. Substitute in equation (3-5) the coordinates z1, . . . , zN of a chosen point.

8. Repeat step 7 several times and get a system of independent equations
with unknown variables (the polynomial coefficients).
Solve for these variables and get an approximation to G(z1, . . . , zN).

We demonstrate these steps in the following numerical example:

Numerical example 1

For simplicity, we use a symmetric system with identical values for each
station i. We assume exponential services and exponential switch-over times.

The following values for the system variables are used: Number of queues:
N = 3

Poisson arrival rates of positive and negative customers: λi = 1, γi = 1
Service times: Bi ∼ exp(4), with E[Bi] = bi = 1

4
Switch-over times: Di ∼ exp(1), with E[Di] = di = 1
Since Mi = min{Bi, Ti} and Ti ∼ exp(1), we have: Mi ∼ exp(4 + 1) and

M̃i(s) = 5
5+s

Also,
3∏

j=1

D̃j(s) =

(
1

1 + s

)3

We use in this example a polynomial of order 2 as an approximation to the
PGF G(z1, . . . , zN):

G(z1, z2, z3) = µ0 + µ1z1 + µ2z2 + µ3z3 + µ11z1
2 + µ22z

2
2 + µ33z3+

+ µ12z1z2 + µ13z1z3 + µ23z2z3 (3-6)

Due to the symmetric assumption of all queues, we can further assume µ1 =
µ2 = µ3, µ11 = µ22 = µ33 and µ12 = µ13 = µ23.

9



Hence we get,

G(z1, z2, z3) = µ0 + µ1

(
z1 + z2 + z3

)
+ µ11

(
z1

2 + z2
2 + z3

2
)
+

µ12

(
z1z2 + z1z3 + z2z3

)
(3-7)

Now, equation (3-3) turns into

θ̃(s1, s2, s3) = G
(
M̃1(s1), M̃2(s2), M̃3(s3)

)
= G

(
5

5 + s1
,

5

5 + s2
,

5

5 + s3

)

and from equation (3-4) we get

Λ̃1(w, s) = θ̃(s, w, w) ·

3∏

j=1

D̃j(w) = G

(
5

5 + s
,

5

5 + w
,

5

5 + w

)
·

(
1

1 + w

)3

(3-8)
By inserting the polynomial (3-7) into (3-8) we get

Λ̃1(w, s) =




µ0 + µ1

(
5

5 + s
+

10

5 + w

)
+ µ11

(
25

(5 + s)
2 +

50

(5 + w)
2

)

+µ12

(
50

(5 + s) · (5 + w)
+

25

(5 + w)
2

)



·

(
1

1 + w

)3

=
µ0

(1 + w)
3 +

(
5µ1

5 + s
+

25µ11

(5 + s)
2

)
·

1

(1 + w)
3 +

10µ1

(5 + w) · (1 + w)
3

+
50µ11 + 25µ12

(5 + w)
2
· (1 + w)

3 +
50µ12

(5 + s) · (5 + w) · (1 + w)
3 (3-9)

Now, when calculating the density function fH1,θ1(h, t) from its LST Λ̃1(w, s),
we use partial fraction expansion (see Melsa and Sage [1973]).

The method is applied to an expression of the form F (w) =

m∏
k=1

(w + ck)

n∏
k=1

(w + dk)
nk

having repeated poles of multiplicity nk at w = −dk.

If the numerator polynomial is of lower order than the denominator polyno-
mial, the partial-fraction expansion is

F (w) =
n∑

i=1

ni∑
j=1

aij

(w + di)j
where ak,nk−i =

(
1

i!
·

di

dwi
[ (w + dk)nkF (w)]

)
|w=−dk

We adopt this formula to expand terms of equation (3-9). We get

1

(5 + w) · (1 + w)
3 =

1/64

1 + w
+

−1/16

(1 + w)
2 +

1/4

(1 + w)
3 +

−1/64

5 + w
(3-10)

and

1

(5 + w)
2
· (1 + w)

3 =
3/256

1 + w
+

−2/64

(1 + w)
2 +

1/16

(1 + w)
3 +

−3/256

5 + w
+

−1/64

(5 + w)
2 (3-11)

10



Substituting the expansions (3-10) and (3-11) in (3-9) and combining similar
fractions yields,

Λ̃1(w, s) =

(
µ0 +

10µ1

4
+

50µ11 + 25µ12

16

)
·

1

(1 + w)
3

+

(
5µ1 +

50µ12

4

)
·

1

(5 + s) (1 + w)
3 +

25µ11

(5 + s)
2
(1 + w)

3

+

(
10µ1

64
+

3 · (50µ11 + 25µ12)

256

)
·

1

1 + w

+

(
−10µ1

16
+

−2 · (50µ11 + 25µ12)

64

)
·

1

(1 + w)2

+

(
−10µ1

64
+

−3 · (50µ11 + 25µ12)

256

)
·

1

5 + w
−

50µ11 + 25µ12

64
·

1

(5 + w)
2

+
50µ12

64
·

1

(5 + s) (1 + w)
−

50µ12

16
·

1

(5 + s) (1 + w)
2

−
50µ12

64
·

1

(5 + s) (5 + w)
(3-12)

In order to get the inverse Laplace transform of Λ̃1(w, s) in (3-12), we recall
the following properties of Laplace transform:

Let L−1 {F (s)} denote the inverse Laplace transform of F (s). If F (s) =
∞∫

t=−∞

e−st · f(t)dt then, f(t) = L−1 {F (s)} uniquely.

If the LST is a linear combination of LST s, then the inverse LST is the
same linear combination of the corresponding inverse LST s. That is, if F1(s) =
F2(s) + c · F3(s), then f(t) = L−1 {F1(s)} = L−1 {F2(s)} + c · L−1 {F3(s)} =
f2(t) + c · f3(t)

By using the latter property, we apply the known inverse Laplace transforms
to each of the terms in the sum (3-12) to obtain the desired density function.
We use:

L−1

{
1

s + a

}
= e−at ; L−1

{
1

(s + a)
2

}
= te−at ; L−1

{
1

(s + a)
3

}
=

1

2
t2e−at

(3-13)

The joint LST , Λ̃(w, s), and the density f(t, h) are functions of two variables
such that

Λ̃(w, s) = E[e−wH · e−sθ] =

∫ ∞

h=0

∫ ∞

t=0

e−wh · e−st · fH,θ(h, t)dtdh

11



In our case, the composite density function is a product of two functions:
fH,θ(h, t) = f1(h) ·f2(t), and therefore the corresponding LST is also a product
of the LSTs of the corresponding functions:

Λ̃(w, s) =
∞∫

h=0

∞∫
t=0

e−wh · e−st · f1(h) · f2(t)dtdh = F1(w) · F2(s).

We note that some of the terms in (3-12) lack the s variable. Therefore, in
order to calculate their inverse transform, we use the following δ(·) function.

The unit impulse function δ(·) (see Desoer and Kuh [1969])

The pulse function P∆(·) is defined by

P∆(t) =





0 t < 0
1

∆
0 < t < ∆

0 ∆ < t





Then, the unit impulse function δ(·) is defined as δ(t) = lim
∆→0

P∆(t).

This function (also called the dirac delta function) is characterized by:

δ(t) =

{
0 for t 6= 0
singular at t = 0

}

The singularity at the origin is such that for any ε > 0,
ε∫
−ε

δ(t)dt = 1.

A useful property of the unit impulse, which stems from the first definition,
is called the ”sifting” property:

Let f be a continuous function. Then, for any positive ε,

ε∫

0

f(t) · δ(t)dt = f(0) (3-14)

From the last property we obtain that

L {δ(t)} =
∞∫

t=0

e−st · δ(t)dt = e−st|t=0 = 1

To conclude, δ(t) may be regarded as a density function whose LST equals 1.

Consider a function f(·) with LST F (w) =
1

1 + w
. Then, F (w) can be

written as a joint LST :

F (w)·1 =
∞∫

h=0

e−wh·f(h)dh·
∞∫

t=0

e−st·δ(t)dt =
∞∫

h=0

∞∫
t=0

e−wh·e−st·f(h)·δ(t)dtdh

Hence,

L−1 {F (w)} = L−1

{
1

1 + w
· 1

}
= f(h) · δ(t) = e−h · δ(t)

Let f1(h, t) denote the inverse LST of the sum of all terms in Λ̃1(w, s) that
involve both s and w, and let f2(h) · δ(t) be the inverse LST of all terms there

12



not involving s. Then, by using (3-13) and making use of δ(t) for all relevant
terms in (3-12), we get,

fH1,θ1(h, t) = L−1
{

Λ̃1(w, s)
}

= f1(h, t) + δ(t) · f2(h) (3-15)

where,

f1(h, t) = e−h−5t·

[
1
2h2

(
5µ1 +

50µ12

4

)
+ h2t

25

2
µ11 +

50µ12

64
− h

50µ12

16

]

−e−5h−5t ·
50µ12

64
(3-16)

and

f2(h) = e−h·




1
2h2

(
µ0+

10µ1

4
+

50µ11 + 25µ12

16

)
−h

(
10µ1

16
+

2 · (50µ11 + 25µ12)

64

)

+

(
10µ1

64
+

3 · (50µ11 + 25µ12)

256

)




−e−5h ·

[(
10µ1

64
+

3 · (50µ11 + 25µ12)

256

)
+ h

(
50µ11 + 25µ12

64

)]
(3-17)

Now, by substituting (3-15) into equation (3-5) we obtain,

X̂1(z) =
∞∑

x=0
zx ·

∞∫
t=0

∞∫
h=0

∞∑
k=0

P (R1 (k , h) = x)·
e−λ1t(λ1t)

k

k!
·fH1 ,θ1

(h, t)dhdt

=
∞∑

x=0
zx ·

∞∫
t=0

∞∫
h=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−λ1t(λ1t)

k

k!
· f1(h, t)dhdt

+

∞∑

x=0

zx ·

∞∫

t=0

∞∫

h=0

∞∑

k=0

P (R1 (k , h) = x) ·
e−λ1t(λ1t)

k

k!
· δ(t) · f2(h)dhdt (3-18)

Using property (3-14) of δ(t) we have
∞∫

t=0

e−λ1t · δ(t)dt = 1, and
∞∫

t=0

e−λ1t(λ1t)
k

k!
· δ(t)dt = 0 for k > 0

We get,
∞∫

t=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−λ1t(λ1t)

k

k!
· δ(t)dt =

=
∞∫

t=0

P (R1 (0 , h) = x) · e−λ1t · δ(t)dt +
∞∑

k=1

P (R1 (k , h) = x) ·

∞∫

t=0

e−λ1t(λ1t)
k

k!
· δ(t)dt = P (R1(0, h) = x) (3-19)

By substituting (3-19) in (3-18), we get,
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X̂1(z) =
∞∑

x=0
zx ·

∞∫
t=0

∞∫
h=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−λ1t(λ1t)

k

k!
· f1(h, t)dhdt

+
∞∑

x=0
zx·

∞∫
h=0

f2(h)·

(
∞∫

t=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−λ1t(λ1t)

k

k!
· δ(t)dt

)
dh

=
∞∑

x=0
zx ·

∞∫
t=0

∞∫
h=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−λ1t(λ1t)

k

k!
· f1(h, t)dhdt

+

∞∑

x=0

zx ·

∞∫

h=0

P (R1 (0 , h) = x) · f2(h)dh (3-20)

Now, from equation (3-7),

X̂1(z) = G(z, 1, 1) = µ0 + µ1 (z + 2) + µ11

(
z2 + 2

)
+ µ12 (2z + 1) (3-21)

By substituting z = 1 in (3-21), we get the normalized equation in the
unknown parameters µ0, µ1, µ11 and µ12:

1 = µ0 + 3(µ1 + µ11 + µ12)

Equating (3-20) to (3-21), we get the main equation:

µ0 + µ1 (z + 2) + µ11

(
z2 + 2

)
+ µ12 (2z + 1)

=
∞∑

x=0
zx ·

∞∫
t=0

∞∫
h=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−λ1t(λ1t)

k

k!
· f1(h, t)dhdt

+

∞∑

x=0

zx ·

∞∫

h=0

P (R1 (0 , h) = x) · f2(h)dh (3-22)

To complete the approximation, three distinct values of z have to be substi-
tuted in (3-22) in order to solve for the unknown parameters µ0, µ1, µ11 and
µ12. Finally, we substitute equation (3-1) into equation (3-22), where λ = 1 and
γ = 1. (Note that, since we chose λ = γ, the infinite sum in the expression of
P (R(k, t) = j) is zero). We get

P (R1 (k , h) = x) = e−2h ·
[
I|x−k| (2h) + Ix+k+1(2h)

]
(3-23)

We turn to solve a system of 4 non linear equations by the Mathcad software:

Equation 1

1 = µ0 + 3(µ1 + µ11 + µ12)

Equation 2 (z = 0.7)

µ0 + 2.7µ1 + 2.49µ11 + 2.4µ12 =

=
∞∑

x=0
0.7x ·

∞∫
t=0

∞∫
h=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−ttk

k!
· f1(h, t)dhdt+

+
∞∑

x=0
0.7x ·

∞∫
h=0

P (R1 (0 , h) = x) · f2(h)dh
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Equation 3 (z = 0.8)

µ0 + 2.8µ1 + 2.64µ11 + 2.6µ12 =

=
∞∑

x=0
0.8x ·

∞∫
t=0

∞∫
h=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−ttk

k!
· f1(h, t)dhdt+

+
∞∑

x=0

0.8x ·
∞∫

h=0

P (R1 (0 , h) = x) · f2(h)dh

Equation 4 (z = 0.9)

µ0 + 2.9µ1 + 2.81µ11 + 2.8µ12 =

=
∞∑

x=0
0.9x ·

∞∫
t=0

∞∫
h=0

∞∑
k=0

P (R1 (k , h) = x) ·
e−ttk

k!
· f1(h, t)dhdt+

+
∞∑

x=0
0.9x ·

∞∫
h=0

P (R1 (0 , h) = x) · f2(h)dh

The solution is:

µ0 = −284.468; µ1 = 187.459; µ11 = 1.793; µ12 = −94.096.

After substituting these values in (3-21), we obtain an explicit approximated

function for the PGF X̂1(z):

X̂1(z) = −0.06 − 0.733 · z + 1.793 · z2 (3-24)

The (approximated) first and second moments of X1 are given by

E[X1] =
d

dz
X̂1(z)|z=1 = µ1 + 2µ11 + 2µ12 = 2.853; E[X2

1 ] = 3.586 (3-25)

In this example, due to symmetry, the solution for X̂i(z), i = 2, . . . , N is

the same as that of X̂1(z).

3.3 Waiting times

First we derive the PGF of the queue size at service termination instants of
positive customers who got some (full or partial) service. Note that customers
may depart from queues, due to arrival of negative customers, without even
starting service.

We use the following equation (Eisenberg [1972]):

B(z) + S(z) · E[K] = B(z) + S(z) · E[K] (3-26)

where:

B(z) and B(z) are the PGFs of the queue size at the beginning and at
the end of a busy period, respectively (for simplicity, we remove the symbol̂
indicating a PGF ).

S(z) and S(z) are the PGFs of the queue size at service beginning and at
service termination instants, respectively.
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K is the number of service attempts during a busy period.

Suppressing the index i we write:

B(z) = X̂(z)

B(z) = E
[
zA(θ)

]
= E


z

A

„

X
P

k=1

Mk

«


 = X̂

(
M̃(λ(1 − z))

)

E[K] = E[X ]

S(z) = S(z) · M̃(λ(1 − z)) ·
1

z

The last equation holds since M̃(λ(1−z)) stands for the PGF of the number
of (positive) arrivals to the queue during a service duration, and the number
of customers present at service termination is equal to those present at service
beginning minus one, plus the number of arrivals during time M.

Inserting the above into equation (3-26) yields,

X̂(z) + S(z) · E[X ] = X̂
(
M̃(λ(1 − z))

)
+

S(z) · z

M̃(λ(1 − z))
· E[X ] (3-27)

from which we get the PGF of the queue size in station i at service termination
instants:

Si(z) =
M̃i(λi(1 − z))

E[Xi] ·
[
z − M̃i(λi(1 − z))

] ·
[
X̂i(z) − X̂i

(
M̃i(λi(1 − z))

)]
(3-28)

The approximated PGF of Xi and its moments were already obtained in
(3-24) and (3-25), and can be substituted in (3-28).

Next, we turn to obtain L̂i(z), the PGF of the queue size at departure
instants. Note that, a positive customer departs either at the end of service
completion or as a result of an arrival of a negative customer, regardless of the
position of the server. Since the distribution of Li, the number of customers
in the system at departure epochs, is identical in distribution to the number of
customers at epochs of arrivals, and as a result of PASTA, Li also stands for the
number of customers at channel i (under steady-state condition) at an arbitrary
point of time.

To derive L̂i(z), we use the same approach as in Shomrony and Yechiali
[2001]: Define Si(z) =: PGF of the queue size Si at an arbitrary moment

during service duration

Vi(z) =: PGF of the queue size Vi at an arbitrary moment during time Hi,
when the queue is not being served

pi = P (the server is serving queue i)

Then,
L̂i(z) = Si(z) · pi + Vi(z) · (1 − pi) (3-29)
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Furthermore, with C denoting the cycle time,

pi =
E[θi]

E[C]
=

E

[
Xi∑

k=1

Mik

]

E

[
N∑

i=1

(
Xi∑

k=1

Mik + Di

)] =
E[Xi] · mi

N∑
i=1

E[Xi] · mi + d

(3-30)

and

Si(z) · gi(z) ·
1

z
= Si(z) (3-31)

where gi(z) is the PGF of the number of (positive) customers arriving during
the so called ‘remaining’ part of a service time, which is the time from the
moment of an arbitrary observation within a service time until the instant of
service termination.

It is known (see Cohen [1982]: P. 113) that the LST of the remaining time

ξ in a renewal process with inter-renewal times Y is given by: ξ̃(s) =
1 − Ỹ (s)

s · E[Y ]

Hence, in our case, the PGF of the number of arrivals during the remaining

part of a service time is given by gi(z) =
1 − M̃i(λi(1 − z))

λi(1 − z) · mi

.

Substituting gi(z) and (3-28) in (3-31) yields

Si(z) =
M̃i(λi(1 − z))

E[Xi] ·
[
z − M̃i(λi(1 − z))

] ·

[
X̂i(z) − X̂i

(
M̃i(λi(1 − z))

)]

1 − M̃i(λi(1 − z))
·zλi(1−z)mi

(3-32)
Now, to compute Vi(z) we define Hi, p to be the ’past time’ for the period

Hi.

The following relation holds:

Vi = Ri(Ai(θi), Hi,p) (3-33)

from which we compute the PGF of Vi, using again the joint density function
fHi,θi

(·, ·):

Vi(z) = E[zVi ] =
∞∑

v=0
zv · P (Vi = v) =

∞∑
v=0

zv · P (Ri (Ai(θi) , Hi, p) = v)

=

∞∑

v=0

zv ·

∞∫

t=0

∞∫

h=0

P (Ri (Ai(θi) , Hi, p) = v | Hi = h , θi = t) · fHi ,θi
(h, t)dhdt

(3-34)

Since H̃i, p(s) =
1 − H̃i(s)

s · E[Hi]
=

1 − E [e−sHi ]

s · E[Hi]
, when Hi = h (constant), we

get:

H̃i, p(s) =
1 − e−sh

s · h
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It is also known that the LST of a continuous Uniform variable U(a, b) is
e−sa − e−sb

s · (b − a)
.

From the uniqueness of the LST we get that (Hi,p|Hi = h) ∼ U(0, h).
Using this distribution, while defining in (3-34) a continuous Uniform vari-

able hp ∼ U(0, h) with density function 1
h
, yields,

Vi(z) =
∞∑

v=0
zv ·

∞∫
t=0

∞∫
h=0

P (Ri (Ai(t) , hp) = v) · fHi ,θi
(h, t)dhdt

=
∞∑

v=0
zv ·

∞∫
t=0

∞∫
h=0

h∫
r=0

P (Ri (Ai(t) , r) = v) ·
1

h
· fHi ,θi

(h, t)drdhdt

=

∞∑

v=0

zv·

∞∫

t=0

∞∫

h=0

h∫

r=0

∞∑

k=0

(
P (Ri (k , r) = v) ·

e−λit(λit)
k

k!

)
·
1

h
·fHi ,θi

(h, t)drdhdt

(3-35)
Where fHi,θi

(h, t) was derived in (3-15) as fHi,θi
(h, t) = f1(h, t)+δ(t)·f2(h),

with f1(h, t) and f2(h) given by (3-16) and (3-17), respectively.

We get from (3-35),

Vi(z) =
∞∑

v=0
zv·

∞∫
t=0

∞∫
h=0

h∫
r=0

∞∑
k=0



(

P (Ri (k , r) = v) ·
e−λit(λit)

k

k!

)
·
1

h
· ( f1(h, t) + δ(t) · f2(h) )


 drdhdt

=
∞∑

v=0
zv ·

∞∫
t=0

∞∫
h=0

h∫
r=0

∞∑
k=0

(
P (Ri (k , r) = v) ·

e−λit(λit)
k

k!

)
·

1

h
·

f1(h, t)drdhdt+

+

∞∑

v=0

zv·

∞∫

h=0

h∫

r=0

1

h
·f2(h)·




∞∫

t=0

∞∑

k=0

(
P (Ri (k , r) = v) ·

e−λit(λit)
k

k!

)
δ(t)dt


 drdh

(3-36)
Using property (3-14) as in the derivation of (3-19) we get:

Vi(z) =
∞∑

v=0

zv·
∞∫

t=0

∞∫
h=0

h∫
r=0

∞∑
k=0

(
P (Ri (k , r) = v) ·

e−λit(λit)
k

k!

)
·
1

h
· f1(h, t)drdhdt

+

∞∑

v=0

zv ·

∞∫

h=0

h∫

r=0

P (Ri (0 , r) = v) ·
1

h
· f2(h)drdh (3-37)

We can now substitute the results (3-30), (3-32) and (3-37) in (3-29) to get

an expression for L̂i(z), the PGF of the size of queue i at an arbitrary moment.

Computation of Wi − the sojourn time of a customer in queue i

We now derive the LST of Wi by using its relation to the queue size at
departure instants. The classical argument that the number of customers left
behind by a departing customer in queue i is exactly the number of customers
that arrived there during his sojourn time, holds in our case as well. A departing
customer can depart either due to its service completion (during θi), or due to
an arrival of a negative customer (during θC

i ). Thus, customers arriving after
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our customer’s arrival will never leave the system due to service completion
before his departure (FIFO), and on the other hand, these customers cannot be
removed from the queue by negative arrivals before our customer’s departure
(because a negative customer removes a positive customer from the head of the
queue).

For the same reasons, customers arriving before our customer will exit the
queue before his departure.

Thus, since Wi = Wqi + Mi, we have,

L̂i(z) = W̃i(λi(1 − z)) = W̃ qi(λi(1 − z)) · M̃i(λi(1 − z))

That is,

W̃i(s) = L̂i(1 −
s

λi

) (3-38)

and

W̃ qi(s) =
L̂i(1 −

s

λi

)

M̃i(s)
(3-39)

Finally, expressions for E[Li], E[Wqi] and E[Wi] can be derived by differ-
entiation, where Vi(z) may be calculated by using, for example, the Mathcad
software.

4. Exhaustive Service Discipline
In this section we consider the Exhaustive regime in which, at each visit, the

server attends every queue until it becomes fully empty before switching on to
the next queue.

4.1 Analysis

Negative customers flow constantly to all queues, at all times, independently
of the location of the server. Upon arrival of a negative customer to a queue
being served, the service is terminated and the interrupted customer leaves the
system immediately. On the other hand, when a negative customer arrives at
a queue not being attended by the server, he removes the first positive waiting
customer from that queue (if any).

Therefore, when queue i is not being served, it behaves like a M(λi)/M(γi)/1
queue, since the negative flow may be looked upon as a sequence of ’service’
times.

For an M(λi)/M(γi)/1 queue, let Ri(k, t) be the number of jobs in queue i
at time t > 0, given that at time t = 0, k jobs were present (see section 3.1).

When the server leaves queue i, there are no jobs left, and when he returns

after Hi =
∑
j

(j 6=i)

θj +
N∑

j=1

Dj units of time, the queue size at polling instants is Xi.

Thus,

Xi
d
= Ri(0, Hi) (4-1)

Now, the length of the busy period in queue j is θj =
Xj∑
k=1

Φjk, where Φjk,
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all distributed like Φj , denote i.i.d busy periods in a regular M/G/1 queue with
service times Mj and arrival rate λj .

We make use of the property

Φ̃j(s) = M̃j

(
s + λj(1 − Φ̃j(s))

)
(4-2)

If λiE[Mi] ≤ 1, (4-2) has a unique solution (Saaty [1961] P. 195). We denote
the density of Φi by fΦi

(t).
The joint LST of the N separate busy periods in the N queues is given by

θ̃(s1, . . . , sN ) = E




N∏

j=1

e−sjθj


 = EX1,...,XN




N∏

j=1

[
Φ̃j(sj)

]Xj


 = G

(
Φ̃1(s1), . . . , Φ̃N (sN )

)

(4-3)

where G(z1, . . . , zN ) = E

[
N∏

i=1

zXi

i

]

The PGF of Xi is derived by using equation (4-1) and the density function
fHi

(·) of Hi.

X̂i(z) = E[zXi ] =
∞∑

x=0
zx · P (Xi = x) =

∞∑
x=0

zx · P (Ri (0 , Hi) = x)

=

∞∑

x=0

zx ·

∞∫

h=0

P (Ri (0 , h) = x) · fHi
(h)dh (4-4)

Also, using (4-3) yields,

H̃i(s) = E
[
e−sHi

]
= E


exp




−s



∑
j

(j 6=i)

θj+
N∑

j=1

Dj









 = E



∏
j

(j 6=i)

exp {−sθj}


·

N∏
j=1

D̃j(s) =

= θ̃(s, ...s, 0, s, . . . , s)·

N∏

j=1

D̃j(s) = G
(
Φ̃1(s), . . . , Φ̃i−1(s), 1, Φ̃i+1(s), . . . , Φ̃N (s)

)
·

N∏

j=1

D̃j(s)

(4-5)

Approximation procedure for G(z1, . . . , zN)

We now describe the steps of the procedure and present a numerical example
demonstrating its applicability.

1. Construct a polynomial approximation of G(z1, . . . , zN) = E

[
N∏

i=1

zXi

i

]

with unknown coefficients.

2. Given the distribution of Mi, express Φ̃i(s) from (4-2), either explicitly (if
possible) or as an approximation.
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3. Insert Φ̃i(s) and the approximation of G(z1, . . . , zN) into (4-5) to get

H̃i(s).

4. Use the inverse Laplace transform formula to obtain fHi
(h):

fHi
(h) = L−1

(
H̃i(s)

)
=

1

2πj

σ+j·∞∫

σ−j·∞

H̃i(s) · e
shds (4-6)

where σ > σ0 and
∞∫
0

fHi
(h) · e−σ1h dh exists for every σ1 > σ0 (see Ap-

pendix A of Melsa and Sage [1973]).

5. Substituting the above into (4-4) yields

G(1, . . . , 1, z, 1, . . . , 1) = X̂i(z) =

∞∑

x=0

zx ·

∞∫

h=0

P (Ri (0 , h) = x) · fHi
(h)dh

(4-7)

6. Substitute several values of z into equation (4-7) and get a set of inde-
pendent equations. Solve these equations for the unknown coefficients of
G(z1, . . . , zN).

Numerical example 2

Consider again a symmetric system with equal parameter values for all
queues, and assume exponential services and exponential switch-over times in
each queue. The following values for the system variables are assumed:

Number of queues: N = 3
Poisson arrival rates of positive and negative customers: λi = 1, γi = 1

Service times: Bi ∼ exp

(
1

bi

)
, with E[Bi] = bi =

1

2
Switch-over times: Di ∼ exp(10), with E[Di] = di = 0.1

Mi ∼ exp

(
1

bi

+ γi

)
, implying that M̃i(s) =

1

bi

+ γi

1

bi

+ γi + s
.

Also,
3∏

j=1

D̃j(s) =

(
10

10 + s

)3

We use a polynomial of order 2 as an approximation to the PGF G(z1, . . . , zN ).

As a result of symmetry we get

G(z1, z2, z3) = µ0+µ1 (z1 + z2 + z3)+µ11

(
z1

2 + z2
2 + z3

2
)
+µ12 (z1z2 + z1z3 + z2z3)

(4-8)

Using (4-2): Φ̃i(s) =

1

bi

+ γi

1

bi

+ γi + s + λi(1 − Φ̃i(s))
.
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The solution for Φ̃i(s) is given by

Φ̃i(s) =

s + λi +
1

bi

+ γi −

√(
s + λi +

1

bi

+ γi

)2

− 4λi ·

(
1

bi

+ γi

)

2λi

(4-9)

Combining (4-8) and (4-9), equation (4-5) turns into (after omitting the
indices),

H̃1(s) = G
(
1, Φ̃2(s), Φ̃3(s)

)
·

3∏
j=1

D̃j(s) = G
(
1, Φ̃(s), Φ̃(s)

)
·

3∏
j=1

D̃j(s)

=

[
µ0 + µ1

(
1 + 2Φ̃(s)

)
+ µ11

(
1 + 2

(
Φ̃(s)

)2
)

+ µ12

(
2Φ̃(s) +

(
Φ̃(s)

)2
)]

·

(
10

10 + s

)3

=




µ0 + µ1

(
5 + s −

√
(s + 4)2 − 12

)
+

+µ11

(
1 + (s + 4) ·

(
s + 4 −

√
(s + 4)2 − 12

)
− 6
)

+

+µ12

((
s + 4 −

√
(s + 4)2 − 12

)
·

(
s + 6

2

)
− 3

)



·

(
10

10 + s

)3

(4-10)
Next we derive the density function fHi

(h):

In our example, λ = γ = 1. This implies that the infinite sum in (3-1) for
the expression of P (R(k, t) = j) vanishes (1 − λ/γ = 0).

Thus,
P (Ri (0 , h) = x) = e−2h · [Ix (2h) + Ix+1(2h)] (4-11)

Now, by writing s = σ + jω (a complex number), and changing variables in
(4-6) we get,

fHi
(h) =

1

2πj
·

σ+j·∞∫
σ−j·∞

H̃i(s) · e
sh ds =

1

2πj
·
+∞∫
−∞

H̃i(σ + jω) · e(σ+jω)hj dw

=
1

2π
·

+∞∫

−∞

H̃i(1 + jω) · e(1+jω)h dω (4-12)

(σ = 1 was chosen after assuring stability of the results for several values of σ
which are greater than 1).

Substituting (4-10) in (4-12) yields,
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fHi
(h) =

1

2π
·

+∞∫

−∞







µ0+µ1

(
5 + (1 + jω)−

√
((1 + jω) + 4)

2
−12

)
+

+µ11

(
1 + ((1 + jω) + 4)·

(
(1 + jω)+4−

√
((1 + jω)+4)

2
−12

)
−6

)
+

+µ12

((
(1 + jω) + 4−

√
((1 + jω)+4)

2
−12

)
·

(
(1 + jω)+6

2

)
−3

)




·

(
10

10 + (1 + jω)

)3




·e(1+jω)hdω

(4-13)
We also have, from (4-8),

X̂i(z) = G(z, 1, 1) = µ0 + µ1 (2 + z) + µ11

(
2 + z2

)
+ µ12 (2z + 1) (4-14)

We now substitute P (Ri (0, h) = x), fHi
(h) and X̂i(z) from (4-11), (4-13)

and (4-14), respectively, in (4-7) and substitute successively 3 different values
of z in order to solve for the unknown parameters µ0, µ1, µ11 and µ12.

The following 4 non-linear equations, obtained from (4-7), are solved by the
Mathcad software:

Equation 1 (z = 0.9)

µ0 + 2.9µ1 + 2.8µ11 + 2.8µ12 =
∞∑

x=0
0.9x ·

∞∫
h=0

P (Ri (0 , h) = x) · fHi
(h)dh

Equation 2 (z = 0.8)

µ0 + 2.8µ1 + 2.64µ11 + 2.6µ12 =
∞∑

x=0
0.8x ·

∞∫
h=0

P (Ri (0 , h) = x) · fHi
(h)dh

Equation 3 (z = 0.7)

µ0 + 2.7µ1 + 2.49µ11 + 2.4µ12 =
∞∑

x=0
0.7x ·

∞∫
h=0

P (Ri (0 , h) = x) · fHi
(h)dh

Equation 4 (from (4-8)):

1 = G(1, 1, 1) = µ0 + 3 (µ1 + µ11 + µ12)

The solution is:
µ0 = −3.191; µ1 = 1.7; µ11 = 1.569; µ12 = −1.872

By substituting these values in (4-14), an explicit approximated function for

the PGF X̂i(z) is obtained:

X̂i(z) = 1.475− 2.044 · z + 1.569 · z2

Therefore,

E[Xi] =
d

dz
X̂i(z)|z=1 = µ1 + 2µ11 + 2µ12 = 1.094
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4.2 Waiting times
We use again Eisenbergs equation [1972] (see definitions in section 3.3),

Bi(z) + Si(z) · E[Ki] = Bi(z) + Si(z) · E[Ki] (4-15)

in order to derive Si(z), the PGF of the queue size at service termination
instants. In the exhaustive case we have, for queue i:

Ki(Xi) = Xi + Ai (θi) = Xi + Ai

(
Xi∑

k=1

Φik

)
.

Hence,

E
[
Ki(Xi)

]
= E [Xi] + λiE [Xi] ·

mi

1 − ρi

=
E [Xi]

1 − ρi

(4-16)

Also,

Bi(z) = X̂i(z)

Bi(z) = E
[
z0
]

= 1

Si(z) = Si(z) · M̃i(λi(1 − z)) ·
1

z

Inserting the above and (4-16) in equation (4-15) yields,

X̂i(z) + Si(z) ·
E[Xi]

1 − ρi

= 1 +
Si(z) · z

M̃i(λi(1 − z))
·
E[Xi]

1 − ρi

(4-17)

from which,

Si(z) =
M̃i(λi(1 − z)) ·

(
X̂i(z) − 1

)
· (1 − ρi)

E[Xi] ·
[
z − M̃i(λi(1 − z))

] (4-18)

Note that Si(z) is the PGF of the i-th queue size at service completion
instants, and not at departure instants, since there are departing customers
who don’t receive service at all.

We now derive L̂i(z), the PGF of the queue size at an arbitrary point of
time. We use again equation (3-29) (see definitions in section 3.3):

L̂i(z) = Si(z) · pi + Vi(z) · (1 − pi) (4-19)

Using E[Φj ] =
mj

1−ρj
we have,

pi =
E[θi]

E[C]
=

E

[
Xi∑

k=1

Φik

]

E

[
N∑

j=1

(
Xj∑
k=1

Φjk + Dj

)] =

E[Xi] ·
mi

1 − ρi

N∑
j=1

E[Xj ] ·
mj

1 − ρj

+ d

(4-20)

Now, using the relation (3-31) and the expression for gi(z) in section 3.3, we
finally get,

Si(z) =
M̃i(λi(1 − z))

E[Xi] ·
[
z − M̃i(λi(1 − z))

] ·

[
X̂i(z) − 1

]
· (1 − ρi)

1 − M̃i(λi(1 − z))
· zλi(1 − z)mi

(4-21)

24



Derivation of Vi(z)

Recall that Vi stands for the number of customers in queue i at an arbitrary
moment when queue i is not being served.

The following relation holds:

Vi
d
= Ri(0, Hi,p) (4-22)

where Hi,p is the remaining time of the random variable Hi.

Using the density function fHi
(·) we write

Vi(z) = E[zVi ] =
∞∑

v=0
zv · P (Vi = v) =

∞∑
v=0

zv · P (Ri (0 , Hi, p) = v)

=

∞∑

v=0

zv ·

∞∫

h=0

P (Ri (0, Hi, p) = v | Hi = h ) · fHi
(h)dh (4-23)

Again, when Hi = h, H̃i, p(s) =
1 − e−sh

s · h
, which means that Hi,p|Hi = h ∼

U(0, h).

Using this distribution, while defining in (4-23) a continuous Uniform vari-
able: hp ∼ U(0, h) with density function 1

h
, yields

Vi(z) =
∞∑

v=0
zv·

∞∫
h=0

P (Ri (0 , hp) = v) · fHi
(h)dh

=
∞∑

v=0

zv ·

∞∫

h=0

h∫

r=0

P (Ri (0 , r) = v) ·
1

h
· fHi

(h)drdh (4-24)

where fHi
(h) is given by (4-13).

Substituting (4-20), (4-21) and (4-24) in (4-19) yields L̂i(z), the PGF of the
size of queue i at an arbitrary moment.

Note that L̂i(z) depends on the distribution of Xi and on G (z) which were
derived by using interpolation theory (equations (4-8) and (4-14), respectively).

As in the Gated service discipline, in a specific queue, the number of cus-
tomers left behind by a departing customer is exactly those that arrived there
during his sojourn time. Therefore,

L̂i(z) = W̃i(λi(1 − z)), or W̃i(s) = L̂i(1 −
s

λi

) (4-25)

5. Globally Gated Service
Discipline

In the classical Globally Gated (GG) regime (Boxma, Levy and Yechiali
[1992]) with only positive arrivals, the server moves cyclically among the queues
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and uses the instant of cycle beginning as a reference point of time. When it
reaches a queue it serves only those customers who were present there at the
start of the cycle. We extend the analysis to the case where both positive and
negative customers flow into the system.

5.1 Analysis
Negative customers flow continuously to all queues, at all times, indepen-

dently of the location of the server. During a busy period at station i, the server
attempts service on all X i

1 customers who were present there at the cycle start,
and only on them. Upon arrival of a negative customer to a queue being served,
the service is terminated and the interrupted customer leaves the system imme-
diately. The next customer (if any) enters service. On the other hand, when a
negative customer arrives at a queue not attended by the server, he can remove
only positive waiting customer (if any) that arrived after the start of the cycle.
That is, the X i

1 customers are ’safe’ as long as the server is not attending queue
i. The rest of the queue behaves like a M(λi)/M(γi)/1 queue, starting with 0

jobs. Thus, at a moment of polling of queue i, the number of customers present
is

X i
i = X i

1 + Ri(0, Γi) (5-1)

where Γi =
i−1∑
j=1

(θj + Dj) is the time elapsing from the start of the cycle until

that polling instant. θj is the relevant busy period. Also, since all X i
1 customers

are served during the busy period θi at queue i, the number of jobs left when
the server leaves is Ri(0, Γi) + Ai(θi) ≡ Ni.

Now, from the server’s departure until the start of the next cycle, the queue
again behaves like a M(λi)/M(γi)/1 queue. Hence,

X i
1 = Ri (Ri(0, Γi) + Ai(θi), Ψi) (5-2)

where Ψi =
N∑

j=i+1

θj +
N∑

j=i

Dj .

In order to solve equation (5-2) for X i
1, we use again the following functions:

The joint Generating Function for the N queue sizes at the start of the cycle:

G1(z1, . . . , zN) = E

[
N∏

j=1

z
X

j
1

j

]
.

The joint LST of the N busy periods in the N queues: θ̃(s1, . . . , sN ) =

E

[
N∏

j=1

e−sjθj

]
. We have

θ̃(s1, . . . , sN ) = E

[
exp

{
−

N∑
j=1

sjθj

}]
= EX1

[
E

[
exp

{
−

N∑
j=1

sjθj

}
|X1

]]

= EX1

[
E

[
exp

{
−

N∑
j=1

sj

X
j
1∑

k=1

Mjk

}
|X1

]]
= EX1

[
N∏

j=1

[
M̃j(sj)

]Xj
1

]
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Hence,

θ̃(s1, . . . , sN) = G1

(
M̃1(s1), . . . , M̃N (sN )

)
(5-3)

We need to define the joint LST of Γi, θi and Ψi :

∆̃i(s1, s2, s3) = E
[
e−s1Γi · e−s2θi · e−s3Ψi

]

We have,

∆̃i(s1, s2, s3) = E

[
exp

{
−s1

(
i−1∑
j=1

(θj + Dj)

)
− s2θi − s3

(
N∑

j=i+1

θj +
N∑

j=i

Dj

)}]

= E

[
exp

{
−s1

(
i−1∑
j=1

θj

)
− s2θi − s3

(
N∑

j=i+1

θj

)}]
·E

[
exp

{
−s1

(
i−1∑
j=1

Dj

)
− s3

(
N∑

j=i

Dj

)}]

Hence,

∆̃i(s1, s2, s3) = θ̃(s1, . . . , s1, s2, s3, . . . , s3) ·
i−1∏

j=1

D̃j(s1) ·
N∏

j=i

D̃j(s3) (5-4)

where s2 in θ̃(s1, . . . , s1, s2, s3, . . . , s3) is positioned at the i-th coordinate.

The PGF of X i
1 is derived from equation (5-2):

X̂ i
1(z) = E

[
zXi

1

]
=

∞∑
x=0

zx·P (X i
1 = x) =

∞∑
x=0

zx·P (Ri (Ri(0, Γi) + Ai(θi), Ψi ) = x)

=
∞∑

x=0

zx ·
∞∫

t1=0

∞∫
t2=0

∞∫
t3=0

[
P ( Ri (Ri(0, t1) + Ai(t2), t3 ) = x ) ·

·fΓi ,θi ,Ψi
(t1, t2, t3)dt3dt2dt1

]

=
∞∑

x=0
zx·

∞∫
t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
k=0

[
P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) + Ai(t2) = k ) ·

·fΓi ,θi ,Ψi
(t1, t2, t3)dt3dt2dt1

]

=
∞∑

x=0
zx·

∞∫
t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
k=0




P ( Ri (k, t3 ) = x ) ·
k∑

j=0

P (Ri(0, t1) = j ) ·

·P (Ai(t2) = k − j ) · fΓi ,θi ,Ψi
(t1, t2, t3)dt3dt2dt1




X̂ i
1(z) =

∞∑

x=0

zx·

∞∫

t1=0

∞∫

t2=0

∞∫

t3=0

∞∑

k=0

k∑

j=0




P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = j ) ·

·
e−λit2 · (λit2)

k−j

(k − j)!
· fΓi ,θi ,Ψi

(t1, t2, t3)dt3dt2dt1




(5-5)
We will apply again the modified polynomial interpolation theory (see section

3.2) to equation (5-5) in order to obtain an approximation for the joint PGF,

G1(z1, . . . , zN ) = E

[
N∏

j=1

z
X

j
1

j

]
.
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The method consists of the following steps:

1. Construct a polynomial approximation of order n to the PGF G1(z1, . . . , zN)
with unknown coefficients.

2. Replace the left-hand side of equation (5-5), namely X̂ i
1(z), by the poly-

nomial approximation to G1(1, . . . , 1, z, 1, . . . , 1).

3. Given the distribution of the M ′
i s and using equation (5-3), find θ̃(s1, . . . , sN )

in terms of the (unknown) coefficients of the polynomial from step 1.

4. Using the expression of θ̃(s1, . . . , sN ) from step 3 and equation (5-4), derive

an expression for ∆̃i(s1, s2, s3) in terms of the polynomial coefficients.

5. Derive the joint density function fΓi ,θi ,Ψi
(t1, t2, t3), which is the inverse

LST transform of ∆̃i(s1, s2, s3), namely: fΓi ,θi ,Ψi
(t1, t2, t3) = L−1

{
∆̃i(s1, s2, s3)

}
.

6. Insert the expression of fΓi ,θi ,Ψi
(t1, t2, t3) from step 5, into the right-hand

side of equation (5-5).

7. Substitute in equation (5-5) a chosen point z.

8. Repeat step 7 several times, with different values of z, and get a system
of independent equations with unknown variables (the polynomial coeffi-
cients).

9. Solve for these variables and get the approximation to G1(z1, . . . , zN).

We demonstrate these steps in the following numerical example:

Numerical example 3

Consider again a symmetric system with equal parameter values for all
queues, and assume exponential services and exponential switch-over times in
every queue. The following values for the system variables are assumed:

Number of queues: N = 3

Poisson arrival rates of positive and negative customers: λi = 1, γi = 1

Service times: Bi ∼ exp(4), with E[Bi] = bi =
1

4

Switch-over times: Di ∼ exp(1), with E[Di] = di = 1

Mi ∼ exp(4 + 1), thus M̃i(s) =
5

5 + s
. Also, D̃j(s) =

1

1 + s
We use in this example a polynomial of order 2 as an approximation to the

PGF G1(z1, . . . , zN):

G1(z1, z2, z3) = µ0+µ1 (z1 + z2 + z3)+µ11

(
z1

2 + z2
2 + z2

3

)
+µ12 (z1z2 + z1z3 + z2z3)

(5-6)
Now, equation (5-3) turns into

θ̃(s1, s2, s3) = G1

(
5

5 + s1
,

5

5 + s2
,

5

5 + s3

)
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Consequently, we get from equation (5-4)

∆̃2(s1, s2, s3) = θ̃(s1, s2, s3)·D̃1(s1)·

3∏

j=2

D̃j(s3) = G1

(
5

5 + s1
,

5

5 + s2
,

5

5 + s3

)
·

1

1 + s1
·

(
1

1 + s3

)2

(5-7)
Inserting the polynomial (5-6) into (5-7) results in

∆̃2(s1, s2, s3) =
1

1 + s1
·

(
1

1 + s3

)2

·

·




µ0 + µ1 ·
3∑

i=1

5

5 + si

+ µ11 ·
3∑

i=1

(
5

5 + si

)2

+

+25µ12 ·

(
1

(5 + s1) · (5 + s2)
+

1

(5 + s1) · (5 + s3)
+

1

(5 + s2) · (5 + s3)

)




(5-8)

In order to get the density function fΓ2 ,θ2 ,Ψ2(t1, t2, t3) from its LST ∆̃2(s1, s2, s3),

we use again the method of partial fraction expansion (see section 3.2) and get
the following representation,

(1)
1

(5 + s1) · (1 + s1)
=

a1

5 + s1
+

a2

1 + s1

(2)
1

(5 + s3) · (1 + s3)
2 =

a3

5 + s3
+

a4

1 + s3
+

a5

(1 + s3)
2

(3)
1

(5 + s1)
2
· (1 + s1)

=
a6

5 + s1
+

a7

(5 + s1)
2 +

a8

1 + s1

(4)
1

(5 + s3)
2 · (1 + s3)

2 =
a9

5 + s3
+

a10

(5 + s3)
2 +

a11

1 + s3
+

a12

(1 + s3)
2

The solution is given by

a1 = −
1

4
; a2 =

1

4
; a3 =

1

16
; a4 = −

1

16
;

a5 =
1

4
; a6 = −

1

16
; a7 = −

1

4
; a8 =

1

16
;

a9 =
1

32
; a10 =

1

16
; a11 = −

1

32
; a12 =

1

16

By substituting (1) to (4) in (5-8), and combining similar fractions we get,

∆̃2(s1, s2, s3) =
5µ1 + 25µ12 · (a2 + a5)

(5 + s2) · (1 + s1) · (1 + s3)
2 +

25µ11

(5 + s2)
2
· (1 + s1) · (1 + s3)

2 +

+
25µ12a1

(5 + s2) · (1 + s3)
2 · (5 + s1)

+
25µ12a3

(5 + s2) · (1 + s1) · (5 + s3)
+

+
25µ12a4

(5 + s2) · (1 + s1) · (1 + s3)
+

µ0 + 5µ1a2 + 5µ1a5 + 25µ11a8 + 25µ11a12 + 25µ12a2a5

(1 + s1) · (1 + s3)
2 +

+
5µ1a1 + 25µ11a6 + 25µ12a1a5

(1 + s3)
2
· (5 + s1)

+
25µ11a7

(1 + s3)
2
· (5 + s1)

2 +
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+
5µ1a3 + 25µ11a9 + 25µ12a2a3

(1 + s1) · (5 + s3)
+

5µ1a4 + 25µ11a11 + 25µ12a2a4

(1 + s1) · (1 + s3)
+

+
25µ11a10

(1 + s1) · (5 + s3)
2 +

25µ12a1a3

(5 + s1) · (5 + s3)
+

25µ12a1a4

(5 + s1) · (1 + s3)
(5-9)

Now we can apply, as in the Gated model, the known inverse Laplace trans-
forms to each of the members in the sum (see equation (3-3)), in order to obtain
the density function. Some of the terms in (5-9) lack the s2 variable. Hence, as
was done previously (see section 3.2), we use the δ(·) function and the values
a1 to a12 to get

fΓ2 ,θ2 ,Ψ2(t1, t2, t3) = L−1
{

∆̃2(s1, s2, s3)
}

= f1(t1, t2, t3) + δ(t2) · f2(t1, t3)

(5-10)
where

f1(t1, t2, t3) = e−t1−5t2−t3 ·

[
(5µ1 + 12.5µ12) t3 + 25µ11t2t3 −

25

16
µ12

]
+

+e−5t1−5t2−t3 ·

[
−

25

4
t3µ12

]
+ e−t1−5t2−5t3 ·

[
25

16
µ12

]
(5-11)

and f2(t1, t3) = e−t1−t3 ·

[(
−

5

16
µ1 −

25

32
µ11 −

25

64
µ12

)
+ t3

(
µ0 +

5

2
µ1 +

25

8
µ11 +

25

16
µ12

)]
+

+e−5t1−t3 ·

[
t3

(
−

5

4
µ1 −

25

16
µ11 −

25

16
µ12

)
−

25

4
µ11t3t1 +

25

64
µ12

]
+

+e−t1−5t3 ·

[(
5

16
µ1 +

25

32
µ11 +

25

64
µ12

)
+

25

16
µ11t3

]
+ e−5t1−5t3 ·

[
−

25

64
µ12

]

(5-12)
Now, substituting (5-10) into equation (5-5) leads to

X̂ i
1(z) =

∞∑
x=0

zx·
∞∫

t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
k=0

k∑
j=0




P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = j ) ·

·
e−λit2 · (λit2)

k−j

(k − j)!
· f1(t1, t2, t3)dt3dt2dt1


+

+
∞∑

x=0

zx ·

∞∫

t1=0

∞∫

t2=0

∞∫

t3=0

∞∑

k=0

k∑

j=0




P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = j ) ·

·
e−λit2 · (λit2)

k−j

(k − j)!
· δ(t2) · f2(t1, t3)dt3dt2dt1




(5-13)
Using property (3-14) of δ(t) we have
∞∫

t=0

e−λ1t · δ(t)dt = 1 and
∞∫

t=0

e−λ1t(λ1t)
k

k!
· δ(t)dt = 0 for k > 0

Thus,

∞∫
t2=0

k∑
j=0

[
P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = j ) ·

e−λit2 · (λit2)
k−j

(k − j)!
· δ(t2)dt2

]
=

=
k−1∑
j=0

[
P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = j ) ·

∞∫
t2=0

e−λit2 · (λit2)
k−j

(k − j)!
· δ(t2)dt2

]
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+P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = k ) ·
∞∫

t2=0

e−λit2 · δ(t2)dt2

= P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = k ) (5-14)

By substituting (5-14) in (5-13), we get,

X̂ i
1(z) =

∞∑
x=0

zx·
∞∫

t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
k=0

k∑
j=0




P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = j ) ·

·
e−λit2 · (λit2)

k−j

(k − j)!
· f1(t1, t2, t3)dt3dt2dt1


+

+
∞∑

x=0

zx ·

∞∫

t1=0

∞∫

t3=0

∞∑

k=0

P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = k ) · f2(t1, t3)dt3dt1

(5-15)
Now, from equation (5-6),

X̂ i
1(z) = G1(z, 1, 1) = µ0 + µ1 (z + 2) + µ11

(
z2 + 2

)
+ µ12 (2z + 1) (5-16)

By substituting z = 1 in (5-16), we get the normalized equation in the
unknown parameters µ0, µ1, µ11 and µ12:

1 = µ0 + 3(µ1 + µ11 + µ12)

Equating (5-15) to (5-16), we get the main equation:

µ0 + µ1 (z + 2) + µ11

(
z2 + 2

)
+ µ12 (2z + 1) =

=
∞∑

x=0

zx ·
∞∫

t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
k=0

k∑
j=0




P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = j ) ·

·
e−λit2 · (λit2)

k−j

(k − j)!
· f1(t1, t2, t3)dt3dt2dt1




+

∞∑

x=0

zx ·

∞∫

t1=0

∞∫

t3=0

∞∑

k=0

P ( Ri (k, t3 ) = x ) · P (Ri(0, t1) = k ) · f2(t1, t3)dt3dt1

(5-17)
where, in our example, f1(t1, t2, t3) and f2(t1, t3) are given in (5-11) and (5-12),
respectively. Also, since we chose λ = γ, in equation (3-1) the infinite sum in
the expression of P (R(k, t) = j) is zero. Hence,

P (Ri (k, t3 ) = x) = e−2t3 ·
[
I|x−k| (2t3) + Ix+k+1(2t3)

]

and
P (Ri(0, t1) = j) = e−2t1 · [Ij (2t1) + Ij+1(2t1)]

Three distinct values of z have to be substituted in (5-17) in order to solve
for the unknown parameters µ0, µ1, µ11 and µ12. Finally, we get from (5-16):

E
[
X i

1

]
=

d

dz
X̂ i

1(z)|z=1 = µ1 + 2µ11 + 2µ12 (5-18)
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5.2 Waiting times
We imitate the method used in sections 3.3 and 4.2. Employing Eisenberg’s

formula we have in the current case, Bi(z) = X̂ i
i (z) ; Bi(z) = E[zNi ] ≡ N̂i(z) ;

E[Ki] = E[X i
1] and Si(z) = Si(z) · M̃i(λi(1 − z)) ·

1

z
.

Substituting the above leads to the following expression for the PGF of the
queue size at service termination instants:

Si(z) =
M̃i(λi(1 − z))

z − M̃i(λi(1 − z))
·

X̂ i
i (z) − N̂i(z)

E[X i
1]

(5-19)

Now,

X̂ i
i (z) =

∞∑

x=0

zx · P (X i
i = x) =

∞∑

x=0

zx · P
(
X i

1 + Ri(0, Γi) = x
)

=

∫ ∞

t=0

∞∑

x=0

zx · P
(
X i

1 + Ri(0, t) = x
)
· fΓi

(t)dt

=

∫ ∞

t=0

∞∑

x=0

zx ·

x∑

j=0

P (X i
1 = j) · P

(
Ri(0, t) = x − j

)
· fΓi

(t)dt (5-20)

where fΓi
(t) = L−1{Γ̃i(s)}. Using (5-3),

Γ̃i(s) = E
[
e−sΓi

]
= E

[
exp

{
−s

i−1∑
j=1

(θj + Dj)

}]
= E

[
exp

{
−s

i−1∑
j=1

(θj)

}]
·

E

[
exp

{
−s

i−1∑
j=1

(Dj)

}]

= θ̃(s, . . . , s, 0, . . . , 0) ·

i−1∏

j=1

D̃j(s) = G1(M̃1(s), . . . , M̃i−1(s), 1, . . . , 1) ·

i−1∏

j=1

D̃j(s)

(5-21)

We present the calculation of Γ̃i(s) for i = 2, using the parameter values of
numerical example 3.

Γ̃2(s) = G1(M̃1(s), 1, 1) · D̃1(s) =

=
µ0 +

13

4
µ1 +

57

16
µ11 +

14

4
µ12

(1 + s)
−

5

4
µ1 +

10

4
µ12 +

25

16
µ11

(5 + s)
−

25

4
µ11

(5 + s)
2 (5-22)

Hence,

fΓ2(t) = L−1
{
Γ̃2(s)

}
= e−t ·

(
µ0 +

13

4
µ1 +

57

16
µ11 +

14

4
µ12

)

−e−5t ·

(
5

4
µ1 +

10

4
µ12 +

25

16
µ11

)
− te−5t ·

(
25

4
µ11

)
(5-23)

Also,

P (X2
1 = j) =

1

j!
·
d(j)X̂2

1 (z)

d(j)z
|z=0 (5-24)

32



where X̂2
1 (z) is given by(5-16). We substitute equations (5-23) and (5-24) in

(5-20) to get an expression for X̂2
2 (z).

Now,

N̂2(z) =
∞∑

x=0
zx · P (N2 = x) =

∞∑
x=0

zx · P (R2(0, Γ2) + A2(θ2) = x)

=
∞∫

t1=0

∞∫
t2=0

∞∑
x=0

zx · P (R2(0, t1) + A2(t2) = x) · fΓ2 ,θ2 (t1, t2)dt2dt1

=
∞∫

t1=0

∞∫
t2=0

∞∑
x=0

zx·
x∑

j=0

P (R2(0, t1) = j)·P (A2(t2) = x − j)·fΓ2 ,θ2 (t1, t2)dt2dt1

=

∞∫

t1=0

∞∫

t2=0

∞∑

x=0

zx ·

x∑

j=0

P (R2(0, t1) = j) ·
e−λ2t2 · (λ2t2)

x−j

(x − j)!
· fΓ2 ,θ2 (t1, t2)dt2dt1

(5-25)

where fΓ2 ,θ2 (t1, t2) = L−1
{
Ω̃2(s1, s2)

}
and

Ω̃2(s1, s2) = E
[
e−s1Γ2 · e−s2θ2

]
= E

[
e−s1(θ1+D1)−s2θ2

]

= E
[
e−s1θ1−s2θ2

]
·E
[
e−s1D1

]
= θ̃(s1, s2, 0)·D̃1(s1) = G1

(
M̃1(s1), M̃2(s2), 1

)
·

D̃1(s1)

=
µ0 +

9

4
µ1 +

41

16
µ11 +

5

4
µ12

(1 + s1)
−

5

4
µ1 +

5

4
µ12 −

25

16
µ11

(5 + s1)
−

25

4
µ11

(5 + s1)
2 +

+
5µ1 + 5µ12 +

25

4
µ12

(5 + s2) · (1 + s1)
+

25µ11

(5 + s2)
2
· (1 + s1)

−

25

4
µ12

(5 + s2) · (5 + s1)
(5-26)

Since the first three terms in (5-26) lack the variable s2 we write the density

function fΓ2 ,θ2 (t1, t2) = L−1
{
Ω̃2(s1, s2)

}
as a sum of two functions using the

function δ(t).
fΓ2 ,θ2 (t1, t2) = f1(t1, t2) + δ(t2) · f2(t1) (5-27)

where

f1(t1, t2) = e−t1−5t2 ·

[
5µ1 +

45

4
µ12 + 25µ11t2

]
− e−5t1−5t2 ·

[
25

4
µ12

]
(5-28)

and

f2(t1) = e−t1 ·

[
µ0 +

9

4
µ1 + µ11 +

5

4
µ12

]
− e−5t1 ·

[
5

4
µ1 +

5

4
µ12 −

25

4
µ11t1

]

(5-29)
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Now, by substituting (5-27) and the probability P (R2(0, t1) = j) (from (3-1))

in (5-25) we get N̂2(z). By substituting N̂2(z) and X̂2
2 (z) in (5-19) we get S2(z),

the PGF of the queue size at service termination instants.
Our goal is to derive L̂i(z), the PGF of the queue size in station i at an

arbitrary point of time. Following the definitions in section 3.3 we have,

L̂i(z) = Si(z) · pi + Vi(z) · (1 − pi) (5-30)

For the value of pi we need:

E [C] = E

[
N∑

j=1

(θj + Dj)

]
= E

[
N∑

j=1

(
X

j
1∑

k=1

Mjk + Dj

)]
=

N∑
j=1

E[Xj
1 ] · mj + d

Then,

pi =
E[θi]

E[C]
=

E[X i
1] · mi

N∑
j=1

E[Xj
1 ] · mj + d

(5-31)

Equation (3-31) holds here too: Si(z) · gi(z) ·
1

z
= Si(z), where gi(z) is given

in section 3.3. That is,

Si(z) =
Si(z) · z · λi(1 − z)mi

1 − M̃i(λi(1 − z))

Thus, by substituting Si(z) from (5-19) we obtain:

Si(z) =
M̃i(λi(1 − z))

z − M̃i(λi(1 − z))
·

z · λi(1 − z)mi

1 − M̃i(λi(1 − z))
·

X̂ i
i (z) − N̂i(z)

E[X i
1]

(5-32)

Derivation of Vi(z)

Recall that Vi stands for the number of customers in queue i at an arbitrary
moment when queue i is not being served. The following relation holds:

Vi
d
= Ri(Ni, Hi,p) = Ri(Ri(0, Γi) + Ai(θi), Hi,p) (5-33)

where Hi,p is the past time (see section 3.3) of the random variable Hi (recall
that C = Hi + θi). We have,

Vi(z) = E[zVi ] =
∞∑

v=0
zv·P (Vi = v) =

∞∑
v=0

zv·P (Ri (Ri(0, Γi) + Ai(θi) , Hi, p) = v)

=
∞∫

t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
v=0

zv·P (Ri (Ri(0, t1) + Ai(t2) , Hi, p) = v | Γi = t1 , θi = t2 , Ψi = t3) ·

·fΓi ,θi ,Ψi
(t1, t2, t3)dt3dt2dt1 (5-34)

Note that when Γi = t1, θi = t2, Ψi = t3, we get that Hi = Γi + Ψi = t1 + t3
and Hi,p|Hi = t1 + t3 ∼ U(0, t1 + t3) (see section 3.3).

Using this distribution, while defining a continuous Uniform variable

hp ∼ U(0, t1 + t3), with density function
1

t1 + t3
, in (5-34) yields,
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Vi(z) =
∞∫

t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
v=0

zv
t1+t3∫
u=o

P (Ri (Ri(0, t1) + Ai(t2) , u) = v) ·
1

t1 + t3
·

·fΓi ,θi ,Ψi
(t1, t2, t3)dudt3dt2dt1 =

=
∞∫

t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
v=0

zv
t1+t3∫
u=o

∞∑
j=0

P ( Ri (j, u) = v) · P (Ri(0, t1) + Ai(t2) = j) ·

·
1

t1 + t3
· fΓi ,θi ,Ψi

(t1, t2, t3)dudt3dt2dt1 =

=
∞∫

t1=0

∞∫
t2=0

∞∫
t3=0

∞∑
v=0

zv
t1+t3∫
u=0

∞∑
j=0

P ( Ri (j, u) = v)·
j∑

k=0

P (Ri(0, t1) = k )·
e−λit2 · (λit2)

j−k

(j − k)!
·

·
1

t1 + t3
· fΓi,θi ,Ψi

(t1, t2, t3)dudt3dt2dt1 (5-35)

Now, Vi(z) is determined by using fΓi,θi,Ψi
(t1, t2, t3) from equation (5-10).

Substituting the results (5-31), (5-32) and (5-35) in (5-30) we get an expres-

sion for L̂i(z), the PGF of queue i ′s size at an arbitrary moment.

Note that L̂i(z) depends on the distribution of X i
1 which was derived under

the interpolation theory. As in the Gated case, in a specific queue the number
of customers left behind by a departing customer is exactly those that arrived
there during his sojourn time. Thus, we get for the waiting time of a customer
in queue i:

L̂i(z) = W̃i(λi(1 − z)) or W̃i(s) = L̂i(1 −
s

λi

).
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