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Abstract— Efficient communication in Bluetooth networks re-
quires design of intra and inter-piconet scheduling algorithms,
and therefore numerous algorithms have been proposed. How-
ever, due to complexities of the Bluetooth MAC, the performance
of these algorithms has been analyzed mostly via simulation. We
present exact analytic results regarding the exhaustive, gated, and
limited (pure round robin) scheduling algorithms in piconets with
unidirectional traffic. We show that, surprisingly, in symmetrical
piconets with only uplink traffic, the mean waiting time is the
same for the exhaustive and limited algorithms. This observation
is extended for Time-Division-Duplex systems with arbitrary
packet lengths. Furthermore, we show that the mean waiting time
in a piconet with only uplink traffic is significantly higher than
its corresponding value in a piconet with only downlink traffic.
We demonstrate the difficulties in analyzing the performance
of the exhaustive and gated algorithms in a piconet with bi-
directional traffic. Finally, we numerically compare the exact
results to approximate results, presented in the past.

I. INTRODUCTION

Bluetooth is a Personal Area Network (PAN) technology,
which enables devices to connect and communicate wirelessly
via short-range ad-hoc networks [2]. The basic network topol-
ogy (referred to as a piconet) is a collection of slave devices
operating together with one master. A multihop ad hoc network
of piconets in which some of the devices are present in more
than one piconet is referred to as a scatternet. A device that is
a member of more than one piconet (referred to as a bridge)
must schedule its presence in all the piconets in which it is a
member.

The master uses intra-piconet scheduling algorithms to
schedule the traffic within a piconet. Inter-piconet scheduling
algorithms are used to schedule the presence of the bridges in
different piconets. Numerous intra and inter-piconet schedul-
ing algorithms have been proposed (see [3],[5],[8],[9],[20],
and references therein).

Analytical performance evaluation of intra and inter-piconet
scheduling algorithms has great importance, since it may
provide insight on their design and optimization. However,
as mentioned in [3], due to the special characteristics of the
Bluetooth Medium Access Control (MAC) which is based
on Time-Division-Duplex (TDD), the performance of these
algorithms has been analyzed mostly via simulation. In this
paper we present overlooked connections between Bluetooth

piconets and polling systems1. We show that these connections
can be utilized in order to obtain (in a straightforward
manner) analytic results regarding the performance of the
algorithms.

We show that a piconet with unidirectional uplink traffic
operated according to the exhaustive scheduling algorithm
is equivalent to a specific exhaustive polling system and
derive exact analytic results regarding intra-piconet waiting
times.2 We also show that a piconet with unidirectional uplink
traffic operated according to the limited (pure round robin)
scheduling algorithm can be modeled as a 1–limited polling
system and derive exact results.

Following this analysis, a surprising result is obtained: the
mean waiting times for the limited and exhaustive algorithms
are equal in a piconet with only uplink traffic, where all arrival
rates are statistically equal. Moreover, the mean waiting time
when such a piconet is operated according to the gated algo-
rithm is higher than in the exhaustive or limited algorithms.
These observations are extended to arbitrary Time-Division-
Duplex systems, where the packets are not necessarily 1, 3,
and 5 slots long (as required in Bluetooth [2]). This extension
is important, since the TDD mechanism will be used by other
technologies. For example, 3.5G and 4G cellular systems are
expected to use a combination of TDD and CDMA [6].

It is shown that the result regarding the equality of the mean
waiting times is a specific case of a result that holds in polling
systems. This observation yields a decomposition result for the
mean waiting time in symmetrical 1–limited polling systems.

Furthermore, we show that a piconet with unidirectional
downlink traffic operated according to the exhaustive schedul-
ing algorithm is equivalent to an exhaustive polling system
with zero-switchover periods3. A similar equivalence holds
for the gated and the limited algorithms. It is shown that
the mean waiting time in a piconet with only uplink traffic
is significantly higher than in a piconet with only downlink

1A polling system consists of several queues served by a single server
according to a set of rules (polling scheme) [1, p. 195],[18].

2If analytic results are exact under the assumption of a Poisson arrival
process, we refer to them as exact results.

3In a polling system, the time required for the server to shift from one
queue to another is referred to as the switchover time.



traffic.
We argue that when the traffic is bi-directional, it seems that

there is no closed form expression for the Probability Generat-
ing Function of the time to exhaust the two related queues, at
a given slave and the master. Finally, we note that approximate
results regarding the performance of various intra and inter-
piconet scheduling regimes have been recently presented (e.g.
[11],[15],[16],[17]). We conclude by numerically comparing
our exact results to the approximate results presented in [15]
and [16].

In [22] we have derived exact analytic results for symmet-
rical piconets operated according to the limited algorithm. To
the best of our knowledge, the results presented in this paper
and in [22] are the only available correct exact analytic results
regarding the performance of Bluetooth scheduling algorithms.
The results presented in [22] have been extended by Miorandi
and Zanella for an asymmetrical arrival process [12] and for
fading channels [13]. Similarly, we argue that the results
presented in this paper, regarding specific scenarios (e.g.
Poisson arrival process), can be easily extended to different
scenarios by utilizing the vast amount of research regarding
polling systems.

The rest of the paper is organized as follows. Section II
gives a brief introduction to the Bluetooth technology, while
Section III presents the model. In Section IV we analyze the
scheduling algorithms in piconets and in general TDD systems
with unidirectional uplink traffic. In Section V we discuss
general polling systems and present a simple decomposition
result. In Section VI we analyze piconets with unidirectional
downlink traffic. Section VII analyzes the gated algorithm in a
piconet with bi-directional traffic and Section VIII compares
numerical results to results obtained in the past. Section IX
summarizes the main results.

II. BLUETOOTH TECHNOLOGY

In a piconet one unit acts as a master and the others act
as slaves (a master can have up to 7 slaves). Bluetooth chan-
nels use a Frequency-Hop/Time-Division-Duplex (FH/TDD)
scheme in which the time is divided into 625–µsec intervals
called slots. The master-to-slave transmission starts in even-
numbered slots, while the slave-to-master transmission starts
in odd-numbered slots. Masters and slaves are allowed to send
1, 3 or 5–slot packets, which are transmitted in consecutive
slots. Packets can carry synchronous information (voice link)
or asynchronous information (data link).4 Information can only
be exchanged between a master and a slave.

A slave is allowed to start transmission in a given slot, if
the master has addressed it in the preceding slot. The master
addresses a slave by sending a data packet or, if it has no data
to send, a 1–slot POLL packet. The slave must respond by
sending a data packet or, if it has nothing to send, a 1–slot
NULL packet. We refer to the master-to-slave communication
as downlink and to the slave-to-master communication as

4We concentrate on networks in which only data links are used.
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Fig. 1. An example of the TDD scheme in a Bluetooth piconet.

uplink. An example of the TDD scheme in a piconet with
N slaves is given in Fig. 1.

The master schedules the traffic in a piconet according to an
intra-piconet scheduling algorithm. We focus on the following
algorithms in which the master communicates with the slaves
according to a fixed cyclic order:

• Limited (Pure) Round Robin – At most a single packet
is sent in each direction (downlink and uplink) whenever
a master-slave queue pair is served.

• Exhaustive Round Robin – The master does not switch to
the next master-slave queue pair until both the downlink
and the uplink queues are empty.

• Gated Round Robin – Only the packets that are found in
the uplink and downlink queues when the master starts
serving the queue pair are transmitted.

III. THE MODEL

The number of slaves is denoted by N and we assume that
each node has an infinite buffer. We assume that the packets
are generated at the uplink and downlink queues according
to a Poisson arrival process. Since the arrival process in real
networks is not Poisson, throughout the paper we briefly point
out the additional steps that have to be taken in order to
analyze systems with a compound Poisson arrival process (i.e.
systems in which batches of packets arrive according to a
Poisson arrival process).

We consider different packet generation scenarios:
• Symmetrical piconet – The arrival rate to every downlink

and uplink queue is λ (packets/slot).
• Half-symmetrical piconet – The arrival rate to all the

downlink queues is the same (denoted by λd). Similarly,
the arrival rate to all the uplink queues is λu, but λd 6= λu.

• Asymmetrical piconet – The arrival rate to the uplink
queue at slave i is λiu and the arrival rate into the master
of packets intended for slave i is λid.

We assume that the master is the final destination of all
packets generated at the slaves. The probabilities of a packet
length being 1, 3, or 5 slots are p1, p3, and p5, respectively.5

The mean and second moment of the packet length are denoted
by L and L2. The waiting time is the time a packet waits
in the uplink or the downlink queue before it is served. The
mean waiting times in the uplink and downlink queues are

5Although we assume that the packet lengths are random, in practice, these
length depend on the Segmentation and Reassembly (SAR) of higher layer
packets (see the discussion in [5]). The SAR policy can also affect the arrival
process (i.e. in practice, it is likely that batches of packets will arrive at once).



denoted by W u and W d, respectively. In case the piconet is
asymmetrical, the mean waiting time in the uplink queue of

slave i is denoted by W
i

u.
Some of the scheduling algorithms proposed in the past (e.g.

[5]) assume that the master has some information regarding
the status of the slaves’ queues. However, obtaining such
information requires changing the Bluetooth specifications [2]
or using a proprietary algorithm in all the devices participating
in a piconet. Thus, we assume that the master does not have
any information about the state of the uplink queues. This
assumption complies with the assumptions made in several
previous analyses of intra-piconet scheduling algorithms (e.g.
[3],[11],[14],[15],[16],[17]).

We note that whenever we refer to results regarding general
(non-Bluetooth) symmetrical polling systems we follow the
notation of Takagi [18]. Namely, the polling system is com-
posed of N queues served by a single server. The packet arrival
process to each queue is Poisson with intensity λ. The mean
and second moment of the packet service times are denoted
by b and b(2). The mean and variance of the switchover times
are denoted by r and δ2.

IV. UPLINK TRAFFIC

A. Analysis of the Exhaustive Algorithm

Consider a piconet with only uplink traffic operated accord-
ing to the exhaustive scheduling algorithm. First, we analyze a
half-symmetrical piconet (i.e. a piconet in which λu = λ > 0
and λd = 0). Then, we show that an asymmetrical piconet (in
which the arrival rates to the uplink queues are not necessarily
equal) can be analyzed in a similar manner.

Since λd = 0, when the master communicates with a
particular slave it sends only POLL packets. The slave replies
with data packets until its queue is empty. Then, it sends
a NULL packet which signals the end of the exhaustive
communication with that particular slave6.

In order to model the piconet as an exhaustive polling
system, we define the service time of a k–slot data packet
as (k + 1) slots which are composed of the k slots of data,
augmented by the following POLL packet. Hence, the service
time of a 1–slot packet is defined as 2 slots, for 3–slot packet
it is 4 slots, and for 5–slot packet it is 6 slots. The switchover
time is defined as 2 slots, composed of the NULL packet
ending the exchange with a particular slave and the POLL
packet starting the exchange with the next slave.

For a half-symmetrical piconet (λu = λ > 0, λd = 0), we
apply the model for a symmetrical discrete-time exhaustive
polling system described in [18, p. 68]. Accordingly, we apply
eq. (3.63b) in [18], where the number of queues is N , the
arrival process is Poisson with intensity λ, the switchover time
is two slots (r = 2) with zero variance (δ2 = 0), the mean

6The termination of the master-slave exchange with a POLL-NULL ex-
change results from the fact that the master has no information about the
slaves’ queues and complies with the assumptions made in previous analyses
of the exhaustive algorithm (e.g. [14],[15],[16]).
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Fig. 2. The exact mean waiting time (calculated according to (1)) and the
average waiting time values, computed by simulation, in piconets composed
of 7 slaves and with only uplink traffic, operated according to the exhaustive
algorithm.

service time is b = L + 1, and the second moment of the
service time is b(2) = 4p1 + 16p3 + 36p5. By adding 0.5 slot,
we obtain the mean waiting time (in slots)7:

Wu =
N
[

1 + 4λ(p3 + 3p5)
]

1−Nλ(L + 1)
. (1)

We shall refer to Nλ(L+1) as the load in the uplink exhaustive
system.

In a piconet with a single slave (N = 1) there is no
difference between the exhaustive and the limited scheduling
algorithms. As a special case, consider a piconet with unidirec-
tional traffic of 1–slot packets (i.e. p1 = 1) operated according
to the limited algorithm. Its mean waiting time is given in
eq. (2) in [22] as:

W
i

u =
N

1− 2Nλiu
. (2)

It readily follows that for such a piconet (λiu = λ, N = 1,
and p1 = 1) (1) and (2) coincide.

The result presented in (1) was also verified by a simulation
model based on OPNET (the simulation model is described in
[8]). For example, Fig. 2 compares the exact mean waiting
time to the computed (by simulation) average waiting time,
in piconets with 7 slaves in which (i) all packets are 1–slot
long and (ii) p1 = 0.2, p3 = 0.6, and p5 = 0.2. For each load
value, the results have been computed after 230,000 slots.

We now consider an asymmetrical piconet with only uplink
traffic (i.e. λid = 0 ∀i, and λiu > 0 not all necessarily
equal). Such a piconet can be analyzed in a similar manner

7We add 0.5 slot, since we are interested in the waiting time from the time
of arrival, whereas in [18] the waiting time is counted from the end of the slot
in which a packet arrives. We note that using eq. (3.69) in [1, p. 200] with the
same parameters does not require adding 0.5 slot and yields the same result.



to a half-symmetrical piconet. Namely, it can be modeled as
an asymmetrical exhaustive polling system composed of N
queues, with 2–slot switchover time and with service time
of (k + 1) slots for a k–slot data packet. Accordingly, the
mean waiting time in each uplink queue can be obtained by
any of the methods for analyzing exhaustive polling systems
described in [18] and [19]. Since some of these methods
require solving O(N2) equations and since N ≤ 7, the
computational complexity is negligible. We note that results
can be obtained even for the case in which the probabilities of
a packet length being 1, 3, or 5 slots vary in different uplink
queues.

Finally, we note that a piconet with batch arrivals can be
analyzed by directly applying the methods for the analysis of
exhaustive polling systems with a compound Poisson arrival
process (see for example [18]).

B. Analysis of the Gated Algorithm

A piconet with only uplink traffic operated according to
the gated algorithm is similar to a piconet operated according
to the exhaustive algorithm. The main difference is that a
slave replies to the master only with the data packets that
were present in the uplink queue when it received the first
POLL packet from the master. In order to signal the end of
the gated communication, the slave sends a NULL packet. We
note that since we assume that the master and the slave do
not exchange queue status information, the last POLL-NULL
exchange is required. Yet, by slightly modifying the protocol
this exchange could be avoided.

This algorithm can be modeled as a gated polling system in
a similar manner to the modeling of the exhaustive algorithm.
Namely, we define the service time of a k–slot data packet as
(k + 1) slots and the switchover time is defined as 2 slots.
For a half-symmetrical piconet, we apply the model for a
symmetrical gated polling system described in [18, p. 104].
Accordingly, using eq. (5.23) in [18], we obtain the mean
waiting time (in slots):

Wu =
N
[

1 + 4λ(p3 + 3p5)
]

1−Nλ(L + 1)
+

2Nλ(L + 1)

1−Nλ(L + 1)
. (3)

An asymmetrical piconet with only uplink traffic can be
similarly analyzed by one of the methods described in [18]
and [19].

C. Analysis of the Limited Algorithm

In this section we show that a piconet with only uplink
traffic operated according to the limited (pure round robin)
scheduling algorithm can be modeled as a 1–limited polling
system. In such a piconet the master continuously sends POLL
packets to the slaves. Even if the slave has nothing to send,
one slot must be used during the uplink communication (by
the NULL packet).

We define the beginning of the switchover to a queue as
the instance in which the preceding slave starts transmitting

Slave 2 to Master

Master  to Slave 2

Slave 1 to Master

Master  to Slave 1

Piconet

Time (slots)
Data Packet POLL Packet NULL Packet

Queue 2

Time (slots)

Queue 1

Equivalent Polling System

SwitchoverData Zero Slots Data

Fig. 3. An example of a piconet operated according to the limited algorithm
and of the equivalent polling system.

the last slot of a data packet or a NULL packet. A switchover
ends when the master completes the transmission of the POLL
packet intended to the slave (if at the end of the switchover
the queue is empty, the switchover to the next queue is
immediately started). We define the switchover time to each
of the queues as 2 slots:

• If the preceding slave sends a 3 or 5–slot data packet,
the 2 switchover slots are composed of the last slot of
the packet and the following POLL packet.

• If the preceding slave sends a 1–slot data packet or a
NULL packet, these 2 slots are composed of the packet
sent by the preceding slave and the following POLL
packet.

Consequently, when data packets are sent, some of the data
is actually sent during the “switchover” to the next queue.
Therefore, the service time of a k–slot data packet is defined
as (k−1) slots. Note that this implies that a 1–slot packet has
a service time of 0 slots. Fig. 3 illustrates an example of the
operation of a piconet and of the equivalent polling system.

We now focus on half-symmetrical systems in which the
arrival rates to all uplink queues are equal (i.e. λu = λ > 0
and λd = 0) and apply the model for a symmetrical discrete-
time 1–limited polling system described in [18, p. 140]. We
use [18] eq. (6.60), where the switchover time is two slots
(r = 2) with zero variance (δ2 = 0), the mean service time
is b = L − 1, and the second moment of the service time is
b(2) = 4p3 + 16p5. By adding 0.5 slot, we obtain the mean
waiting time (in slots):

Wu =
N
[

1 + 4λ(p3 + 3p5)
]

1−Nλ(L + 1)
. (4)

As a special case, consider a half-symmetrical piconet with
unidirectional traffic of 1–slot packets (i.e. p1 = 1) operated
according to the limited algorithm. Its mean waiting time has
been derived in [22] and it is given by (2). It readily follows
that for such a piconet (λiu = λ and p1 = 1), (4) coincides
with (2). Moreover, in a piconet with a single slave (N = 1),
there is no difference between the exhaustive and the limited



scheduling algorithms. Indeed, for N = 1, the result presented
in (4) coincides with (1), which presents the mean waiting time
in a piconet operated according to the exhaustive algorithm.
Finally, the result presented in (4) was also verified by a
simulation model based on OPNET.

We note that an asymmetrical piconet with unidirectional
uplink traffic can be modeled as a 1–limited polling system
with N queues in a similar manner. Since there are no
closed form results for the latter case, approximation methods
reviewed in [19] can be used. Moreover, a piconet with
batch arrivals can be analyzed by applying the methods for
the analysis of 1–limited polling systems with a compound
Poisson arrival process [19].

D. Equality of Mean Waiting Times

Eq. (1) and (4) lead to the following.
Corollary 1: The mean waiting time in a half-symmetrical

piconet with only uplink traffic is the same for the exhaustive
and for the limited scheduling algorithms.

It is well known [18],[19] that in the classical symmetrical
polling systems, where switchover time is incurred whenever
the server moves from one channel to the next, the mean
waiting time in the exhaustive regime is smaller than its
counterpart in the 1–limited regime. When the piconet is
operated according to the exhaustive algorithm, switchover
time is incurred at the end of a slave-master session. On the
other hand, in the limited algorithm, when two adjacent slaves’
queues are non-empty, no real switchover time is incurred.
Real switchover times are paid only when a slave has nothing
to transmit. Thus, this limited procedure is more efficient than
the classical one. In the next section we extend Corollary 1
to general TDD systems and in section V we show that it
is a specific case of a phenomenon occurring in symmetrical
(non-Bluetooth) polling systems.

The mean waiting time in a piconet using the gated regime
(3) is higher than the corresponding value in piconets using
the exhaustive and limited algorithms. Again, this observation
differs from the situation in classical polling systems. Usually,
one can use the gated algorithm in order to provide some
fairness to the different queues, while maintaining relatively
low delay. It seems that in a symmetrical piconet with unidirec-
tional traffic, the limited algorithm provides both the desirable
fairness and the lowest delay.

E. Extension to General TDD Systems

In the following lemma we extend the result presented in
Corollary 1 to general systems operated according to the TDD
mechanism. First, we define a general TDD system as follows.

Definition 1: A general TDD system is composed of a
master (base station) and at least one slave (station), operated
in a similar manner to a Bluetooth piconet. Namely:

• The channel is slotted.
• A slave is allowed to start transmission in a slot, if the

master has addressed it in the preceding slot.

• The master addresses a slave by sending a data packet or
a 1–slot empty packet.

• The slave must respond by sending a data packet or a
1–slot empty packet.

• The master and slaves are allowed to send data packets
of any length . The probability of a packet length being
i slots long is denoted by pi.

Lemma 1: In a symmetrical general TDD system with only
uplink traffic, the two mean waiting times, in the exhaustive
and limited scheduling algorithms, are equal to each other for
any given packet length distribution.

Proof: According to Definition 1, the mean packet length
is L =

∑

∞

i=1 pii and the second moment of the packet length
distribution is L2 =

∑

∞

i=1 pii
2. Similarly to the analysis in

Section IV-A, it can be shown that the considered TDD system
operated according to the exhaustive scheduling algorithm is
equivalent to the symmetrical exhaustive polling system. In
the equivalent polling system, the service time of a k–slot
packet (of the TDD system) is defined as k + 1 slots and
the switchover time is defined as two slots with zero variance.
Accordingly, using the notation of [18], the mean service time
is b = L+ 1, the mean switchover time is r = 2, the variance
of the switchover time is δ2 = 0, and the second moment of
the service time is: b(2) =

∑

∞

i=1 (i + 1)2 pi = L2 + 2L + 1.
Using [18], eq. (3.63b) and adding 0.5 slot, we obtain the
mean waiting time (in slots):

Wu =
N(λL2 − λ + 2)

2
(

1−Nλ(L + 1)
) . (5)

The considered TDD system operated according to the limited
scheduling algorithm is equivalent to the symmetrical 1–
limited polling system. In the equivalent polling system, the
service time of a k–slot packet (of the TDD system) is defined
as (k−1) slots and the switchover time is defined as two slots
with zero variance. Accordingly, b = L − 1, r = 2, δ2 = 0,
and b(2) =

∑

∞

i=1 (i − 1)2 pi = L2 − 2L + 1. Using [18],
eq. (6.60) and adding 0.5 slot, we again obtain (5).

It can be shown that in a symmetrical general TDD system,
the waiting time in the gated algorithm is higher than the
waiting times in the exhaustive and limited algorithms.

V. GENERALIZATION TO POLLING SYSTEMS

In this section we extend the result presented in Lemma 1
to continuous time (non-Bluetooth) polling systems. We show
that the mean waiting time in a symmetrical 1–limited polling
system with constant switchover times is equal to the mean
waiting time in a corresponding exhaustive polling system
with extended service time. Furthermore, in [4] and [7] it has
been shown that the mean waiting times in exhaustive and
gated polling systems decompose into a sum of two terms,
one being a function of the switchover times and the other
the mean waiting time in the corresponding model with zero-
switchover times. We shall show that for symmetrical polling



systems operated according to the 1–limited regime, a similar
decomposition result to the one obtained by Fuhrman [7] for
the exhaustive regime holds as well.

We denote the mean waiting times in the symmetrical
exhaustive and 1–limited (non-Bluetooth) polling systems with

constant switchover times by W
Ex

and W
L

. We denote
the server utilization at a queue by ρ1 and the total server
utilization by ρ = Nρ1. The corresponding extended service
polling system is defined as follows8.

Definition 2: A corresponding extended-service polling
system differs from the basic polling system only by the fact
that the service time of a packet whose original length is k is
extended to k + r.
According to Definition 2, the mean and the second moment of
the service time in the corresponding extended-service system
are x = b + r and x(2) = b(2) + 2rb + r2, respectively. We
denote the mean waiting time in the corresponding extended-
service system by W b+r.

Observation 1: The mean waiting times in the symmetrical
1–limited polling system with constant switchover times and in
the corresponding extended-service exhaustive polling system
are equal. Namely:

W
L

= W
Ex

b+r . (6)
Proof: Applying [18, eq. (4.33b)] with service time b+ r

and second moment of service time b(2) + 2rb + r2 to get

W
Ex

b+r yields the same result as W
L

given in [18, eq. (6.19)].

According to Observation 1, the result about the equality
of the mean waiting times in general TDD systems operated
according to the exhaustive and the limited algorithms (i.e.
Lemma 1) is a specific case of a result that holds in symmet-
rical polling systems.

We shall now define a corresponding zero-switchover sys-
tem, differing from the basic polling system only by the fact
that the switchover time is zero. We denote by W 0 the mean
waiting time in the corresponding zero-switchover system.

In [7, Prop. 4] it has been shown that in an exhaustive
polling system with constant switchover times:

W
Ex

= W 0
Ex

+
Nr(1− ρ1)

2(1− ρ)
. (7)

The result derived in [7] holds for asymmetrical systems and
was extended by Cooper et al. [4] for the case in which the
switchover times are random variables. Since in continuous-
time symmetrical systems with zero-switchover periods the
mean waiting time is the same disregarding the polling regime
[10], the following corollary immediately follows from Obser-
vation 1 and (7).

Corollary 2: The mean waiting time in the 1–limited
polling system decomposes into two terms: (i) the mean

8Recall that r is the mean switchover time in a polling system.

waiting time in the corresponding extended-service zero-
switchover 1–limited polling system and (ii) a function of the
switchover and service times. Namely:

W
L

= W 0
L

b+r +
Nr(1− ρ1)

2(1− ρ)
, (8)

where ρ1 and ρ are the server utilization values in the
corresponding extended-service system.
This Corollary resembles the decomposition result derived in
[7] for the exhaustive algorithm (i.e. (7)).

VI. DOWNLINK TRAFFIC

A. Analysis of the Exhaustive Algorithm

Consider a piconet with only downlink traffic operated
according to the exhaustive algorithm. In such a piconet traffic
flows only from the master to the slaves and the master has
complete information on the status of its downlink queues.
Thus, there is no reason to send a POLL packet in order to
end a master-slave exchange. Yet, in case all queues are empty,
the master should transmit POLL packets (and receive NULL
packets) until a data packet arrives to one of its downlink
queues.

We define the operation model of the piconet as follows.
The master serves the downlink queues in a fixed cyclic
order. When serving queue i, the master sends all data packets
present in the queue and the slave replies with NULL packets.
When the master empties queue i, it immediately switches, in
a cyclic manner to the next non-empty downlink queue. In
case all queues are empty, the master sends a POLL packet
to one of the slaves which replies with a NULL packet. If
after the NULL packet at least one of the queues becomes
non-empty, the master randomly selects one of the N queues
and proceeds from there in a cyclic manner until it finds a
non-empty queue which is immediately served.

Fig. 4 illustrates an example of the operation of such
a piconet. In this example, when the master empties the
downlink queue of packets intended to slave 1, the queue of
slave 2 is empty. When it empties the queue of slave 3, all
the queues are empty, and therefore, it sends POLL packets
until at least one packet arrives. In the scenario described in the
figure, packets arrive to queues 1 and 4 during the transmission
of the NULL packet by slave 2. The master randomly selects
queue 4, serves it, and continues to queue 1 in a cyclic manner.

The piconet can be modeled as a discrete time polling
system with zero-switchover periods [10]. In order to obtain
results for a discrete time exhaustive polling system with
zero-switchover periods, Levy and Kleinrock [10] define the
AZSOP (Almost Zero Switchover Period) polling system. In
that system it is assumed that the switchover period is nonzero
with probability p (p > 0) and zero with probability 1 − p.
Then, the system is analyzed as an exhaustive polling system
with mean switchover times defined as p and the variances of
switchover time defined as p(1 − p). It is shown that when
p→ 0, the waiting time in the AZSOP system approaches the
waiting time in the zero-switchover period system.
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Fig. 4. An example of the operation of the exhaustive algorithm in a piconet
with only downlink traffic.

We note that the continuous time polling system with zero-
switchover periods [18, p. 142] does not comply with the
operation model of a piconet, due to the following reason.
In the continuous time model it is assumed that if a packet
arrives while the server is idle, its service starts immediately.
On the other hand, in a piconet, if a packet arrives while a
POLL or a NULL packet is sent, it could be served only after
the transmission of the NULL packet.

In order to model the piconet as an AZSOP polling system,
we define a single slot in the AZSOP system as two slots in a
Bluetooth piconet. To this end, we define the service time of
a k–slot data packet in a Bluetooth piconet as (k+ 1)/2 slots
in the AZSOP system, which are composed of the k slots of
data, augmented by the following NULL packet. Thus, in the
corresponding AZSOP polling system, the service time of a 1–
slot Bluetooth packet is defined as 1 slot, for 3–slot Bluetooth
packet it is 2 slots, and for 5–slot Bluetooth packet it is 3 slots.
The switchover time in the AZSOP system is defined as 1 slot,
composed of POLL and NULL packets. As mentioned above,
the length of this period is 1 slot with probability p.

We now focus on half-symmetrical systems (i.e. λd =
λ > 0 and λu = 0). By applying the model for a discrete-
time exhaustive polling system described in [18] and using
the methodology described in [10], we can obtain the mean
waiting time. Accordingly, we apply [18] eq. (3.63b), where
the arrival process is Poisson with intensity 2λ the switchover
time is r = p, the variance of the switchover time is δ2 =

p(1 − p), the mean service time is b = (L + 1)/2, and the
second moment of the service time is b(2) = p1 + 4p3 + 9p5.
Letting p→ 0, adding 0.5 slot (since in [18] the waiting time is
counted from the end of the slot), and multiplying by 2 (since
the obtained result is the number of slots in the AZSOP system
and we are interested in waiting time measured in Bluetooth
slots), we obtain the mean waiting time (in Bluetooth slots):

W d =
1 + 4Nλ(p3 + 3p5)

1−Nλ(L + 1)
. (9)

A similar approach can be used for the analysis of asymmet-
rical piconets with only downlink traffic (i.e. λiu = 0 ∀ i, and
λid > 0, not all necessarily equal). That is, it can be modeled
as an asymmetrical AZSOP polling system operated according
to the exhaustive regime and composed of N queues, with

1–slot switchover time and with service time of (k + 1)/2
slots for a k–slot data packet. Accordingly, a relatively good
approximation of the waiting times in each downlink queue
can be computed by solving O(N 3) equations as described in
[10, Section 3.6].

B. Gated and Limited Algorithms

Half-symmetrical piconets operated according to the gated
and limited algorithms can be modeled as AZSOP polling
systems similarly to the modeling of exhaustive algorithm.
By applying the models for discrete-time gated and 1–limited
polling systems described in [18] and using the methodology
described in [10], we obtain the mean waiting times for the
two schemes. It turns out that all 3 mean waiting times, for
the exhaustive, gated, and limited, are equal and given by (9).

C. Comparison

The fact that in a half-symmetrical piconet with only
downlink traffic, the mean waiting time is the same for
all algorithms is expected. Such a result was obtained in
[10] for a symmetric discrete-time polling system with fixed
service times and zero switchover times. Similarly, it is well
known [10],[18] that the mean waiting time in symmetric
continuous time polling systems with zero switchover time
is equal to the mean waiting time in an M/G/1 system with
the combined inputs of all queues, regardless of the polling
regime (exhaustive, gated, or 1–limited). Yet, it is interesting to
compare the results obtained for systems with only downlink
traffic (i.e. (9)) to the results for systems with only uplink
traffic (i.e. (1), (3), and (4)). For clarity of the presentation,
we use in the following equations the superscript to denote
the scheduling algorithm. It can be seen that

W
L

d = W
G

d = W
Ex

d = W
Ex

u −
N − 1

1−Nλ(L + 1)
, (10)

where it has been shown in Section IV that

W
Ex

u = W
L

u = W
G

u −
2Nλ(L + 1)

1−Nλ(L + 1)
. (11)

Moreover, for the special case in which the traffic is composed
of only 1–slot packets (i.e. p1 = 1), there is a significant
difference between the values in only downlink and only
uplink piconets. Namely,

W
L

u = W
Ex

u = NW
L

d = NW
Ex

d = NW
G

d . (12)

The above results can be useful for developing piconet and
scatternet topology construction algorithms (see [20] for a
review of the scatternet topology construction problem). When
the traffic is mostly unidirectional, allowing the node that gen-
erates most of the traffic to be the master would significantly
decrease the delay.



VII. BI-DIRECTIONAL TRAFFIC

Analyzing the performance of scheduling regimes such as
the exhaustive and gated in a piconet with bi-directional traffic
requires obtaining the PGF of the exchange time of a single
master-slave queue pair (channel). This analysis is significantly
complicated by the TDD mechanism and the use of POLL
and NULL packets by the master and the slaves. In order
to demonstrate the difficulties in analyzing the exhaustive
algorithm, we discuss a less complicated case, namely a
single master-slave channel in a piconet, operated in the gated
algorithm.

In the gated algorithm, only the packets that are found in
the uplink and downlink queues when the master starts serving
the master-slave queue pair are transmitted. If the number of
downlink packets exceeds the number of uplink packets, the
slave sends NULL packets as a response to some data packets.
On the other hand, if the number of uplink packets exceeds
the number of downlink packets, the master sends some POLL
packets in order to allow the slave to reply with data packets.
We assume that at the end of the master-slave exchange, the
slave has to respond with a NULL packet to a POLL packet.

Let XG denote the total time (number of slots) required for
the exchange duration of a single master-slave channel in the
gated algorithm. Namely, it is the number of slots required to
serve all packets present in both downlink and uplink queues
at the instance when the master starts serving the queue pair
plus 2 slots (the last POLL-NULL exchange). The PGF and the
mean of XG are denoted by XG(x) and XG. For simplicity,
we assume that all packets are 1 slot long (p1 = 1) and that
packets have accumulated in both queues for some T slots
before the gated service starts. We define U and D as the
number of packets accumulated in the uplink and downlink
queues, respectively, during T slots (U,D ∼ Poisson (λT )).

Thus, given that p1 = 1, XG equals twice the maximum of
U and D plus 2 slots. Namely, it is a function of the maximum
of two Poisson random variables. Accordingly, the PGF of
the time to serve a single master-slave channel is given by:
XG(x) = x2

∑

∞

m=0 x2m Prob (max[U,D] = m) , where

Prob
(

max[U,D] = m
)

= 2 e−λT
(λT )m

m!
(13)





m−1
∑

j=0

e−λT
(λT )j

j!



+

(

e−λT
(λT )m

m!

)2

.

Unfortunately, it appears that in view of (13) there is no
closed form expression for XG(x) and consequently, it seems
that there is no closed form expression for the waiting time
in a piconet with bi-directional traffic operated according to
the gated algorithm. It is clear that the exact analysis of the
exhaustive algorithm is more complicated.

The mean time to serve a single master-slave channel is
given by: XG = 2E (max [U,D]) + 2 . In order to bound the
value of XG, we observe that for U,D ∼ Poisson (γ) and
γ > 0 : 1 < E(max[U,D])/γ < 2 . To illustrate the behavior
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Fig. 5. The ratio of the average value of max [U,D] to γ.

of this ratio, we have randomly generated 300,000 different
values of U and D (for 17 various values of γ) and computed
the average value of max[U,D] and its ratio to γ. The results
are depicted in Fig. 5.

We shall now provide a simple explanation for an observa-
tion made via simulation in [3] and [8]. According to [3] and
[8], in piconets with bi-directional traffic and high loads, the
limited algorithm outperforms the exhaustive algorithm. Con-
sider a symmetrical piconet operated according to the exhaus-
tive or gated algorithms, with only 1–slot packets. According
to the above analysis, for an arrival rate of λ (packets/slot), a
node will have to transmit on average E(max[U,D]) packets
per slot (where U,D ∼ Poisson (λ)). Thus, the arrival rate
λ should be set such that 2NE(max[U,D]) < 1. As we
have shown in Fig. 5, E(max[U,D]) can approach 2λ. Hence,
a necessary condition for stability is λ < 1/(αN), where
2 < α < 4. On the other hand, when the same piconet
is operated according to the limited algorithm, a necessary
condition for stability is λ < 1/(2N). When λ approaches the
stability limit, the waiting time approaches infinity. Thus, in
a piconet using the exhaustive or gated algorithm, the waiting
time approaches infinity for lower values of λ than in a piconet
using the limited algorithm. Therefore, for high values of load
the waiting time in the limited piconet will be lower than in
the exhaustive or gated piconet.

VIII. NUMERICAL RESULTS

Approximate results regarding the performance of vari-
ous intra and inter-piconet scheduling algorithms have been
presented in [11],[15],[16], and [17]. The analysis of the
exhaustive algorithm in [15] is based on 2 stages: (i) the
derivation of the PGF of the time to exhaust a single master-
slave queue pair, and (ii) modeling the piconet as an M/G/1
queue with vacations. In [21] we have shown that the PGF of
the time to exhaust a queue pair, derived in [15], does not take
into account the complexities discussed in Section VII. Thus,
it differs from the correct PGF. Moreover, we have argued
that the direct application of results from the M/G/1 queue
with vacations model to the piconet system ignores important
statistical dependencies that exist in the piconet operation
model. In this section we compare our exact numerical results
to numerical results computed according to [15] and [16].

The model presented in Section III is a specific case of the
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piconet model presented in [15]. Thus, Fig. 6, compares the
mean waiting time computed according to the analysis of the
exhaustive regime in [15] when λd = 0 to the mean waiting
time computed according to our analysis (i.e. according to (1)).
The figure presents the waiting time (in slots) as a function
of the load in the uplink exhaustive system (Nλ(L + 1)) in
half-symmetrical piconets with 2 slaves.

In [16] the intra-piconet exhaustive scheduling algorithm is
analyzed in a somewhat different methodology than the anal-
ysis described in [15]. In Fig. 7 we compare the exact mean
waiting time to the mean waiting time computed according
to [16], in half-symmetrical piconets with only unlink traffic

(λu = λ, λd = 0) in which the probabilities of 1, 3, and
5–slot packets are equal.

It is clear that in all cases shown the results presented in
[15] and [16] underestimates or overestimate the mean waiting
time. Thus, we conjecture that for complicated scenarios, de-
riving approximate results, which are based on the relationship
between Bluetooth piconets and polling systems, will yield
significantly better approximations than those that are based
on M/G/1 queue with vacations.

IX. CONCLUSIONS

This work reveals overlooked connections between Blue-
tooth piconets and polling systems that enable to obtain exact
and approximate analytical results regarding the performance
of Bluetooth scheduling algorithms. First, we have analyzed
piconets with unidirectional uplink traffic. We have obtained
exact results for the symmetric limited, gated, and exhaustive
regimes, and shown that exact results can also be obtained
for asymmetrical piconets operated according to the gated and
exhaustive algorithms.

We have shown that in symmetrical piconets with only
uplink traffic, the mean waiting times are the same for the
limited and exhaustive algorithms. This observation has been
extended for general TDD systems and for specific (non-
Bluetooth) polling systems. The extension to polling systems
yields a delay decomposition result for symmetrical 1–limited
polling systems.

Furthermore, we have shown that a piconet with unidi-
rectional downlink traffic is equivalent to a polling system
with zero-switchover times. The mean waiting times in such
a piconet can be significantly lower than in piconets with
only uplink traffic. The complications in analyzing the gated
scheduling algorithm in piconets with bi-directional traffic
have been described, indicating that the corresponding analysis
of the exhaustive regime is even more complex. Finally,
numerical results have been compared to approximate results
derived in the past.

The presented analysis can be extended in various directions
(e.g. batch arrivals, asymmetrical arrival processes, retrans-
missions, etc.) by directly applying various results regarding
the performance of polling systems (see for example the
extensions in [12] and [13] to our work regarding the limited
algorithm [22]).

The exact results presented in this paper can be utilized
in order to validate and evaluate simulation models and ap-
proximate analytic models. They also provide a few important
insights regarding the design and the performance of Bluetooth
piconets and scatternets. For example, since the mean waiting
times are equal for the exhaustive and limited algorithms, it
seems that when the traffic is mostly unidirectional, the limited
algorithm, which provides some degree of fairness, is prefer-
able. Moreover, topology construction algorithms can exploit
the observation that when the traffic is mostly unidirectional,
allowing the node that generates most of the traffic to be
the master would significantly decrease the delay. Finally, the



effect of the packet length distribution on the waiting time has
been revealed (the effect on the piconet throughput has been
quite clear).

Due to the TDD mechanism, algorithms that tend to opti-
mize the performance of polling systems are not necessarily
optimal for piconets. Therefore, a future research direction
is the development of optimal piconet scheduling algorithms.
For example, we wish to analyze variations of the K–Limited
scheduling algorithm in which the master exchanges up to K
packets with each slave in every cycle. Furthermore, due to
the inherent complexities in analyzing the gated and exhaustive
algorithms, a future research direction is to obtain a good (at
least approximate) analysis of such regimes.
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