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Summary. We consider the problem of testing the partial conjunction null,

that asks whether less than u out of n null hypotheses are false. It offers an

in-between approach to the testing of the global null that all n hypotheses

are null, and the full conjunction null that not all of the n hypotheses are

false. We address the problem of testing many partial conjunction hypotheses

simultaneously, a problem that arises when combining maps of p-values. We

suggest powerful test statistics that are valid under dependence between the

test statistics as well as under independence. We suggest controlling the

false discovery rate (FDR) on the p-values for testing the partial conjunction

hypotheses, and we prove that the FDR controlling procedure in (Benjamini

and Hochberg (1995)) remains valid under various dependency structures.

We apply the method to examples from Microarray analysis and functional
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Magnetic Resonance Imaging (fMRI), two application areas where the need

for partial conjunction analysis has been idnetified.

Key words: False discovery rate; Functional MRI; Global null; Meta-

analysis; Microarray; Multiple comparisons.

1. Introduction

In many modern biostatistics applications there is need to combine p-value

maps. One example from genomics research is that of meta-analysis of mi-

croarray experiments to help identify genes that were consistently differen-

tially expressed in most experiments that examine the same problem. An-

other example from functional magnetic resonance imaging (fMRI) research,

is that of looking for the brain regions that participated in most (or at least

one) of several cognitive tasks. The maps are independent in the first exam-

ple, but may be dependent in the second example.

Pooling together inferences made under different yet related conditions

enables the researcher to (1) gain statistical power, or (2) make a stronger

scientific statement. The first goal is the more familiar one, as it is in frequent

use in meta-analysis. While there may be only a weak evidence against

the null hypothesis at each study, pooling the evidence across studies may

yield very convincing results. Methods are abundant for producing a single

combined p-value to test the “”global null hypothesis“, where the alternative

is that at least one null hypothesis is false, Fisher’s combined p-value being

probably the best-known method for this purpose (see e.g. Loughin (2004),

Zaykin et al. (2002) and Lazar et al. (2002)).

Even when the above goal is achieved, the scientific conclusion arrived at

is quite weak, in the sense that the evidence may stem from a very strong
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result in a single study and none in the others. Thus the second goal for

combining p-values addresses this weakness: we would like to show that the

results across studies are consistent in the sense that the null hypothesis at

each and every study can be rejected. To show such a result, the “conjunction

null hypothesis” that not all null hypotheses are false, with the alternative

conjunction hypothesis that all are false. The need to answer such questions

has arisen quite naturally in fMRI analysis (see Friston et al. (1999) and

Nichols et al. (2005)), where the difficulty is compounded in the sense that

the conjunction null is tested in many locations.

As noted above the global null findings are often too general to be scien-

tifically meaningful. But the conjunction null is often too restrictive, making

it practically very difficult to reject when screening a large number of con-

junction nulls. A natural compromise is to relax the conjunction null and

strengthen the global null by asking instead whether no more that a given

number of the null hypotheses hold. In other words, ’can at least u out of

my n null hypotheses be rejected?’

Such a test, an in-between approach to the testing of the (full) conjunc-

tion null and the global null, is called the partial conjunction test. For-

mally, consider n ≥ 2 null hypotheses at each “location” s ∈ {1, . . . , S},

H01(s), H02(s), . . . , H0n(s), and let p1(s), . . . , pn(s) be their associated p-values

in location s. Let k(s) be the (unknown) number of false null hypotheses in

location s, then our question ’Can at least u out of n hypotheses be false

nulls?’ can be formulated as follows:

H
u/n
0 (s) : k(s) < u versus H

u/n
1 (s) : k(s) ≥ u (1)

Friston et al. (2005) have recognized the usefulness of testing H
u/n
0 (s) in
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fMRI research, when searching for regions in the brain that participate in u

different cognitive tasks out of n tasks of similar nature. They suggested us-

ing the the maximum p-value at each location as the test statistic, adjusting

its distribution to take care of both the u-out-of-n and of the multiple loca-

tions simultaneously by controlling the family-wise error rate. However, this

method has two drawbacks. First, it has very low power at a location even

if the location responds to all but one condition, as noted by McNamee and

Lazar (2004) and demonstrated in section 6. Second, unless the conjunction

hypothesis where u = n is tested, the method is only valid for independent

test statistics within every brain location.

The approach we suggest here is different. First, in Section 2 we present

a simple general principle for combining the p-values at each location s to

derive a valid p-value for testing H
u/n
0 (s). The actual choice should further

rely on the dependency structure between the p-values at each location, as

discussed in sections 2.1 and 2.2. All choices lead to the use of the maximum

p-value when testing conjunction hypothesis (where u = n) and lead to

familiar tests for the global null (where u = 1.)

We then suggest to screen these valid p-values across locations while con-

trolling for multiplicity. It can be done by controlling the FWE, but we

prefer using False Discovery Rate (FDR) control that is commonly used in

large multiplicity problems such as microarray and fMRI analyses. In section

3 we prove that the BH procedure (Benjamini and Hochberg (1995)) on the

pooled p-values for partial conjunctions controls the FDR when the original

maps are independent even when the p-values within every map are depen-

dent and discuss the validity of this procedure in other realistic settings.
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This is in contrast to the most immediate procedure of combining maps of

p-values, where one first threshold each map separately to control the FDR

at level q, and then take their intersection. In the extreme situation where

the conjunction of threshold maps is that of the falsely discovered locations,

the FDR of such a procedure will be 1.

In sections 4 and 5 we give examples from fMRI and Microarray analysis

respectively. In section 6 we discuss the power of the methodology suggested

via simulations. In section 7 we give our final remarks.

2. Combining p-values

Many methods for combining p-values, p
u/n
s = f(p1(s), . . . , pn(s)) can be de-

signed. Under the partial conjunction null H
u/n
0 (s), let U1(s), . . . , Un−u+1(s)

be the p-values for which the null hypotheses hold, in the sense that Ui(s)ÂstU(0, 1)

for i = 1, . . . , n− u + 1, and let P1, . . . , Pu−1 be the other p-values. Without

loss of generality, for a vector of p-values from the partial conjunction null let

the first n−u+1 entries correspond to the p-values where the null hypothesis

holds and let p
u/n
s = f(u1, . . . , un−u+1, p1, . . . , pu−1) be the combined p-value.

The following lemma tells us that as long as the combining method makes

sense, in that f is nondecreasing in all its components, then the stochastically

smallest p
u/n
s under H

u/n
0 (s) will occur when u − 1 p-values are identically

zero.

Lemma 1. Under H
u/n
0 (s), let hi(Pi) ≤ Pi for some function hi(·) and i =

1, . . . , u − 1 and let P
u/n∗
s = f(U1, . . . , Un−u+1, h1(P1), . . . , hu−1(Pu−1)) and

P
u/n
s = f(U1, . . . , Un−u+1, P1, . . . , Pu−1). Then P

u/n∗
s

≺
st
P

u/n
s .

Proof. Since f is nondecreasing in all its components
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f(U1, . . . , Un−u+1, h1(P1), . . . , hu−1(Pu−1)) ≤ f(U1, . . . , Un−u+1, P1, . . . , Pu−1).

Therefore, if the event {P
u/n
s ≤ q} occurs then the event {P

u/n∗
s ≤ q} occurs

and the result follows.

Lemma 1 helps us construct valid pooled p-values. The pooled value p
u/n
s

will be valid if it depends only on the n − u + 1 largest p-values using a

combining function that satisfies f(U1, . . . , Un−u+1, 0, . . . , 0)ÂstU(0, 1). Below

we give several valid p-values.

2.1 Combining p-values under dependence

Let us recall Simes’ test for the intersection of hypotheses ∩n
i=1H0i(s).

Given pi(s) the p-value for testing H0i(s), and the sorted values being p(1)(s) ≤

p(2)(s) ≤ . . . ≤ p(n)(s), the intersection hypothesis is rejected at level α if

there exists an i s.t. p(i) ≤
i
n
α. Equivalently, the Simes test can be conducted

by using the adjusted p-value min{np(1)(s),
n
2
p(2)(s), . . . ,

n
n−1

p(n−1)(s), p(n)(s)},

rejecting the intersection hypothesis if the adjusted p-value is smaller than

α.

For testing the partial conjunction null H
u/n
0 (s), we combine the n−u+1

largest p-values similarly, thus creating a restricted and shifted Simes p-value,

pu/n
s = min

i=1,...n−u+1
{
(n − u + 1)

i
p(u−1+i)(s)} (2)

For example, suppose that the test of 3 conditions end up with p-values

0.5, 0.022, 0.01. For testing that for all three conditions the alternative hy-

pothesis holds we use p
3/3
s = p

(3)
s = 0.5, for testing that for at least one con-

dition the alternative holds we use p
1/3
s = min{3p(1)(s), 1.5p(2)(s), p(3)(s)} =

0.03 and for testing that for at least two conditions the alternative holds we

6



use p
2/3
s = min{2p(2)(s), p(3)(s)} = 0.044.

The Simes test was originally developed for independent test statistics,

where it is an exact test. Efforts over the last years have extended its ap-

plicability. Sarkar was the first to show that the Simes test is valid under

a specific dependency structure in Sarkar (1998). It is now well established

that the Simes test is valid under any of the conditions below:

1. The p-values per location are independent, see theorem in Simes (1986)

and in Benjamini and Hochberg (1995).

2. The set of p-values per location satisfy the positive regression depen-

dency on a subset (PRDS) property, as defined in Benjamini and Yeku-

tieli (2001): P (pi(s) ∈ A, i = 1, . . . , n|pj(s) = x) is non-decreasing in

x for any increasing set A and any pj(s) ∈ I0(s), where I0(s) is the

subset of null p-values and qi, i = 1, . . . , n are arbitrary constants.

Important examples include comparison of various independent treat-

ments with the same control; the set of p-values for testing one-sided

hypotheses based on Gaussian test statistics that are positively corre-

lated; and the set of p-values based on t-statistics with a joint estima-

tor of the variability X1/S, . . . , Xn/S, under the additional assumption

that {|X1|, . . . , |Xn|} satisfy the PRDS property (corollary 3.3 in Ben-

jamini and Yekutieli (2001)). The validity of the Simes test follows

from theorem 1.2 in Benjamini and Yekutieli (2001), for the special

case that all n p-values come from the null hypotheses.

3. The p-values per location for testing one-sided hypotheses based on

t-statistics using positively correlated normals with a joint estimator of
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the variability, see case 4 in Benjamini and Yekutieli (2001).

Under these fairly general assumptions, the restricted and shifted Simes

p-value can be used:

Theorem 1. Let p
u/n
s be the pooled p-value using equation (2). If the set

of null p-values at location s satisfy either of the conditions 1-3 above, then

p
u/n
s is a valid p-value for testing H

u/n
0 (s).

See appendix A for a proof.

For general dependence we may always revert to Bonferroni, leading to

pu/n
s = (n − u + 1)p(u)(s) (3)

Theorem 2. Let p
u/n
s be the pooled p-value using equation (3). Then p

u/n
s

is a valid p-value for testing H
u/n
0 (s).

Proof.

P (pu/n
s ≤ q) = P ((n − u + 1)p(u)(s) ≤ q) ≤ P (Ui ≤

q

n − u + 1
, i = 1, . . . , n − u + 1) ≤ q.

2.2 Combining independent p-values

Let z(1)(s) ≤ . . . ≤ z(n)(s) be the sorted z-scores corresponding to the n

p-values (zi(s) = Φ−1(1 − pi(s))). For the partial conjunction null H
u/n
0 (s),

the p-value motivated by the Stouffer method for combining p-values is

pu/n
s = 1 − Φ(

∑n−u+1
i=1 z(i)(s)

n − u + 1
) (4)

and the p-value motivated by the Fisher method for combining p-values is

pu/n
s = 1 − P (χ2

2(n−u+1) ≥ −2
n∑

i=u

log p(i)(s)) (5)
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These are valid partial conjunction p-values since they are both increas-

ing functions of p1(s), . . . , pn(s) so lemma 1 tells us that the stochastically

smallest distribution of p
u/n
s occurs when u − 1 p-values are zero and the

remaining n − u + 1 p-values are U(0, 1) random variables.

Many other valid combining p-values can be generated. For a systematic

comparison of combining methods for testing the global null and for further

references see Loughin (2004). A similar modification of these combining

methods can be used to test the partial conjunction hypothesis.

3. Screening while controlling the FDR

Consider now the situation where we test a large family of partial conjunction

hypotheses H
u/n
0 (s), s = 1, . . . , S. Our approach has two natural components

(a) Construct a valid pooled p-value per location using one of equations (2)-

(5) as appropriate, and (b)use an FDR controlling procedure on the pooled

location p-values. If the p-values within the individual maps are independent

and the pooled location p-values are valid, any FDR controlling procedures

will obviously control the FDR at the desired level q .

However, the independence assumption is often unrealistic. For example,

in fMRI the measured signal of neighboring brain locations are typically pos-

itively correlated. Theorem 1.2 of Benjamini and Yekutieli (2001) states that

the BH procedure for controlling the FDR is valid when the p-values satisfy

the PRDS property. As discussed in section 2.1 this is a fairly general depen-

dency structure that includes special cases that are commonly encountered.

For example, in fMRI a single null hypothesis tested is often one-sided (did

the stimulus increase the activity in the brain location?) and the p-values

are based on (approximately) Gaussian test statistics that are non-negatively
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correlated. If several p-value maps are combined, and within each map the

location p-values satisfy the PRDS property, the following condition guaran-

tee that the combined p-value map also satisfies the PRDS property if the n

p-values in each location are independent:

Condition 3.1. For the extreme case under the partial conjunction null H
u/n
0 (s)

that u − 1 p-values are 0, and the remaining n − u + 1 p-values are U(0, 1)

random variables, the combining function f : <n → < can be written as

f(U1, . . . , Un−u+1, 0, . . . , 0) = G(
∑n−u+1

i=1 g(Ui)), where G(·) and g(·) are in-

creasing functions and the probability density of g(Ui) is a Polya frequency

function of order 2 (PF2) (see Efron (1965) for details on these functions).

Theorem 3. Assume the p-values within individual maps satisfy the PRDS

property, and that the p-values in each location are independent. Then if

furthermore condition 3.1 is satisfied the pooled p-value map also satisfies

the PRDS property.

See appendix B for a proof.

In particular, the combining functions motivated Fisher’s and Stouffer’s

methods for combining p-values satisfy the above conditions. For the Fisher

method: f(U1, . . . , Un−u+1, 0, . . . , 0) = 1− P (χ2
2(n−u+1) ≥ −2

∑n−u+1
i=1 log Ui),

so G(x) = 1 − P (χ2
2(n−u+1) ≥ −2x) is increasing in x for x ≤ 0 and g(u) =

log u is increasing in u; g(Ui) = log Ui has an exponential distribution and

therefore a PF2 density. For the Stouffer method: f(U1, . . . , Un−u+1, 0, . . . , 0) =

Φ(
∑n−u+1

i=1 (−Φ−1(1−Ui))/(n−u+1)), so G(x) = Φ(x/(n−u+1)) is increas-

ing in x and g(u) = −Φ−1(1 − u) is increasing in u; g(Ui) = −Φ−1(1 − Ui)

has a standard normal distribution and therefore a PF2 density.
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As a result of Theorem 3 and the above discussion, if within every map

the p-values satisfy the PRDS assumption and the n p-values in each location

are independent, applying the BH procedure after using equation (4) or (5)

to combine the p-values in each location will control the FDR at the desired

level q. This follows from the validity of the BH procedure for p-values

satisfying the PRDS property, as stated in theorem 1.2 in Benjamini and

Yekutieli (2001).

While it is quite likely that BH screening after using equation 2 to com-

bine the p-values at each location also controls the FDR, we do not have

such a result. Still, if the p-values within the individual maps have local

dependencies, then the dependencies between the p-values within the com-

bined map remain local. In this case both the BH and other FDR controlling

procedures continue to control the FDR at level q asymptotically for the par-

tial conjunction hypotheses tests, , when combined using equations (2)-(5)

as appropriate. These methods are valid under the following asymptotic

conditions on every map i, i = 1, . . . , n:

lim
S0i

S
= A0i Exists and A0i < 1 (6)

FSi =
1

S

S∑

s=1

1[pi(s) < t|H0i(s)]
a.s.
→ A0iFi(t), Fi(t) ≤ t ∀t ∈ (0, 1](7)

GSi =
1

S

S∑

s=1

1[pi(s) < t|H1i(s)]
a.s.
→ (1 − A0i)Gi(t) ∀t ∈ (0, 1] (8)

where S0i is the number of null locations in map i. These conditions are sat-

isfied, for example, if we have m-dependence between the locations, the data

in each map is strictly stationary, and in one of the following two asymptotic

settings: (1) increasing domain asymptotics, where the distance between
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locations remains fixed but the domain goes to infinity, and (2) infill asymp-

totics, where the domain remains fixed but the number of points increases

to infinity.

The threshold in the BH procedure is

t∗s = sup{t :
t

Fs(t) + Gs(t)
≤ q},

where FS = 1
S

∑S
s=1 1[p

u/n
s < t|H

u/n
0s ] and GS = 1

S

∑S
s=1 1[p

u/n
s < t|H

u/n
1s ]. It

controls the FDR asymptotically at level q (as S → ∞) for any valid pooled

p-value (i.e. not only using equation 5 or 4, but also using 2 when valid or 3)

if conditions (6)-(8) hold, and δ ≡ sup{t : t/ lim(Fs(t) + Gs(t)) ≤ q} ∈ (0, 1]:

FDR = E(
Fs(t

∗s)

Fs(t∗s) + Gs(t∗s)
) = E(

t∗s
Fs(t∗s) + Gs(t∗s)

+
(Fs(t

∗
s) − t∗s)

Fs(t∗s) + Gs(t∗s)
)

≤ q + sup
t≥δ

{
(Fs(t) − t)

Fs(t) + Gs(t)
} + I{t∗s < δ}

From equations (7)-(8) the second term is asymptotically negative (because

these conditions guarantee that the variance of Fs(t) is asymptotically zero, so

lim Fs(t) ≤ t) , and from the definition of δ the third term is asymptotically

zero. It follows that the asymptotic upper bound for the FDR is q. This

result is due to Storey et al. (2004), where more powerful procedures for

FDR control are also suggested. The asymptotic validity of these procedures

carries over to the pooled p-value map.

4. Application to fMRI

In fMRI, the signal is recorded over time for a series of brain slices while

the subject performs various cognitive tasks. Consider several visual stim-

uli: faces, houses, common man-made objects, and geometric patterns. The

researcher is interested in finding the regions that were more active during
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the first three visual stimuli than during the viewing of geometric patterns.

Since the three contrasts (i.e. faces minus patterns, houses minus patterns

and objects minus patterns) are positively correlated, the combining method

in equation 2 is used.

Figure B shows the superimposed maps that passed the FDR cut-off of

0.05 for testing that at least one, at least two or all three contrasts were

activated. From this figure, the regions that were found to react to all three

contrasts at an FDR significance level of 0.05, are colored in blue; the regions

that were found to react to at least two contrasts at an FDR level of 0.05,

are colored in blue or yellow; and the regions that reacted to at least one

contrast at an FDR level of 0.05 are colored in red, yellow or blue. The

partial conjunction analysis reveals the much wider distribution associated

with a single contrast - which includes areas whose selectivity is unique to a

single object category, such as the FFA (e.g. Kanwisher et al. (1997)), the

PPA (e.g. Epstein and Kanwisher (1998)) and other object-related regions

(for review see e.g. Hasson et al. (003b), Malach and Levy (2002)). However,

when a conjunction of at least two categories are considered (the union of

yellow and blue regions), or of all three categories (the blue region) - then

the delineated regions shrink and become confined to a well studied cortical

region, the object-related lateral occipital complex (LOC), whose most robust

functional signature is a preferential activation to images of objects compared

to texture patterns (Malach et al. (1995), Malach and Levy (2002)).

[Figure 1 about here.]

Remark. On single p-value maps from nueroimaging data, Genovese et al.

(2002) argue that the FDR procedure controls the FDR at level q since the
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correlations are local and tend to be positive. This reasoning carries over to

the pooled p-value map, so the BH procedure is justified by the asymptotic

argument in section 3.

5. Application to Microarray meta-analysis

Microarray technology is used to measure simultaneously the expression of

thousands of genes under various experimental conditions. Rapidly growing

collections of large datasets are becoming available for subsequent analysis.

Given the differences in characteristics of the raw datasets, combining the re-

sults can help identify the consistently true signals as well as give indications

about possibly inconsistent findings.

Chromatin immunoprecipitation (ChIP) is a well-established procedure

used to investigate interactions between proteins and DNA. Coupled with

whole-genome DNA microarrays, ChIPs allow one to determine the entire

spectrum of in vivo DNA binding sites for any given protein. Proteins called

transcription factors (TFs) regulate transcription by binding to DNA motifs

upstream of their target genes. The availability of the genome sequence for

budding yeast allowed ChIP to be coupled to high-throughput analysis on mi-

croarrays (’chips’), to monitor and measure the binding of a given set of TFs

to the upstream regulatory regions of thousands of genes. We applied our

combining methods to three well-known ChIP-chip genome-wide TF binding

datasets (see details in Pyne et al. (2006)). Pyne et al. (2006) combined

these datasets by first applying a cut-off value for each p-value map with

a conservative FDR threshold so that only p-values that were below their

FDR threshold are combined using the truncated Fisher method (adjusted

as suggested by Zaykin et al. (2002)), then the combined map cut-off is
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chosen with an FDR controlling procedure. Pyne et al. (2006) added a cal-

culation for finding the genes where at least two or all three datasets cleared

their cut-offs under the global null hypothesis. So in fact their definition of

a discovery in at least two or all three datasets is different from ours. More-

over, the p-values in the combined map are calculated under the assumption

that the map thresholds are fixed even though the thresholds are data de-

pendent, so the control of the FDR is not guaranteed. We apply the Fisher

and Stouffer methods for combining the p-values, and then threshold the

combined p-value maps with an FDR level of 0.05. We adjusted for missing

values conservatively by marking their p-values as 1. In table 1 we compared

our method with the naive method of cutting off every dataset with its own

nominal FDR level of 0.05, and with the results in Pyne et al. (2006). We

discover more than Pyne et al. (2006), suggesting our procedure is more

powerful. The naive method makes more full conjunction discoveries, but

significantly less partial conjunction discoveries since it does not gain power

from pooling together information from several sources. Of course, since it

does not guarantee control of FDR, the naive method is not recommended.

Note that for global testing, the naive method FDR is bounded above by 3q,

so a simple solution is to threshold each map at the q/3 level. However, if

every map is threshold at 0.05/3, only 118 rejections of the global null are

made.

[Table 1 about here.]

The finding that the gene was active in at least one dataset may be too

weak scientifically, and the requirement that the gene should be significant in
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all three datasets may be too severe so it ignores interesting gene discoveries,

so in this case the genes that were found to be active in at least 2 datasets

may be the most interesting to look at.

6. A Simulation Example

We considered different settings in order to compare the power of the sug-

gested methods of pooling p-values, as well as examine how the choice of u

affects the power. In each of 1000 locations 10 independent unit variance

Gaussian noise measurements were simulated, and in addition in 100 loca-

tions an added signal of size µ (µ = 1, . . . , 6) was added in k out of the 10

repetitions (k = 3, 7, 9) per location.

We pooled the p-values using 5, 4 or 2, then computed the resulting map

threshold using the suggested BH procedure.

The simulations results in Figure 2 show that their is not one pooling

method that dominates all others. When the partial conjunction hypothesis

is false, if most p-values come from the alternative (e.g. k = 7 or k = 9)

than pooling the p-values using equations 5 or 4 is usually more powerful

than 2, but when the number of p-values that come from the alternative

is small (e.g. k = 3) pooling the p-values using equation 2 may be more

powerful even under independence between p-values within each location.

A more careful examination of the identifiable factors that affect the choice

between the combining methods in terms of power are outside the scope

of this manuscript. Note the sharp decrease in power when u increases,

supporting our motivation for using the partial conjunction test rather than

the full conjunction test when screening for many hypotheses.

[Figure 2 about here.]
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7. Discussion

The need to combine p-value maps arises in many modern applications, such

as genomics and fMRI. In this article we have suggested powerful new meth-

ods to combine both independent and dependent p-value maps. A couple of

possible extension are discussed below.

In the cases considered, the identity of the null hypotheses rejected in

every location is less important, and only the proportion of null hypotheses

rejected is of interest. However, in some cases the identity of the rejected

null hypotheses is of interest as well. Stepwise procedures can be applied in

every location (e.g. in Tamhane and Dunnett (1999)) to discover whether at

least u out of n null hypotheses are rejected and in additional identify these

u hypotheses, but the level of testing needs to be adjusted so that the FDR

on locations is properly defined and controlled.

If n p-values are combined, n combined p-value maps can be created

depending on which of the n different partial conjunction null hypotheses

H
u/n
0 (s), u = 1, . . . , n are tested. In some cases, as in the fMRI example, it

is interesting to create and examine all n maps. Define an overall location

discovery as a discovery if the minimum u of interest tested is rejected (e.g.

rejection of H
1/3
0 (s) in the fMRI example), a false overall location discovery

as a discovery where the true unknown number of false null hypotheses k(s)

is greater than u (i.e. reject H
u/n
0 (s) even though k(s) < u for at least one

value of u), and the overall FDR as the expected proportion of the overall

false discoveries out of the overall discoveries. Then the overall FDR may

be larger than q. It is straightforward to show that an upper bound on the

overall FDR is nq, so in order to control the overall FDR at level q we can test

17



each partial conjunction at an FDR level of q/n, but this is not a powerful

procedure. How to design more powerful procedures is a point for further

research.

Acknowledgements

We wish to thank Yulia Golland and Rafael Malach for supplying the fMRI

data and for valuable comments on the fMRI example, and Yosef Rinott for

referring us to Efron (1965).

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate

- a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.

B Met. 57 (1), 289–300.

Benjamini, Y. and Yekutieli, Y. (2001). The control of the false discovery

rate in multiple testing under dependency. The Annals of Statistics 29

(4), 1165–1188.

Efron, B. (1965). Increasing properties of polya frequency functions. The

Annals of Mathematical Statistics 36, 272–279.

Epstein, R. and Kanwisher, N. (1998). A cortical representation of the local

visual environment. Nature 392, 598–601.

Friston, K., Holmes, A., Price, C., Buckel, C. and Worsley, K. (1999). Mul-

tisubject fmri studies and conjunction analyses. NeuroImage 10 (4),

385–396.

Friston, K., Penny, W. and Glaser, D. (2005). Conjunction revisited. Neu-

roImage 25, 661 – 667.

18



Genovese, C., Lazar, N. and Nichols, T. (2002). Thresholding of statistical

maps in functional neuroimaging using the false discovery rate. NeuroIm-

age 15, 870–878.

Hasson, U., Harel, M., Levy, I. and Malach, R. (2003b). Large-scale mirror-

symmetry organization of human occipito- temporal object areas. Neuron

37, 1027–1041.

Kanwisher, N., McDermott, J. and Chun, M. (1997). The fusiform face area:

A module in human extrastriate cortex specialized for the perception of

faces. Neuroscience 17, 4302–4311.

Lazar, N., Luna, B., Sweeney, J. and Eddy, W. (2002). Combining brains: A

survey of methods for statistical pooling of information. NeuroImage 16,

538–550.

Loughin, T. (2004). A systematic comparison of methods for combining p-

values from independent tests. Computational Statistics and Data Anal-

ysis 47, 467–485.

Malach, R. and Levy, I. (2002). The topography of high-order human object

areas. Trends in Cognitive Sciences 6(4), 176–184.

Malach, R., Reppas, J., Benson, R., Kwong, K., Jiang, H., Kennedy, W.,

Ledden, P., Brady, T., Rosen, B. and Tootell, R. (1995). Object-related

activity revealed by functional magnetic resonance imaging in human oc-

cipital cortex. Proc Natl Acad Sci U S A 92, 8135–8139.

McNamee, R. and Lazar, N. (2004). Assessing the sensitivity of fmri group

maps. NeuroImage 22, 920–931.

Nichols, T., Brett, M., J., A., Wager, T. and J., P. (2005). Valid conjunction

inference with the minimum statistic. NeuroImage 25, 653 – 660.

19



Pyne, S., Futcher, B. and Skiena, S. (2006). Meta-analysis based on control of

false discovery rate: combining yeast chip-chip datasets. Bioinformatics

22, 2516–2522.

Sarkar, S. (1998). Some probability inequalities for ordered mtp2 random

variables: A proof of the simes conjecture. The Annals of Statistics 26

(2), 494 – 504.

Simes, R. (1986). An improved bonferroni procedure for multiple tests of

significance. Biometrika 73 (3), 751 – 754.

Storey, J., Taylor, J. and Siegmund, D. (2004). Strong control, conservative

point estimation, and simultaneous conservative consistency of false dis-

covery rates: A unified approach. Journal of the Royal Statistical Society,

Series B 66, 187–205.

Tamhane, A. and Dunnett, C. (1999). Stepwise multiple test procedures with

biometric applications. Statistical planning and inference 82, 55–68.

Zaykin, D., Zhivotovsky, L., Westfall, P. and Weir, B. (2002). Truncated

product method for combining p-values. Genetic Epidemiology 22, 170–

185.

Appendix A

Proof of theorem 1

We have to show that P0(P
u/n
s ≤ q) ≤ q where the subscript 0 indicates that

the probability is calculated under the partial conjunction null hypothesis

that at most u − 1 come from the alternative.

Since p
u/n
s in equation (2) is an increasing function of the p-values, lemma

1 tells us that the stochastically smallest distribution of p
u/n
s occurs when
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u−1 p-values are zero (i.e. hi(Pi) = 0 for i = 1, . . . , u−1) and the remaining

n − u + 1 p-values are U(0, 1) random variables. So it is enough to show for

this case that P
u/n
s

Â
stU(0, 1).

Let U(1) ≤ . . . ≤ U(n−u+1) be the order statistics of n − u + 1 U(0, 1)

random variables.

P0(P
u/n
s ≤ q) ≤ P ( min

i=1,...,n−u+1
{
(n − u + 1)

i
U(i)} ≤ q) ≤ q

where the last inequality follows since the Simes test based on the n− u + 1

null p-values is valid under any of the conditions 1-3 on these p-values.

Appendix B

Proof of theorem 3

The individual p-value maps are PRDS, so for every map j = 1, . . . , n with

vector of p-values
∼
p

j

= (pj
1, . . . , p

j
S) and a fixed arbitrary vector of constants

∼
q

j

we can say the following: P (
∼
p

j

∈ A|psj = q) for any increasing set A is

non-decreasing in q for all s ∈ Ij
0 , where Ij

0 is the subset of null locations.

Let the combined p-value in location s be p
u/n
s = f(p1(s), . . . , pn(s)) and

∼
p

u/n

= (p
u/n
1 , . . . , p

u/n
S ) be the vector of all combined p-values.

We want to show that P (
∼
p

u/n

∈ A|p
u/n
s = q) for any increasing set A is

non-decreasing in q for p
u/n
s ∈ H

u/n
0 (s). Note that the pooled p-value under

the null is stochastically smallest when the unconstrained u − 1 parameters

go to infinity (lemma 1). Therefore the FDR will be largest under this

null configuration, and it is enough to address this extreme configuration.

Note that for this extreme configuration, the u − 1 unconstrained p-values

are zero and the pooled null p-value p
u/n
s = f(U1, . . . , Un−u+1, 0, . . . , 0) is
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an increasing function of n − u + 1 independent U(0, 1) random variables

Ui, i = 1, . . . , n − u + 1.

Let I
u/n
0 be the subset of locations where the partial conjunction null is

true, I
u/n
0 = {s : H

u/n
0 (s) is true}. Without loss of generality assume the

p-value maps with zero p-values in location s are indexed as the last u − 1

maps. Let

h(u1, . . . , un−u+1) = P (
∼
p

u/n

∈ A|(p1(s), . . . , pn(s)) = (u1, . . . , un−u+1, 0, . . . , 0))

= p(
∼
p

u/n

∈ A|U1 = u1, . . . , Un−u+1 = un−u+1)

Since the individual maps are PRDS and since the p-values within every

location are independent it follows that h(u1, . . . , un−u+1) is a non-decreasing

function of ui for i ∈ {1, . . . , n − u + 1}.

Therefore the problem reduces to that of showing that the following prob-

ability increases in q:

P (
∼
p

u/n

∈ A|f(U1, . . . , Un−u+1, 0, . . . , 0) = q)

To prove this, we will use the following theorem due to Efron (1965):

Theorem 4. Let X1, . . . , Xn be n independent random variables with PF2

densities r1(x), . . . , rn(x) respectively, let S =
∑n

i=1 Xi be their sum, and let

Φ(x1, . . . , xn) be a real measurable function on Euclidean n-space which is

non-decreasing in each of its arguments. Then E(Φ(x1, . . . , xn)|S = s) is a

non-decreasing function of s.

Since f(U1, . . . , Un−u+1, 0, . . . , 0) = G(
∑n−u+1

i=1 g(Ui)) and both G(·) and

g(·) are increasing, for every q there exists a constant c such that {p
u/n
s =
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q} = {
∑n−u+1

i=1 g(Ui) = c}, and c(q) is increasing in q.

P (
∼
p

u/n

∈ A|{pu/n
s = q}) = P (

∼
p

u/n

∈ A|
n−u+1∑

i=1

g(Ui) = c)

= Eh(U1, . . . , Un−u+1)|
n−u+1∑

i=1

g(Ui) = c)

We can apply theorem 4 to conclude that P (
∼
p

u/n

>
∼
q |{p

u/n
s = q}) increases

in q.

The proof now continues as in the proof of theorem 1.2 in Benjamini

and Yekutieli (2001), since the required relationship P (
∼
p

u/n

>
∼
q |p

u/n
s = q)

(equation (12) in the proof of theorem 1.2) is satisfied.
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Figure 1. Activation maps for a single subject presented on unfolded cortical
hemispheres: blue regions activated in all three contrasts with FDR < 0.05;
yellow or blue regions activated in at least two contrasts with FDR < 0.05;
red, yellow or blue regions activated in at least one contrast with FDR <
0.05.
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Figure 2. Power as a function of u when the FDR level is 0.05 and the
simulated setting is that in which the number of p-values per location that
come from the alternative is either null or 3 (first column), 7 (second column)
or 9 (third column). The combining method is based on (1) equation 5 (solid
line) (2) equation 4 (dashed line) and (3) equation 2 (dotted line). Each
row is for a different signal size µ: µ = 2 (top), µ = 4 (middle) and µ = 6
(bottom). There is not one pooling method that is more powerful than all
others in all simulation settings; there is a sharp decrease in power when u
increases.
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Table 1
Number of significant genes for protein Swi4 (that forms part of the TF

SBF) with an FDR level of 0.05

All 3 At least 2 At least 1

Pyne et al. (2006) 64 103 162

Stouffer method 73 195 321

Fisher method 73 176 305

Naive method 78 121 161

26


