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False Discovery Rate–Adjusted Multiple Confidence
Intervals for Selected Parameters

Yoav BENJAMINI and Daniel YEKUTIELI

Often in applied research, confidence intervals (CIs) are constructed or reported only for parameters selected after viewing the data. We show
that such selected intervals fail to provide the assumed coverage probability. By generalizing the false discovery rate (FDR) approach from
multiple testing to selected multiple CIs, we suggest the false coverage-statement rate (FCR) as a measure of interval coverage following
selection. A general procedure is then introduced, offering FCR control at level q under any selection rule. The procedure constructs
a marginal CI for each selected parameter, but instead of the confidence level 1 − q being used marginally, q is divided by the number of
parameters considered and multiplied by the number selected. If we further use the FDR controlling testing procedure of Benjamini and
Hochberg for selecting the parameters, the newly suggested procedure offers CIs that are dual to the testing procedure and are shown to be
optimal in the independent case. Under the positive regression dependency condition of Benjamini and Yekutieli, the FCR is controlled for
one-sided tests and CIs, as well as for a modification for two-sided testing. Results for general dependency are also given. Finally, using the
equivalence of the CIs to testing, we prove that the procedure of Benjamini and Hochberg offers directional FDR control as conjectured.

KEY WORDS: Directional decision; False discovery rate; Multiple comparison procedure; Positive regression dependency; Simultaneous
confidence interval; Type III error.

1. INTRODUCTION

It is common practice to ignore the issue of selection and
multiplicity when it comes to multiple confidence intervals
(CIs), reporting a selected subset of intervals at their marginal
(nominal, unadjusted) level. CIs are not corrected for multiplic-
ity even when the only reported intervals, or those highlighted
in the abstract, are those for the “statistically significant” pa-
rameters. As a concrete example of this practice, consider the
study of Giovannucci et al. (1995), which we later discuss in
some detail. That study examined relationships between about
100 types of food intake and the risk of prostate cancer; its ab-
stract reported only the three 95% CIs for the odds ratio that do
not cover 1.

In another highly publicized report, the long-range effects
of hormone therapy in postmenopausal women were stud-
ied in a large randomized clinical trial (Rossouw, Anderson,
Prentice, and LaCroix 2002). Many parameters were consid-
ered in that study, and Bonferroni-adjusted CIs were reported,
with marginal CIs reported alongside. As so often occurs,
the multiplicity-adjusted CIs and the marginal CIs had rather
contradictory implications. The research team, including some
prominent statisticians, discussed the discrepancy and chose to
focus on the marginal CIs. These were also the only intervals
reported in the abstract. Because of their clinical importance,
affecting tens of millions of women, the results of the study
were further highlighted and discussed in an editorial (Fletcher
and Colditz 2002). The editorial addressed the issue of which
CIs to use as follows: “The authors present both nominal and
rarely used adjusted CIs to take into account multiple testing,
thus widening the CIs. Whether such adjustment should be used
has been questioned. . . .” Even though this study is special in
that the practice was discussed and defended in the report it-
self, it attests to the common practice described in our opening
sentence. We return to these two studies later in this article.

Ignoring the multiplicity of intervals is generally more com-
mon than ignoring the problem of multiplicity in testing. One
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reason why unadjusted CIs seem more acceptable than unad-
justed tests is that they give the right coverage on average; the
proportion of 95% CIs covering their respective parameters out
of the intervals constructed (namely, the number covering di-
vided by the number of parameters m) is expected to be .95,
and thus only .05 will not be covered. So why worry?

It is often argued against this sentiment that failing to adjust
for multiplicity is harmful in that it does not offer simultaneous
coverage at a 95% level for all of the parameters considered in
the problem. The main thrust of the present article is that ig-
noring multiplicity is harmful even if simultaneous inference is
not of direct concern to the researcher. The selection of the pa-
rameters for which CI estimates are constructed or highlighted
tends to cause reduced average coverage, unless their level is
adjusted.

It is well known that selection, which can be presented as
conditioning on an event defined by the data, may affect the
coverage probability of a CI for a single parameter. For exam-
ple, suppose that we report a CI only if it does not cover 0. If the
true value of the parameter is 0, then the coverage probability
of the single conditional CI is obviously 0.

The same problem exists when dealing with multiple CIs that
are constructed for multiple parameters after selection. If we se-
lect, as before, to report or highlight only those intervals that do
not cover 0, then the average coverage property may deteriorate
to 0, exactly as in the case of a single parameter, and will be
a far cry from the desired .95.

Example 1: Unadjusted Selected Intervals. Tj ∼ N(θj,1) are
independently distributed estimators of θj, j = 1, . . . ,200. For
each simulation, θj ≡ θ remained fixed. This is done for five
values of θ : 0, .5, 1, 2, and 4. The 200 parameter estimates are
first subjected to a selection criterion based on initial testing un-
adjusted for multiplicity: select θj only if |Tj| ≥ Z1−.05/2. Next,
for every parameter selected, a marginal (unadjusted) CI is
constructed, namely Tj ± Z1−.05/2. The conditional coverage
probability—the number of times that a parameter is covered
by the CI divided by the number of times that the parameter is
selected—is 0, .60, .84, .95, and .97 for θ = 0, .5, 1, 2, and 4
(standard error ≤.01).
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Whereas without selection, a marginal CI would ensure
a coverage probability of .95, following the marginal testing
selection criterion, the conditional coverage probability ranges
from 0 to .97. Thus, not only might selection dramatically re-
duce the coverage, but also the amount of reduction is a function
of the unknown parameter θ .

As already noted, constructing simultaneous CIs is used to
address the issue of such selective inference. According to
the Bonferroni procedure for constructing simultaneous CIs on
m parameters, each marginal CI constructed at the 1 − α/m
level. Without selection, these CIs offer simultaneous cover-
age, in the sense that the probability that all CIs cover their
respective parameters is at least 1 − α. Unfortunately, even
such a strong property does not ensure the conditional confi-
dence property following selection, as the following example
demonstrates.

Example 2: Bonferroni-Selected–Bonferroni-Adjusted Inter-
vals. The setting is similar to that in Example 1, except that
the 200 parameters were first subjected to a selection criterion
with Bonferroni testing: selecting θj only if |Tj| ≥ Z1−.05/(2·200).
Next, for every selected parameter, a Bonferroni-adjusted CI is
constructed, namely, Tj ± Z1−.05/(2·200). The conditional cover-
age probability is 0, .82, .97, 1.0, and 1.0 for θ = 0, .5, 1, 2,
and 4 (standard error ≤.01).

Although better than before, the values for small θ , partic-
ularly the zero coverage at θ = 0, are as troublesome here as
in Example 1. Apparently, the goal of conditional coverage fol-
lowing any selection rule for any set of (unknown) values for
the parameters is impossible to achieve. We propose settling for
a somewhat weaker property when it comes to selective CIs.

For that purpose, we suggest a point of view that emphasizes
the construction of a noncovering CI. In other words, the obsta-
cle to avoid is that of making a false coverage statement. For
a single parameter with no selection, this point of view offers
nothing new; in repeated experimentation, if on average more
than 1 −α of the CIs (constructed) cover the parameter, then no
more than α of the constructed CI fail to do so. However, when
selection steps in, three outcomes are possible at each repeti-
tion; either a covering CI is constructed, a noncovering CI is
constructed, or the interval is not constructed at all. Therefore,
even though a 1 − α CI does not offer selective (conditional)
coverage, the probability of constructing a noncovering CI is at
most α,

Pr{θ /∈ CI,CI constructed} ≤ Pr{θ /∈ CI} ≤ α. (1)

When inference about multiple parameters is needed in an
experiment with no selection, the situation is again similar to
that of the single-parameter case. The number of noncovering
CIs is equal to the number of parameters minus the number of
covering CIs. Thus constructing a marginal 1 − α CI for each
parameter ensures that the expected proportion of the CIs cov-
ering their respective parameters is 1 − α and the expected pro-
portion of noncovering CIs is α. However, when facing both
multiplicity and selection, not only is the expected proportion
of coverage over selected parameters at 1 − α not equivalent to
the expected proportion of noncoverage at α, but also the latter
no longer can be ensured by constructing marginal CIs for each
selected parameter, as the following example demonstrates.

Example 3: The False Coverage Rate for Unadjusted Selected
Intervals. The setting is similar to Example 1, where selection
is based on unadjusted individual testing and unadjusted CIs
are constructed. At each simulated realization, the proportion
of intervals failing to cover their respective parameters among
the constructed CIs is calculated (setting the proportion to 0
when none are selected). Averaging the proportions over the
simulation, we get 1.0, .40, .16, .05, and .03 for θ = 0, .5, 1, 2,
and 4 (standard error ≤.01).

Thus, using a marginal procedure for each parameter, we can
no longer assure that, on average, the proportion of noncovering
intervals is controlled. In fact, the procedure with no adjustment
for multiplicity is as poor at giving average false coverage con-
trol as it is inadequate at controlling the conditional coverage.

At this stage, the similarity between a false coverage state-
ment about a CI for a selected parameter and a false rejection
of a true null hypothesis (a false discovery) should seem nat-
ural. In fact, the expectation studied by the simulation in Exam-
ple 3, is equivalent to the false discovery rate (FDR) criterion
in multiple testing, as presented by Benjamini and Hochberg
(1995; hereafter denoted by BH). Thus, if we take seriously the
concern about the average false coverage of CIs after selection,
then we should define a criterion that is similar to the FDR in
the context of selective CIs.

We present such a criterion in this article. We define the
“confidence intervals FDR,” as the expected proportion of para-
meters not covered by their CIs among the selected parameters,
where the proportion is 0 if no parameter is selected. This false
coverage-statement rate (FCR) is a property of any procedure
that is defined by the way in which parameters are selected and
the way in which the multiple intervals are constructed. We for-
mally define the FCR (in Sec. 2), discuss its properties, and
demonstrate that it is a reasonable and intuitive criterion.

Example 4: FCR for Bonferroni-Selected–Bonferroni-Adjust-
ed Intervals. The setting is similar to that of Example 2, where
selection is based on Bonferroni testing, and Bonferroni CIs are
then constructed. The FCR is estimated as in Example 3. The
values of FCR for the foregoing selective multiple CI procedure
are .05, .03, .02, 0, and 0 for θ = 0, .5, 1, 2, and 4 (standard
error ≤.01).

Thus, although the Bonferroni–Bonferroni procedure cannot
offer conditional coverage, it does control the FCR at <.05 (see
details in Sec. 2). In fact it does so too well, in the sense that the
FCR is much too close to 0 for large values of θ . In this article
we present better procedures, in that they adhere better to the
desired level of error.

We try to face the problem in its generality. Given any se-
lection rule, and a family of marginal confidence intervals, can
we find a method of specifying the confidence level for the CI
constructed that controls the FCR? This can be done, and in
Section 3 we present such a general FCR controlling procedure
for the case where the estimators of the parameters are inde-
pendent. Our method of constructing FCR-controlling CIs is
directly linked to the FDR-controlling procedure of BH. In the
BH procedure, after sorting the p values P(1) ≤ · · · ≤ P(m) and
calculating R = max{ j : P( j) ≤ j · q/m}, the R null hypotheses
for which P(i) ≤ R · q/m are rejected. Our suggested method
of adjusting for FCR at level q is, roughly stated, to construct
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Figure 1. Simulation Based FCR and Conditional Coverage Probabilities of Marginal (- - - - -), FCR-Adjusted (——), and Bonferroni (·– ·– ·–)
.95 CIs for the Marginal, BH, and Bonferroni Level .05 Selection Schemes.

a marginal CI with confidence level 1 − R · q/m for the R para-
meters selected. We show that in some sense, this procedure is
also the best possible general procedure.

In Section 4 we revert to the motivating problem, the con-
struction of symmetric CIs for parameters selected by two-sided
multiple-hypothesis testing procedures. Applying the general
procedure allows us, as always, to control the FCR at level q.
We show that if testing is done using the Bonferroni procedure,
then the lower bound of the FCR may drop well below the de-
sired level q, implying that the intervals are too long (see Fig. 1
for examples). In contrast, applying the following procedure,
which combines the general procedure with the FDR control-
ling testing in the BH procedure, also yields a lower bound for
the FCR, q/2 ≤ FCR. This procedure is sharp in the sense that
for some configurations, the FCR approaches q.

Definition 1: FCR-Adjusted BH-Selected CIs.

1. Sort the p values used for testing the m hypotheses regard-
ing the parameters, P(1) ≤ · · · ≤ P(m).

2. Calculate R = max{i : P(i) ≤ i · q/m}.
3. Select the R parameters for which P(i) ≤ R · q/m, corre-

sponding to the rejected hypotheses.
4. Construct a 1 − R · q/m CI for each parameter selected.

Thus the foregoing procedure complements the FDR control-
ling testing procedure of BH; all CIs constructed do not cover
their null parameter values that have been rejected. Although
the foregoing results hold under some assumptions about the
pivotal statistics and under independence of the estimators of
the parameters, some results are shown to hold under positive

dependency as well. Others hold under the most general condi-
tion at the cost of inflating the FCR by a calculable constant that
depends on the number of parameters only. We discuss these re-
sults in Section 5.

The connection between FDR testing and the foregoing CIs
allows us to answer in the affirmative the question of whether
the BH procedure controls the FDR of the directional errors as
well. That means that if we also count as an error a correctly re-
jected two-sided hypothesis whose direction of deviation from
the null hypothesis value is opposite to the direction declared,
then the expected proportion of the so-defined errors is still con-
trolled. The concern that this need not be the case has accompa-
nied the FDR controlling procedure since the work of Shaffer
(1995) and Williams, Jones, and Tukey (1999), and has been
further addressed by Shaffer (2002).

Throughout this article, we make a distinction between ad-
justing for multiplicity to ensure simultaneous coverage and ad-
justing for multiplicity to avoid the selection effect. When only
a single tool is available for both purposes, the discussion of the
distinction makes little difference. The availability of different
tools for different goals puts the choice in the hands of the re-
searcher. In Section 7 we discuss guidelines for making this
choice intelligently in more detail, although further discussions
on this subject probably will ensue.

2. THE FALSE COVERAGE–STATEMENT RATE

Consider a procedure for constructing selective multiple CIs
(selective CIs), based on a vector of m parameter estimators T.
The selection procedure is given by S(T) ⊆ {1, . . . ,m} and is
followed by the construction of some CI for each θi, i ∈ S(T).
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Let RCI be the number of CIs constructed, which is the size
of S(T), and let VCI be the number of constructed CIs not cov-
ering their respective parameters.

Definition 2. The FCR of a selective CI procedure is FCR =
ET(QCI), where QCI is defined as

QCI :=
{

VCI/RCI if RCI > 0

0 otherwise.

For a single parameter (m = 1), the FCR equals the proba-
bility of constructing a noncovering CI. Therefore, according
to (1), a 1 − q CI has FCR ≤ q. We now show that some of
the commonly used methods of constructing multiple CIs also
control the FCR.

1. Constructing a marginal (unadjusted) 1 − q confidence
interval for all parameters. In this case RCI = m. The dis-
tribution of VCI is determined by the joint distribution of
the estimators, but E(VCI) ≤ m · q. Therefore,

E(QCI) = E(VCI)/m ≤ q.

2. 1 − q confidence region. Suppose that we have a proce-
dure yielding a 1 − q confidence region CR(T) for a mul-
tidimensional parameter θ , meaning that P{θ ∈ CR(T)} ≥
1 − q. One approach is to view θ = {θ1, . . . , θm} as a sin-
gle multidimensional parameter, that is, RCI = 1, if the
confidence region is reported; VCI = 1 if RCI = 1 and
θ /∈ CR(T). Thus

E(QCI) = Pr{VCI = 1} ≤ Pr{θ /∈ CR(T)} ≤ q.

3. Projecting a 1 − q confidence region. Another use
of CR(T), more relevant to our discussion, is to project
it onto the coordinates, thereby deriving a marginal
confidence interval CIi(T) for each θi. A Bonferroni con-
fidence region is a special case in which CR(T) is a cross-
product of CIi, where each CIi is a 1 − q/m marginal CI.
As CR ⊆ {θ : θi ∈ CIi}, for any selection procedure S , the
probability of constructing at least one noncovering CIi is
also ≤ q, that is,

Pr(VCI > 0) = Pr{∃ θi : i ∈ S, θi /∈ CIi}
≤ Pr{θ /∈ CR(T)} ≤ q.

The property Pr(VCI > 0) ≤ q is an extension of the fam-
ilywise error (FWE) rate in multiple testing. Finally, as
Pr(VCI > 0) ≥ E(QCI), FCR ≤ q.

4. Constructing a 1 − q interval for independently selected
parameters. Here we mean that the selection criterion is
independent of the data from which the CIs are estimated.
An obvious example is when the identity of the parame-
ters for which the CI is constructed is determined before
the data are available. Such a procedure takes us back to
case 1. A less obvious example is the use of a training
set, T1, to select the RCI parameters and an independent
testing set, T2, to construct the CIs. Under such circum-
stances,

ET1,T2(QCI) = ET1

{
I(RCI > 1) · 1

RCI
· ET2VCI

}

= ET1

{
I(RCI > 1) · RCI · q

RCI

}
≤ q.

Example 5 is another case in which inference is needed for a
set of CIs after a selection process. In this example, a false con-

fidence statement can be made not only because the selected CI
does not cover the parameter, but also because the decision to
make the statement is false as no parameter to be covered exists.

Example 5: Search for Quantitative Trait Loci—Genetic Loci
Affecting Quantitative Traits. In quantitative trait loci (QTL)
analysis, the effort is to locate genes on the chromosome that
partially affect the level of a quantitative property of interest.
The log-odds (LOD) score is used to test for linkage between a
series of genetic markers located densely over the chromosomes
and several quantitative traits, in order to pinpoint a QTL. A dis-
covery of a QTL is reported if the LOD score exceeds some
threshold. The reported result is a genomic region enclosing the
discovery that is suspected of covering the QTL. Considerable
effort was invested in methods for finding a genomic region
with a .95 probability of containing the QTL (see, e.g., Mangin,
Goffinet, and Rebai 1994). Nevertheless, suppose that a quan-
titative trait with no genetic background, and thus no QTL, is
considered. Then any genomic region reported cannot contain
the QTL, and in particular, no method can provide a .95 proba-
bility of covering the parameter. Under such circumstances, the
mere decision to make a confidence statement is false.

Adopting the new framework for providing inference for se-
lected multiple CIs, a possible solution is to control the FCR—
the proportion of noncovering genomic regions out of the total
number of regions reported. Interestingly, addressing multiplic-
ity is considered essential in determining the LOD threshold
for QTL discovery, either by controlling the FWE in multiple
testing (Lander and Kruglyak 1995) or by controlling the FDR
(Weller, Song, Heyen, Lewin, and Ron 1998), but is ignored
when the genomic regions are reported.

3. FALSE COVERAGE–STATEMENT RATE
ADJUSTMENT FOR SELECTIVE

CONFIDENCE INTERVALS

We now introduce a general method for adjusting the mar-
ginal levels of the CIs of the selected parameters, so that the
corresponding selective CI procedure controls the FCR. We as-
sume that we have at our disposal a procedure for construct-
ing marginal CIs at any desired level. That is, for i = 1, . . . ,m
and each α ∈ [0,1], CIi(α) is a marginal 1 − α CI for θi,
Prθi{θi ∈ CIi(α)} ≥ 1 − α. We further assume that the forego-
ing CI procedure is monotone in the confidence level: α ≥ α′
implies that CIi(α) ⊆ CIi(α

′). Recall that the selection proce-
dure is given by S(T), and the number selected is |S(T)|.

Definition 3: Level-q FCR-Adjusted Selective CIs.

1. Apply the selection criterion S to T, yielding the selected
set of parameters S(T).

2. For each selected parameter θi, i ∈ S(T), partition T into
Ti and T(i) (T without Ti) and find

Rmin
(
T(i))
:= min

t

{∣∣S(
T(i),Ti = t

)∣∣ : i ∈ S
(
T(i),Ti = t

)}
. (2)

3. For each selected parameter θi, i ∈ S(T), construct the fol-
lowing CI:

CIi

(
Rmin(T(i)) · q

m

)
.
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Remark 1. For many plausible selection criteria, including
selection by unadjusted testing, by Bonferroni testing, and by
BH testing, Rmin(T(i)) can be substituted by RCI in Defini-
tion 3. The reason for this is that for each i = 1, . . . ,m given T(i)

for values Ti = t such that θi is selected, |S(T(i), t)| assumes
a single value. Notable exceptions are adaptive FDR proce-
dures (Benjamini and Hochberg 2000; Benjamini, Krieger, and
Yekutieli 2003; Storey, Taylor, and Seigmund 2004), where
some values of T(i) yield Rmin(T(i)), which is less than RCI .

Incorporating RCI into Definition 3, the FCR adjustment
takes on a very simple form. To ensure an FCR level q, mul-
tiply q by the number of parameters selected, divide by the size
of the pool of candidates from which the selection is made and
construct the marginal intervals at the adjusted level for the se-
lected parameters. The length of the constructed CIs increases
as the number of parameters considered increases, but decreases
as the number of selected parameters increases. Their length
may vary from that of the unadjusted to that of the Bonferroni-
adjusted, depending on the extent of the selection process.

Theorem 1. If the components of T are independent, then for
any selection procedure S(T), the FCR-adjusted selective CIs
in Definition 3 enjoy FCR ≤ q.

Proof. For r > 1, let Av,r denote the following event: r CIs
are constructed, and v of these CIs do not cover the correspond-
ing parameter. Let NCIi denote the event that a noncovering CI
interval is constructed for θi.

Lemma 1.

PrT(Av,r) = 1

v
·

m∑
i=1

PrT{Av,r,NCIi}.

Proof. Let Aω
v,r denote the event that the subset of para-

meters for which a noncovering CI is constructed is ω ⊆ {1,

. . . ,m}, where |ω| = v. If i ∈ ω, then PrT{Aω
v,r,NCIi} =

PrT(Aω
v,r); however, if i /∈ ω, then PrT{Aω

v,r,NCIi} = 0. Then

m∑
i=1

PrT{Av,r,NCIi} =
∑
ω

m∑
i=1

PrT{Aω
v,r,NCIi}

=
∑
ω

m∑
i=1

I(i ∈ ω) · PrT{Aω
v,r}

=
∑
ω

v · PrT{Aω
v,r} = v · PrT{Av,r}.

Because
⋃r

v=1 Av,r is a disjoint union of events that equals the
event |S| = r, incorporating Lemma 1 into the definition of the
FCR yields

ET(QCI) =
m∑

r=1

r∑
v=1

v

r
· PrT{Av,r}

=
m∑

r=1

m∑
i=1

1

r
· PrT{|S| = r,NCIi}. (3)

For i = 1, . . . ,m and k = 1, . . . ,m, we define the following se-
ries of events:

C(i)
k := {

T(i) : Rmin
(
T(i)) = k

}
.

According to (2), for each value of T(i) and Ti = ti such that
θi is selected, Rmin ≤ |S(T(i), ti)|. Therefore, (3) is less than or
equal to (4),

≤
m∑

i=1

m∑
k=1

1

k
· PrT

{
C(i)

k , i ∈ S, θi /∈ CIi

(
k · q

m

)}
, (4)

≤
m∑

i=1

m∑
k=1

1

k
· PrT

{
C(i)

k , θi /∈ CIi

(
k · q

m

)}
, (5)

=
m∑

i=1

m∑
k=1

1

k
· PrT(i)

{
C(i)

k

} · PrTi

{
θi /∈ CIi

(
k · q

m

)}
, (6)

≤
m∑

i=1

m∑
k=1

1

k
· PrT(i)

{
C(i)

k

} · k · q

m
= q. (7)

Inequality (5) follows from dropping the condition i ∈ S .
Equality (6) is due to the independence of T(i) and Ti. The
inequality in (7) is due to the marginal coverage property of
the CIs, CIi(·).

Theorem 1 demonstrates that the increase in the marginal
coverage probability as dictated in Definition 3 is sufficient to
ensure FCR control at level q. We now show that this increase
is necessary, at least in some specific setting.

Example 6. Ti are independently distributed U[θi, θi + 1]
random variables. The marginal 1 − α CI constructed for each
θi is of the form CIi(α) = [Ti −(1−α),Ti ]. The selection crite-
rion is to choose the k parameters corresponding to the k largest
parameter estimators. It is clear that this is one of the selection
rules for which Rmin(T(i)) ≡ k = RCI , so the FCR-adjusted se-
lective CIs are of the form CI( k·q

m ). We further assume that all
θi = θ , and for each of the k parameters selected, we construct
a CI with confidence level 1 − q′. In this example,

VCI = #{ j : rank(Tj) ≥ m − k + 1, θj < Tj − (1 − q′)}.
Therefore, VCI can be expressed as VCI = min(k,V∗), where
V∗ ∼ Binom(m,q′). This yields an upper bound for the FCR,

FCR = E
VCI

RCI
= E

VCI

k
≤ E

V∗

k
= m · q′

k
.

The goal is small FCR values, typically FCR = .05, so we
need values of q′ such that k 
 m · q′, thereby implying that
Pr(V∗ > k) ≈ 0. Because under the foregoing conditions, the
FCR is approximately m·q′

k , to control the FCR at level q, we
must set q′ = k · q/m.

Example 7: The Selective CIs in Practice. Giovannucci
et al. (1995) studied the relationship between the intake of
carotenoids and retinol and the risk of prostate cancer, a study
that received wide nonscientific press coverage. That study’s
findings suggest that the intake of lycopene or other compounds
in tomatoes may reduce prostate cancer risk, but that other mea-
sured carotenoids are unrelated to risk. It further recommends
increasing consumption of the first. Only three 95% CIs for
the estimated relative risks (RRs) are reported in the abstract
(that carries the foregoing recommendation)—none covers one,
of course; the CI furthest away from 1 is (.44, .95), with the
point estimate of RR = .65. A closer look at that article reveals
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that some 131 parameters regarding various foods and bever-
ages were inspected, at least by one count. Unfortunately, in
contrast to the way it should be, the family of hypotheses tested
is not well defined, and the exact count is somewhat difficult
to get from the reading of the paper. Thus we do not repeat the
modified calculation exactly. Nevertheless, even if we settle for
a minimal count of m = 30 hypotheses from which the three
were selected, R/m = 3/30, and the length of the intervals on
the log scale should be inflated by >40%. For the aforemen-
tioned CI, the corresponding selective CI is (.37,1.17). With
the other two CIs also covering the value 1 for the RR, it is
clear that the message conveyed in the abstract should be very
different from that published. We thank Professor Kafadar for
bringing the multiplicity problem in this study to our attention.

4. SELECTION VIA MULTIPLE HYPOTHESIS TESTING

In the study described in Example 7, although not stated ex-
plicitly, it seems that the selection criterion was to report only
the parameters that were significantly different from 1 (mar-
ginally). The fact is that even though any selection criterion can
be used in selective CIs, the practice of basing parameter selec-
tion on testing is very common.

In this section, we assume that the distribution of Ti − θi has
a symmetric distribution independent of θi, FTi , where θi is as-
sociated with a null value θ0

i and the set of parameters selected
corresponds to the set of rejected null hypotheses H0

i : θi = θ0
i

tested versus θi �= θ0
i . Testing is conducted using the two-sided

p values Pi = 2 · (1 − FTi(|Ti − θ0
i |)), and the rejection region

is specified by a critical p value PS(P),

S(T, θ0) = {
θ(i) : P(i) ≤ PS(P)

}
.

FCR-adjusted selective CIs provide the desired FCR control
for selection based on testing as well, but may offer too much
protection at the undesirable cost of too-wide confidence in-
tervals. Thus in this section we study the effect of the testing
procedure used for selection on the FCR-adjusted selective CIs.
The fact that the selection rule has direct implication for the
FCR-adjusted selective CIs, with a lower FCR associated with
a stricter selection criterion, is intuitively clear from the extreme
case, where if |S(T)| ≡ 0, then, trivially, FCR = 0. Example 8
demonstrates the foregoing phenomenon in a more realistic set-
ting, where the Bonferroni procedure is used for testing.

Example 8. Numerous two-sided hypotheses are tested using
the Bonferroni procedure at level q. Of the m tested hypotheses,√

m are false null hypotheses with |θi − θ0
i | → ∞. The remain-

ing m − √
m hypotheses are true null hypotheses. In this case

all false null hypotheses are correctly rejected, and the number
of true null hypotheses rejected is V ′ ∼ Binom(m − √

m,q/m).
Thus RCI = √

m + V ′. Given RCI , for each rejected parame-
ter, the following CI is constructed: Tj ± T1−RCI ·q/(2·m)

j . Thus
VCI equals the V ′ null parameters selected plus the num-
ber of nonnull parameters not covered by their respective CIs
V ′′ ∼ Binom(

√
m,RCI · q/m). As RCI >

√
m,

FCR = E
V ′′

RCI
+ E

V ′

RCI
≤ ERCI

{
EV ′′|RCI

(
V ′′

RCI

)}
+ E

V ′
√

m

= ERCI

√
m · RCI · q/m

RCI
+ (m − √

m ) · q/m√
m

<
2 · q√

m
,

and as m → ∞, FCR → 0.

Next, we show that if the multiple-testing procedure used for
selection is more liberal than the FDR-controlling test of BH
at level q, then for any θ , FCR ≥ q/2. This result, proven in
Theorem 2, means that the intervals are not excessively long
for any possible values of the parameters. Moreover, we then
show in Corollary 1 that for some values of θ , the FCR even ap-
proaches q. Thus the FCR-adjusted BH-selected CIs described
in Definition 1 yields FCRs that range from q/2 to q, and in
some cases FCR ≈ q.

For the aforementioned results, we need a few more condi-
tions: (a) The components of T are independently distributed;
(b) the testing procedure satisfies Rmin(T(i)) = RCI in Defini-
tion 3 (see Remark 1); and (c) denoting by T α

i the α quantile
of FTi , the marginal CI are of the form

CIi(α) = {
θi : |Ti − θi| ≤ T 1−α/2}.

Theorem 2. Consider an FCR-adjusted selective CI proce-
dure under the foregoing conditions (a)–(c). If its selection is
based on a multiple testing procedure which is more liberal than
the procedure in BH at level q, its FCR is always greater than
or equal to q/2.

Before we prove Theorem 2, note the following characteri-
zation of a multiple-testing procedure S(T) that is more liberal
than the procedure of BH.

Lemma 2. S(T) ⊇ SBH(T; q) implies that if |Ti − θ0
i | ≥

T 1−|S|·q/(2m)
i , then i ∈ S.

Proof. The condition in the lemma can be expressed as

Pi ≤ |S|·q
m . Recall that the number of hypotheses in SBH(T; q)

is defined as

|SBH| = max

{
k : P(k) ≤ k · q

m

}
. (8)

Thus for S ≡ SBH , we get

S =
{

i : Pi ≤ |S| · q

m

}
.

For a strictly more liberal S � SBH , according to (8),
|S|·q

m < P(|S|). Thus we get

S ≡ {
θi : Pi ≤ P(|S|)

}
�

{
θi : Pi ≤ |S| · q

m

}
.

Proof of Theorem 2. The beginning of the proof of Theo-
rem 2 is identical to that of Theorem 1 up to expression (3).
Recall that event C(i)

k is defined according to Rmin. Because
Rmin now can be substituted by the number of parameters se-
lected, the inequality in expression (4) in the proof of Theo-
rem 1 can be replaced by an equality in expression (9) in the
current proof. Thus

ET(QCI)

=
m∑

i=1

m∑
k=1

1

k
· PrT

{
C(i)

k , i ∈ S, θi /∈ CIi

(
k · q

m

)}
(9)

≥
m∑

i=1

m∑
k=1

1

k
· PrT

{
C(i)

k , |Ti − θ0
i | ≥ T 1−k·q/(2·m)

i ,

|Ti − θi| ≥ T 1−k·q/(2·m)
i

}
(10)
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=
m∑

i=1

m∑
k=1

1

k
· PrT

{
C(i)

k

}

×Pr
{|Ti − θ0

i | ≥ T 1−k·q/(2·m)
i ,

|Ti − θi| ≥ T 1−k·q/(2·m)
i

}
(11)

>

m∑
i=1

m∑
k=1

1

k
· PrT

{
C(i)

k

} · Pr
{
Ti ≥ θi + T 1−k·q/(2·m)

i

}

= m · q

2 · m
. (12)

Inequality (10) is due to the result of Lemma 2. The inequality
in (12) is true because for θi ≥ θ0

i ,
{|Ti − θ0

i | ≥ T 1−k·q/(2·m)
i , |Ti − θi| ≥ T 1−k·q/(2·m)

i

}
⊇ {

Ti ≥ θi + T 1−k·q/(2·m)
i

}
,

and for θi ≤ θ0
i ,

{|Ti − θ0
i | ≥ T 1−k·q/(2·m)

i , |Ti − θi| ≥ T 1−k·q/(2·m)
i

}
⊇ {

Ti ≤ θi − T 1−k·q/(2·m)
i

}
.

Notice that if |θi − θ0
i | → 0 or |θi − θ0

i | → ∞, then

Pr
{|Ti − θ0

i | ≥ T 1−k·q/(2·m)
i , |Ti − θi| ≥ T 1−k·q/(2·m)

i

} → q/m.

Therefore, if for all θi either condition holds, then (11) in the
proof of Theorem 2 approaches q. Combining this and the result
of Theorem 1, we get the following:

Corollary 1. Under the conditions of Theorem 2, if for all
i = 1, . . . ,m, |θi − θ0

i | → 0 or |θi − θ0
i | → ∞, then the FCR of

the FCR-adjusted CIs approaches q.

Theorem 2 and Corollary 1 emphasize the advantages of
selection via the BH procedure or less conservative multiple-
testing procedures, in that they do not control the FCR at an
excessively low level. But there is a clear advantage to selec-
tion with the BH procedure, because it preserves the usual du-
ality between CIs and testing. Using it as the testing procedure,
any choice of parameter values covered by the CIs will not be
rejected by the multiple-testing procedure, while the other pa-
rameters for which CIs are not constructed remain at their null
values. That is, for any θ∗ satisfying θ∗

i ∈ CIi for some i ∈ S and
θ∗

i = θ0
i otherwise, the BH procedure will not reject θ∗

i ∈ CIi.
In the other direction, for any θ∗ satisfying θ∗

i /∈ CIi for all i ∈ S
and θ∗

i = θ0
i otherwise, the BH procedure will reject all θ∗

i ’s for
i ∈ S. In contrast, using a less conservative testing procedure
than the BH procedure, a parameter can be selected after decid-
ing that θi �= θ0

i , yet θ0
i is included in the CI constructed, CIi.

Thus, under the conditions of Theorem 2, the recommended
procedure is the FCR-adjusted BH-selected CIs given in Defi-
nition 1, enjoying q/2 ≤ FCR ≤ q, and for some configurations
of the parameters approaching q.

Figure 1 presents the results of a simulation study that
demonstrates the extent of this phenomenon. The setting is as
described in Example 1. Unadjusted, BH, and Bonferroni se-
lection is applied at q = .05, and three types of marginal CIs
are constructed, also at level q = .05. The three panels at the

bottom show that for values θ close to 0, the conditional cov-
erage property cannot be controlled by any of the CI schemes.
The three top panels show that unadjusted marginal intervals
fail to control the FCR, whereas the FCR of Bonferroni inter-
vals approaches 0 in many cases. In comparison, the FCR of
FCR-adjusted intervals is very close to .05.

Tukey (1995) was the first to search for multiple CIs dual
to the BH procedure. He considered constructing CIs of the
foregoing form, because they reflected the rejection decisions
reached by the FDR-controlling procedure of BH. However,
his construction included CIs for all parameters, and so he
could not come up with any explicit statement about some
joint coverage property of his proposed procedure. To arrive
at some coverage property, Tukey (1995) tried to resort to hy-
brid CIs, replacing the CIs for the nonrejected parameters with
Bonferroni. He later gave up (Tukey 1996), and that suggestion
disappeared from his subsequent publications. Realizing that
the fundamental problem is that of setting CIs for selected pa-
rameters and defining the FCR as the relevant measure of error
involved, we were able to derive the relevant coverage prop-
erties. Admittedly, we gained further insight into the problem
once we had to face extremely large problems in genetic re-
search, encompassing thousands of parameters, in which inter-
est and inference are focused on the selected parameters only.
Such encounters were rare 10 years ago.

5. FALSE COVERAGE–STATEMENT
RATE–ADJUSTED SELECTIVE CONFIDENCE

INTERVALS UNDER DEPENDENCY

5.1 Positive Regression Dependency

The general result in Theorem 1 holds for independent pa-
rameter estimators. We now discuss parameter estimators pos-
sessing the positive regression dependent on a subset (PRDS)
property.

Definition 4 (Benjamini and Yekutieli 2001). The compo-
nents of X are PRDS on I0 if for any increasing set D (where
x ∈ D and y ≥ x implies that y ∈ D) and for each i ∈ I0, Pr(X ∈
D|Xi = x) is nondecreasing in x.

If X is PRDS on any subset, then we denote it simply
as PRDS. We further require that the selection criterion and
the CIs be concordant, in the following sense.

Definition 5. A procedure for selective CIs is concordant if
for all values of θ , for all 0 < α < 1, and for i = 1, . . . ,m,
k = 1, . . . ,m, both {T(i) : k ≤ Rmin(T(i))} and {Ti : θi /∈ CI(α)}
are either increasing or decreasing sets.

An example of a concordant selective CI is selection via a
multiple-hypothesis procedure of tests with one-sided alterna-
tives, H1

j : θ0
j < θj, and one-sided confidence intervals, CIj(α) =

{θj : θj ≥ Tj + T α}.
Theorem 3. If the components of T are PRDS and the selec-

tion criterion and the CIs are concordant, then the FCR-adjusted
selective CIs in Definition 3 enjoy FCR ≤ q.

Proof. Without loss of generality, let us assume that the
two sets in Definition 5 are increasing. Then D(i)

k = ⋃k
j=1 C(i)

k ,

which can be expressed as {T(i) : Rmin(T(i)) < k + 1}, is a
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decreasing set. Furthermore, for α ≤ α′, we can express
{Ti : θi /∈ CI(α)} = {Ti : t ≤ Ti} and {Ti : θi /∈ CIi(α

′)} = {Ti :
t′ ≤ Ti} with t ≤ t′. Thus the PRDS condition then implies that

Pr
(
D(i)

k

∣∣θi /∈ CI(α)
) ≤ Pr

(
D(i)

k

∣∣θi /∈ CIi(α
′)
)
. (13)

Hence for k = 1, . . . ,m, we get

Pr

(
D(i)

k

∣∣∣θi /∈ CIi

(
k · q

m

))

+ Pr

(
C(i)

k+1

∣∣∣θi /∈ CIi

(
(k + 1) · q

m

))

≤ Pr

(
D(i)

k

∣∣∣θi /∈ CIi

(
(k + 1) · q

m

))

+ Pr

(
C(i)

k+1

∣∣∣θi /∈ CIi

(
(k + 1) · q

m

))

= Pr

(
D(i)

k+1

∣∣∣θi /∈ CIi

(
(k + 1) · q

m

))
. (14)

As defined, the event D(i)
m is the entire sample space. Therefore,

repeatedly applying inequality (14) for k = 1, . . . ,m, we get
m∑

k=1

Pr

(
C(i)

k

∣∣∣θi /∈ CIi

(
k · q

m

))
≤ Pr

(
D(i)

m

∣∣∣θi /∈ CIi

(
m · q

m

))

= 1. (15)

To complete the proof, we proceed from inequality (5) in the
proof of Theorem 1,

ET(QCI)

≤
m∑

i=1

m∑
k=1

1

k
· Pr

{
C(i)

k , θi /∈ CIi

(
k · q

m

)}

=
m∑

i=1

m∑
k=1

1

k
· Pr

{
C(i)

k

∣∣∣θi /∈ CIi

(
k · q

m

)}

· Pr

{
θi /∈ CIi

(
k · q

m

)}

≤
m∑

i=1

m∑
k=1

1

k
· Pr

{
C(i)

k

∣∣∣θi /∈ CIi

(
k · q

m

)}
· k · q

m
≤ q. (16)

The first inequality in (16) is due to the coverage property
of CIs, and the second inequality is due to (15).

5.2 General Dependency

Theorem 4. For any monotone marginal CIs, any selection
procedure S(T), and any dependency structure of the test sta-
tistics, the FCR of the FCR-adjusted selective CIs is bounded
by q · ∑m

j=1
1
j .

The immediate corollary is that FCR-adjusted selective CIs at
level q/

∑m
j=1

1
j ensure that FCR ≤ q for all distributions of T.

Proof of Theorem 4. The proof is based on the proof of the-
orem 1.3 of Benjamini and Yekutieli (2001). Whereas the proof
of Benjamini and Yekutieli (2001) unnecessarily uses the as-
sumption that Pr{Pi ∈ [ j−1

m q,
j
m q]} = q

m , we only assume here
that the CIs are monotone.

For each i = 1, . . . ,m, we define the random variable Ii.
Ii = 1 is the event θi /∈ CIi(

q
m ); for j = 2, . . . ,m, Ii = j is the

intersection of θi ∈ CIi(
j−1
m q) and θi /∈ CIi(

j
m q); Ii = m + 1 is

the event θi ∈ CIi(q). Because the CIs CI(α) are monotone for
1 ≤ j ≤ m,

θi /∈ CIi

(
k

q
m

)
=

k⋃
j=1

{Ti : Ii = j}. (17)

Let Iunif denote the following random variable: for j = 1,

. . . ,m, Iunif = j with probability q
m and Iunif = m + 1 with prob-

ability 1 − q. Finally, let jrec define the following decreasing
function: jrec(j) = 1

j for j = 1, . . . ,m and jrec(m + 1) = 0. The
validity of CIi(·) implies that all Ii’s are stochastically greater
than Iunif, and thus, because jrec is a decreasing function,

m∑
j=1

1

j
· Pr{Ii = j}

=
m+1∑
j=1

jrec( j) · Pr{Ii = j}

≤
m+1∑
j=1

jrec( j) · Pr{Iunif = j} = q

m

m∑
j=1

1

j
. (18)

Incorporating (17) into (5) yields

FCR ≤
m∑

i=1

m∑
k=1

1

k

k∑
j=1

PrT
{
C(i)

k , Ii = j
}

≤
m∑

i=1

m∑
j=1

1

j

m∑
k=j

PrT
{
C(i)

k , Ii = j
}

=
m∑

i=1

m∑
j=1

1

j
PrT{Ii = j} ≤

m∑
i=1

q

m

m∑
j=1

1

j
. (19)

The inequality in (19) is due to (18).

6. CONNECTIONS BETWEEN THE FALSE
COVERAGE–STATEMENT RATE AND

THE FALSE DISCOVERY RATE

In this section we express the FDR and the directional FDR
(Benjamini, Hochberg, and Kling 1993) as the FCR of selec-
tive CIs. This way, we are able to prove the validity of the BH
procedure as a corollary of Theorem 3. More important, we use
this same argument to prove that the BH procedure offers direc-
tional FDR control.

6.1 The BH Procedure Controls the False
Discovery Rate

For i = 1, . . . ,m, let Pi be a p value for testing H0
i : θi ∈ �0

i
versus the alternative hypothesis θi ∈ R − �0

i . Thus for each
0 < α < 1, Prθi∈�0

i
(Pi ≤ α) ≤ α.
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P = (P1,P2, . . . ,Pm) is used to define selective CIs. The se-
lection criterion, S(P), is given by the level-q BH procedure.
For each i ∈ S(P), the 1 − α CI constructed is

CIi(α) =
{

R − �0
i if Pi ≤ α

R if Pi > α.
(20)

In this setting the test statistic is the p value and not the parame-
ter estimator, but the CI in (20) remains a valid, albeit somewhat
wasteful, marginal CI. Furthermore, it is easy to verify that this
selective CI procedure is concordant in P.

The next step is to apply a level-q FCR adjustment to the
selective CIs. Then, according to Theorem 3, if the components
of P are positive regression dependent on any subset, FCR ≤ q.

As all i ∈ S(P) have Pi ≤ RCI ·q
m , applying the FCR adjustment

implies that all CIi’s constructed are R − �0
i . Therefore, VCI is

the number of i ∈ S(P) for which θi ∈ �0
i , that is, the number

of true null hypotheses rejected by the BH procedure. Hence
the FCR equals the FDR of the BH procedure, and the latter is
therefore ≤ q.

The preceding result can be improved. The event θi /∈ CIi(α)

can only occur for θ ∈ �0
i . Therefore, we can alter the sum-

mation in the proof of Theorem 3 from summation over
i = 1, . . . ,m to summation over the m0 true null hypotheses.
This also means that positive regression dependent on any sub-
set is no longer needed, because positive regression dependent
on the subset of true null hypotheses is sufficient. The foregoing
is an alternative proof to the result of Benjamini and Yekutieli
(2001).

Corollary 2. If P is PRDS on the subset of p values corre-
sponding to the true null hypotheses, then the FDR of the pro-
cedure in BH is less than or equal to m0 · q/m.

6.2 Directional False Discovery Rate Control
Under Independence

We now address in much the same way the problem of de-
termining whether the parameter δi = θi − θ0

i is positive or
negative. A discovery is declaring δi to be either positive or
negative, but there is of course the possibility of making no dis-
covery. Making a false statement about the sign of δi is termed
a directional error, or a type III error. Williams et al. (1999),
Benjamini and Hochberg (2000), and Shaffer (2002) all conjec-
tured that the BH procedure can also offer control over type III
errors. Shaffer (2002) also gave some theoretical support at ex-
treme configurations of the parameters.

To address the problem of directional errors within the FDR
framework, Benjamini et al. (1993) introduced two variants of
directional FDR. In pure directional FDR, the expected pro-
portion of discoveries in which a positive parameter is de-
clared negative or a negative parameter is declared positive.
In mixed directional FDR, the expected proportion of discov-
eries in which a nonnegative parameter is declared negative
or a nonpositive parameter is declared positive. Obviously, the
pure directional FDR is always smaller than the mixed direc-
tional FDR, so the following results on the control of the mixed
directional FDR hold for the pure directional FDR as well.

We assume that the distribution of the parameter estima-
tor Di = Ti − θ0

i increases stochastically with δi, and that
the cdf of Di given δi = 0, Fi(Di) is known. The one-sided
p value is Pi = 1 − Fi(Di), and the two-sided p value is
P|i| = 2 · min(Pi,1 − Pi).

Definition 6: The Level-q BH Directional FDR Procedure.

1. Test the set of m two-sided hypotheses with the two-sided
p values using the BH procedure at level q.

2. Let R denote the number of discoveries made.
3. If P|i| ≤ Rq

m and Di > 0, then declare δi > 0.

4. If P|i| ≤ Rq
m and Di < 0, then declare δi < 0.

We now define the selective CIs. The selection criterion is the
BH procedure using the m two-sided p values. The marginal CIs
are of the form,

CIi(α) =



(0,∞) if Pi ≤ α/2

(−∞,∞) if α/2 < Pi < 1 − α/2

(−∞,0) if 1 − α/2 ≤ Pi.

(21)

Applying the level-q FCR adjustment to the foregoing spe-
cific CIs, all of the CIi constructed are either (0,∞) for Di > 0
or (−∞,0) for Di < 0. Hence the FCR equals the mixed di-
rectional FDR of the level-q BH directional FDR procedure.
Therefore, Theorem 1 implies that if the components of D are
independent, then the mixed directional FDR is bounded by q.

Now take a closer look at CIi(α). If δi = 0, then Pr(δi /∈
CIi(α)) = α, whereas for δi �= 0, Pr(δi /∈ CIi(α)) < α/2.
Modifying the summation of i in the proof of Theorem 1 from
summation over all m parameters to separate summation over
the m+ indices {i : δi > 0}, the m− indices {i : δi < 0}, and the
m0 indices {i : δi = 0}, we get the following.

Corollary 3. If the components of Di are independent, then
the mixed directional FDR of Definition 6 is

≤ q/2 · m+ + m−
m

+ q · m0

m
= q/2 ·

(
1 + m0

m

)
.

6.3 Directional False Discovery Rate Control Under
Positive Regression Dependency

We now assume that D is PRDS dependent. This does not
imply that the vector of two-sided p values is PRDS, but it
does imply that any order-preserving transformation of D—in
this case the vector of m one-sided p values—retains the PRDS
property.

Thus, rather than simultaneously testing m two-sided hy-
potheses, we suggest separately testing each vector of m one-
sided hypotheses: (a) Using the m one-sided p values, Pi, to
test the m null hypotheses H0+

i : δi ≤ 0, the number of true null
hypotheses is m+ + m0; and (b) using the m one-sided p values,
1 − Pi, to test the m null hypotheses H0−

i : δi ≥ 0, the number of
true null hypotheses is now m− + m0. Corollary 2 implies the
following.

Corollary 4. If D is PRDS on {Di : δi ≤ 0}, then the mixed
directional FDR of the level-q BH procedure of {H0+

i }m
i=1 is

less than or equal to (m++m0)·q
m .

Corollary 5. If D is PRDS on {Di : δi ≥ 0}, then the mixed
directional FDR of the level-q BH procedure of {H0−

i }m
i=1 is

less than or equal to (m−+m0)·q
m .

According to Benjamini and Yekutieli (2001), it is easy to
verify that a given vector of one-sided test statistics is PRDS.
For example, positive correlated multivariate normal test statis-
tics are PRDS. However, it is much harder to show that two-
sided test statistics are PRDS. For example, absolute values of
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positive correlated multivariate normals are not PRDS. The fol-
lowing procedure ensures FDR control for two-sided inference
even if the two-sided test statistics are not PRDS.

Definition 7: The Level-q Modified BH Procedure for Two-
Sided Inference.

1. Using Pi, test {H0+
i }m

i=1 using the BH procedure at
level q/2; let I+ denote the set of rejected one-sided null
hypotheses.

2. Using 1 − Pi, test {H0−
i }m

i=1 using the BH procedure at
level q/2; let I− denote the set of rejected one-sided null
hypotheses.

3. Reject the set of null hypotheses, I1 = I+ ∪ I−.

Let V+, V−, V , R+, R−, and R denote the number of false
discoveries and total number of discoveries at stages 1, 2,
and 3 of the modified BH procedure. According to Corollaries
4 and 5, and because

E
V+

R+ + E
V−

R− ≥ E
V

R
,

we get the following.

Corollary 6. If the vector of parameter estimators is PRDS,
then the mixed directional FDR of the modified BH procedure
for two-sided inference is less than or equal to q · 2·m0+m++m−

2m .

It is easy to verify that Definition 6 is equivalent to simul-
taneously testing all 2 · m one-sided null hypotheses using the
BH procedure at level q. This implies that Definition 7 is less
powerful than Definition 6. On the other hand it has the ad-
vantage that the FDR is controlled separately both for both the
positive and the negative differences. This may be a desirable
property in some applications, such as multiple endpoints in
clinical trials or overexpression and underexpression of genes
in microarray analysis.

It is often argued that in reality, an exact null hypothesis is
never true (see Williams et al. 1999); that is, m0 = 0, in which
case Definitions 6 and 7 at level 2 · q have directional FDR ≤ q.

7. DISCUSSION

The term “simultaneous and selective inference” was repeat-
edly used by Yosef Hochberg as a synonym for “multiple com-
parisons” when he delivered the National Science Foundation
regional workshop held at Temple University in the summer
of 2001. Hochberg attributed the concern about selective in-
ference when faced with multiplicity to an unpublished work
by Yosef Putter. Accepting the foregoing point of view, we of-
fer formulation and procedures that address this concern while
giving up on simultaneous inference. We argue that in many sit-
uations, the selection effect is the more pressing reason why the
marginal level of multiple CIs should be adjusted.

Yet this is certainly not always the case. Simultaneous cover-
age is essential if one wants to be able to, for example, consider
functions of all of the parameters. Simultaneous coverage is
also needed when an action is to be taken based on the value
of all of the parameters. Thus comparing primary endpoints be-
tween two treatments in a clinical trial is likely to involve the
inspection of all of them, whether they are significantly differ-
ent or not. This is a clear situation where simultaneous cover-
age is needed. Looking at a list of secondary endpoints, it is

more likely that only significant differences will be relevant.
Here the selection of the improved endpoints may be followed
by FCR-adjusted CIs, to assess the size of the improvement.

The offering of tools for selective inference allows re-
searchers to judge whether they need simultaneous or selective
CIs and choose accordingly. As an example of the confusion
that may otherwise arise, let us return in more detail to the study
of the failure of preventive hormone therapy in postmenopausal
women, as mentioned in Section 1. There were three prese-
lected major outcomes in this study: breast cancer (primary
adverse outcome), coronary heart disease (primary outcome),
and an index of global outcomes. There were seven other ma-
jor outcomes, other related outcomes, and composite outcomes
(e.g., total cancer). The authors defended using the unadjusted
intervals for the three major endpoints by emphasizing that they
were designated to serve as such in the monitoring plan. Thus
the revealed concern of the researchers is on the effect of se-
lection, not about simultaneous coverage, because preselection
does not ensure simultaneous coverage. The foregoing justifi-
cation for the choice is reiterated in the editorial. If that is the
case for the primary outcomes, then it is only natural to assume
that the researchers would be satisfied with average coverage
for the other outcomes as well. Nevertheless, the researchers
did state that the reason why they should report the Bonferroni
intervals is because the marginal ones fail to offer simultaneous
coverage.

If the researchers could have stated that they are only con-
cerned about the selection effect, then their choice as to what
set of intervals to emphasize would have been almost right. For
the three preselected parameters, the marginal intervals are ap-
propriate. They also reported all intervals for the other (major)
outcomes, so the unadjusted intervals give the right coverage.
However, they did emphasize significant findings in their dis-
cussion, suggesting that using FCR-adjusted intervals is even
more appropriate. Using the selective procedure of this article,
they should have reported the 1 − .05 · 5/7 level CIs. Although
these CIs are always wider than the marginal intervals, they
are closer to the marginal ones than to the Bonferroni-adjusted
ones. In retrospect, the researchers were justified in hesitating to
use the simultaneous CIs. It may even be argued that although
protection against the effect of selection is sufficient for the
other outcomes, simultaneous coverage may be needed for the
three primary outcomes, one of which is an adverse outcome,
because the decision from the trial will ultimately be taken on
observing them jointly.

Offering control of FCR rather than simultaneous coverage
may run the risk of being misused where stricter control is more
appropriate. We do not believe that the response to such a risk
should be to always insist on simultaneous coverage as a pro-
tection. The danger of such overprotection is that even careful
scientists will refrain from following it and use no protection
at all, as is currently the case. The decisions as to what statisti-
cal criterion best fits the actual problem are admittedly difficult,
and we hope that many statisticians will participate in shaping
them and will not leave them solely to the users. Similar partic-
ipation in designing strategies regarding multiple inference in
clinical trials has been going on for years, with very productive
results.

Here we suggest a modest first step. A practical distinction
between situations where simultaneous coverage is needed and
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those where selective CIs suffice lies in how the list of uns-
elected parameters is treated. If the identity of the unselected
parameters is ignored, not reported, or even set aside in a web-
site, then it is unlikely that simultaneous coverage is needed.
These situations indicate that selective coverage should offer
sufficient control. In microarray analysis, for example, when
searching for those few tens of genes that are differentially ex-
pressed among tens of thousands of genes, no one cares about
the identity of the undiscovered genes. Nor is the situation dif-
ferent in the QTL analysis discussed earlier. In these cases, re-
porting the FCR-adjusted selective CIs should go a long way
toward addressing the issue of multiplicity. It is quite safe to say
that when the size of the problem increases into the hundreds,
it is unlikely that the values of all of the parameters are needed
for the decision making. Although one can find exceptions to
the foregoing rule of thumb, it is a reasonable guideline.

Returning to hypothesis testing, some debate has taken place
between those advocating the FDR concept and those advocat-
ing the pFDR. In the latter, the expectation of the proportion
of false discoveries is conditioned on having made some dis-
covery. The pFDR concept, when translated into CIs, is equiva-
lent to the conditional coverage property discussed in Section 1.
As shown in Examples 1 and 2, it is impossible to ensure such
conditional coverage with either an unadjusted procedure or
Bonferroni-selected–Bonferroni-adjusted intervals. In contrast,
the FCR that captures the FDR concept for selected CIs can
(and should) be controlled. This is a strong argument in favor
of using the original FDR. Nevertheless, when m is large, and
the proportion of parameters for which CIs are constructed is
away from 0, the two concepts are the same, so the Bayesian
interpretation offered by Storey (2002) to the pFDR remains
relevant to the FDR. When these conditions do not necessarily
hold, the FDR concept is the relevant one.

Finally, the problem of inference on the selected set is not
unique to frequentist intervals. We believe that if Bayesian-
credible CIs are set for all parameters, but only a handful of
interesting parameters are selected for reporting, say the ones
with posterior modes furthest away from 0, then the current
practice of Bayesians to ignore multiplicity is questionable.
This discussion removes us far away from our original purpose,
and we merely raise it as a question.

[Received October 2002. Revised May 2004.]

REFERENCES

Benjamini, Y., and Hochberg, Y. (1995), “Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing,” Journal of the Royal
Statistical Society, Ser. B, 57, 289–300.

(2000), “On the Adaptive Control of the False Discovery Rate in Mul-
tiple Testing With Independent Statistics,” Journal of Education and Behav-
ioral Statistics, 25, 60–83.

Benjamini, Y., Hochberg, Y., and Kling, Y. (1993), “False Discovery Rate Con-
trol in Pairwise Comparisons,” Working Paper 93-2, Tel Aviv University,
Dept. of Statistics and Operations Research.

Benjamini, Y., Krieger, A. M., and Yekutieli, D. (2003), “Adaptive Linear Step-
Up Procedures That Control the False Discovery Rate,” unpublished manu-
script.

Benjamini, Y., and Yekutieli, D. (2001), “The Control of the False Discovery
Rate in Multiple Testing Under Dependency,” The Annals of Statistics, 29,
1165–1188.

Fletcher, S. W., and Colditz, G. A. (2002), “Failure of Estrogen Plus Progestin
Therapy for Prevention,” Journal of the American Medical Association, 288,
366–369.

Giovannucci, E., Ascherio, A., Rimm, E. B., Stampfer, M. J., Colditz, G. A.,
and Willett, W. C. (1995), “Intake of Cartenoids and Retinol in Relation
to Risk of Prostate Cancer,” Journal of the National Cancer Institute, 87,
1767–1776.

Lander, E. S., and Kruglyak, L. (1995), “Genetic Dissection of Complex Traits:
Guidelines for Interpreting and Reporting Linkage Results,” Nature Genetics,
11, 241–247.

Mangin, B., Goffinet, B., and Rebai, A. (1994), “Constructing Confidence In-
tervals for QTL Location,” Genetics, 138, 1301–1308.

Rossouw, J. E., Anderson, G. L., Prentice, R. L., and LaCroix, A. Z. (2002),
“Progestin in Healthy Postmenopausal Women: Principal Results From the
Women’s Health Initiative Randomized Controlled Trial,” Journal of the
American Medical Association, 288, 321–333.

Shaffer, J. P. (1995), “Multiple Hypothesis Testing,” Annual Review of
Psychology, 46, 561–584.

(2002), “Multiplicity, Directional (Type III) Errors, and the Null Hy-
pothesis,” Psychological Methods, 7, 356–369.

Storey, J. D. (2002), “A Direct Approach to False Discovery Rates,” Journal of
the Royal Statistical Society, Ser. B, 64, 479–498.

Storey, J. D., Taylor, J. E., and Seigmund, D. (2004), “Strong Control, Con-
servative Point Estimation and Simultaneous Conservative Consistency of
False Discovery Rates: A Unified Approach,” Journal of the Royal Statisti-
cal Society, Ser. B, 66, 187–205.

Tukey, J. W. (1995), “Perspectives on Statistics for Educational Research:
Proceedings of a Workshop,” eds. V. S. L. Williams, L. V. Jones, and I. Olkin,
Technical Report 35, National Institute of Statistical Sciences.

(1996), “The Practice of Data Analysis,” in Essays in Honor of
J. W. Tukey, eds. D. R. Brillinger, L. T. Fernholz, and S. Morgentaler, Prince-
ton, NY: Princeton University Press.

Weller, J. I., Song, J. Z., Heyen, D. W., Lewin, H. A., and Ron, M. (1998),
“A New Approach to the Problem of Multiple Comparisons in the Genetic
Dissection of Complex Traits,” Genetics, 150, 1699–1706.

Williams, V. S. L., Jones, L. V., and Tukey, J. W. (1999), “Controlling Error
in Multiple Comaprisons, With Examples From State-to-State Differences in
Education Achievment,” Journal of Educational and Behavioral Statistics,
24, 42–69.

Comment
Don EDWARDS

In this offering, Benjamini and Yekutieli introduce a new er-
ror concept for the construction of multiple confidence intervals
(CIs), which they call false coverage-statement rate (FCR) con-
trol. FCR is the interval-estimation counterpart to the false dis-
covery rate (FDR) concept for multiple hypothesis tests. When
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a great many tests are to be done, the FDR (or some alter-
nate form, such as the pFDR mentioned in sec. 7) represents
a promising alternative between comparisonwise error (CWE)
protection, often considered to be too liberal, and familywise
error (FWE) protection, often considered to be too conserv-
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