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Abstract

The screening of many endpoints when comparing groups from different strains, searching for some statistically significant
difference, raises the multiple comparisons problem in its most severe form. Using the 0.05 level to decide which of the many
endpoints’ differences are statistically significant, the probability of finding a difference to be significant even though it is not real
increases far beyond 0.05. The traditional approach to this problem has been to control the probability of making even one such
error—the Bonferroni procedure being the most familiar procedure achieving such control. However, the incurred loss of power
stemming from such control led many practitioners to neglect multiplicity control altogether. The False Discovery Rate (FDR),
suggested by Benjamini and Hochberg [J Royal Stat Soc Ser B 57 (1995) 289], is a new, different, and compromising point of view
regarding the error in multiple comparisons. The FDR is the expected proportion of false discoveries among the discoveries, and
controlling the FDR goes a long way towards controlling the increased error from multiplicity while losing less in the ability to
discover real differences. In this paper we demonstrate the problem in two studies: the study of exploratory behavior [Behav Brain
Res (2001)], and the study of the interaction of strain differences with laboratory environment [Science 284 (1999) 1670]. We
explain the FDR criterion, and present two simple procedures that control the FDR. We demonstrate their increased power when

used in the above two studies. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A quantifiable description of mouse behavior should
promote the mapping of the mouse genome by charac-
terizing the repertoires of inbred strains, congenic lines,
knockouts, transgenic lines, and populations obtained
by selective breeding. The need for such characteriza-
tion has resulted in the design of batteries of behavioral
and physiological tests. Such studies never constitute of
a single pre-specified measure, which is being compared
between two strains of mice. The studies develop and
explore many characteristics—also called behavioral
endpoints, trying to identify those endpoints for which
there is a significant strain difference. We estimate that
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at the time of the writing of this paper the working list
of behavioral endpoints is about a 100 endpoints long,
and keeps growing.

The screening of many endpoints when comparing
groups from different strains, searching for some statis-
tically significant difference, raises the multiple com-
parisons problem in its most severe form. The search is
conducted by testing each hypothesis of no strain dif-
ference in some endpoint, which is done at some de-
clared level of statistical significance, say at the 0.05.
Detecting such a difference as ‘statistically significant’
amounts to making a statistical discovery. But then,
when screening such a large family of hypotheses simul-
taneously, the probability of making a false discovery
may increase far beyond the declared 0.05 level. If 100
endpoints are compared in a study, assuming there are
few real trait differences between the strains, and if no
action is taken, the average number of errors per study
will be a little less than 100 x 0.05, i.e. close to 5. This
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will be the case whether the endpoints are statistically
independent or not.

The traditional approach in multiple hypotheses
testing to tackle this increased probability of making
false discoveries, has been to control the probability
of making even one false discovery—the control of
the familywise error-rate as it is called in the statistical
jargon. The books by Hochberg and Tamhane [9],
Westfall and Young [15] and Hsu [10] all reflect this
tradition. The control of this error-rate at some level
o requires each of the m tests of the endpoints to be
conducted at lower levels. In the Bonferroni proce-
dure, for example, a/m has to be used.

The Bonferroni procedure is just an example, as
more powerful procedures that control the probability
of making even one false discovery are currently avail-
able for many multiple comparison problems. Many
of the newer procedures are as flexible as the Bonfer-
roni, making use of the P-values only. For a recent
review see [9]. Still, there is a fundamental drawback
to this traditional approach: the probability to dis-
cover a real strain difference in an endpoint (the
power) is greatly reduced when screening a large fam-
ily of potential endpoints. The incurred loss of power
in large problems (even with the newer procedures)
led many practitioners to neglect multiplicity control
altogether. While mandatory in psychological research,
most medical journals do not require the analysis of
the multiplicity effect on the statistical conclusions,
the leading New England Journal of Medicine being
among the other few.

In genetic research, the need for multiplicity control
has been debated heavily. In QTL analysis, the debate
resulted in some compromise. Allow the probability of
making even one false discovery to be as high as half
in order to increase power, then follow the original
study with a more limited confirmatory study to en-
sure better protection against false discoveries (see [14]
for background and further references). This strategy
is elsewhere advocated in order to deal with the re-
sults of multiplicity in smaller studies, and can be
quite an effective one. Nevertheless it has shortcom-
ings: it is usually not possible to quantify the proper-
ties of the discoveries made in the follow-up studyj;
and it turns out to be wasteful if no multiplicity ad-
justment is offered at the first stage. Another unfortu-
nate practical problem is that occasionally the second
stage is not performed at all. In very large and costly
studies all three problems tend to appear.

It should be emphasized that the recent trend away
from hypotheses testing towards confidence statements
does not solve the multiplicity problem. In most
analyses a decision about the statistical significance is
reached by looking whether zero difference is included
in the confidence interval or not—taking us back to
the same multiplicity problem.

The False Discovery Rate (FDR) is a new and
different point of view at how the errors in multiple
comparisons could be considered [3]. The FDR is the
expected proportion of false discoveries among the
discoveries. In this paper we shall explain this notion
and discuss some simple procedures that control the
FDR. We stress the importance of controlling for the
treacherous effect of multiplicity, while not being
overly conservative.

2. Two motivating example

In a separate paper in this issue, Drai et al. [§]
propose to study the open field behavior of mice
using the approach developed in the study of rats.
They describe an effort to augment the commonly
used measures of the open field test with a set of new
ethologically relevant parameters. These par-
ameters, which can be measured automatically and
efficiently, reveal a natural structure that involves mo-
tivation, navigation, spatial memory and learning.
Some 17 such parameters are identified in that
study, and are presented in the leftmost column of
Table 1. The values of these parameters were esti-
mated and compared between eight male C57BL/
6Jtau (C57) Bulb, and eight male BALB/clJtau
(BALB) mice from the Tel Aviv University medical
school stocks. We use those results to motivate the
approach and demonstrate the procedures involved.
See [8] for more detailed description of the experimen-
tal setting.

Ignoring the issue of multiplicity altogether, all 10
hypotheses for which the observed p-value is less than
0.05 should be rejected. Using the Bonferroni proce-
dure, each p-value is compared to 0.05/17 = 0.0029. In
this case only six differences are statistically signifi-
cant. There is quite a difference in this study between
the implications of the two approaches.

A somewhat similar situation appears in the work
of Crabbe et al. [7], who studied the possible con-
founding influences of laboratory environment on tests
of mice behavior. Some 56 statistical hypotheses are
tested, eight among them being the interaction be-
tween strain differences and laboratories effects. Of
these 56 only 14 would be determined as statistically
significant at the 0.05 level if a multiple comparison
adjustment would have been taken using the Boferroni
procedure. The authors argue in their published paper
that p-values should not be adjusted for multiplicity,
and their Web site discusses the rationale for their
position.

Nevertheless, they do take a partial step in face of
the multiplicity. Instead of the conventional 0.05 level
used for statistical significance, they chose a somewhat
stricter level, namely the 0.01 level.
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Table 1

The results of comparing 17 exploratory behavior measures between eight C57 and eighht BALB mice

Measure Observed Rank (i) Bonferroni FDR (BH) thresholds FDR (BL) thresholds
P-values threshold

Lingering time (prop.) 0.000001 1 0.0029 0.0029 0.0029 Start here

Lingering speed (cm/s) 0.000013 2 0.0029 0.0058 0.0033

Early activity in move segments (m) 0.000065 3 0.0029 0.0088 0.0037

Early activity (m) 0.00063 4 0.0029 0.0117 0.0043

Spread of lingering (cm) 0.0008 5 0.0029 0.0147 0.0050

Dynamics of activity 0.0017 6 0.0029 0.0176 0.0059

Dynamics of diversity 0.0032 7 0.0029 0.0205 0.0070

Number of excursions 0.0065 8 0.0029 0.0235 0.0085

Movement speed (cm/s) 0.0148 9 0.0029 0.0264 0.0104

Spread of move segments 0.049 10 0.0029 0.0294 0.0132

Stops per excursions (upper quartile) 0.094 11 0.0029 0.0323 0.0173

Center activity (prop.) 0.11 12 0.0029 0.0352 0.0236

Center rest (prop.) 0.15 13 0.0029 0.0382 0.0340

Activity (m) 0.24 14 0.0029 0.0411 0.05

Lingering activity (prop.) 0.45 15 0.0029 0.0441 0.05

Diversity 0.56 16 0.0029 0.047 0.05

Lingering at home base (prop.) 0.87 17 0.0029 0.05 Start here 0.05

The list of the observed P-value (¢-test after appropriate transformation or Wilcoxon test) is sorted from smallest to largest. The rightmost three
columns demonstrate three different multiple comparisons procedures: the Bonferroni procedure, the two FDR controlling procedures of

Benjamini and Hochberg (BH) and of Benjamini and Liu (BL).

3. The false discovery rate criterion (FDR)

Consider the case of m endpoints being compared
between two strains, or more generally any family of
m null hypotheses being tested in a study. Some
tested null hypotheses of no difference may be true—
possibly even all—meaning no difference exists be-
tween the two strains in the corresponding endpoints.
Other hypotheses of no difference may be false—
meaning real differences exist—and we wish to dis-
cover these real differences as statistically significant,
granting us with statistical discoveries. Obviously we
would like to discover as many as possible of the real
differences as such, while making as few as possible
errors of falsely discovering a difference which is not
real.

However, in a statistical study, it is quite unavoid-
able that when we find a number of differences as
statistically significant, some unknown number of
false discoveries will creep in. Let us ‘measure the
harm’ imposed by such errors, by considering the
proportion of the false discoveries among the discov-
eries. In the case that no discovery was made this
proportion is defined as 0, since there is no way for
any harm to arise from false discoveries. It makes
sense to control this proportion at some desired level
in each and every study, but this is impossible. Con-
sider instead the average value of this proportion,
which we define as the False Discovery Rate (FDR).
This false discovery rate can be controlled at any
desired level.

The FDR criterion is a compromise between the
unadjusted analysis of the multiple tests, and the tra-
ditionally adjusted approaches. If there is no behav-
ioral difference between the strains whatsoever, that is
all tested hypotheses are true, controlling the FDR
controls the traditional probability of making even
one false discovery. Therefore, it also makes sense to
use the conventional levels such as 0.05 or 0.01 for
FDR control (though in some applications higher val-
ues may be justifiable). However, when many of the
endpoints are discovered to be different, indicating
that many differences are real, the error from a single
false discovery is not always as crucial for drawing
conclusions from the entire study, and the proportion
of errors among the discoveries is controlled instead.
Thus we are ready to bear with more errors when
many discoveries are made, but with fewer errors
when fewer discoveries are made: two error out of 40
established differences is bearable, two errors out of
four is certainly not.

In many applied problems it has been argued that
the control of the FDR at some specified level is the
more appropriate response to the multiplicity concern:
in educational research [16], signal processing [1],
Medical Research [12], in Psychology [11] and in Ge-
netics [14]. The practical difference between the two
approaches is not small or trivial, and the larger the
problem the more dramatic the difference is. In the
following section we present two procedures that con-
trol the FDR at the desired level.
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4. Two FDR controlling procedures

Benjamini and Hochberg provide in [2] a simple
stepwise procedure (BH) that controls the FDR when
the test statistics are statistically independent. This pro-
cedure has been lately shown to control the FDR when
the test statistics are positively correlated as well. The
procedure makes use of the observed significance level
(the p-values) only. It is available in SAS (where it is
called the FDR procedure), but once the P-value are
available from any statistical software, the extra calcu-
lation can be done easily within a spreadsheet software
such as excel using the built-in functions, or even can
be performed by hand, as we show below. We shall also
present the procedure of Benjamini and Liu [5] (BL),
that is a modification of [4] that always controls the
FDR—even for generally correlated test statistics.

As mentioned above, both procedures make use of
the p-values of the tested differences only, so the statis-
tical test itself may be tailored to the problem at hand,
be it ¢-test, binomial test, y>-test, or some other non-
parametric test. The individual P-values should then be
sorted from smallest to largest as is demonstrated in
columns 2 and 3 of Table 1. Denote the i-th smallest
P-value (in the i-th row) by p,, for each i between 1
and m. The BH procedure in [2] runs as following:

Starting from the largest P-value P, compare P,
with 0.05 x i/m. Continue as long as P, > 0.05 x i/m.
Let k be the first time when P, is less than or equal to
0.05 x k/m, and declare the differences corresponding
to the smallest & P-values as significant.

The procedure for controlling the FDR at level 0.05
is demonstrated by calculating the relevant constants
and showing them in column 5 of Table 1. Starting with
the largest P-value 0.87, which is in row 17 since it is
the 17th in order, compare it with 0.05 x 17/17, which
is simply 0.05. Finding that 0.87 > 0.05 we continue our
search one row up-with the 16th P-value, which is 0.56.
We compare it to 0.05 x 16/17, which is 0.047, seen
again in column 5. The P-value is still larger than the
respective constant, so we continue further up in Table
1 to row 15 and so on. The first time for which the
inequality is reversed is when the nineth P-value, which
is 0.0148, is less than 0.05 x 9/17, which is 0.0264. We
thus stop at the nineth row, and reject all nine differ-
ences for which the P-values is equal or less than
0.0264.

Note that in this procedure we start at the 0.05 level,
and if all differences are statistically significant at this
level—all are rejected, as if no adjustment for multi-
plicity was taken. If we have to climb all the way up to
the smallest P-value, that difference will be significant
only if its P-value is equal or less than 0.05/17, as if the
Bonferroni procedure was used. The in between the
constants are linearly spaced.

(An intuitive explanation of why these constants
achieve FDR control can be given: if we reject for
P-values less than P, the average number of false
discoveries is Py, m and their number is k. A crude
bound for FDR is Pg,m/k. For this to be less than
q, Py, has to be less than gk/m.)

The BL procedure in [5] runs as following:

Starting from the smallest P-value P, compare each
P, with A, =min(0.05, 0.05 x m/(m + 1 —i )*). Reject
the hypothesis corresponding to P, if it is smaller than
or equal to the threshold /), and continue to reject the
hypotheses as long as P is less than or equal to A,
Stop when P, > h, for the first time. Reject all of the
hypotheses corresponding to the smallest k—1 P-
values.

This procedure for controlling the FDR at level 0.05
is demonstrated by calculating the relevant constants
h¢, and showing them in column 6 of Table 1. Starting
with the smallest P-value 0.000001 which is in row 1,
compare it with min(0.05,0.05 x 17/(17+1—1)?),
which is 0.0029. Finding that 0.000001 is less than
0.0029, we continue to the second smallest P-value, in
row 2, which is 0.000013. We compare it to 0.05 x 17/
(17 + 1 — 2)*, which is 0.05 x 17/(16)* i.e. to 0.0033. The
P-value is still smaller than the respective constant, so
we continue down Table 1. The last time when the the
P-value is smaller than the respective constant is when
the eighth P-value which is 0.0065 is less than 0.05 x
17/(17 + 1 — 8)*, which is 0.0085. For the nineth P-
value min(0.05,0.05 x 17/(17+1—9)*) =0.0104, and
the nineth P-value is 0.0148 which is bigger. We there-
fore stop, and declare a real difference only in the eight
endpoints for which the P-values which are equal or
smaller than 0.0085.

Note that the largest four constants are all 0.05
because 0.05 x m/(m + 1 —i)? is larger than 0.05. Fol-
lowing the remark in [5], this modification of the proce-
dure ensures that a difference is not declared as
statistically significant unless: (a) the FDR is less than
0.05 for the set of declared discoveries; and (b) individ-
ually its statistical significance is at least 0.05.

Again, as with the first procedure, at the two ex-
tremes the P-values are compared to 0.05 and to 0.05/
17. The progression of the thresholds, though, is not
linear, and the stepping direction is in the other direc-
tion—stepping down from the first row with the
smallest P-value to the largest.

So far we have demonstrated both procedures on the
same data. There is a difference between the results of
the analysis of the two procedures, the first one finding
nine endpoints with strain difference, the second only
eight. Which procedure is more appropriate? The first
procedure requires that the tests be based on behavioral
endpoints that are either statistically independent or
positively dependent [6]. The second one requires no
such assumption—in fact it requires no assumption at
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all. Checking the dependencies among our differences
of endpoints we found a few large and significant
negative correlations. Therefore, the correct procedure
to use in this example is the more general second
procedure.!

Two endpoints were added to the list of differences
after using the FDR controlling procedure: the number
of excursions, and dynamics of diversity. The difference
discovered in the second endpoint is of special interest,
as ‘diversity’ reflects the spatial and temporal spread of
stops within a specified time window. Diversity is low
when animals show strereotyped behavior, and high
when they show unrestrained free behavior. ‘Dynamics
of Diversity’ compares this measure in the first and
second halves of the session. In C57 mice diversity is
high as soon as they are introduced into the arena. In
contrast, in Balb mice there is a buildup of diversity
across the session. The significant difference between
the two strains may indicate a corresponding biologi-
cally important difference in their cognitive spatial
behavior.

As to the second example from [7], the design of that
study implies that the tests are almost independent
(testing interactions and main effects in a balanced
ANOVA). Therefore, we may use the BH procedure.
Exact P-values are not given in that paper, but the
available information allows one to make some rough
calculations: among the 56 tested hypotheses, 14 P-val-
ues are less than 0.00001, six between 0.00001 and
0.001, and four between 0.001 and 0.01. Thus the 24th
ordered P-value is less than 0.01. Since 0.01 < 0.05 x
24/56 at least these 24 P-values should be rejected. Had
we had the full information, it is quite possible that a
few more hypotheses could be rejected.

This paper also demonstrates how to overcome a
possible manipulation of the FDR criterion. One may
make the FDR criterion less restrictive by ‘throwing in’
among the tested differences a few endpoints for which
the differences are already known to be real and large,
and therefore the significant conclusion about them is
almost certain. This implies in turn that it will also
become easier than before to discover more question-
able endpoints because their P-values will be now
compared to larger constants.

In the Crabbe et al. study [7], the strains and behav-
ior traits were so chosen to bring out strain differences
as clearly as possible—here for a good reason and not
merely in order to manipulate the FDR criterion. The
result may still be the same, that the procedure has
found more discoveries than appropriate. Luckily, we
can study the implications of such decisions. In the
Crabbe et al.’s study the eight ‘obvious’ strain main

' This reflects the currently established knowledge. Some initial
results suggest that the first procedure can be used even for negative
correlations when the tests are two-sided, as is the case here.

effects are clearly identified. We can remove them from
the analysis thereby leaning towards a more conserva-
tive FDR analysis. Now there are 16 P-values less than
0.01, each of these P-values should be compared to
0.05 x 16/48 and these same 16 hypotheses are still
rejected. The skeptic readers of other studies can always
perform the above sensitivity analysis, if they suspect a
problem, because the relevant information has to be
included in studies that control the FDR.

5. Discussion

It is clear that the multiple comparisons problem has
to be addressed in the comparison of behavioral end-
points between strains of mice. This is especially impor-
tant in any automated screening tool that is designed
for discovering of genetic differences, as in the study of
exploratory behavior [8]. In that study 10 differences
would be found significant if no multiplicity adjustment
were taken, six if the traditional Bonferroni was used.
Two endpoints were added to the six significant differ-
ences after using the FDR controlling procedure: the
number of excursions, and dynamics of diversity. As
discussed above, the strain difference discovered in the
second endpoint is of special interest.

The control of the false discovery rate seems to us the
appropriate approach for the purpose, striking a bal-
ance between the concern about making too many false
discoveries and the concern about missing the discovery
of a real difference that may arise from being too
conservative. In the analysis of Crabbe et al. [7] the
FDR controlling procedure actually got automatically
at the compromising level of strictness chosen by the
experimenters on an intuitive base. We therefore recom-
mend using FDR controlling procedures for screening
an established list of endpoints or a potential pool of
new ones.

Traditional multiple comparisons procedures offer
even stricter control against the increased probability of
discovering a non-existing difference. Thus, if differ-
ences are found which pass the Bonferroni threshold, or
other procedures that control the familywise error-rate,
the evidence should be regarded as stronger. Williams,
Jones and Tukey [16] suggest calling such differences as
‘highly significant’, and those passing the FDR
threshold as simply ‘significant’. We are not sure that
such formalism is needed, but we do emphasize that if
a difference is not found to be statistically significant
after controlling for the FDR, it should not be declared
‘statistically significant’ at all—even if individually its
corresponding P-value is less than 0.05.

Two procedures were demonstrated, one for indepen-
dent and positively dependent test statistics, where the
thresholds increase linearly, the other for general de-
pendency. If the assumptions justify using the first
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procedure, and the number of tested hypotheses is
moderate to large (say bigger than 8), the first proce-
dure should be preferred. Other FDR controlling pro-
cedures have been developed, and research about newer
methodologies continues. Some of the newer proce-
dures are more powerful than the above two: Benjamini
and Hochberg [3] give an adaptive procedure for inde-
pendent test statistics, and Yekutieli and Benjamini [17]
offer a re-sampling procedure utilizing the dependency
structure of the data. Troendle [13] designs procedures
for the special case where many comparisons are made
with a single control. For recent developments in FDR
methodology, references, and statistical software con-
sult with http://www.math.tau.ac.il/ ~ ybenja, which is
being regularly updated. Even without further consult-
ing about other procedures, with the aid of the two
procedures offered in this paper researchers in behav-
ioral genetics could actually use the FDR approach to
adjust for the multiplicity effect in their regular work.
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