
Algebrai
 Theory of D-modulesJ. BernsteinLe
ture 1. D-modules and fun
tors.x0. Introdu
tion.1. In my le
ture I will dis
uss the theory of modules over rings of di�erential operators (for short D-modules). This theory started about 15 years ago and now it is 
lear that it has very valuable appli
ationsin many �elds of mathemati
s.Names: Sato, Kashiwara, Kawai, Bernstein, Roos, Bj�ork, Malgrange, Beilinson.2. I will speak on an interpretation of the theory, given by Beilinson and myself. We restri
t ourselvesto purely algebrai
 theory of D-modules over any algebrai
ally 
losed �eld k of 
hara
teristi
 0. Satoand Kashiwara worked for analyti
 varieties over C , so as usual, our theories are interlapped like this. I should mention from the very beginning, that some of the most important te
hni
al notions andresults are due to Kashiwara.x1. 1. O-modules.So we �x an algebrai
ally 
losed �eld k of 
har 0. One 
an assume k = C .Let X be an algebrai
 variety (over k), OX the stru
ture sheaf. Let F be a sheaf of OX -modules. I
all F quasi-
oherent sheaf of OX -modules (or OX -module) if it satis�es the 
ondition:(*) If U � X is open aÆne subset, f � O(U); Uf = fu 2 U ��f(u) 6= 0g, then F (Uf ) = F (U)f def= O(Uf )Oo(U)F .By Serre's theorem this 
ondition is lo
al.Let �(OX ) be the 
ategory of O-modules. Lo
ally, i.e., on an open aÆne subspa
e, U � X , I willidentify �(OU ) with the 
ategory of C-modules, where C = O(U).2. Di�erential operators and D-modules.By de�nition, a di�erential operator of order � k on U is a k-linear morphism d : C ! C, su
h that[f̂k : : : [f̂1[f̂o; d℄℄℄ = 0 for any fo; : : : ; fk 2 C, where f̂ : C ! C is an operator of multipli
ation by f .The ring of di�erent operators on U I denote by D(U), O(U) � D(U).Proposition. D(Uf ) = O(Uf ) Oo(U) D(U) = D(U) Oo(U) O(Uf ). Hen
e U ! D(U) is a quasi
oherentsheaf of OX-modules. I denote it by DX and 
all the sheaf of di�erential operators on X.1



2 D-module is by de�nition a sheaf F of left DX -modules whi
h is quasi-
oherent as OX -module. Cat-egory of DX -modules I will denote by �(DX). Lo
ally, on aÆne open set U , �(DU ) �= D(U)-mod.If X is singular, DX 
an be bad (for instan
e, it 
an be not lo
ally noetherian). So from now on Iassume X regular, if I don't say otherwise.Lemma. 1. For ea
h x 2 X there exist an aÆne neighbourhood U � x fun
tions x1; : : : ; xn on U andve
tor �elds �1; : : : ; �n on U su
h that �i(xj) = Æij ; �i generate tangent bundle of X.2. D(U) = O(U)Ok k[�1; : : : ; �n℄.The system (xi; �i) I will 
all the 
oordinate system in DX .3. So I introdu
ed main 
hara
ters of my story and 
an begin the play. It is very useful, though formallynot ne
essary, to have in mind some analyti
 pi
ture, 
orresponding to D-modules. Let me des
ribe it.Analyti
 pi
ture. Suppose we have a system S of p linear di�erential equations on q fun
tions f1 : : : fq,S = f qXj=1dijfj = 0, i = 1; : : : ; pg. Then we 
an assign to S a D-module M given by q generatorse1; : : : ; eq and p-relations M = �D � ej=(+D(P dijej)). In this language, a solution s of the system S insome spa
e of fun
tions F is nothing else than a morphism of D-modules �S :M ! F .Having in mind this pi
ture we 
an start investigation of D-modules.4. Left and right D-modules.Let us denote by �R(DX) the 
ategory of right D-modules. How is it 
onne
ted with �(DX)?Motivation. In analyti
 pi
ture, the spa
e of fun
tions F is a left D-module. But if we 
onsider thespa
e of distributions F �, it has a natural stru
ture of a right D-module. Hen
e systems of di�erentialequations for distributions 
orrespond to right D-modules.But if we �x a di�erential form w of highest degree, we 
an identify F and F � by � 2 F 7�! �w 2 F �.Proposition-De�nition. Let 
 = 
X be the OX -module of di�erential forms of highest degree on X.For any DX-module F denote by 
(F ) the right DX -module, given by 
(F ) = 
 OoX Ff(w 
 u) = fw 
 u; �(w 
 u) = �Lie�(w)
 u� w 
 u:Fun
tor 
 : �(DX)! �R(DX) is an equivalen
e of 
ategories.I prefer to use a slightly di�erent des
ription of 
. Consider the module 
DX = 
(DX) = 
OoX DX .It has two di�erent stru
tures of a right DX -module { one as 
( ), and another from the endomorphismof left DX -module DX , whi
h are given by right multipli
ations. It is easy to 
he
k that there exists aunique involution v of 
DX , whi
h inter
hanges these two stru
tures of right DX -module and is identi
alon 
 � 
DX . By de�nition, 
(F ) = 
DX ODX F:



3The inverse fun
tion 
�1 : �R(DX) ! �(DX) is given by multipli
ation on the module D
X =DX OoX 
�1 = HomDX (
dX ; DX), whi
h has two stru
tures of left D-module.We will work with left D-modules but remember that we 
an go freely to right D-modules and ba
k.5. Inverse image of D-modules.Let � : Y ! X be a morphism of algebrai
 varieties.Motivation. We 
an lift a fun
tion from X to Y . If they satisfy some system of equations S, then theirimages also would satisfy some system of equations S0. Is it possible to des
ribe this system?It turns out that we 
an do some algebrai
 version of this. Namely, I will des
ribe a fun
tor�� : �(DX) �! �(DY ):First do it lo
ally, i.e., suppose X and Y are aÆne, and DX -module is given by a DX = D(X)-moduleM . Then put ��(M) = Oy OoX Mand de�ne the a
tion of DY on ��(M) by(*) f 0(f 
m) = f 0f 
m; �(f 
m) = �f 
m+ f(Xi �(xi)
 �im);where (xi; �i) is a 
oordinate system in DX . It is easy to 
he
k that this de�nition is 
orre
t. Intuitively,it is a version of the 
hain rule.Now we 
an write the general de�nition��(F ) = OY O��(oX) ��(F );where �� is an inverse image in the 
ategory of sheaves and the a
tion of DY is given by (*).Again, it is 
onvenient to rewrite this de�nition slightly. PutDY!X = ��(DX):DY!X is a sheaf on Y , whi
h is DY � ��(DX)-bimodule. By de�nition��(F ) = DY!X O��(DX) ��(F ):Note that as an OY -module ��(F ) 
oin
ides with an inverse image ��(F ), but I would like to savenotation �� for other 
ase.Lemma. If � : Y ! Z is a morphism we have (��)� = ����.



46. Dire
t image of D-modules.Motivation. We 
an integrate fun
tions on Y (say with 
ompa
t support) to get fun
tions on X . Howdoes this a�e
t systems of equations they satisfy?First of all, we should realize that there is no natural way of integrating fun
tions, but there is anatural way of integrating distributions (namely hR E; �i = hE; ��(�)i). Hen
e we should try to 
onstru
ta fun
tor �+ : �R(DY ) �! �R(DX).First 
onsider a lo
al 
ase. Then we 
an put �+(N) = NDY 
DY!X , where N is a right DY -module.Or, in terms of sheaves, �+(H) = ��(HDY 
DY!X );where �� is the dire
t image in the 
ategory of sheaves.Sin
e we 
an freely go from left D-modules to right D-modules and ba
k, we 
an rewrite this fun
torfor left D-modules. Sin
e I prefer to work with left D-modules, let us do it.Put DX!Y = 
(��(D
X)) = 
Y ��(oX)

�1X ). This is a sheaf on Y , whi
h is ��(DX)�DY -bimodule.Now we de�ne the fun
tor �+ : �(DY ) �! �(DX) by (*)(*) �+(H) = ��(DX YODY H):Now let us try to handle the general 
ase (X and Y are not aÆne). Then we immediately run intotrouble. The matter is, that formula (*) des
ribes �+ as a 
omposition of left exa
t fun
tor �� and rightexa
t fun
tor DX Y
, and this 
omposition apparently does not make mu
h sense (formally, it a�e
tsthe 
omposition rule, (��)+ 6= �+�+).De�nition (*) makes some sense for aÆne morphism � [when ��1 (aÆne open subset) is aÆne℄, sin
ein this 
ase �� is an exa
t fun
tor. But in order to study the general 
ase, we should work in derived
ategories.7. D-
omplexes and fun
tors.Hen
eforth I assume all algebrai
 varieties to be quasiproje
tive.Proposition. Category �(DX ) has enough inje
tive and lo
ally proje
tive obje
ts. It has a �nite homo-logi
al dimensin (we will see that it is � 2dimX).De�nition. DX -
omplex is a bounded 
omplex of DX-modules. Corresponding derived 
ategory, whi
h
onsists of DX-
omplexes up to quasi-isomorphisms we denote by D(DX ).DX-
omplexes I will often denote by _F ; _H; : : : . We de�ne fun
tors
 : D(DX) ��! DR(DX)



5L�� : D(DX) �! D(DY ), for � : Y ! X, byL��( _F ) = DY!X LO��(DX)��( _F ):�� : D(DY )! D(DX) by ��( _H) = R��(DX Y LODY _H):Proposition. L(� Æ �)� = L�� Æ L�� (��)� = ����:Usually we will de
ompose � as a produ
t of a lo
ally 
losed imbedding and a smooth morphism. Solet us 
onsider these 
ases in more detail.8. Case of a 
losed imbedding i : Y ! X.Let us de�ne fun
torsi+ : �(DY ) �! �(DX) by i+ = i�(DX!Y 
DYH)i+ : �(DX) �! �(DY ) by i+(F ) = Homi�DX (DX Y 0 i�(F )).Lemma. i+ is left adjoint to i+; i+ is exa
t and i+ is left exa
t.Ri+ = i�0Ri+ = Li�[dim Y � dimX ℄:It turns out that it is quite 
onvenient to use shifted fun
tor L��[dim Y � dim X ℄ whi
h in the 
aseof imbedding 
oin
ides with Ri+. So I put�! = L��[dim Y � dim X ℄ : D(DX) �! D[DY ℄:For any 
losed subset Z � X I denote by �Z(X) the full sub
ategory of �(X), 
onsisting of DX -modulesF su
h that supp F � Z.Theorem (Kashiwara). Let i : Y ! X be a 
losed imbedding. Then fun
tors i+ : �(DY ) ! �Y (DX)and i+ : �Y (DX)! �(DY ) are inverse and de�ne an equivalen
e of 
ategories.This simple te
hni
al statement is very important and very useful.9. D-modules on singular varieites.Let Z be a singular variety. Then the algebra DZ 
an be very bad, so it does not make sense to studymodules over DZ . But using Kashiwara's theorem we 
an de�ne 
ategory of D-modules on Z (whi
h wedenote by �(DZ) though it is not 
ategory of DZ-modules) in the following way.



6 Let us realize Z as a 
losed subvariety of a nonsingular variety X and put by de�nition�(DZ) = �Z(DX):Even if we 
annot realize Z as a subvariety, we 
an do it lo
ally. Now, Kashiwara's theorem implies,that at least lo
ally, �(DZ) is 
orre
tly de�ned. Glueing pie
es together we 
an 
onstru
t �(DZ) globally.We de�ne D(DZ) as derived 
ategory of �(DZ). If Z is a 
losed subset of X , one 
an show thatD(DZ) = DZ(DX) = f _F 2 D(DX)��supp _F � Z; i:e:; _F ��XnZ = 0g:Later I will dis
uss only nonsingular varieties, but all results 
an be transferred to the singular 
ase.10. Proof of Kashiwara's theorem.We should prove that natural morphisms of fun
torsId�(DY ) �! i+i+; i+i+ �! Id�Y (DX )are isomorphisms. It is suÆ
ient to 
he
k lo
ally, so I 
an assume that X is aÆne, Y is given by equationsx1; : : : ; x`. Using indu
tion by ` I 
an assume that Y is given by one equation x. Lo
ally I 
an 
hoose ave
tor �eld � su
h that �(x) = 1, i.e., [�; x℄ = 1.If F 2 �Y (DX), then supp F � Y and sin
e F is quasi
oherent, any se
tion � 2 F is annihilated bylarge powers of x.Consider the operator I = x� and put F i = f�jI� = i�g. Then it is 
lear that x : F i ! F i+1,� : F i ! F i�1, x� : F i ! F i is an isomorphism for i < 0, �x = x� + 1 is an isomorphism for i < �1.Hen
e x : F i ! F i+1 and � : F i+1 ! F i are isomorphisms for i < �1. If � 2 F and x� = 0, thenx�� = �x� � � = ��, i.e., � 2 F�1. By indu
tion on k it is easy to prove, that if xk� = 0, then� 2 F�1� : : :�F�k. Hen
e F = 1Mi=1F�1 = k[�℄Ok F�1 and Ker (x; F ) = F�1. This is the statement ofKashiwara's theorem.



11Le
ture 2.1. Some appli
ations of Kashiwara's theorem.a) Stru
ture of O-
oherent DX-modules.We say that DX -module F is O-
oherent if lo
ally it is a �nitely generated OX -module.Proposition. O-
oherent DX-module F is lo
ally free as OX -module.Proof. Let x 2 X , mX 
orresponding maximal ideal of OX . The spa
e Fx = F=mxF is 
alled the �berof F at x. Sin
e F is 
oherent as OX -module, it is suÆ
ient to 
he
k that dim Fx is a lo
ally 
onstantfun
tion on X . This we 
an 
he
k for restri
tion of F on any nonsingular 
urve C � X . Hen
e we 
anrepla
e X by C and F by i�C!X(F ), and assume that X is a 
urve.If F has a torsion at a point x, then F 
ontains a nonzero subsheaf (ix)+i+x (F ), whi
h is not O-
oherent.Hen
e F has no torsion, and, sin
e X is a 
urve, F is lo
ally free. Q.E.D.Re
all that lo
ally free OX -modules F naturally 
orrespond to the algebrai
 ve
tor bundles E on X(F is a sheaf of se
tions of E). A
tion of DX on F de�nes a 
onne
tion on E, by r�(�) = ��. Sin
e[r� ;r�℄ = r[�;�℄ this 
onne
tion is 
at.This gives an equivalen
e of 
ategoriesf0� 
oherent DX �modulesg = � algebrai
 ve
tor bundles on Xwith 
at 
onne
tion :b) D-modules on proje
tive spa
e.Let V = kn be an aÆne spa
e over k, V � = V n f0g, X = P(V )-
orresponding proje
tive spa
e,pr : V � ! P(V ) the natural proje
tion.Theorem. Fun
tor of global se
tions � : �(DX ) ! Ve
t, F ! �(X;F ) is exa
t, and ea
h DX-moduleF is generated by its global se
tions (i.e., DX 
 �(F )! F is an epimorphism).Remark. Note that �(F ) = Hom�(DX )(DX ; F ). Hen
e theorem simply means that DX is a proje
tivemodule and is a generator of 
ategory �(DX).Proof. For any DX -module F put F� = pr�(F ) 2 �(DV �). This sheaf 
arries a natural a
tion of thehomotety group k� and hen
e the spa
e of se
tions �(F�) is a graded spa
e 1Mn=�1�(F�)n. It is 
learthat �(F ) = �(F�)0 { zero 
omponent. If we denote by I 2 DV the Euler operatorPxi�i, whi
h is anin�nitesimal generator of the group k�, then it de�nes a grading on �(F�), i.e., its a
tion on �(F�)n ismultipli
ation by n.Fun
tor F ! F� is exa
t, hen
e all nonexa
tness 
an 
ome only from the fun
tor �V � . Let usde
ompose it as �V � = �V Æ j+ : �(DV �) ! �(DV ) ! Ve
t, where j : V � ,! V . Sin
e V is aÆne,fun
tor �V is exa
t.



12 Let 0! F1 ! F2 ! F3 ! 0 be an exa
t sequen
e of DX-modules. Then the sequen
e 0! j+(F�1 )!j+(F�2 ) ! j+(F�3 ) ! 0 is exa
t when restri
ted to V �, hen
e its 
ohomologies are sheaves on V ,
on
entrated at 0.By Kashiwara's theorem ea
h sheaf 
on
entrated at 0 is a dire
t sum of many 
opies of a standardDV -module � = P Æ 1[�1; : : : ; �k℄Æ, where xiÆ = 0. This implies that eigenvalues of I on �(�) are equal�n;�n� 1;�n� 2; : : :�. Hen
e the sequen
e0 �! �(F�1 )o �! �(F�2 )o �! �(F�3 )o �! 0is exa
t, sin
e � = �V is an exa
t fun
tor and sheaves, 
on
entrated at 0, do not a�e
t 0-graded part.The statement, that any DX -module is generated by its global se
tions 
an be redu
ed, using exa
tnessof �, to the statement F 6= 0 =) �(F ) 6= 0. This is proved in the same way as exa
tness of �.2. Case of an open imbedding.Let j : V ! X be an open imbedding. Then j� is an exa
t fun
tor of restri
tion, i.e., j! = j�, andj+ is the usual fun
tor of dire
t image in 
ategory of sheaves. Its derived fun
tor Rj+ equals j�. Inparti
ular 
ase when j is an aÆne imbedding the fun
tor j+ is exa
t, i.e., j� = j+.Fun
tor j� is left adjoint to j+ and j�j+ = IdU . For arbitrary DX -module F the kernel and 
okernelof the morphism F ��! j+j�F are supported on the 
losed subset Z = X n U .Let us 
onsider the fun
tor �Z : �(DX) �! �(DX) given by �Z(F ) = f� 2 F jsupp � � Zg. Then wehave an exa
t sequen
e 0 �! �Z(F ) �! F ��! j+j�F:If F is an inje
tive DX -module, � is onto. Hen
e in derived 
ategory we always have an exa
t triangle(*) R�Z( _F ) �! _F �! j�j! _F :We will 
all this triangle a de
omposition of _F with respe
t to (U;Z).Denote by DZ(DX) the full sub
ategory of D(DX), 
onsisting of DX -
omplexes _F su
h that _F jU = 0.Then (*) implies that the natural in
lusion D(�Z(DX))! DZ(DX) is an equivalen
e of 
ategories.3. Base 
hange.Theorem. Consider Cartesian square Z ���! Y??y�� ??y�S ��! Xi.e., Z = Y �X S.Then fun
tors �!�� and ��� ��! : D(DY ) �! D(DS) are naturally isomorphi
.



13Corollary. If Z = ;, i.e., �(S) \ �(Y ) = ;, then �!�� = 0.Sket
h of the proof. It is suÆ
ient to 
onsider 2 
asesi) � is a proje
tion T �X ! Xii) � is a 
losed imbedding.The 
ase (i) is straightforward. In (ii) let U be a 
omplement of S,V = ��1(U) = Y n Z; j : U ! X; �j : V ! Y:We have natural exa
t triangles �����! _H �! _H �! j��j � ! _H���! _F �! _F �! j�j! _F:Put _F = �� _H . Then sin
e we 
learly have a base 
hange for an open subset U , we have ��(j��j � !H) �=j�j! _F . Hen
e, sin
e �� is an exa
t fun
tor in derived 
ategories, we have��(��� ��! _H) �= ���! _F :But ����� �= �����, i.e., ��(��� ��!H) �= ��(�!��H). By Kashiwara's theorem we 
an remove ��, whi
h givesus the base 
hange.4. Let S = fX = n[i=0Xig be a smooth strati�
ation of X , i.e., ea
h Xi is a lo
ally 
losed nonsingularsubvariety, andXo[Xi[: : :[Xj is 
losed for ea
h j. For ea
h i 
onsider the fun
tor Si : D(DX )! D(DX),where Si = rI�r!i, ri : Xi ! X . Then ea
hDX -
omplex _F is glued from Si( _F ), i.e., we haveDX -
omplexes_Fi and exa
t triangles_Fi�1 �! _Fi �! Si( _F ) su
h that_F�1 = 0; _Fn = _F .We will 
all fSi( _F )g the strati�
ation of _F with a

ordan
e to S, and DXi 
omplexes r!i( _F ) 
omponentsof the strati�
ation.5. Case of smooth (submersive) morphism � : Y ! X.For any smooth variety Y let us denote by DRY the de Rham 
omplex 
0Y ! 
1Y ! : : : ! 
kYof sheaves on Y . More generally, if H is a DY -module, we 
an by the same formulae de�ne de Rham
omplex DRY (H) with 
omponents DRY (H)i = 
iY 
oY H .It is 
lear that DRY (DY ) is a 
omplex of right DY -modules. Now, let � : Y ! X be a smoothmorphism. Denote by 
iY=X sheaves of relative i-forms on Y . In the same way as earlier we 
an de�nethe relative de Rham 
omplex DRY=X(H) for any DY -module H .



14Lemma. DRY=X(DY )[k℄ = DX Y as a 
omplex of right DY -modules.Hen
e we 
an 
al
ulate the dire
t image fun
tor �� using this 
omplex:��(H) = R��(DX Y LODY H) = R��(DRY=X(DY )ODY H)[k℄ = R��(DRY=X (H)[k℄:The only trouble here is that this formula de�nes ��(H) only as a 
omplex of O-modules. A
tion ofve
tor �elds in general is des
ribed by quite unpleasant formulae. In the 
ase when � is a proje
tion� : Y = T �X ! X , a
tion of ve
tor �elds is given by their a
tion on H .6. Coherent DX-modules and DX-
omplexes.DX-module F is 
alled 
oherent if lo
ally it is �nitely generated. We'll see that lo
ally DX is anoetherian ring, hen
e any submodule of a 
oherent DX -module F is 
oherent.Any DX -module F is a union of 
oherent OX -submodules L�. If we put F� = DXL� we see that Fis a union of 
oherent DX -submodules F�. It implies:(i) Any 
oherent DX -module F is generated by a 
oherent OX -submodule F o.(ii) Extension prin
iple. If H is a DX -module, U � X an open subset, F � H jU { a 
oherent DU -submodule, then then exists a 
oherent DX -submodule H 0 � H su
h that H 0jU = F . Category of
oherent DX -modules I denote by �
oh(DX).DX-
omplex _F is 
alled 
oherent if all its homology sheaves H i( _F ) are 
oherent DX -modules. Thefull sub
ategory of D(DX) 
onsisting of 
oherent DX -
omplexes I will denote by D
oh(DX).Properties of 
oherent DX -modules implyLemma. The natural morphism D(�
oh(DX)) �! D
oh(DX) is an equivalen
e of 
ategories.7. Dire
t image of proper morphism.Proposition. Let � : Y ! X be a proper morphism. Then ��D
oh(DY ) � D
oh(DX).Proof. If � is a 
losed imbedding, proposition follows from Kashiwara's theorem. So 
onsider the 
asewhen � : Y = P�X �! X is a proje
tion, where P is a proje
tive spa
e.We 
an assume X to be aÆne. Then by 1(b) DY is a generator in �
oh(DY ) and hen
e it is suÆ
ientto prove that ��(DY ) � D
oh(DX ). But��(DY ) = R��(DX YODY DY ) = R��(DXOk 
P)= DXOk R��(
P) = DX [�dim P℄ 2 D
oh(DX ):



158. Good �ltration and singular support of a D-module.Consider the �ltration D0X � D1X � : : : of DX by order of an operator. Ea
h DiX is a 
oherentO-module, D0X = OX and Di �Dj � Di+j .Let � =L1i=0�i; �i = Di=Di�1 be the asso
iated graded sheaf of algebras. Then � is 
ommutativeand naturally isomorphi
 to the algebra of regular fun
tions on the 
otangent bundle T �(X).Let F be a DX -module. A �ltration on F is a �ltration � = fF o � : : : F k � : : : g of F by O-submodules su
h that F = [F j , DiF j � F i+j . The asso
iated graded module F� = �F i=F i�1 has anatural stru
ture of �-module.We say that �ltration � is good if F� is a 
oherent �-module. An equivalent 
ondition is(*) Ea
h F j is a 
oherent OX �module and D1F j = F j+1 for large j:It is 
lear that DX -module F with a good �ltration is 
oherent. Conversely, if F is a 
oherent DX -module, then it is generated by a 
oherent OX -module F o and we 
an de�ne a good �ltration � on F byF j = DjF o.Let F be a 
oherent DX -module. Choose a good �ltration � on F and denote by F� the 
orresponding�-module. As a 
oherent �-module F� has a support supp(F�) � T �(X) (this support is a 
losedsubvariety whi
h is de�ned by the ideal JF � �, equal to the annulator of F� in �).Proposition. Supp(F�) depends only on F and not on a parti
ular 
hoi
e of a �ltration �.We will denote this supp(F�) as S.S.(F ) � T �X and 
all it the singular support or the 
hara
teristi
variety of F .Proof. Let �;	 be two good �ltrations of F . We say that � and 	 are neighbour if F i+1� � F i	 � F i� forall i. For neighbour �ltrations 
onsider the natural morphism F�� �! F�	 and in
lude it in the exa
tsequen
e 0 �! K �! F�� �! F�	 �! C �! 0:It is easy to 
he
k that �-modules K and C are isomorphi
 (only the grading is shifted by 1). This provesthe proposition for neighbour �ltrations.If � and 	 are arbitrary good �ltrations, we de�ne the sequen
e of �ltrations �k by F i�k = F i�+F i+k	 .It is 
lear that �k and �k+1 are neighbour, �k = � for k � 0 and �k = 	 shifted on k for k � 0. Thisproves the proposition.Remarks. 1. Let F be a DK-module with a good �ltration �, H � F a DX -submodule. Consider indu
ed�ltrations on H and F=H . Then we have an exa
t sequen
e 0! H� ! F� ! F=H� ! 0. In parti
ular,�ltration on H is good, i.e., H is DX -
oherent. Also we haveS.S.F = S.S.H [ S.S.(F=H):



16Moreover, let k = dim S.S.F . Then we 
an assign to ea
h k-dimensional 
omponent W of S.S.F somemultipli
ity (the multipli
ity of supp F� at W ; the proposition above really proves that this multipli
ityis well de�ned). Put mk(F ) = sum of multipli
ities of all k-dimensional 
omponents of S.S.F . Thenmk(F ) = mk(H) +mk(F=H):2. It is easy to see that DX -module F is O-
oherent if and only if S.S.F � X � T �X .9. Singular support and fun
tors.Usually it is very diÆ
ult to des
ribe the e�e
t of fun
tors �+; �� on singular support. (For instan
e,these fun
tors usually do not preserve D-
oheren
y.) But there are 2 
ases when it 
an be done.a) Let i : Y ! X be a 
losed imbedding, H 2 �(DY ). Then i+(H) is 
oherent if and only if H is 
oherentand S.S.(i+H) = f(x; �)jx 2 Y; (x; PrT�(X)!T�(Y )�) 2 S.S.Hg:b) Let � : Y ! X be a smooth (i.e., submersive) morphism, F 2 �(DX ). Then ��(F ) is 
oherent if andonly if F is 
oherent andS.S.(��F ) = f(y; �)j� = d��T�(�y)!T�(y)�; (�(y); �) 2 S.S.Fg:Let us note that in these two 
ases one important 
hara
teristi
 of S.S. is preserved. Namely, if wede�ne the defe
t of F as def(F ) = dim S.S.F � dim X , then the defe
t is preserved.10. Theorem on defe
t.Theorem. Let F 6= 0 be a 
oherent DX -module. Then def(F ) � 0, i.e., dim S.S.(F ) � dim X.Proof. Suppose that dim S.S.(F ) < n = dim X . Then F is supported on some proper 
losed subsetZ � X . Restri
ting to an appropriate open subset we 
an assume that Z is not empty and nonsingular. ByKashiwara's theorem F = i+(H), where i : Z ! X , H be a 
oherent DZ-module. Then d(F ) = d(H) < 0and we have a 
ontradi
tion by indu
tion on dim X .11. Holonomi
 D-modules.Coherent DX -module F is 
alled holonomi
 if def(F ) � 0, i.e., dim S.S.(F ) � dim X , i.e., F has\minimal possible size". Holonomi
 modules will play a 
entral role in our dis
ussion.Example. O-
oherent D-modules are holonomi
. The full sub
ategory of �
oh(DX), 
onsisting of holo-nomi
 DX -modules I will denote by Hol(DX).



17Proposition. a) Sub-
ategory Hol is 
losed with respe
t to subquotients and extensions.b) Ea
h holonomi
 DX-module has a �nite length.
) If F is a holonomi
 DX -module, then there exists an open dense subset U � X su
h that F jU isO-
oherent DU -module.Proof. a) and b) easily follow from Remark 1 in 8. Indeed if n = dim X , then mn(H) is an additive
hara
teristi
 on subquotients of F whi
h is stri
tly positive by the theorem on defe
t. Hen
e F has a�nite length. Another proof is based on the existen
e of a 
ontravariant duality D : Hol! Hol, su
h thatD2 = idHol, whi
h will be proved next time. This duality implies that F satis�es together as
ending anddes
ending 
hain 
onditions, i.e., F has a �nite length.In the proof of 
) put S = S.S.(F ) nX . Sin
e F� is a graded �-module, S is invariant with respe
t tohomotety in �bers of T �X . It means that proje
tion p : T �X ! X has at least 1-dimensional �bers onS. Hen
e dim p(S) < dim S � dim X . After repla
ing X by a suitable open subset U � X n p(S) we 
anassume that S = ;, i.e., S.S.F � X , i.e., F is O-
oherent.



221. Main theorem A.We 
all a DX -
omplex _F holonomi
 if all its 
ohomology sheaves H i( _F ) are holonomi
 DX -modules.The full sub
ategory of D(DX ) 
onsisting of holonomi
 DX-
omplexes we denote by Dhol(DX).Remark. I do not know whether the natural in
lusion d(Hol(DX )) ! Dhol(DX) is an equivalen
e of
ategories. In a sense, I do not 
are.Main theorem A. Let � : Y ! X be a morphism of algebrai
 varieties. Then��Dhol(DY ) � Dhol(DX); �!Dhol(DX) � Dhol(DY ):The proof of the theorem is based on the followingKey lemma. Let i : Y ! X be a lo
ally 
losed imbedding, _H � Dhol(DY ). Then i�( _H) � Dhol(DX).We will prove the lemma in the subse
tion 8.2. Proof of theorem A for �!.It is suÆ
ient to 
he
k 2 
asesa) � is a smooth morphism (e.g., � is a proje
tion � : Y = T �X ! X). In this 
ase �� is exa
t and��(Hol) � Hol by 2.9, i.e., �!TDhol(DX) � Dhol(DY ).b) i : Y ! X is a 
losed imbedding. Let j : U = X n Y ! X be the imbedding of the 
omplementaryopen set. For _F 2 Dhol(DX) 
onsider the exa
t trianglei�(i! _F ) �! _F �! j�( _F jU):By the key lemma ki�( _F jU) is a holonomi
 DX -
omplex. Hen
e i�(i! _F ) is also holonomi
. Now sin
ethe fun
tor i� is exa
t and preserves the defe
t of a module, we 
an 
on
lude that i! _F is a holonomi
DY -
omplex.3. Criteria of holonomi
ity.Criterion. Let _F be a DX-
omplex. Then _F is holonomi
 i� _F is 
oherent and for any point x 2 X the�ber (i!x _F ) of F at x is �nite dimensional.Proof. Dire
tion \only i�" follows from 2. To prove \if" dire
tion we need some generalLemma. Let F be a 
oherent DX-module. Then there exists an open dense subset U � X su
h that F jUis lo
ally free as OU -module.Proof. We assume X to be aÆne and irredu
ible. Consider a good �ltration � on F and the asso
iated�-module F�. Sin
e F� is a �nitely generated �-module and � is a �nitely generated algebra over OX ,general results of 
ommutative algebra imply that we 
an repla
eX by an open dense aÆne subset U � X



23su
h that F�jU is free as OU -module (see EGA IV, 6.9.2). Sin
e F� = �Fn� = �(Fn=Fn�1), all modulesFn� are proje
tive as OU -module. This proves the lemma.Now let us prove that a 
oherent DX -
omplex _F with �nite dimensional �bers is holonomi
.We use indu
tion on dim S = supp _F . Choose an open nonsingular subvariety Y � S su
h thatdim(S n Y ) < dim S and put _H = i!Y _F � D(DY ). Then _H is 
oherent and hen
e, repla
ing Y by asuitable open dense subset, I 
an assume that all 
ohomology sheaves of _H are lo
ally free as OY -modules.At ea
h point y 2 Y the �ber i!Y _H = i!Y _F is �nite dimensional. Sin
e i!y up to a shift is equal to Ri�y ,and all 
ohomology sheaves of _H are i�y a
y
li
 (sin
e they are O-free), it simply means that �bers of allthese sheaves are �nite dimensional, i.e., these sheaves are O-
oherent. Hen
e _H is holonomi
 and by thekey lemma i�( _H) is also holonomi
.Repla
ing _F by _F 0 = 
o
one ( _F ! i�( _H)) we see that _F 0 is 
oherent, sin
e _F and i�( _H) are, and allits �bres are �nite dimensional (they are 0 outside of S n Y and 
oin
ide with �bers of _F on S n Y , sin
eby base 
hange i!xi�( _H) = 0 for X =2 Y ). Sin
e dim supp _F 0 < dim S, we see by indu
tion that _F 0 isholonomi
 and hen
e _F is holonomi
.Remark. The proof above proves also the followingCriterion. A DX-
omplex _F is holonomi
 if and only if there exists a smooth strati�
ation S = fX =UXig of X su
h that all 
omponents (see 2.4) Hi = r!i _F � D(DXi) of the 
orresponding strati�
ation of_F are 0-
oherent (i.e., all their 
ohomology sheaves are 0-
oherent).4. Proof of theorem A for ��.Sin
e the 
ase of lo
ally 
losed imbedding is 
ontained in the key lemma, it is suÆ
ient to 
onsidermorphism � : Y = T �X ! X , where T is a 
omplete variety.Let _H 2 Dhol(DY ), _F = ��( _H) 2 D(DX). In order to prove that _F is holonomi
 we use 
riterion>from 3. Sin
e � is proper, _F is 
oherent by 2.7. For any point x 2 X using base 
hange we havei!x _F = (�x)�(i!Tx _H); whereTx = ��1(x) ' T; iTx : Tx �! Y and �x : Tx �! xare natural in
lusion and proje
tion. By 2., i!Tx _H is holonomi
. Sin
e �x is proper, it maps this 
omplexinto a 
oherent 
omplex, i.e., i!x _F is 
oherent, whi
h means �nite dimensional. QED5. Theoremof J.E. Roos.In order to prove the key lemma and introdu
e a duality on holonomi
 modules we need the followingimportant result, due to J.E. Roos, whi
h gives a 
onne
tion between S.S.F. and homologi
al propertiesof F .Consider the DX -module D
X , des
ribed in 1.4, whi
h has a se
ond stru
ture of a left DX -module. Forany 
oherentDX-module F this stru
ture de�nes the stru
ture ofD-module on all sheavesExtiDX (F;D
X ).Note that if F is not 
oherent, these sheaves are not quasi
oherent; we will not 
onsider this 
ase.



24Theorem. 0. F has a �nite resolution by lo
ally proje
tive DX -modules.1. 
odim S.S.(ExtiDX (F;D
X ) � i.2. If 
odim S.S.F = k, then ExtiDX (F;D
X ) = 0 for i < k:We postpone the proof of the theorem until 3.15.Duality fun
tor.Let us de�ne duality D : D
oh(DX)o �! D
oh(DX) byD( _F ) = R HomDX ( _F ;D
X)[dim X ℄:It means that we should repla
e _F by a 
omplex _P of lo
ally proje
tive 
oherent D-modules _P =f�! P�1 �! P0 �! P1 �! : : : g and put D _F = D _P , given by D _Pi = �(P�dim X�i), where �Pj =HomDX (Pj ; D
X).Sin
e � � P ' P , we have DD = Id. Also by de�nitionH i(DF ) = Extdim X+iDX (F;D
X) for F 2 �
oh(DX):Corollary of J.E. Roos's theorem. Let F be a 
oherent DX-module. Thena) 
omplex DF is 
on
entrated in degrees between - dim X and 0, i.e., H i(DF ) = 0 for i =2 [�dim X; 0℄.b) F has a lo
ally proje
tive resolution of the length � dim X.
) F is holonomi
 i� DF is a module, i.e., H i(DF ) = 0 for i 6= 0.d) D gives an autoduality D : Hol(DX)0 �! Hol(DX), i.e., D is a 
ontravariant fun
tor, su
h thatDD = IdHol. In parti
ular, D is exa
t.Proof.a) Put Ei = ExtiDX (F;D
X ). By Roos's theorem def(Ei) = dim S.S.Ei�dim X = dim X�
odim S.S.Eiis negative if i > dim X . Hen
e by theorem of defe
t Ei = 0 for these i, and also for i < 0. Thismeans that H i(DF ) = 0 for i > 0 and for i < �dim X .b) We should prove that lo
ally F has a proje
tive dimension � dim X . So we assume that X is aÆneand F has a �nite proje
tive resolution _P . Dual 
omplex D _P 
onsists of proje
tive modules and by a)is a
y
li
 in degrees i > 0. This means that D _P = _P 0 � _P 00, where _P 0i = 0 for i > 0 and i < �dim Xand _P 00 is a
y
li
. Then D( _P 0) gives a resolution of P of the length � dim X .
) If F is holonomi
, then H i(DF ) = Extdim X+iDX (F;D
X ) = 0 for i < 0 by Roos's theorem, i.e., DFis a module. Conversely, if F 0 = DF is a module, then F = DF 0 again is a module, i.e., F =Extdim XDX (F 0; D
X) and by Roos's theorem 
odim S.S.F � dim X , i.e., dim S.S.F � dim X .d) follows from 
) and DD = Id.Remark. 1. Property 
) was the reason for the normalization [dim X ℄ in the de�nition of duality D.2. It is 
lear from d) that Dhol(DX)) = Dhol(DX).



257. Extension lemma. Let F 2 DX , U must be an open subset of X and H � F ��U a holonomi
DU -module. Then there exists a holonomi
 DX -submodule F 0 � F , su
h that F 0��U = H.Proof. We 
an assume that F is 
oherent and F ��U = H (using extension prin
iple for 
oherent D-modules). Consider DX -
omplex DF . It has 
ohomologies in dimensions � 0. Put G = H0(DF ),F 0 = DG. By Roos's theorem dim S.S.G � dim X , i.e., G is a holonomi
 DX -module. Hen
e F 0 is alsoharmoni
.Natural morphism DF ! G de�nes a morphism F 0 = DG into F = DDF (one 
an 
he
k that thismorphism is an imbedding). It is 
lear that F ��U = H = F 0��U . Hen
e F 0 (or image of F 0 in F ) is theholonomi
 submodule we looked for.8. Proof of the key lemma.Step 1. For 
losed imbeddings the lemma follows from 2.9. Hen
e we 
an assume that i : Y ! X is anopen imbedding. Also we assume that X is aÆne and _H = H is a holonomi
 D-module, generated byone se
tion u. Consider a 
overing of Y by aÆne open subsets Y� and repla
e H by its �Ce
h resolution,
onsisting of (i�)+(H��Y�). This tri
k redu
es the proof to the 
ase when Y is aÆne, i.e, Y has a formY = Xf = fxjf(x) 6= 0g for some regular fun
tion f on X . In this 
ase i� = i+ is an exa
t fun
tor.Step 2. Thus we have an aÆne variety X , a fun
tion f 2 O(X), an open subset i : Y = Xf ,! X and aholonomi
 DY -module H , generated by a se
tion u, and we want to prove that DX -module F = i+(H)is holonomi
.The diÆ
ult point is to prove that F is 
oherent. What does it mean?Sin
e global se
tions F (X) and H(Y ) 
oin
ide and D(Y ) = S0n=�1D(X)fn, we see that DX -moduleF is generated by se
tions fnu for all n 2 Z. Hen
e what we really want to prove is the statement:(*) for all n� 0 fnu 2 D(X)(fn+1u):This follows immediately from the followingLemma on b-fun
tions. There exists a polynomial in n operator d0 2 D(X)[n℄ and a nonzero polyno-mial b0 2 k[n℄ su
h that(**) d0(fn+1u) � b0(n) � (fnu):Step 3. Proof of the lemma.We extend our situation by extension of s
alars k �! K = k(�) { the �eld of rational fun
tions. Denoteby bY , bX extended varieties and de�ne DbY -module bH and DbX -module bF bybH = f� � (K 
k H)� and the stru
ture of DbY -module is given by�(f�h) = ��(f)f � f�hh+ f� � �h, � a ve
tor �eld on Y , bF = i+( bH).



26 The DbY -module bH is holonomi
 and by extension lemma 7, bF 
ontains a holonomi
 DbY -module Esu
h that E��bY = bH , i.e., the quotient DbY -module bF=E is 
on
entrated on X n Y .Consider the se
tion bu = f�u 2 F . Sin
e its image in bF=E is 
on
entrated on X n Y , it is annihilatedby some power of f , i.e., fn0 � bu 2 E. Moreover, sin
e E is holonomi
, it has a �nite length, that impliesthat for some n there exists d 2 DbX su
h that d(fn+1bu) = fneu. In other words, d(fn+1+�u) = fn+�u.Sin
e we 
an everywhere repla
e � by �+ n we have proved the existen
e of d 2 DeX su
h thatd(f�+1u) = f�u:Now we 
an write d = do=bo, do 2 D(X)[�℄; bo 2 k[�℄. Then do; bo satisfy (**).Step 4. Now, when we know that F is 
oherent, let us prove that it is holonomi
.First of all, lemma on b-fun
tions implies that eF = E (notations from the step 3), i.e., eF is holonomi
and is generated by eu. It means that we 
an 
hoose operators d1; : : : ; d` 2 DeX su
h that the set� � T �( eX) of 
ommon zeroes of their symbols �1; : : : ; �` 2 e� has dimension dim � � dim X .For almost any n 2 Z we 
an substitute n 7�! �, and we obtain operators d(n)i 2 DX , their symbols�(n)i 2 � and the set �(n) 2 T �(X) of their 
ommon zeroes, su
h that dim � � dim X and d(n)i (fnu) = 0.These formulae imply that fnu lies in a holonomi
 submodule of F . Sin
e F is generated by fnu for anyn, whi
h is � 0, it implies that F is holonomi
.9. Fun
tors �!; �� and their properties.For any morphism � : Y ! X we de�ne fun
tors�! : Dhol(DY ) �! Dhol(DX)�� : Dhol(DX) �! Dhol(DY ) by�! = D��D�� = D�!D:This de�nition makes sense as �� and �! maps holonomi
 
omplexes into holonomi
.Let us list some properties of �! and ��.1. There exists the 
anoni
al morphism of fun
tors �! ! �� whi
h is an isomorphism for proper �.2. The fun
tor �! is left adjoint to �!.3. The fun
tor �� is left adjoint to ��.4, If � is smooth, �! = ��[2(dim Y � dim X)℄:Let us 
omment on these properties. By de�nition 3. follows from 2.Consider in more detail the 
ase when � = j : Y ! X is an open imbedding. In this 
ase j� = j! =restri
tion on Y , i.e., j� is left adjoint to j� and hen
e j! = Dj�D is left adjoint to j! = Dj�D. Forany _H � Dhol(DY ) the restri
tion of j!( _H) on Y 
oin
ides with _H , that gives a 
anoni
al morphismj! _H ! j� _H , identi
al on Y .



27Thus it remains to prove properties 1 and 2 for proper � and 4 for smooth �. But these propertieshave nothing to do with holonomi
ity, sin
e �� for proper � and �! for smooth � map 
oherent D-modulesinto 
oherent. We will prove them in reasonable generality.10. The duality theorem for a proper morphism.Theorem. Let � : Y ! X be a proper morphism. Then on the 
ategory of 
oherent D-
omplexesa) D�� = ��D andb) �� is left adjoint to �!.Proof of the statement a).Case 1 � is a 
losed imbedding. Let P be a lo
ally proje
tive DY -module. I 
laim that ��(P ) andD��D(P ) are DX-modules and they are 
anoni
ally isomorphi
. It is suÆ
ient to 
he
k this lo
ally, sowe 
an assume that P = DY . In this 
ase it follows from the formulaR HomDX (DX Y ; DX) = DY!X [dim Y � dim X ℄:Case 2 We 
all a DY -module P elementary if it has the form P = DY 
OY ��(V ) for some lo
allyfree OX -module V . Considerations from 2.1b) show that ea
h DY -module has a resolution, 
onsistingfrom elementary modules. I 
laim that for elementary DY -module P DX -
omplexes D��(P )[�dim Y ℄and ��(DP )[�dim Y ℄ are sheaves and they are 
anoni
ally isomorphi
.This fa
t is lo
al, so I 
an assume P = DY .The 
laim follows from the formulaeR HomDY (DY!X) = DX Y [dim X � dim Y ℄DY!X = DX 
k OP; DX Y = DX 
k 
P;R�(OP) = k; R�(
P) = k[�dim P℄:This proves a).11. HomDX and internal Hom.Usually one 
an write homomorphisms of 2 sheaves as global se
tions of the sheaf of homomorphism.Let us look, how to set it for D-modules.Of 
ourse, we have for DX -modules F; F 0 the following formulaHomDX (F; F 0) = �(HomDX (F; F 0))or, in derived 
ategory,(*) RHomDX ( _F ; _F 0) = R�(RHomDX (F; F 0)):This formula, by the way, implies that(**) Homol. dim HomDX � Homol. dim � + Homol. dim HomDX� Homol. dim of �(OX ) + dim X � 2 dim X:But I want to write down RHom in terms of fun
tors, suitable for D-modules.



28De�nition. Fun
tors \!-tensor produ
t" � : D(DX) �D(DX) �! D(DX ) and \internal Hom" Hom:D
oh(DX)o �D(DX) �! D(DX ) are de�ned by_F4� _H = 4!( _F � _H); Hom( _F ; _H) = D _F4� _Hwhere 4 : X �! X �X is the diagonal imbedding, � is the exterior tensor produ
t over k.Proposition. RHomDX ( _F ; _H) = ZXHom( _F ; _H) where ZX : D(DX ) �! D(Ve
t) is the dire
t image ofthe proje
tion of X onto a point.Proof. If F;H are DX -modules, we de�ne DX-module stru
ture on F 
Ox H by Leibniz rule. It is 
learthat 4� = L(
OX )[dim X ℄. (Left derived fun
tor.)Consider the 
ase when F is 
oherent and lo
ally proje
tive. ThenHom(F;H) = HomDX (F;D
X)
OX H = HomDX (F;D
X 
OX H):Let us 
ompute 
X 
DX Hom(F;H). We have
X 
DX Hom(F;H) = 
X 
DX HomDX (F;D
X 
OX H)HomDX (F;
X 
DX (D
X 
OX H)) = HomDX (F;H):Applying this formula we see thatZX Hom(F;H) = R�(
X 
DX Hom(F;H) = R�(HomDX (F;H)) = RHomDX (F;H):General 
ase is proved using resolutions.12. Proof of the duality theorem, statement b).Using base 
hange it is easy to 
he
k the proje
tion formula��( _H4��! _F ) = ��( _H)4� _F :By duality theorem a) we 
an repla
e _H and �� _H on dual 
omplexes and obtain��(Hom( _H; �! _F )) = Hom(��( _H); _F ):Now, applying integral R , we haveRHomDY ( _H; �! _F ) = RHomDX (��( _H); _F ); QED.



2913. Fun
tor �� for smooth morphisms.In order to �nish the proof of property 4 in 9 we should 
he
k, that for a smooth morphism � : Y ! Xand a 
oherent DX -
omplex _F one has D�! _F = �!D _F [�2k℄;where k = dim Y � dim X .As in 10. the proof 
an be redu
ed to the statement, thatRHomDY (DY!X ; DY ) = DX Y [�k℄:This statement is proved by studying the resolution DRY=X(DY ).14. Classi�
ation of irredu
ible holonomi
 modules.Theorem. Let i : Y ! X be an aÆne imbedding with Y -irredu
ible, E an irredu
ible O-
oherent DY -module. Put i!�E = Im(i!E �! i�E):a) i!�E is an irredu
ible holonomi
 module. It is a unique irredu
ible submodule of i�E (and uniqueirredu
ible quotient of i!E). Also it 
an be 
hara
terized as the unique irredu
ible subquotient of i�E (ori!E) whi
h restri
tion to Y is nonzero.b) Any irredu
ible holonomi
 module F has a form i�!E for some aÆne imbedding i : Y ! X withirredu
ible Y and irredu
ible O-
oherent DY -module E.We will denote this irredu
ible holonomi
 module by L(Y;E).
) L(Y;E) = L(Y 0; E0) if and only if �Y = �Y 0 and restri
tions of E and E0 to some subset U � Y \ Y 0,open in Y and in Y 0 are isomorphi
.Remark. We also will use notation L(Y;E) for nonaÆne imbeddings i : Y ! X . In this 
ase we shouldrepla
e i!E and i�E by their zero 
omponents Ho(i!E) and Ho(i�E) = i+E, and denote by L(Y;E) theimage of i!E ! i�E.Proof. a) A

ording to theorem A, DX -modules i!E and i�E are holonomi
, and hen
e have �nite lengths.Let F be any irredu
ible submodule of i�E. Then sin
e Hom(F; i�E) = Hom(i!F;E) 6= 0 and i!Fis irredu
ible, as well as E, we see that E = i!F . Sin
e i!i�E = E, there exists only one irredu
iblesubquotient F of i�E with the property that i!F 6= 0 and in parti
ular, only one irredu
ible submodule.Applying the same arguments to i!E we see that it has a unique irredu
ible quotient.Further, Hom(i!E; i�E) = Hom(E; i!i�E) = k, and the same is true for Hom(i!E;F ), where F is aunique irredu
ible submodule of i�E. This shows, that F = Im(i!E ! i�E).



30b) Let F be an irredu
ible holonomi
 D-module, Y an open aÆne subset of an irredu
ible 
omponent ofSupp F . Then sheaf E = i!(F ) is irredu
ible holonomi
 DY -module and, de
reasing Y , we 
an assume itis O-
oherent. Sin
e Hom(F; i�E) 6= 0, F = L(Y;E).
) The same proof that in a), b).15. Sket
h of the proof of Roos's theorem.Step 1. Let _F = f�! F 1 �! F 2 �! : : : �! F k �!g be a 
omplex of DX-modules, f�1g good �ltrationson Fi, whi
h are 
ompatible with d. Then it indu
es a 
omplex of 
oherent �-modules_F� = f0 �! F 1� �! : : : �! F k� �! 0g:Lemma. H i( _F )� is a subquotient of H i( _F�):In parti
ular, if _F� is exa
t then _F is exa
t. Also S.S.H i( _F ) � Supp H i( _F�).Step 2. The statement of theorem is lo
al, so I will assume X to be small. Let F be a DX -module, � agood �ltration on F; F� the asso
iated graded �-mdoule.Sin
e T �X is regular of dim T �X = 2n, I 
an �nd a free resolution _C = f0! C�2n ! : : : Co ! F� !og of �-mdoule F�. Then it is easy to 
he
k that I 
an lift _C to a 
omplex of free DX-modules with agood �ltration � _P = f0! P�2n ! : : :! Po ! F ! 0g su
h that _P� = _C. Then by step 1, P is a freeresolution of F .Step 3. For any lo
ally proje
tive DX -module P , I denote by �P the DX-module HomDX (P;D
X ). Byde�nition, Ext(F;D
X) are 
al
ulated as homologies of the 
omplex� _P = f0 �! �P0 �! �P�1 �! : : : �! �P�2ng:If we 
onsider the natural �ltration on D
X and indu
ed �ltration on � _P , we will get pre
isely the 
omplex� _C = fHom�(C�i;�)g. (Here I identify 
X with OX .)Now we should apply the fa
t, that the statement of the theorem is true for 
ommutative regular ring�. Applying now step 1 we 
an dedu
e from this 
orresponding statement for DX -modules.



314. Holonomi
 D-modules with regular singularities (RS-modules).It turns out that 
lass of holonomi
 D-modules 
ontains a natural sub
lass, invariant with respe
t toall operations - - sub
lass of RS-modules.1. RS-modules on a 
urve.First of all, let us 
onsider the 
lassi
al 
ase-modules with regular singularities on a 
urve.Let C be a 
urve. Choose a nonsingular 
urve C+, whi
h 
ontains C as an open dense subset and apoint 
 2 C+nC (it plays a role of in�nity for C). Let t be a lo
al parameter at 
, � = �=�t, d = t� 2 DC+ .We denote by D�C the subsheaf of subalgebras of DC+ , generated by d and OC+ . It is 
lear that D�C andelement d in quotient algebra D�=tD� do not depend on the 
hoi
e of a lo
al parameter t.De�nition. a) Let F be an O-
oherent DC-module. We say that F has a RS at the point 
, if its dire
timage F+ = (iC!C+)+F is a union of O-
oherent D�C-submodules.b) We say that an O-
oherent DC-module F is RS, if it has RS at all points on in�nity (i.e., at allpoints 
 2 bC n C of the nonsingular 
ompletion bC of the 
urve C).De�nition. Let F be a holonomi
 DC-module on a 
urve C. We say that F is RS if its restri
tion toan open dense subset U � C is O-
oherent RS DC-module.Lemma. Let C;C 0 be irredu
ible 
urves � : C ! C 0 a dominant (non
onstant) morphism. Then DC0-module F is RS i� �0(F ) is RS; also DC-module H is RS i� ��(H) is RS.2. RS D-modules.De�nition. a) Let F be an O-
oherent DX-module. Then F is RS if its restri
tion to any 
urve is RS.b) Let ?(Y;E) be an irredu
ible holonomi
 DX -module. We say that F is RS if E is RS O-
oherentDY -module.
) A holonomi
 DX -module F is RS if all its irredu
ible subquotients are RS.d) A holonomi
 DX -
omplex _F is RS if all its 
ohomology sheaves are RS.We denote by RS (DX) the full sub
ategory of Hol(DX), 
onsisting of RS-modules, and by DRS(DX)the full sub
ategory of D(DX) 
onsisting of RS DX -
omplexes.Proposition. The 
ategory RS(DX) is 
losed with respe
t to subquotients and extensions.Proof. By de�nition.3. Main Theorem B.Main Theorem B.a) Fun
tors D, ��, �!, �!,�� preserve sub
ategoryDRS(D) � DHol(D):



32b) RS � 
riterionAn holonomi
 DX-
omplex _F is RS if and only if its restri
tion i!C _F to any 
urve C � X is RS.Remark. It would be more natural to take b) as a de�nition of RS DX -
omplexes. But then it wouldbe diÆ
ult to prove \subquotient" properties, like lemma in 2. So we prefer the de�nition, whi
h makesthese properties trivial, and transfers all the diÆ
ulties into the \
ohomologi
al part", where we have anappropriate ma
hinery to work with.The proof of theorem B 
ontains two te
hni
al results both due to P. Deligne. The �rst des
ribes RSproperty of O-
oherent D-modules without referring to 
urves. The se
ond proves that �� preserves RSin a simplest 
ase.4. D-modules with regular singularities along a divisor.Let X be an algebrai
 variety. A regular extension of X is a nonsingular variety X+, 
ontaining X asan open subset, su
h that X� = X+ nX is the divisor with normal 
rossings. We denote by J � OX+the ideal of X� ; T � the subsheaf of ve
tor �elds preserving J and D�X the subalgebra of DX+ , generatedby T � and OX+ .Let F be an O-
oherent DX -module F+ = (iX!X+)+F .Proposition (P. Deligne).. The following 
onditions are equivalent.(i) F+ is a union of O-
oherent D�X submodules(ii) For any extended 
urve� : (C+; C) �! (X+; X) (i.e., � : C+ ! X+, su
h that�(C) � X; �(
) 2 X+ nX) F jC has RS at 
.(iii) For ea
h irredu
ible 
omponent W of X� there is an extended 
urve � : (C+; C) �! (X+; X) whi
hinterse
ts WK transversally at 
 su
h that F jC has RS at 
.Corollary. Suppose X+ is a 
omplete regular extension of X, F and O-
oherent DX-module. Then Fis RS i� F+ is a union of O-
oherent D�X-modules.5. Proof of theorem B.Key lemma. Let �� : Y ! X be a morphism, where Y is a surfa
e, X is a 
urve, X;Y are irredu
ible.Let H be an O-
oherent kRS DY -module. Then for some open subsetX0 � X ��(H)jX0 is RS:We will prove this lemma in 6.We also will use the following version of Hironaka's desingularisation theorem.



33Proposition. Let � : Y ! X be a morphism. Then there exists a regular extension i : Y ! Y + and amorphism �+ : Y + ! X su
h that � = �+oi and �+ is a proper morphism.We will 
all the triple (�+; Y +; i) the resolution of the morphism �.Now let us start the proof of theorem B. By de�nition RS is 
losed with respe
t to the duality D, andhen
e DRS is 
losed with respe
t to D.Proof of theorem B for ��. We have a morphism � : Y ! X and an RS DY -
omplex _H and we wantto prove that ��( _H) is RS. The proof is by indu
tion on the dimension of S = Supp _H. So we assumethat the statement is true for dom S < n. Also we assume that RS-
riterion of theorem B is true fordim F < n.Step 1. Let � = i : Y ! Y + be an in
lusion into a regular extension of Y , H be an RS O-
oherentDY -module. Then i�(H) is RS DY +-module.Sin
e i is an aÆne morphism i�(H) = i+(H). Without loss of generality we 
an assume Y + tobe 
omplete. By Deligne's proposition i+(H) is a union of O-
oherent DY -modules. Hen
e arbitraryirredu
ible subquotient F of i+(H) has this property.Let AZ+ = Supp F . Then it is easy to 
he
k that Z+ is an irredu
ible 
omponent of an interse
tionof some 
omponents of the divisor X� and F = L(Z;E), where Z is an open subset of Z+. It is 
learthat E+ = iZ!Z+(E) is a union of O-
oherent D�Z-modules, sin
e D�Z is a quotient of the algebra D�Yand E+ is a subquotient of H+. Hen
e E is RS, i.e., F is RS.6. Sket
h of the proof of the key lemma.We have a smooth morphism � : Y ! X with dim Y = 2, dim X = 1. Then, after deleting severalpoints from X , we 
an �nd a regular 
omplete extension Y + of Y and a morphism �+ : Y + ! X+, whereX+ is the regular 
ompletion of X , su
h that(i) ��1(X�) � Y � ; where X� = X+ nX; Y � = Y + n Y(ii) ��1(X�) 
ontains all singularities of Y � .Denote by T �Y and T �X sheaves of ve
tor �elds on Y + and X+, whi
h preserve Y � and X� . Conditions(i), (ii) imply that ea
h lo
al ve
tor �eld � 2 T �X 
an be lifted lo
ally to a ve
tor �eld �0 2 T �Y . Thismeans that the natural morphism of sheaves on Y +� : T �Y �! (�+)�T �X = OY + O�+�OX+�+ � (T �X)is epimorphi
.



34 We denote by T �Y=X the kernel of �. Consider sheaves of algebras D�Y and D�X on Y + and X+,generated by T �Y and by T �X and denote by MR(D�Y ), MR(D�X) 
orresponding 
ategories of right D�-modules, and by DR(D�Y ); DR(D�X) derived 
ategories (here I prefer to work with right D-modules as allformulae are simple).Let us put D�Y!X = OY + O�+�OX+�+ � (D�X). This module is D�Y � �+ � (D�X)-bimodule. Using DY!Xlet us de�ne the fun
tor ��� : DR(D�Y ) �! DR(D�X) by��� (E) = R(�+) � (E LOD�Y D�Y!X):Statement. (i) Let H be a right DY -module, H+ = (iY )+H 2 MR(DY +). Then, if we 
onsider H+ asD�Y -module, we have ��� (H+) = ��(H+) as D�X -module:(ii) if E is an O-
oherent D�Y -module, then��� (E) is O-
oherent D�X-module:This statement implies the key lemma. Indeed, if H is an RS O-
oherent (right) DY -module, then H+is an indu
tive limit of OY +-
oherent D�Y -modules and hen
e ��(H+) = ��� (H+) is an indu
tive limit ofOX+-
oherent D�Y -modules, i.e., it is RS.Proof of statement. (i) is an immediate 
onsequen
e of the proje
tion formula and the fa
t that D�Y jY =DY , D�Y!X jY = DY!X .(ii) Consider \De Rham" resolution of DY!X0 �! D�Y OOY T �Y=X �! D�Y �! D�Y!X �! 0:Using it we see that as OX+-module��� (E) = R(�+) � (E 
 T �Y=X �! E):Sin
e �+ is a proper morphism, R�+ maps 
oherent OY +-modules into 
oherent OX+-modules, i.e.,��� (E) is O-
oherent for O-
oherent E.2. The following statement, due to P. Deligne, is a very useful 
riterion of RS.Criterion. Let X+ be an irredu
ible 
omplete normal (maybe singular) variety, X � X+ an opennonsingular subset, E an O-
oherent DX-module. Assume that for any 
omponent W of X� = X+ nX of
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odimension 1 in X+, S is RS along W (i.e., E satis�es 
onditions (i), (ii), (iii) in 4 along W ). ThenE is RS.Unfortunately, the only proof of this 
riterion I know is analyti
. I would like to have an algebrai
proof.8. RS-modules with given exponents.Let us �x some Q-linear subspa
e � � kK, 
ontaining 1. Let C be a 
urve, C+ its regular extension
 2 C+ nC, F an RS O-
oherent DC-module, F+ = (iC)+F . For any O-
oherent D� submodule E � F+we denote by �
(E) the set of eigenvalues of the operator d = t� in the �nite-dimensional spa
e E=tE (tis a lo
al parameter at 
, see 1). Now we de�ne �(F ) =[
;E�(E) for all O-
oherentD�-submodules of F+ and all points 
 2 C+ n C:The set �(F ) is 
alled the set of exponents of F . We say that F is RS� if �(F ) � A. We say thatDX -
omplex _F is RS� if for any 
urve C � X all 
ohomology sheaves of i!C( _F ) are RS�.It is not diÆ
ult to prove that all fun
tors D; ��; �!; �!; �� preserve DRS�(DX ) { one should repeatproofs in 1-5 with minor modi�
ations. Apparently 
riterion 6 is also true for RS� (for � = Q it isproved by Kashiwara). I would like to have an algebrai
 proof of it.



365. Riemann-Hilbert 
orresponden
e.In this le
ture I will work over the �eld k = C of 
omplex numbers.1. Constru
tible sheaves and 
omplexes.LetX be a 
omplex algebrai
 variety. We denote byXan the 
orrespondent analyti
 variety, 
onsideredin 
lassi
al topology.Let CX be the 
onstant sheaf of 
omplex numbers on Xan. We denote by Sh(Xan) the 
ategory ofsheaves of CX -modules, i.e., the 
ategory of sheaves of C -ve
tor spa
es. Derived 
ategory of bounded
omplexes of sheaves we denote by D(Xan). I will 
all sheaves F 2 Sh(Xan) CX -modules and 
omplexes_F 2 D(Xan) CX -
omplexes.I 
all CX -module F 
onstru
tible if there exists a strati�
ationX = UXi ofX by lo
ally 
losed algebrai
subvarieties Xi, su
h that F jXanI is �nite dimensional and lo
ally 
onstant (in 
lassi
al topology). I
all CX -
omplex _F 
onstru
tible if all its 
ohomology sheaves are 
onstru
tible CX -modules. The fullsub
ategory of D(Xan) 
onsisting of 
onstru
tible 
omplexes I denote by D
on(Xan).Any morphism � : Y ! X of algebrai
 varieties indu
es the 
ontinuous map �an : Y an ! Xan and we
an 
onsider fun
tors �!; �� : D(Y an) �! D(Xan)��; �! : D(Xan) �! D(Y an)also we will 
onsider the Verdier duality fun
torD;D(Xan) �! D(Xan):Theorem. Fun
tors ��; �!; ��; �! and Dk preserve sub
ategories D
on( ). On this 
ategories DD = Idand D��D = �!; D��D = �!:2. De Rham fun
tor.Denote by OanX the stru
ture sheaf of the analyti
 variety Xan. We will assign to ea
h OX -module F
orresponding \analyti
" sheaf of OanX -modules F an, whi
h lo
ally is given byF an = OanX MOX F:This de�nes an exa
t fun
tor an :M(OX) �!M(OanX ):In parti
ular, sheaf DanX is the sheaf of analyti
 di�erential operators on Xan, and we have an exa
tfun
tor an :M(DX) �! M(DabX ):Sin
e this fun
tor is exa
t it indu
es a fun
toran : D(DX ) �! D(DanX ):



37De�nition. I de�ne the De Rham fun
torDR : D(DX ) �! D(Xan) = D(Sh(Xan)) byDR( _F ) = 
anXMDanX _F an:Remarks. 1. We know that the 
omplexDR(DX) is a lo
ally proje
tive resolution of the rightDX -module
X . Hen
e DR( _F ) = DRX(DanX )MDanX _F anjnj = DRX( _F an)jnj;where n = dim X .In parti
ular, if F is an O-
oherent DX -module, 
orresponding to bundle with a 
at 
onne
tion andL = F 
at the lo
al system of 
at se
tions of F (in 
lassi
al topology), then by Poin
ar�e lemmaDR(F ) = Ljnj:2. Kashiwara usually uses slightly di�erent fun
tor Sol : D
oh(DX )o ! D(Xan),Sol( _F ) = R HomDanX (F an; OanX ):I 
laim that Sol( _F ) = DR(D _F )j � dim X j. This follows >from the formulaHomDX (P;OX ) = 
XMDX (�P );whi
h is true for any lo
ally proje
tive 
oherent DX -module P , where �P = HomDX (P;D
X ).3. Main Theorem C.a) DR(Dhol(DX)) � D
on(Xan) and on the sub
ategoryDhol D ÆDR = DR ÆD .If _F 2 Dhol(DX); _H 2 D(DY ), thenDr( _F � _H) � DR( _F )�DR( _H):b) On the sub
ategory DRS fun
tor DR 
ommutes with D; ��; �!; �!; �� and �
) DR : DRS(DX)! D
on(Xan) is an equivalen
e of 
ategories.4. First let us 
onsider some basi
 properties of the fun
tor DR.(i) DR 
ommutes with restri
tion to an open subset. For an �etale 
overing � : Y ! X DR 
ommuteswith �� and �!.(ii) There exists a natural morphism of fun
tors � : DR�� ! �� ÆDR whi
h is an isomorphism for proper�.



38 In order to prove this let us 
onsider the fun
tor�an� : D(DanY )! D(DanX ) on the 
ategories of Dan-
omplexes;whi
h is given by �an� ( _F ) = R�an: (DanX YODanY _F ):I 
laim that DR�an� = �� ÆDR. Indeed,DR(�an� ( _F ) = 
anX LMDanX R�an: (DanX Y LMDanY _F ) =R�an: (�:(
anX ) LO�:DanX DanX Y LMDanY _F ) = R�an: (
anY LODanY _F );sin
e �:
X O�:DXDX Y � 
Y as DY -module.Now there exists in general the natural isomorphism of fun
torsan ÆR�:( _F ) �! R�an: (an _F ):This fun
tor is not an isomorphism in general, sin
e dire
t image on the left and on the right are takenin di�erent topologies. But a

ording to Serre's \GAGA" theorem it is an isomorphism for proper �.Combining these 2 observations we obtain (ii).(iii) On the 
ategory of 
oherent DX -
omplexes there exists a natural morphism of fun
tors� : DR ÆD( _F ) �! D ÆDR( _F )whi
h is an isomorphism for O-
oherent _F and whi
h is 
ompatible with the isomorphism ��DR = DR��for proper �, des
ribed in (ii).By de�nition of the duality fun
tor D in the 
ategory D(Xan)D( _S) = RHomCX ( _S;CX jddimX j):(Here CX j2dimX j is the dualizing sheaf of Xan). Hen
e in order to 
onstru
t � it is suÆ
ient to 
onstru
ta morphism �0 : DR ÆD( _F )
CX DR( _F ) �! 
lnwhere 
ln is an inje
tive resolution of CX j2 dim X j.As we saw, DR ÆD( _F ) is naturally isomorphi
 to Sol( _F )jdim X j = RHomDanX ( _F an; OanX )jdim X j.Let us realize DR( _F ) as DRX( _F an) and DR ÆD( _F ) as HomDanX ( _F an; 
lan) where 
l is an inje
tiveresolution of kOX jdim X j. Then we have the natural morphism�00 : DR ÆD( _F )
CX DR( _F ) �! DRX (
lan):



39Sin
e DRX(
lan) � DRX(OanX )jdim X j = CX j2dim X j, we have a morphism DX(
lan) �! 
ln, whi
h
omposition with �00 gives us �0. It is easy to 
he
k that � is an isomorphism for O-
oherent _F . Com-patibility 
ondition with �� it is suÆ
ient to 
he
k for imbeddings and proje
tions P�X ! X , where itis straightforward.(iv) There is a natural morphism of fun
tors
 : DR(F �H) �! DR(F )�DR(H)whi
h is an isomorphism for O-
oherent F .Morphism 
 is de�ned by the natural imbedding 
anX �C 
anY �! 
anX�Y . If F is O-
oherent and H islo
ally proje
tively is an isomorphism by partial Poin
ar�e lemma. This implies the general statement.(v) There is a natural morphism of fun
tors Æ : DR Æ �!( _F ) ! �!DR( _F ) whi
h is an isomorphism forsmooth �.Indeed, for smooth � the isomorphism of these fun
tors 
an be 
onstru
ted on generators { lo
allyproje
tive modules (for instan
e if � : Y = T �X ! X is the proje
tion, then �!( _F ) = OT � _F jdim T j;�!DR( _F ) = CT �DR( _F )j2dim T j = Dr(OT )�DR( _F )jdim T j). Consider the 
ase of a 
losed imbeddingi : Y ! X . Using i�, whi
h 
ommutes with DR, we will identify sheaves on Y with sheaves on X ,supported on Y . Then i�i! _F = R�jY j _F in both 
ategories, whi
h gives the natural morphismÆ : DR Æ i�i!( _F ) = DR(R�jY j _F ) �! R�jY jDR( _F ) = i�i!DR( _F ):5. Proof of Theorem C a) (
ase of holonomi
 
omplexes).Let _F be a holonomi
 DX -
omplex. Consider the maximal Zariski open subset U � X su
h thatDR( _F )jU is 
onstru
tible. Sin
e F is O-
oherent almost everywhere U is dense in X .Let W be an irredu
ible 
omponent of X nU . I want to show that DR( _F ) is lo
ally 
onstant on somedense Zariski open subset W0 �W .Claim. I 
an assume thatX = P�W; W = p�W; where p 2 P;U and V = U [W are open in X .Indeed, 
onsider an �etale morphism of some open subset of W onto an open subset of an aÆne spa
eA k and extend it to an �etale morphism of a neighbourhood of W onto an open subset of A n � A k . By
hanging base from A k to W , I 
an assume that V = U [W is an open subset of X 0 = Pn�k �W . ThenI 
an extend F to some sheaf of X 0.Now 
onsider the proje
tion pr : X = P �W ! W . Sin
e it is a proper morphism DR(pr�( _F )) =pr�DR( _F ). Sin
e pr�( _F ) is a holonomi
DW -
omplex, it is 0-
oherent almost everywhere, i.e.,DR(pr�( _F ))is lo
ally 
onstant almost everywhere.



40 Put _S = DR( _F ) � D(Xan). Repla
ing W on an open subset, we 
an assume that pr�( _S) =DR(pr�( _F )) is lo
ally 
onstant. We have an exa
t triangle._SV ! _S ! _SXnV ; where _SV = (iV ) : ( _S=V ) is extension by zero.By the 
hoi
e of U , _S=V is 
onstru
tible, i.e., _SV is 
onstru
tible. Hen
e pr�( _SXnV ) is 
onstru
tibleand going to an open subset we 
an assume it is lo
ally 
onstant.Now _SXnV is a dire
t sum of 2 sheaves (iW )! _S=W and something 
on
entrated on X n V nW . Thisimplies that _S=W is a dire
t summand of the lo
ally 
onstant sheaf pr�( _SXnV ) and hen
e itself is lo
ally
onstant. QEDNow let _F be a holonomi
 
omplex. PutErr( _F ) = Cone(DR ÆD( _F )! D ÆDR( _F )):This sheaf vanishes on a dense open subset, where _F is 0-
oherent. Also fun
tion Err 
ommutes withdire
t image for proper morphisms. Repeating the arguments above we see that Err = 0, i.e., DR
ommutes with D on Dhol(DX).The same arguments show that DR( _F � _H) = DR( _F )�DR( _H) for holonomi
 _F .Remark. Of 
ourse this proof is simply a variation of Deligne's proof of \Th�eor�emes de �nitude" in SGA4 1/2.6. Proof of theorem C b) for dire
t image..Let us prove that the morphism DR Æ ��( _H)! �� ÆDR( _H)is an isomorphism for H 2 DRS(DY ).Case 1. � = i : Y ! X is a regular extension and H is an RS 0-
oherent DY -module.In this 
ase the proof is straightforward, using the de�nition of RS (it was done by P. Deligne). Namely,lo
ally in the neighbourhood of a point x 2 X nY we 
an 
hoose 
oordinates x1; : : : ; xn su
h that X n Yis given by x1; : : : ; xk. Now we pla
e x by an analyti
 neighbourhood of x. Then H and H+ = i+(H)are determined by monodromy representation of the fundamental group �; (X n Y ). Sin
e this group is
ommutative, we 
an de
ompose H into 1-dimensional subquotients. Using 
ommutativity with � we
an redu
e to the 
ase dim Y = 1. Hen
e as OY -module H+ is generated by one element e, whi
h satis�esthe equation x�(e) = �e. Now dire
t 
al
ulations show thatDR(H+) = (i)�DR(H):



41Case 2. H is an RS 0-
oherent DY -module.In this 
ase we de
ompose � = �+ Æ i, where i : Y ! Y + is a regular extension and �+ : Y + ! X is aproper morphism. DR 
ommutes with i by 
ase 1 and with �+ by 4 (ii).General Case. It is suÆ
ient to 
he
k the statement on generators. Hen
e we 
an assume that _H = i�(�),where i : Z ! Y is a lo
ally 
losed imbedding and � an RS 0-
oherent DZ-module. ThenDR��( _H) = DR(�i)�(�) 
ase 2==== (�i)� DR(�) =��(i�DR(�)) 
ase 2==== ��DR(i�(�)) = ��DR( _H):7. Proof of theorem C b).Fun
tors D; �� and � were 
onsidered in 5 and 6.Fun
tor �!: In 4(v) I have 
onstru
ted the morphism Æ : DR�! ! �!DR whi
h is an isomorphism forsmooth �. Hen
e it is suÆ
ient to 
he
k that RS DY -
omplexes Æ is an isomorphism for the 
ase of a
losed imbedding � = i : Y ! X . Denote by j : V = X n Y ! X the imbedding of the 
omplementaryopen set. Then we have the morphism of exa
t trianglesDR(i�i! _F )�!DR( _F )�!DR(j�( _F jV ))???yÆ ???yid ???y�i�i!DR( _F )�!DR( _F )�!j�(DR( _F )jV ):Sin
e � is an isomorphism by 6, Æ is an isomorphism.Fun
tors �! and ��. They 
ommute with DR sin
e �! = D��D and �� = D�!D.8. Proof of theorem C 
).First of all, let us prove that DR gives an equivalen
e of DRS(DX) with a full sub
ategory ofD
oh(Xan). We should prove that for _F ; _R 2 DRS(DX)DR : HomDRS ( _F ; _H) �! HomD
oh(DR( _F ); DR( _H))is an isomorphism.It turns out that it is simpler to prove the isomorphism of RHom ( ). We have shown in le
ture 3that RHom( _F ; _H) = ZX Hom( _F ; _H) = ZX Hom( _F ; _H) = ZX D _F4� _H:Let us prove that in the 
ategory D
oh(Xan) RHom is given by the same formula we haveR Hom( _R;DS:) = RHom( _R;R Hom(S:;Dual)) =R Hom( _R
 S:;Dual) = D(R: 
 S:) = DR:4�DS::



42Hen
e R Hom( _R;S:) = Z R Hom( _P ; S:) = Z D( _R)4�S::This proves that DR gives an equivalen
e of the 
ategoryDRS(DX) with a full sub
ategory of D
oh(Xan).Now let us prove that this sub
ategory 
ontains all isomorphism 
lasses of D
oh(Xab). Sin
e it is atriangulated full sub
ategory, it is suÆ
ient to 
he
k that it 
ontains generators. As generators we 
an
hoose CX -
omplexes of the form i�(L) where i : Y ! X is an imbedding and L is a lo
al system onY . Sin
e DR 
ommutes with dire
t images it is suÆ
ient to 
he
k that there exists an RS 0-
oherentDY -module � su
h that DR(�) � Ljdim Y j, i.e., su
h that the sheaf of 
at se
tions kof �an is isomorphi
to L. This is a result by P. Deligne.9. Perverse sheaves, interse
tion 
ohomology and su
h.Main theorem C gives us a di
tionary whi
h allows to translate problems, statements and notions fromD-modules to 
onstru
tible sheaves and ba
k.Consider one parti
ular example. The 
ategory DRS(DX) of RS-
omplexes 
ontains the natural fullabelian sub
ategory RS-
ategory of RS-modules.How to translate it in the language of 
onstru
tible sheaves.>From the des
ription of the fun
tor i! for lo
ally 
losed imbedding one 
an immediately get thefollowingCriterion. Let _F be a holonomi
 DX -
omplex. Then _F is 
on
entrated in nonnegative degrees (i.e.,H i( _F ) = 0 for i < 0) if and only if it satis�es the following 
ondition.(�)RS For any lo
ally 
losed imbedding i : Y ! X there exists an open dense subset Y0 � Y su
h thati!( _F )��Y0 is an 0-
oherent DY0-
omplex, 
on
entrated in degrees � 0.In terms of 
onstru
tible 
omplexes this 
ondition 
an be written as(�)
on For any lo
ally 
losed imbedding i : Y ! X there exists an open dense subset Y0 � Y su
h thati!( _S)��Y is lo
ally 
onstant and 
on
entrated in degrees � - dim Y .Thus we have proved the following.Criterion. A 
onstru
tible 
omplex S: lies in the abelian sub
ategoryDR(RS(DX)) i� _S and DS: satisfy (�)
on:Now it is easy to re
ognize this as a de�nition of a perverse sheaf on Xan.Exer
ise. Let L(Y; �) be an irredu
ible RS DX -module. Then DR(L(Y; �))j�dim Y j is the interse
tion
ohomology sheaf, asso
iated to (Y;Lo
. syst. �).Thus interse
tion 
ohomology sheaves just 
orrespond to irredu
ible RS d-modules.



4310. Analyti
 
riterion of regularity.For any point x 2 X I denote by Oanx and Oformx algebras of 
onvergent and formal power series on Xat the point x. For any DX -
omplex _F the natural in
lusion Oanx ! Oformx indu
es a morphism�x : R HomDX ( _F ;Oanx ) �! R HomDX ( _F ;OformX ):We say that _F is good at x if �x is an isomorphism.Proposition. Let _F be an RS OX -
omplex. Then _F is good at all points.Remark. One 
an show that 
onversely, if X is a 
omplete variety and _F a holonomi
 DX -
omplex goodat all points x 2 X , then _F is RS.proof. For lo
ally proje
tive DX -module P we haveHomDX (P;Oformx ) = Homk(P=MxP; k) = i�x (P )�:Hen
e R HomDX ( _F ;Oformx ) = i0x:( _F )�jdim X j. If we put _G = D _F and remember that i�x = Di!xD we seethat R HomDX ( _F ;Oformx ) = i�x( _G)jdim X j:>From the other sideR HomDX ( _F ;Oanx ) = �ber at x of Sol( _F ) = i�xDR( _G)jdim X j:Thus we 
an reformulate our problem, using the DR fun
tor.(*) Holonomi
 DX -
omplex _F is good at x i� for _G = D _F the 
anoni
al morphism�x : i�xDR( _G) �! DR i�x( _G)is an isomorphism.Hen
e the proposition is simply a parti
ular 
ase of theorem C.The proof of the 
onverse statement is based on the 
riterion of RS whi
h is dis
ussed in 4.Le
ture 6. D-modules and the proof of the Kazhdan-Lusztig 
onje
ture.I would like to outline main steps of the proof of the Kazhdan-Lusztig 
onje
ture. Only part of it is
onne
ted with D-modules, but somehow it has the same spirit as the theory of D-modules, as I presentedit. The amazing feature of the proof is that it does not try to solve the problem but just keeps translatingit in languages of di�erent areas of mathemati
s (further and further away from the original problem)until it runs into Deligne's method of weight �ltrations whi
h is 
apable to solve it.So, have a seat; it is going to be a long journey.



44Stop 1. g-modules, Verma modules and su
h.Let g be a semisimple Lie algebra over C , f � g a Carton subalgebra, � f� root system, �+ thesystem of positive roots and n � g 
orresponding nilpotent subalgebra. To ea
h weight � 2 f� we assigng-module M� (it is 
alled Verma module) whi
h is a universal g-module, generated by 1 element f� su
hthat nfX = 0 and f� is an eigenve
tor of f with the eigen
hara
ter � � � (here � is the halfsum ofpositive roots). Ea
h Verma module MX has unique irredu
ible quotient LX , has �nite length and all itsirredu
ible subquotients are of the form L for  2 f�. Hen
e we 
an write in the Grothendie
k groupM� = b� L :Problem. Cal
ulate multipli
ities b� .It is usually more 
onvenient to work with the inverse matrix a� , su
h that L� = �a� M .Also, using elements of the 
enter z(g) � U(g) it is easy to show that a� 6= 0 only if � and  lie onone orbit of the Weyl group. The most interesting 
ase is the W -orbit of (��). So let us put for w 2 W ,Mw =Mw(��); Lw(��) and formulate theProblem A. Cal
ulate matrix aww0 , given byLw = � aww0Mw0 :Stop 2. D-modules, S
hubert 
ells : : : .Now we are going to translate Problem A into the language of D-modules.Let G be an algebrai
 group 
orresponding to g, X the 
ag variety of G, i.e., X = G=B where B is aBorel subgroup of G. The natural a
tion of G, i.e., X = G=B where B is a Borel subgroup of G. Thenatural a
tion of G on X de�nes the morphism U(g) ! DX . Hen
e for ea
h DX -module F the spa
e�(F ) = �(X;F ) of global se
tions of F has the natural stru
ture of g-module. Our translation is basedon the followingTheorem (Beilinson, Bernstein).The fun
tor � : �(DX) ! �(g); F ! �(F ) gives an equivalen
e of the 
ategory �(DX) with the
ategory ��(g) of g-modules with trivial in�nitesimal 
hara
ter �. Here � is the 
hara
ter of the 
enterZ(g) � U(g), i.e., the homomorphism � : Z(g) �! C , 
orresponding to the trivial representation of g.We say that g-module M has in�nitesimal 
hara
ter � if Ker � �M = 0.The proof of the theorem 
onsists of two parts:1. We show that the fun
tor � is exa
t and ea
h DX -module F is generated by its global se
tions. Thisimplies that �(DX) is equivalent to the 
ategory of D(X)-modules, where D(X) = �(X;DX) is thealgebra of global di�erential operators. We already saw that this fa
t is true for proje
tive spa
es (seele
ture 2); though the proof is di�erent, the e�e
t has the same nature.



452. We show that D(X) = U(g)=Ker � � U(g).This is pure lu
k. The proof is just a dire
t 
al
ulation, whi
h uses Kostant's theorem on fun
tions onnilpotent 
one.This theorem allows us to translate all the problems of the representation theory, involving modulesin ��(g) into the language of D-modules. Sin
e Mw; Lw 2 M(g) we 
an translate our problem. Let usindi
ate how to do it.It is easy to prove that on any module M =Mw or Lw the nilpotent algebra n a
ts lo
ally nilpotent.It means that we 
an exponentiate this a
tion and de�ne some algebrai
 a
tion of the 
orrespondingnilpotent subgroup N � G. Hen
e on M we have two a
tions: a
tion � of the Lie algebra g, and therepresentation � of the Lie group N . It is 
lear that M is a (g;N)-module, i.e., it satis�es the following
onditions:(i) Representation � is algebrai
, i.e., M is a union of �nite dimensional algebrai
 representations of thealgebrai
 group N .(ii) Morphism � : g 
M ! M is N -invariant with respe
t to the adjoint a
tion of N on g and a
tion �of N on M .(iii) On Lie algebra n, g a
tions � and d� 
oin
ide.Translating in DX -modules we see that the DX -module F , 
orresponding to M is really a (DX ; N)-module, i.e., it is endowed with an a
tion � of the group N su
h that(i) � is algebrai
, i.e., F is a union of 
oherent O-modules with algebrai
 a
tion of N (
ompatible withthe natural a
tion of N on X).(ii) A
tion � : DX 
 F ! F is N -invariant.(iii) On Lie algebra n of the group N a
tion �, given by the natural morphism n ! Ve
t. �elds on X ,DX 
oin
ides with d�.In parti
ular, it means that Supp F is N -invariant. Using Bruhat de
omposition we see that N hawsa �nite number of orbits on X . Namely,X = [w2W Yw; where Yw = N(wxN );and xN 2 X is the point, 
orresponding to N . If Y is an open orbit of N in the Supp F , then i!Y (F ) is an(DY ; N)-module. Now, sin
e N a
ts transitively on Y it is not diÆ
ult to des
ribe all (DY ; N)-modules.They all are dire
t sums of many 
opies of the standard (DX ; N)-module OY .Let us put �Y = (iY )!(OY ), IY = (iY )�(OY ), LY = Im(�Y ! IY ). Fortunately in this 
ase Y is aÆne(it is isomorphi
 to an aÆne spa
e), so �Y ; IY are (DX ; N)-modules, not 
omplexes.Lemma. uw = uYw 
orresponds to MwLw = LYw 
orresponds to Lw



46 It is not quite trivial to establish. But if we are interested only in the images ofM;L in the Grothendie
kgroup, then it is easy to prove. Indeed, sin
e ea
h Lw is selfdual (sin
e DOY = OY ), in Grothendie
kgroup �w ' Iw. Now it is very easy to dire
tly 
ompute �(X; Iw) as h-module and to show that it
oin
ides with Mw=h. Sin
e an element in the Grothendie
k group is determined by its restri
tion to h,this proves that �w �Mw (in Grothendie
k group).Now we an reformulate the problem.Problem B. Cal
ulate aww0 given by Lw = �aww0�w0 :Stop 3. Constru
tible sheaves.Now we 
an use Hilbert-Riemann 
orresponden
e, I have des
ribed in le
ture 5, and translate thewhole problem into the language of 
onstru
tible sheaves.First of all, let us de�ne the Grothendie
k group K(DRS) of the 
ategory DRS(DX) as a group,generated by RS-
omplexes and relations [ _F ℄ + [ _H ℄ = _G for any exa
t triangle _F ! _G ! _H. It is easyto prove that KRS 
oin
ides with the Grothendie
k group K(RS) of the 
ategory RS(DX); isomorphismx : K(DRS) ! K(RS) is given by Euler 
hara
teristi
 x([ _F ℄) = �(�1)i[H i( _F )℄. In the same wayK(D
on) = K(
on). For simpli
ity we restri
t ourselves to the sub
ategories in K(RS) and K(
on)generated by sheaves, whi
h are N -invariant. Fun
tor DR gives us an isomorphism DR : D(DRS) =K(RS)! K(D
on) = K(
on). Let us look how to translate �w and Lw.By de�nition �w = (iYw)!(Oy). Hen
e DR(�w) = iYw)!(1Yw)[dimYw℄, where 1Y is the trivial sheaf onY . If we denote by Tw the element (iYw)!(1Yw) 2 K(
on), (extension by zero), we see that DR(�w) =(�1)`(w)Tw, where by de�nition `(w) = dimYw (it is the usual length fun
tion on the Weyl group). Aswe dis
ussed in le
ture 5, DR(Lw) = IC(Yw)[dimYw℄, where IC(Y ) is the interse
tion 
ohomology sheafof Y . Let us denote by ICw the element of K(
on), 
orresponding to IC(Yw). Then we 
an reformulateour problem.Problem C. Find aww0 given by ICw = �aww0(�1)`(w)�`(w0)Tw0 :Fast train. Etale 
ohomologies, 
hanging of the �eld, : : : .What we have done so far is the translation of the very diÆ
ult problem A to the not less diÆ
ulttopologi
al problem C. This problem is essentially the problem of 
al
ulating interse
tion 
ohomologiesof the highly singular varieties Y w. The only general method of solving su
h problems known so far isbased on algebrai
 geometry over �nite �elds. So we should go this way.



47Let us �x the strati�
ation � = (X = UYw) and denote by D�(Xan) the sub
ategory of D(Xan),
onsisting of CX -
omplexes, su
h that their 
ohomology sheaves are lo
ally 
onstant along ea
h stratumYw (sin
e Yw is 
ontra
tible, they in fa
t are 
onstant along Yw). Corresponding Grothendie
k group wedenote K�. It is 
lear that K� = Lw2W ZTw, and we just want to �nd the expression of elements ofICw 2 K in this basis.It turns out that we 
an repla
e everywhere 
lassi
al topology by etale topology and all properties of
onstru
tible 
omplexes, 
onstru
tible sheaves, whi
h 
an be expressed in terms of fun
torsD; ��; �!; �!; ��will not 
hange.Sin
e etale topology is de�ned purely algebrai
ally, we now 
an translate the whole situation to arbi-trary �eld.So, we now 
onsider an algebrai
ally 
losed �eld k of arbitrary 
hara
teristi
 p, a 
ag variety X of aredu
tive group G over k, and � = (X = UYw) the Bruhat strati�
ation. We 
onsider derived 
ategoryD� of 
omplexes with 
ohomologies, 
onstant along ea
h stratum Yw. In the Grothendie
k group K� ofthis 
ategory we have a basis Tw and elements ICw, 
orresponding to IC-sheaves, and we want to �ndan expression of ICw via fTw0g.There are theorems, whi
h 
laim that the situation in etale topology over any �eld will be exa
tly thesame as in 
lassi
al topology over C .Remark. In etale topology we are working with `-adi
 sheaves whose stalks are ve
tor spa
es over thealgebrai
 
losure Q` of the �eld of `-adi
 numbers, where ` 6= 
hark. For simpli
ity we will identify Q`with C .In fa
t, `-adi
 sheaves are not quite sheaves and elements of D� are not quite 
omplexes. But it doesnot matter sin
e we 
an work with our fun
tors D; ��; : : : in the usual way.Stop 4. Weil sheaves, Tate twist, Lefs
hetz formula.Now suppose we are working over the �eld k whi
h is the algebrai
 
losure of a �nite �eld Fq . Alsowe assume that our strati�
ation � is de�ned over Fq , i.e., ea
h stratum Yw is given by equations andinequalities with 
oeÆ
ients in Fq . Denote by Frq the automorphism of the �eld k, given by 
 7�! 
q.For any variety Y , de�ned over Fq , Frq indu
es a bije
tion Frq : Y (k)! Y (k), whi
h turns out to be ahomeomorphism in etale topology.Let us 
all Weil sheaf an `-adi
 sheaf F together with the a
tion of Frq on F . In a similar way we
an 
onsider Weil 
omplexes of sheaves. Derived 
ategory of Weil 
omplexes, whose 
ohomologies are
onstant along strata of strati�
ation � we denote DW� , and 
orresponding Grothendie
k group KW� .These de�nitions make sense sin
e ea
h stratum Yw is invariant under Frq .Important example. Let us des
ribe Weil sheaves on the variety pt, 
onsisting of one point. Then anysheaf F is given by a ve
tor spa
e V . Hen
e Weil sheaf on pt is just a Q `-ve
tor spa
e V together with a



48linear transformation Frq : V ! V .De�nition. Tate sheaf L over a point p is de�ned by one-dimensional ve
tor spa
e Q ` together with themorphism Frq : Q ` ! Q `, whi
h is the multipli
ation by q, i.e., Frq(�) = q�.If � : Y ! X is a morphism of algebrai
 varieties, whi
h is de�ned over Fq , it indu
es fun
tors��; �! : DW (Y ) ! DW (X), ��; �! : DW (X) ! DW (Y ). Also there is a fun
tor of Verdier dualityD : DW (X) ! DW (X). All these fun
tors have the same properties, as we have dis
ussed earlier. Butthere is one important improvement:(*) If X is a nonsingular variety, then D(1X) = L�dimX � 1X [2dimX ℄.Here 1X is the trivial sheaf on X , L we 
onsider as a sheaf on X { this is the Tate sheaf lifted from thepoint, and L�k means (L�1)
k.If we forget the a
tion of Fr we have an old formula for dualizing sheaf. So (*) simply means thatthough dualizing sheaf is essentially isomorphi
 to the 
onstant sheaf, this isomorphism is not 
anoni
al;in parti
ular, Frq 
hanges it in qdimX times.Exer
ise. Over a point D(Lk) = L�k.Digression. Weil sheaves and fun
tions.For ea
h variety X , de�ned over Fq denote by X(q) the �nite set, 
onsisting of points of X , whi
h arede�ned over Fq (i.e., whi
h are �xed points of Frq). To ea
h Weil 
omplex _F I will assign the fun
tionfF on the �nite set X(q) given byfF (x) = �(�1)itrFrq(stalkH i( _F )x)(it makes sense sin
e x is Frq invariant). It is 
lear that fF depends only on the 
lass of _F in theGrothendie
k group k.Theorem. Let � : Y ! X be a morphism, de�ned over Fq , and � : Y (q)! X(q) the 
orresponding mapof �nite sets. Then f��( _F ) = ��( _F ); f�!( _H) = Z� f _H ;where _F 2 DW (X); _H 2 DW (Y ) and operations �� and R� on fun
tions are de�ned by��(f)(y) = f(�(y)) (Z� f)(x) = X�(y)=x f(y):Here the �rst statement is triviality and the se
ond is a deep generalization of Lefs
hetz �xed pointstheorem.This theorem 
laims that all usual operations with fun
tions on �nite sets we 
an rewrite on thelevel of Weil sheaves (or at least, their Grothendie
k group). The importan
e of this observation 
an



49be understood if you realize that starting from one Weil 
omplex _F we 
an 
onstru
t the sequen
e offun
tions: to any q0 whi
h is a power of q we will assign the fun
tion fq0F on the set X(q0); and any naturaloperation with all these fun
tions 
an simultaneously be des
ribed by one operation with the 
omplex _F .This notion gives the formal de�nition of the \natural sequen
e of fun
tions" on sets X(q0), q0 = qi.Example. Consider the proje
tion pr : A k ! pt of the aÆne spa
e into a point. Then the theorem impliesthat pr!(aAk ) = Lk[�2k℄, (i.e., in KW pr!(1) = Lk).Indeed, 
omparison with the 
lassi
al 
ase shows that dimH i(pr!(aAk )) = Æi;2k0 , and the theoremdes
ribes the a
tion of Frq on one-dimensional spa
e H2k(pr!(aAk )).Stop 5. Weights and purity.Let _F be a Weil 
omplex over a point p, whi
h is de�ned over some �eld Fq0 . We say that w( _F ) (weightof _F ) is less or equal to ` (notation w( _F ) � `) if for any i all eigenvalues of Frq0 in the spa
e Ho( _F ) haveabsolute value � (q0) `+i2 .(Hey, what do you mean? They are supposed to be `-adi
 numbers.)Well, if you remember, we have identi�ed Q ` with C , so we 
onsider them as 
omplex numbers, andabsolute value is the absolute value. Also Deligne proved that in all interesting 
ases they are algebrai
numbers, so it is all not so bad. And in any 
ase, in what we are going to 
onsider they will always bepowers of q. So do not worry).It is 
lear that this notion does not depend on the 
hoi
e of q0, i.e., if we 
hange q0 by q" = (q0)`, itdoes not a�e
t the 
ondition.Let now _F be a Weil 
omplex on X . Any point x 2 S is de�ned over k = Fq0 , i.e., it is de�ned oversome �eld Fq0 . We say that w( _F ) � ` if for any point x 2 X the stalk _Fx = i�x( _F ) has weight � `.We say that W ( _F ) � ` if W (D _F ) � �`. We say that _F is pure of the weight ` ifW ( _F ) � ` and W ( _F ) � `:Deligne's purity theorem. Let � : Y ! X be a morphism, de�ned over Fq . Then �� and �! de
reaseweight, �� and �! in
rease weight, i.e.,if W ( _F ) � `, then W (�� _F ) � `if W ( _H) � `, then W (�! _H) � `if W ( _H) � `, then W (�� _H) � `if W ( _F ) � `, then W (�! _H) � ` .In parti
ular, proper morphism preserves purity.Gabber's purity theorem. Let Y be an irredu
ible algebrai
 variety, IC(Y ) the interse
tion 
ohomol-ogy Weil sheaf of Y (whi
h 
oin
ides with 1Y on the nonsingular part of Y ). Then IC(Y ) is pure of theweight 0



50Stop 6. He
ke algebra.Get ba
k to 
ag variety X = UYw. Let us 
onsider only 
omplexes, for whi
h all eigenvalues of allmorphisms Frq are powers of q. In general, this 
ategory is not invariant with respe
t to fun
tors, butin our parti
ular 
ase it is.Let A = K(DW (pt)) be the Grothendie
k group of the Weil sheaves over a point. Then A = Z[L�1℄,the algebra of Laurent polynomials.Denote by H the Grothendie
k group K(DW� (X)) of Weil sheaves 
onstant along strata of �. Then itis 
lear that H is a free A-module with the basis fTwg.For any w 2 W the interse
tion 
ohomology sheaf ICw 2 H satis�es the following relations(i) D(ICw) = L�dimYw � ICw(ii) ICw = Tw +�Pw;w0Tw0 ,where Pw;w0 2 A satisfy the 
ondition(*) Pw;w0 = 0 ifYw0 6� Y w and degPw;w0 < 1=2(`(w)� `(w0)):Indeed, as a sheaf ICw is selfdual, and sin
e in a neighborhood of Yw it 
oin
ides with Tw and in thisneighbourhood DTw = L�dimYw � Tw0 we have (i).In order to prove (ii) let us �x some point x 2 Yw0 . Then by de�nition of ICw stalks of all 
ohomologysheaves H i(ICw)x equal 0 when i � dimYw�dimYw0 = `(w)� `(w0). By Gabber's theorem w(ICw) � 0,i.e., the a
tion of Frq onH i(ICw)x has eigenvalues� qi=2. But it is 
lear that �(�1)iTrFrq(H i(ICw)x) =Pw;w0(L = q). This proves (ii).Relations (i) and (ii) gives a hope that if we are able to des
ribe the a
tion of the duality operator Don H , then we would be able to �nd Kazhdan-Lusztig polynomials Pw;w0 . After this we 
an forget aboutWeil stru
ture (i.e., spe
ialize L! 1) and obtain the formulae for aww0 .In order to des
ribe the a
tion of D I will introdu
e on H the stru
ture of an algebra.The motivation for this 
ame from 
omparison with fun
tions. Informally H is a spa
e of fun
tionson X(q) 
onstant on N(q) orbits. There is the natural identi�
ation of N(q) orbits on X(q) withG(q) orbits on X � X(q), so we 
an 
onsider elements of H as Q(q)-invariant fun
tions in 2 variablesf(x; y); x; y 2 X(q). But spa
e of fun
tions in 2 variables has the natural operation-
onvolution, givenby f � h(x; y) = Z F (x; z)h(z; y)dzor, with more details (f � h)(x; y) = Z f(x; u)h(v; y)substitute u=v=zdz:The dis
ussion on the stop 4 allows us immediately to translate this operation in the derived 
ategory,or in the Grothendie
k group.



51First of all, 
onsider the strati�
ation 	 of X�X by G-orbits and 
onsider 
ategory DW	 (X�X) andthe 
orresponding group KW	 . This group is naturally isomorphi
 to H = KW	 ; isomorphism is given byrestri
tion of the sheaves F on X � X to the �ber x0 � X ' X . I will identify H and KW	 using thisisomorphism.Now, let _F ; _H 2 DW	 (X �X). I will de�ne their 
onvolution � by_F �H = pr!��( _F � _H), where� : X �X �X ! X �X �X �X; �(x; z; y) = (x; z; z; y)pr : X �X �X ! X �X; pr(x; z; y) = (x; y).Proposition. H is an asso
iative A-algebra with respe
t to 
onvolution � with identity 1 = Te. If`(ww0) = `(w) + `(w0), then Tw � Tw0 = Tww0.The last statement 
an be 
he
ked straightforwardly. Also it follows from the fa
t that it is true forusual He
ke algebras, whi
h 
onsist of G(q) invariant fun
tions on X(q)�X(q).These formulae imply that H as an A-algebra is generated by elements T�0 for simple re
e
tions �.In order to des
ribe the a
tion of D on H we use the following tri
k due to Lusztig.Proposition. Let � 2 W be a simple re
e
tion. Then for any h 2 H we haveD((T� + 1) � h) = L�1(T� + 1) �Dhalso (T� + 1)2 = (L+ 1)(T� + 1).Corollary. D is the automorphism of the algebra H. On generators T� D is given by DT� = L�1T� +(L�1 � 1).Indeed, the proposition shows that D((T� + 1) � h) = D(T� + 1) �Dh for all h. Sin
e elements T� +1generate H , we have D(f � h) = Df �Dh. The formula D(T� + 1) = L�1(T� + 1) gives the a
tion of Don T� .The proof of the proposition is based on the following observation. Denote by p� the paraboli
 subgroupof G, obtained by adding to the Borel subgroup the simple root, 
orresponding to �, and 
onsider thealgebrai
 variety X� = G=P�. The natural G-equivariant proje
tion p� : X ! X� has �bers, isomorphi
to the proje
tive line P0. For instan
e, if we put x� = p�(x0), then p�1� = Ye [ Y� is the proje
tive linewith the natural strati�
ation. It means that T�+1 
orrespond to the sheaf R� whi
h is the trivial sheafon p�1� (x�), extended by zero. After this it is not diÆ
ult to prove that for any F 2 DW we have(*) R� � F = p��(p�)!F:Now, sin
e p� is proper, dire
t image (p�)! = (p�)� 
ommutes with D. Sin
e p� is smooth, p!� = L�1p��,i.e., Dp�� = Lp��D (lo
ally X ' X� �P0, so p��(F ) = F � 1P0, i.e., Dp��(F ) = DF �D(1P) = LDF � 1P=Lp��(DF ).



52 Also, it is 
lear that (p�)!(R�) ' (L + 1)Tx� (in Grothendie
k group) and p��(Tx�) = R� . This givesthe se
ond formula of the proposition.Last stop. Combinatorial problem.Proposition. (simple 
ombinatori
s).(i) There exists an A-algebra H whi
h is free with basis Tw, su
h thatTw � Tw0 = Tww0 if `(w) � `(w0) = `(ww0):(T� + 1)2 = (L+ 1)(T� + 1) for simple re
e
tions � 2W .(ii) There exists a unique automorphism D of the algebra H, su
h thatD(L) = L�1D(T� + 1) = L�1(T� + 1) for simple re
e
tions � 2W .(iii) For ea
h w 2W there exists a unique element Cw 2 H su
h thatCw = Tw +Pw0�w pw;w0Tw0 ; where Pww0 2 A has degree< 12 (`(w) � `(w0)) and DCw = L�`(w)Cw.In this 
ase Pww0 2 Z[L℄.Example. C� = T� + 1.Polynomials Pw;w0 are 
alled Kazhdan-Lusztig polynomials. Now, if we summarize our dis
ussion, wewill obtain the 
ombinatorial formula for multipli
ity matrix aw;w0 .Answer. aww0 = (�1)`(w)�`(w0)Pww0(1):Some questions.Question 1. Where is the solution? How 
an I �nd these polynomials?In a sense there was no solution. We have just translated our original problem, adding a new parameterL for rigidity, to a 
ombinatorial problem and proved that this problem has a unique solution. Of 
ourse,now we 
an obtain some re
ursive formulae for 
al
ulation of Kazhdan-Lusztig polynomials, but they arequite 
ompli
ated.Whether there exist expli
it formulae for pww0 , I think not, i.e., I think that some type of 
ombinatorial
omplexity is built into the problem.In some 
ases one 
an ge expli
it formulae for P . For instan
e, one 
an 
al
ulate interse
tion 
oho-mology sheaves for S
hubert varieties on usual Grassmannians (see Las
oux and S
hutzenberger). ButZelevinsky showed that in this 
ase it is possible to 
onstru
t small resolutions of singularities. I would saythat if you 
an 
ompute a polynomial P for interse
tion 
ohomologies in some 
ase without a 
omputer,then probably there is a small resolution, whi
h gives it.Question 2. What is the geometri
al meaning of other 
oeÆ
ients of pww0?



53Kazhdan and Lusztig showed that all stalks of the sheaves ICw are pure. Hen
e, if we 
hoose a pointx 2 Yw0 , then dimH i(ICw)x = 0 for odd i= i=2 
oeÆ
ient of pww0 for even i:In the proof they used an observation, that transversal se
tion to Yw0 of the variety Y w is 
oni
al, i.e., ithas an a
tion of k� whi
h 
ontra
ts everything into a point x 2 Yw0 .In general, stalks of IC sheaves are not pure. But there is one more 
ase, 
al
ulated by Vogan andLusztig, namely the strati�
ation of the 
ag variety byorbits of 
omplexi�ed maximal 
ompa
t subgroup,in whi
h stalks always are pure. I do not know why.Untwisting the situation ba
k we 
an 
onne
t H i(ICw) withExti��(g)(Mw0 ; Lw) or, if you want, with H i(n;Lw):Question 3. It is all very ni
e but is it really ne
essary to go into all this business with varieties over�nite �elds? How are �nite �elds 
onne
ted with g-modules?In fa
t, it is not ne
essary. You 
an obtain the same results using Hodge theory for 
onstru
tiblesheaves or, even better, dire
tly Hodge theory for D-modules.One small detail { these theories do not exist yet (there is a Hodge theory for lo
ally 
onstant sheaves{ this is Deligne's theory of variations of Hodge stru
tures { and it is quite powerful, but it is 
learly notenough). But at least we know what to think about.


