Algebraic Theory of D-modules
J. Bernstein
Lecture 1. D-modules and functors.
§0. Introduction.

1. In my lecture I will discuss the theory of modules over rings of differential operators (for short D-
modules). This theory started about 15 years ago and now it is clear that it has very valuable applications
in many fields of mathematics.

Names: Sato, Kashiwara, Kawai, Bernstein, Roos, Bjork, Malgrange, Beilinson.

2. I will speak on an interpretation of the theory, given by Beilinson and myself. We restrict ourselves
to purely algebraic theory of D-modules over any algebraically closed field k of characteristic 0. Sato
and Kashiwara worked for analytic varieties over C, so as usual, our theories are interlapped like this
. I should mention from the very beginning, that some of the most important technical notions and

results are due to Kashiwara.
§1. 1. O-modules.

So we fix an algebraically closed field & of char 0. One can assume k = C.
Let X be an algebraic variety (over k), Ox the structure sheaf. Let F' be a sheaf of Ox-modules. I
call F' quasi-coherent sheaf of Ox-modules (or Ox-module) if it satisfies the condition:

(*)IfU C X is open affine subset, f C O(U),Us = {u € U|f(u) # 0}, then F(Uy) = F(U); € 0(U) Q) F.
o(U)

By Serre’s theorem this condition is local.

Let u(Ox) be the category of O-modules. Locally, i.e., on an open affine subspace, U C X, I will
identify u(Oy) with the category of C-modules, where C' = O(U).

2. Differential operators and D-modules.

By definition, a differential operator of order < k£ on U is a k-linear morphism d : C' — C, such that
[fk e [fl [fo, d]]] =0 for any f,,..., fr € C, where f:C — C is an operator of multiplication by f.
The ring of different operators on U I denote by D(U), O(U) C D(U).

Proposition. D(Uy) = O(Uy) ® D(U) = D(U) ® O(Uy). Hence U — D(U) is a quasicoherent
o(U) o(U)
sheaf of Ox-modules. I denote it by Dx and call the sheaf of differential operators on X.
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D-module is by definition a sheaf F' of left D y-modules which is quasi-coherent as Ox-module. Cat-
egory of Dx-modules I will denote by u(Dx). Locally, on affine open set U, u(Dy) = D(U)-mod.
If X is singular, Dx can be bad (for instance, it can be not locally noetherian). So from now on I

assume X regular, if I don’t say otherwise.

Lemma. 1. For each x € X there exist an affine neighbourhood U D z functions x1,... ,xn on U and

vector fields 01, ... ,0n, on U such that 0;(x;) = 0i5,0; generate tangent bundle of X.

2. D(U) = O(U) Qk[dr, ... ,0nl.
k
The system (z;,0;) I will call the coordinate system in Dy.
3. So I introduced main characters of my story and can begin the play. It is very useful, though formally
not necessary, to have in mind some analytic picture, corresponding to D-modules. Let me describe it.
Analytic picture. Suppose we have a system .S of p linear differential equations on ¢ functions f; ... f,
q
S = {Zd,-jfj =0,i=1,...,p}. Then we can assign to S a D-module M given by ¢ generators
j=1
ei,...,eq, and prelations M = @D -¢;/(+D(3 dije;)). In this language, a solution s of the system S in
some space of functions F' is nothing else than a morphism of D-modules ag : M — F.

Having in mind this picture we can start investigation of D-modules.

4. Left and right D-modules.
Let us denote by u®(Dx) the category of right D-modules. How is it connected with u(Dx)?

Motivation. In analytic picture, the space of functions F' is a left D-module. But if we consider the
space of distributions F'*, it has a natural structure of a right D-module. Hence systems of differential

equations for distributions correspond to right D-modules.

But if we fix a differential form w of highest degree, we can identify F' and F* by ¢ € F — ¢w € F*.
Proposition-Definition. Let Q = Qx be the Ox-module of differential forms of highest degree on X.
For any Dx-module F' denote by Q(F) the right Dx-module, given by Q(F) = Q ® F

ox
flwueu)=fwudu, &weu)=—Lie(w)Ru—wau.
Functor Q : u(Dx) — u®(Dx) is an equivalence of categories.

I prefer to use a slightly different description of 2. Consider the module ®Dy = Q(Dx) = Q ® Dx.

ox

It has two different structures of a right D x-module — one as Q( ), and another from the endomorphism
of left Dx-module Dx, which are given by right multiplications. It is easy to check that there exists a
unique involution v of ®Dx, which interchanges these two structures of right D y-module and is identical
on 2 C ®Dx. By definition,
UF)="Dx ) F.
Dx



The inverse function Q' : uf(Dx) — u(Dx) is given by multiplication on the module D¢ =

Dx ® Q~! = Homp, (®*dx, Dx), which has two structures of left D-module.

ox
We will work with left D-modules but remember that we can go freely to right D-modules and back.

5. Inverse image of D-modules.

Let 7 : Y — X be a morphism of algebraic varieties.

Motivation. We can lift a function from X to Y. If they satisfy some system of equations S, then their

images also would satisfy some system of equations S’. Is it possible to describe this system?

It turns out that we can do some algebraic version of this. Namely, I will describe a functor
7 w(Dx) — p(Dy).

First do it locally, i.e., suppose X and Y are affine, and D x-module is given by a Dx = D(X)-module
M. Then put

72 (M) =0, R M
and define the action of Dy on 72 (M) by
*) f(fom =ffom &fom)=EfomtfQ §w)oam),

where (x;,0;) is a coordinate system in Dx. It is easy to check that this definition is correct. Intuitively,
it is a version of the chain rule.

Now we can write the general definition

m(ox)

where 7" is an inverse image in the category of sheaves and the action of Dy is given by (*).

Again, it is convenient to rewrite this definition slightly. Put
Dy_x = m>(Dx).
Dy _, x is a sheaf on Y, which is Dy — 7" (Dx)-bimodule. By definition
T2 (F) =Dy x @ w(F).
m(Dx)

Note that as an Oy-module 72(F) coincides with an inverse image 7*(F), but I would like to save

notation 7* for other case.

Lemma. If7:Y — Z is a morphism we have (77)> = 78714,



6. Direct image of D-modules.

Motivation. We can integrate functions on Y (say with compact support) to get functions on X. How

does this affect systems of equations they satisfy?

First of all, we should realize that there is no natural way of integrating functions, but there is a
natural way of integrating distributions (namely ([ E, ¢) = (E,n*(¢))). Hence we should try to construct
a functor my : uf*(Dy) — pf'(Dx).

First consider a local case. Then we can put 7 (V) = Np, ® Dy_,x, where N is a right Dy-module.

Or, in terms of sheaves,

4 (H) =7.(Hpy, ® Dy_x),

where 7. is the direct image in the category of sheaves.
Since we can freely go from left D-modules to right D-modules and back, we can rewrite this functor
for left D-modules. Since I prefer to work with left D-modules, let us do it.
Put Dx_y = Q@2 (D)) = Qyr.(ox) ®Qy"). This is a sheaf on Y, which is 7' (Dx) — Dy-bimodule.
Now we define the functor 74 : u(Dy) — u(Dx) by (*)

*) 7 (H) = 7.(Dx ey ) H).
Dy
Now let us try to handle the general case (X and Y are not affine). Then we immediately run into
trouble. The matter is, that formula (*) describes w1 as a composition of left exact functor 7. and right
exact functor Dx . y®, and this composition apparently does not make much sense (formally, it affects
the composition rule, (7m) # T474).

Definition (*) makes some sense for affine morphism 7 [when 77!

(affine open subset) is affine], since
in this case 7. is an exact functor. But in order to study the general case, we should work in derived

categories.

7. D-complexes and functors.

Henceforth I assume all algebraic varieties to be quasiprojective.

Proposition. Category u(Dx) has enough injective and locally projective objects. It has a finite homo-

logical dimensin (we will see that it is < 2dimX ).

Definition. Dx-complex is a bounded complex of Dx-modules. Corresponding derived category, which
consists of Dx -complezes up to quasi-isomorphisms we denote by D(Dx).

D x -complezes I will often denote by F,H,... . We define functors

Q: D(Dx) <> D*(Dx)



L7® :D(Dx) — D(Dy), form:Y — X, by

L
Le®(F) =Dy x @ = (F).
(Dx)

7« : D(Dy) — D(Dx) by
L

m(H) = Rr.(Dxy XH).
Dy

Proposition. L(r on)® = L7® o L2

(TT) s = TuT-

Usually we will decompose 7 as a product of a locally closed imbedding and a smooth morphism. So

let us consider these cases in more detail.

8. Case of a closed imbedding i : Y — X.
Let us define functors
iy pu(Dy) — p(Dx) by iy =i(Dxoy ®pyH)
it :u(Dx) — u(Dy) by it (F)=Hom; py(Dxcy i (F)).

Lemma. i, is left adjoint to i*; i, is exact and i+ is left exact.
R’L.+ - i*’
Rit = Li®[dim Y — dimX].

It turns out that it is quite convenient to use shifted functor Lz®[dim ¥ — dim X|] which in the case

of imbedding coincides with Ri*. So I put
7' = Lr®[dim Y — dim X]: D(Dx) — D[Dy].
For any closed subset Z C X I denote by pz(X) the full subcategory of u(X), consisting of D x-modules

F such that supp F' C Z.

Theorem (Kashiwara). Leti:Y — X be a closed imbedding. Then functors iy : p(Dy) — py (Dx)

and it : uy (Dx) — p(Dy) are inverse and define an equivalence of categories.
This simple technical statement is very important and very useful.

9. D-modules on singular varieites.
Let Z be a singular variety. Then the algebra Dz can be very bad, so it does not make sense to study
modules over Dz. But using Kashiwara’s theorem we can define category of D-modules on Z (which we

denote by u(Dy) though it is not category of Dz-modules) in the following way.



Let us realize Z as a closed subvariety of a nonsingular variety X and put by definition
w(Dz) = pz(Dx).

Even if we cannot realize Z as a subvariety, we can do it locally. Now, Kashiwara’s theorem implies,
that at least locally, u(Dz) is correctly defined. Glueing pieces together we can construct u(Dz) globally.
We define D(Dy) as derived category of u(Dz). If Z is a closed subset of X, one can show that

D(Dy) =Dy(Dx) ={F € D(Dx)|supp F' C Z, .., F|X\Z =0}.

Later I will discuss only nonsingular varieties, but all results can be transferred to the singular case.

10. Proof of Kashiwara’s theorem.

We should prove that natural morphisms of functors
Idu(Dy) — l'+l'+, Z'+l'+ — IdHY(DX)

are isomorphisms. It is sufficient to check locally, so I can assume that X is affine, Y is given by equations
Z1,--.,%¢. Using induction by £ I can assume that Y is given by one equation z. Locally I can choose a
vector field 0 such that d(z) =1, i.e., [0,2] = 1.

If F € uy(Dx), then supp F C Y and since F' is quasicoherent, any section & € F' is annihilated by
large powers of x.

Consider the operator I = x0 and put F = {{|I¢ = i¢}. Then it is clear that x : F¢ — FtL,
0:F" — F=1 20 : F' — F'is an isomorphism for i < 0, z = 20 + 1 is an isomorphism for i < —1.
Hence ¢ : F* — Fi*1 and 9 : F'*! — F? are isomorphisms for ¢ < —1. If ¢ € F and z¢€ = 0, then
0 = 0z — & = =€, ie., £ € 1::0_1. By induction on k it is easy to prove, that if z¥¢ = 0, then

e Fto...oF % Hence F = @F‘l = k[(‘)]@F—l and Ker (z, F) = F~!. This is the statement of
i=1 k
Kashiwara’s theorem.
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Lecture 2.

1. Some applications of Kashiwara’s theorem.

a) Structure of O-coherent Dx-modules.

We say that Dx-module F' is O-coherent if locally it is a finitely generated Ox-module.
Proposition. O-coherent Dx-module F' is locally free as Ox-module.

Proof. Let x € X, myx corresponding maximal ideal of Ox. The space F, = F/m,F is called the fiber
of F' at x. Since F' is coherent as Ox-module, it is sufficient to check that dim Fj is a locally constant
function on X. This we can check for restriction of F' on any nonsingular curve C' C X. Hence we can

replace X by C and F by i5_, 4 (F), and assume that X is a curve.

If F has a torsion at a point z, then F contains a nonzero subsheaf (i, )44, (F'), which is not O-coherent.

Hence F' has no torsion, and, since X is a curve, F' is locally free. Q.E.D.

Recall that locally free Ox-modules F' naturally correspond to the algebraic vector bundles E on X
(F is a sheaf of sections of E). Action of Dx on F' defines a connection on E, by V¢(¢) = {¢. Since
[Ve, Vy] = Ve, this connection is flat.

This gives an equivalence of categories

algebraic vector bundles on X

0 — coherent Dx — modules} =
{ X } { with flat connection
b) D-modules on projective space.
Let V' = k™ be an affine space over k, V* = V \ {0}, X = P(V)-corresponding projective space,

pr: V* — P(V) the natural projection.

Theorem. Functor of global sections T : u(Dx) — Vect, F — I'(X, F) is exact, and each Dx-module
F is generated by its global sections (i.e., Dx @ T'(F) — F is an epimorphism).

Remark. Note that I'(F) = Hom,p,)(Dx, F). Hence theorem simply means that Dx is a projective

module and is a generator of category pu(Dx).

Proof. For any Dx-module F put F» = pr®(F) € p(Dy~). This sheaf carries a natural action of the

o0
homotety group k* and hence the space of sections I'(F2) is a graded space @ L(FA)™. Tt is clear

that ['(F) = I'(F*)° — zero component. If we denote by I € Dy the Euler operator > x;0;, which is an
infinitesimal generator of the group k*, then it defines a grading on I'(F2), i.e., its action on I'(F2)™ is

multiplication by n.
Functor F — F? is exact, hence all nonexactness can come only from the functor I'y.. Let us
decompose it as 'y« = 'y o jy : u(Dy+) = u(Dy) — Vect, where j : V* < V. Since V is affine,

functor I'y is exact.
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Let 0 — F| — F» — F3 — 0 be an exact sequence of D x-modules. Then the sequence 0 — j+(F1A) —
ji(F2) — j(F2) — 0 is exact when restricted to V*, hence its cohomologies are sheaves on V/,
concentrated at 0.

By Kashiwara’s theorem each sheaf concentrated at 0 is a direct sum of many copies of a standard
Dy-module A = Po1[d,...,0]d, where z;0 = 0. This implies that eigenvalues of I on I'(A) are equal

-n,—n—1,—n—2,...—. Hence the sequence
0 — [(FR)Y — T(FP)° — T(FL)° — 0

is exact, since I' = I'y is an exact functor and sheaves, concentrated at 0, do not affect 0-graded part.
The statement, that any D x-module is generated by its global sections can be reduced, using exactness

of ', to the statement F' # 0 = ['(F') # 0. This is proved in the same way as exactness of T'.

2. Case of an open imbedding.

Let j: V — X be an open imbedding. Then j is an exact functor of restriction, i.e., j' = 52, and
Jj+ is the usual functor of direct image in category of sheaves. Its derived functor Rj; equals j.. In
particular case when j is an affine imbedding the functor j is exact, i.e., j. = j+.

Functor j* is left adjoint to j, and j®j, = Idy. For arbitrary D yx-module F the kernel and cokernel
of the morphism F = j, j&F are supported on the closed subset Z = X \U.

Let us consider the functor I'z : u(Dx) — u(Dx) given by I'z(F) = {¢ € F|supp £ C Z}. Then we
have an exact sequence

0 —Ty(F)— F % j,jAF
If F is an injective Dx-module, « is onto. Hence in derived category we always have an exact triangle
*) RTz(F) — F —» j,j'F.
We will call this triangle a decomposition of F with respect to (U, Z).

Denote by D(Dx) the full subcategory of D(Dx), consisting of D x-complexes F such that |y = 0.

Then (*) implies that the natural inclusion D(uz(Dx)) — Dz(Dx) is an equivalence of categories.

3. Base change.

Theorem. Consider Cartesian square

W —
¢
e_

N

i.€e., Z=Y xx8S.

Then functors o'm, and 7,&' : D(Dy) — D(Dg) are naturally isomorphic.
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Corollary. If Z =0, i.e., a(S)N7(Y) =0, then o', = 0.

Sketch of the proof. 1t is sufficient to consider 2 cases
i) ais a projection T'x X — X
ii) a is a closed imbedding.

The case (i) is straightforward. In (ii) let U be a complement of S,
V=rtU)=Y)\7Z j:U—=X, j:V =Y.

We have natural exact triangles

& H — H — jj 'H
a*a!F —F — j*j!F.

Put F = 7, H. Then since we clearly have a base change for an open subset U, we have 7, (j,j ~'H) =

j«7 F. Hence, since 7, is an exact functor in derived categories, we have
T A~ |
(@ H) =2 aa’ F.

~

But m.ft, & iy, i.e., a.(f.d' H) 2 a.(o'm.H). By Kashiwara’s theorem we can remove .., which gives
us the base change.
4. Let S = {X = LnJXz} be a smooth stratification of X, i.e., each X; is a locally closed nonsingular
subvariety, and XOLS(OiU. ..UXj is closed for each j. For each i consider the functor S; : D(Dx) — D(Dx),
where S; = rI*ri», r; + X; = X. Then each D x-complex Fis glued from Si(F'), i.e., we have D x-complexes
F}; and exact triangles

F_y — F, — S,-(F") such that

F,=0, F,=F.
We will call {S;(F)} the stratification of F' with accordance to S, and Dy, complexes r}(F) components

of the stratification.

5. Case of smooth (submersive) morphism 7:Y — X.

For any smooth variety Y let us denote by DRy the de Rham complex Q) — Qi — ... —» OF
of sheaves on Y. More generally, if H is a Dy-module, we can by the same formulae define de Rham
complex DRy (H) with components DRy (H)! = Q% ®,, H.

It is clear that DRy (Dy) is a complex of right Dy-modules. Now, let 7 : ¥ — X be a smooth
morphism. Denote by Q%,/ + sheaves of relative i-forms on Y. In the same way as earlier we can define

the relative de Rham complex DRy, x (H) for any Dy-module H.
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Lemma. DRy,x(Dy)[k] = Dx.y as a complex of right Dy -modules.

Hence we can calculate the direct image functor m, using this complex:

L

mo(H) = Rr.(Dx y@QH) = Rr.(DRy;x (Dy)Q)H)[k] = Rr.(DRy,x (H)[k].
Dy Dy

The only trouble here is that this formula defines 7.(H) only as a complex of O-modules. Action of
vector fields in general is described by quite unpleasant formulae. In the case when 7 is a projection

7:Y =T x X = X, action of vector fields is given by their action on H.

6. Coherent Dx-modules and D x-complexes.

Dx-module F' is called coherent if locally it is finitely generated. We’ll see that locally Dx is a
noetherian ring, hence any submodule of a coherent D x-module F' is coherent.

Any Dx-module F is a union of coherent Ox-submodules L. If we put F, = DxL, we see that F’
is a union of coherent D x-submodules F,,. It implies:

(i) Any coherent Dx-module F is generated by a coherent Ox-submodule F*°.

(ii) Extension principle. If H is a Dx-module, U C X an open subset, F' C H|y — a coherent Dy-
submodule, then then exists a coherent Dx-submodule H' C H such that H'|y = F. Category of
coherent Dx-modules I denote by peon(Dx)-

Dx-complex F is called coherent if all its homology sheaves H ’(F ) are coherent Dx-modules. The
full subcategory of D(Dx) consisting of coherent D x-complexes I will denote by Deon(Dx).

Properties of coherent D x-modules imply

Lemma. The natural morphism D (pcon(Dx)) — Deon(Dx) is an equivalence of categories.

7. Direct image of proper morphism.
Proposition. Let 7 : Y — X be a proper morphism. Then mDeon(Dy) C Deon(Dx).

Proof. If w is a closed imbedding, proposition follows from Kashiwara’s theorem. So consider the case

when 7: Y =P x X — X is a projection, where P is a projective space.

We can assume X to be affine. Then by 1(b) Dy is a generator in pcon(Dy) and hence it is sufficient

to prove that m,(Dy) C Deon(Dx ). But

W*(Dy) == R’]T.(kay®Dy) == R’]T(Dx®ﬂ]p)
Dy k

= DxQRm.(Q) = Dx[—dim P] € Deon(Dx).
k
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8. Good filtration and singular support of a D-module.

Consider the filtration D% C D% C ... of Dx by order of an operator. Each D% is a coherent
O-module, D} = Ox and D¢ DJ C D,

Let ¥ = @;- X, ¢ = D'/D*"! be the associated graded sheaf of algebras. Then ¥ is commutative
and naturally isomorphic to the algebra of regular functions on the cotangent bundle T*(X).

Let F' be a Dx-module. A filtration on F is a filtration ® = {F° C ...FF C ...} of F by O-
submodules such that F' = UFJ, D'FJ C Fi*J. The associated graded module Fy, = ®F!/F"! has a
natural structure of ¥-module.

We say that filtration ® is good if Fyx, is a coherent Y-module. An equivalent condition is
(*) Each F7 is a coherent Ox — module and D' F7 = F/*! for large j.

It is clear that Dx-module F' with a good filtration is coherent. Conversely, if F' is a coherent Dx-
module, then it is generated by a coherent Ox-module F° and we can define a good filtration ® on F' by
Fi = DIF°.

Let F" be a coherent D x-module. Choose a good filtration ® on F' and denote by Fyx, the corresponding
Y-module. As a coherent ¥-module Fx has a support supp(Fx) C T*(X) (this support is a closed
subvariety which is defined by the ideal Jp C X, equal to the annulator of F, in ¥).

Proposition. Supp(Fx) depends only on F and not on a particular choice of a filtration ®.

We will denote this supp(Fx) as S.S.(F)) C T*X and call it the singular support or the characteristic
variety of F.

Proof. Let &,V be two good filtrations of F'. We say that ® and ¥ are neighbour if Fgfl D F}, D F} for
all 7. For neighbour filtrations consider the natural morphism Fyx¢ — Fyy and include it in the exact
sequence

00— K — Fs9 — Foy — C — 0.

It is easy to check that ¥-modules K and C are isomorphic (only the grading is shifted by 1). This proves
the proposition for neighbour filtrations.

If & and ¥ are arbitrary good filtrations, we define the sequence of filtrations ®; by Fj = Fj + Fg"".
It is clear that ®; and ®4; are neighbour, &}, = ® for £ < 0 and ®; = ¥ shifted on k for £ > 0. This

proves the proposition.

Remarks. 1. Let F be a Dg-module with a good filtration ®, H C F a D x-submodule. Consider induced
filtrations on H and F//H. Then we have an exact sequence 0 — Hy, — Fy;, — F//Hy, — 0. In particular,

filtration on H is good, i.e., H is Dx-coherent. Also we have

SS.F= SS.H U SS.(F/H).



16

Moreover, let £k = dim S.S.F. Then we can assign to each k-dimensional component W of S.S.F some
multiplicity (the multiplicity of supp Fx at W; the proposition above really proves that this multiplicity

is well defined). Put my(F) = sum of multiplicities of all k-dimensional components of S.S.F. Then

mk(F) = mk(H) +mk(F/H)

2. It is easy to see that Dx-module F' is O-coherent if and only if S.S.FF C X C T*X.

9. Singular support and functors.

A

Usually it is very difficult to describe the effect of functors 7, 7= on singular support. (For instance,

these functors usually do not preserve D-coherency.) But there are 2 cases when it can be done.

a) Let i : Y — X be a closed imbedding, H € u(Dy). Then iy (H) is coherent if and only if H is coherent
and

SS.(iyH) ={(z,§)|z €Y, (z,Pry(x)»7r-v)§) €S.S.H}.
b) Let 7 : Y — X be a smooth (i.e., submersive) morphism, F' € u(Dx). Then 7 (F) is coherent if and

only if F' is coherent and

S.S.(2F) = {(y, 9| = d* T+ (ry)ys1 ()M (7(y),m) € S.S.F}.

Let us note that in these two cases one important characteristic of S.S. is preserved. Namely, if we

define the defect of F' as def(F) = dim S.S.F — dim X, then the defect is preserved.

10. Theorem on defect.
Theorem. Let F # 0 be a coherent Dx-module. Then def(F) >0, i.e., dim S.S.(F) > dim X.

Proof. Suppose that dim S.S.(F) < n = dim X. Then F is supported on some proper closed subset
Z C X. Restricting to an appropriate open subset we can assume that Z is not empty and nonsingular. By
Kashiwara’s theorem F' =i, (H), where i : Z — X, H be a coherent D z-module. Then d(F) = d(H) < 0

and we have a contradiction by induction on dim X.

11. Holonomic D-modules.
Coherent Dx-module F' is called holonomic if def(F) < 0, i.e., dim S.S.(F) < dim X, i.e., F has

“minimal possible size”. Holonomic modules will play a central role in our discussion.

Ezample. O-coherent D-modules are holonomic. The full subcategory of peon(Dx), consisting of holo-

nomic D x-modules I will denote by Hol(Dx).
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Proposition. a) Sub-category Hol is closed with respect to subquotients and extensions.
b) Each holonomic Dx -module has a finite length.
¢) If F is a holonomic Dx-module, then there exists an open dense subset U C X such that F|U is

O-coherent Dy -module.

Proof. a) and b) easily follow from Remark 1 in 8. Indeed if n = dim X, then m,(H) is an additive
characteristic on subquotients of F' which is strictly positive by the theorem on defect. Hence F' has a
finite length. Another proof is based on the existence of a contravariant duality D : Hol — Hol, such that
D? = idg,), which will be proved next time. This duality implies that F' satisfies together ascending and

descending chain conditions, i.e., F' has a finite length.

In the proof of ¢) put S = S.S.(F) \ X. Since Fx, is a graded ¥-module, S is invariant with respect to
homotety in fibers of 7*X. It means that projection p : T*X — X has at least 1-dimensional fibers on
S. Hence dim p(S) < dim S < dim X. After replacing X by a suitable open subset U C X \ p(S) we can
assume that S =0, i.e., S.S.F C X, i.e., F is O-coherent.
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1. Main theorem A.
We call a Dx-complex F' holonomic if all its cohomology sheaves H’(F) are holonomic D x-modules.

The full subcategory of D(Dx) consisting of holonomic D x-complexes we denote by Dhei(Dx)-

Remark. 1 do not know whether the natural inclusion d(Hol(Dx)) — Dno(Dx) is an equivalence of

categories. In a sense, I do not care.

Main theorem A. Let w:Y — X be a morphism of algebraic varieties. Then

TuDnot(Dy) C Dpoi(Dx), 7 Dpot(Dx) C Dyot(Dy)-

The proof of the theorem is based on the following

Key lemma. Leti:Y — X be a locally closed imbedding, HC Dywoi(Dy). Then z*(H) C Dy (Dx).

We will prove the lemma in the subsection 8.

2. Proof of theorem A for ='.
It is sufficient to check 2 cases

A

a) 7 is a smooth morphism (e.g., 7 is a projection 7 : Y =T x X — X). In this case 72 is exact and

72 (Hol) C Hol by 2.9, i.e., 7' T Dyoi(Dx) C Dyot(Dy).
b)i:Y — X is a closed imbedding. Let j : U = X \ Y — X be the imbedding of the complementary

open set. For Fe Dyo1(Dx) consider the exact triangle
i(i'F) — F —s j(F|U).

By the key lemma ki, (F|U) is a holonomic Dx-complex. Hence i, (i'F) is also holonomic. Now since
the functor i, is exact and preserves the defect of a module, we can conclude that i'F is a holonomic

Dy -complex.
3. Criteria of holonomicity.

Criterion. Let F' be a Dx-complez. Then F is holonomic iff F is coherent and for any point x € X the
fiber (i*.F) of F at x is finite dimensional.

Proof. Direction “only ift” follows from 2. To prove “if” direction we need some general

Lemma. Let F' be a coherent D x-module. Then there ezists an open dense subset U C X such that F|U

is locally free as Oy-module.

Proof. We assume X to be affine and irreducible. Consider a good filtration ® on F' and the associated
Y-module Fx. Since Fy is a finitely generated ¥-module and ¥ is a finitely generated algebra over Ox,

general results of commutative algebra imply that we can replace X by an open dense affine subset U C X



23

such that Fy|U is free as Oy-module (see EGA IV, 6.9.2). Since Fy, = @F% = &(F"/F" 1), all modules

F3} are projective as Oy-module. This proves the lemma.

Now let us prove that a coherent D y-complex F' with finite dimensional fibers is holonomic.

We use induction on dim S = supp F. Choose an open nonsingular subvariety Y C S such that
dim(S\Y) < dim S and put H = i\, ¥ C D(Dy). Then H is coherent and hence, replacing ¥ by a
suitable open dense subset, I can assume that all cohomology sheaves of H are locally free as Oy-modules.

At each point y € Y the fiber i%, H = i}, F is finite dimensional. Since i;, up to a shift is equal to Riﬁ,
and all cohomology sheaves of H are iﬁ acyclic (since they are O-free), it simply means that fibers of all
these sheaves are finite dimensional, i.e., these sheaves are O-coherent. Hence H is holonomic and by the
key lemma, i, (H) is also holonomic.

Replacing F' by F' = cocone (F — i,(H)) we see that F" is coherent, since F' and i.(H) are, and all
its fibres are finite dimensional (they are 0 outside of S\ Y and coincide with fibers of ' on S\ Y, since
by base change i%i.(H) = 0 for X ¢ Y). Since dim supp I’ < dim S, we see by induction that F’ is

holonomic and hence F' is holonomic.
Remark. The proof above proves also the following

Criterion. A Dx-complez F is holonomic if and only if there exists a smooth stratification S = {X =
UX;} of X such that all components (see 2.4) H; = riF' C D(Dx,) of the corresponding stratification of

F are 0-coherent (i.e., all their cohomology sheaves are 0-coherent).

4. Proof of theorem A for r.,.

Since the case of locally closed imbedding is contained in the key lemma, it is sufficient to consider
morphism 7 : Y =T x X — X, where T is a complete variety.

Let H € Dpo(Dy), F =m.(H) € D(Dx). In order to prove that F is holonomic we use criterion
ifrom 3. Since 7 is proper, F' is coherent by 2.7. For any point € X using base change we have

z'l.F = (ww)*(i!TwH), where
T,=7""2)~T, iy, :T, —Y and m,:T, — =z

are natural inclusion and projection. By 2., z'TwH is holonomic. Since 7, is proper, it maps this complex

into a coherent complex, i.e., z'xF is coherent, which means finite dimensional. QED

5. Theoremof J.E. Roos.

In order to prove the key lemma and introduce a duality on holonomic modules we need the following
important result, due to J.E. Roos, which gives a connection between S.S.F. and homological properties
of F.

Consider the D x-module Dgl(, described in 1.4, which has a second structure of a left D x-module. For
any coherent D x-module F this structure defines the structure of D-module on all sheaves Ext}, (F, D%).

Note that if F' is not coherent, these sheaves are not quasicoherent; we will not consider this case.
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Theorem. (. F has a finite resolution by locally projective D x-modules.
1. codim S.S.(Exty, (F,D$)>i.
2. If codim S.S.F =k, then

Exth, (F,D%)=0  for i<k.

We postpone the proof of the theorem until 3.15.

Duality functor.

Let us define duality D : Deon(Dx)° — Deon(Dx) by

D(F) = R Homp, (F, D¥)[dim X].

It means that we should replace F' by a complex P of locally projective coherent D-modules P =
{— P, — P — P, — ...} and put DF = DP, given by DP;, = *(P_dim x—i), where xP; =
Homp, (Pj, D%).

Since * x P ~ P, we have DD = Id. Also by definition

HY(DF) = Ext)™ X" (F,D}) for F € peon(Dx).

Corollary of J.E. Roos’s theorem. Let F' be a coherent Dx-module. Then
a) complex DF is concentrated in degrees between - dim X and 0, i.e., H/(DF) =0 for i ¢ [—dim X,0].
b) F has a locally projective resolution of the length < dim X.
c¢) F is holonomic iff DF is a module, i.e., H(DF) =0 for i # 0.
d) D gives an autoduality D : Hol(Dx)° — Hol(Dx), i.e., D is a contravariant functor, such that

DD = Idye. In particular, D is ezact.

Proof.

a) Put E' = Ext}, (F,DY). By Roos’s theorem def(E?) = dim S.S.E? —dim X = dim X —codim S.S.E’
is negative if i > dim X. Hence by theorem of defect E* = 0 for these i, and also for i < 0. This
means that H(DF) = 0 for i > 0 and for i < —dim X.

b) We should prove that locally F' has a projective dimension < dim X. So we assume that X is affine
and F has a finite projective resolution P. Dual complex D P consists of projective modules and by a)
is acyclic in degrees i > 0. This means that DP = P’ @ P", where P! =0 for i > 0 and i < —dim X
and P" is acyclic. Then D(P') gives a resolution of P of the length < dim X.

¢) If F is holonomic, then H!(DF) = E:Ut(})i? X, DY) = 0 for i < 0 by Roos’s theorem, i.e., DF
is a module. Conversely, if F' = DF is a module, then F = DF’ again is a module, ie., F =
Ewt%?{‘ X(F',D$) and by Roos’s theorem codim S.S.F > dim X, i.e., dim S.S.F < dim X.

d) follows from c) and DD = Id.

Remark. 1. Property c) was the reason for the normalization [dim X] in the definition of duality D.

2. It is clear from d) that Dhol(DX)) = Dhol(DX)-
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7. Extension lemma. Let FF € Dx, U must be an open subset of X and H C F|U a holonomic

Dy -module. Then there exists a holonomic Dx-submodule F' C F, such that F'| = H.

|
Proof. We can assume that F' is coherent and F|U = H (using extension principle for coherent D-
modules). Consider Dx-complex DF. It has cohomologies in dimensions < 0. Put G = H°(DF),
F' = DG. By Roos’s theorem dim S.S.G < dim X, i.e., G is a holonomic D x-module. Hence F' is also

harmonic.

Natural morphism DF — G defines a morphism F' = DG into F' = DDF (one can check that this

morphism is an imbedding). It is clear that F'| = H = F' Hence F' (or image of F' in F) is the

o
holonomic submodule we looked for.

8. Proof of the key lemma.

Step 1. For closed imbeddings the lemma follows from 2.9. Hence we can assume that 7 : Y — X is an
open imbedding. Also we assume that X is affine and H = H is a holonomic D-module, generated by
one section u. Consider a covering of Y by affine open subsets Y, and replace H by its Cech resolution,
consisting of (ia)+(H|Ya). This trick reduces the proof to the case when Y is affine, i.e, Y has a form

Y = Xy = {z|f(z) # 0} for some regular function f on X. In this case i, = iy is an exact functor.

Step 2. Thus we have an affine variety X, a function f € O(X), an open subset i : ¥ = Xy < X and a
holonomic Dy-module H, generated by a section u, and we want to prove that Dx-module F' =i, (H)
is holonomic.

The difficult point is to prove that F' is coherent. What does it mean?

Since global sections F'(X) and H(Y") coincide and D(Y') = U%Z_OOD(X)f”, we see that D x-module

F is generated by sections f™u for all n € Z. Hence what we really want to prove is the statement:
*) foralln <0 f"ue D(X)(f" u).

This follows immediately from the following

Lemma on b-functions. There ezists a polynomial in n operator dy € D(X)[n] and a nonzero polyno-

mial by € k[n] such that
(**) do (" u) = bo(n) - (fu).

Step 3. Proof of the lemma.
We extend our situation by extension of scalars k — K = k() — the field of rational functions. Denote
by ?, X extended varieties and define Dg-module Hand D s-module F by

H = f». (K ®, H)- and the structure of Dg-module is given by

E(f h) = %” - fARh 4 f* - €h, € a vector field on Y, F = iy (H).



26

The Dg;-module H is holonomic and by extension lemma 7, F' contains a holonomic Dg-module E
such that E|? = }AI, i.e., the quotient Dy-module ﬁ/E is concentrated on X \ Y.

Consider the section @ = f*u € F. Since its image in I?'/E is concentrated on X \ Y, it is annihilated
by some power of f,i.e., f* -u € E. Moreover, since E is holonomic, it has a finite length, that implies
that for some n there exists d € D such that d(f**'@) = f*@. In other words, ("' u) = fru.

Since we can everywhere replace A by A + n we have proved the existence of d € D 3 such that
d(fAu) = fu.

Now we can write d = d,/b,, d, € D(X)[A], b, € k[A]. Then d,, b, satisfy (**).

Step 4. Now, when we know that F'is coherent, let us prove that it is holonomic.
First of all, lemma on b-functions implies that F=E (notations from the step 3), i.e., F is holonomic

and is generated by @. It means that we can choose operators dy,...,d; € D)? such that the set

A C T*(X) of common zeroes of their symbols o1,... ,0, € ¥ has dimension dim A < dim X.
()
(3

Ugn) € ¥ and the set A € T*(X) of their common zeroes, such that dim A < dim X and dgn) (f"u) = 0.

For almost any n € Z we can substitute n — A, and we obtain operators d; ' € Dx, their symbols
These formulae imply that f™u lies in a holonomic submodule of F. Since F' is generated by f"u for any

n, which is < 0, it implies that F' is holonomic.

9. Functors 7, 7" and their properties.
For any morphism 7 : Y — X we define functors

m : Dhot(Dy) — Dho(Dx)

Tt Dpot(Dx) — Dhiot(Dy) by

m = D, D

m* = Dr'D.
This definition makes sense as 7, and 7' maps holonomic complexes into holonomic.
Let us list some properties of m and 7*.
There exists the canonical morphism of functors @y — 7, which is an isomorphism for proper 7.
The functor 7 is left adjoint to 7.
The functor 7* is left adjoint to ..

If 7 is smooth, 7' = 7*[2(dim Y — dim X)].

= W =

Let us comment on these properties. By definition 3. follows from 2.

Consider in more detail the case when 7 = j : Y — X is an open imbedding. In this case j* = j' =
restriction on Y, i.e., j* is left adjoint to j, and hence ji = Dj,D is left adjoint to j' = Dj*D. For
any H C Dyo1(Dy) the restriction of j (H ) on Y coincides with H , that gives a canonical morphism

ng — j*H, identical on Y.
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Thus it remains to prove properties 1 and 2 for proper 7« and 4 for smooth w. But these properties
have nothing to do with holonomicity, since , for proper 7 and 7' for smooth 7 map coherent D-modules

into coherent. We will prove them in reasonable generality.
10. The duality theorem for a proper morphism.

Theorem. Let 7w :Y — X be a proper morphism. Then on the category of coherent D-complexes
a) Drr. = 7. D and
b) . is left adjoint to 7.

Proof of the statement a).
Case 1 7 is a closed imbedding. Let P be a locally projective Dy-module. I claim that 7.(P) and
Dn,D(P) are Dx-modules and they are canonically isomorphic. It is sufficient to check this locally, so

we can assume that P = Dy. In this case it follows from the formula
R HOIIIDX (DXHy,Dx) = Dyﬂx[dim Y — dim X]

Case 2 We call a Dy-module P elementary if it has the form P = Dy ®¢, 72(V) for some locally
free Ox-module V. Considerations from 2.1b) show that each Dy-module has a resolution, consisting
from elementary modules. I claim that for elementary Dy-module P D x-complexes D7, (P)[—dim Y]
and 7, (DP)[—dim Y] are sheaves and they are canonically isomorphic.

This fact is local, so I can assume P = Dy.

The claim follows from the formulae

R Homp, (Dy_x) = Dxy[dim X — dim Y]

Dy_,x = Dx ®; Op, Dx.y = Dx ® Qp,

RT'(Op) =k, RI(Qp) = k[—dim P].

This proves a).
11. Homp, and internal Hom.
Usually one can write homomorphisms of 2 sheaves as global sections of the sheaf of homomorphism.

Let us look, how to set it for D-modules.

Of course, we have for Dx-modules F, F' the following formula
Homp, (F,F') = I'(Homp, (F, F"))
or, in derived category,
(*) RHomp, (F,F') = RU(RHomp, (F, F")).

This formula, by the way, implies that

Homol. dim Homp, < Homol. dim I' + Homol. dim Homp
(**)

< Homol. dim of u(Ox) + dim X < 2 dim X.

But I want to write down RHom in terms of functors, suitable for D-modules.
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Definition. Functors “I-tensor product” X : D(Dx) x D(Dx) — D(Dx) and “internal Hom” Hom:
Deon(Dx)° x D(Dx) — D(Dx) are defined by

FAH =A(FXRH), Hom(F,H)=DFAH

where A : X — X x X is the diagonal imbedding, X is the exterior tensor product over k.

Proposition. RHomp, (F,H) = / Hom(F,H) where / : D(Dx) — D(Vect) is the direct image of
X X
the projection of X onto a point.

Proof. If F, H are Dx-modules, we define Dx-module structure on F' ®o, H by Leibniz rule. It is clear

that A = L(®0o, )[dim X]. (Left derived functor.)

Consider the case when F' is coherent and locally projective. Then
Hom(F, H) = Homp, (F, D%) ®0, H = Homp, (F, D} ®0, H).

Let us compute Qx ®p, Hom(F, H). We have
Qx ®py, Hom(F, H) = Qx ®p, Homp, (F, D @0, H)

Homp, (F,Qx ®p, (D% ®o, H)) = Homp, (F, H).

Applying this formula we see that
/ Hom(F,H) = RI'(Q'x ®p, Hom(F, H) = RI'(Homp, (F, H)) = RHomp, (F, H).
X

General case is proved using resolutions.

12. Proof of the duality theorem, statement b).

Using base change it is easy to check the projection formula
T (HAT'F) = 1, (H)AF.
By duality theorem a) we can replace H and 7, H on dual complexes and obtain
7.(Hom(H, 7' F)) = Hom(m, (H), F).
Now, applying integral [, we have
RHomp, (H,n'F) = RHomp, (. (H), F),

QED.
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13. Functor 7* for smooth morphisms.
In order to finish the proof of property 4 in 9 we should check, that for a smooth morphism 7 : Y — X

and a coherent D x-complex F one has
Dr'F = o' DF[-2k],

where k£ = dim Y — dim X.
As in 10. the proof can be reduced to the statement, that

RHOIIIDY (Dy_,)g Dy) = DX<_y[—k].

This statement is proved by studying the resolution DRy, x (Dy ).
14. Classification of irreducible holonomic modules.

Theorem. Leti:Y — X be an affine imbedding with Y -irreducible, E an irreducible O-coherent Dy -

module. Put

B = Im(igE — i*E).

a) i E is an irreducible holonomic module. It is a unique irreducible submodule of i.E (and unique
irreducible quotient of iE). Also it can be characterized as the unique irreducible subquotient of i.E (or

iWE) which restriction to Y is nonzero.

b) Any irreducible holonomic module F' has a form i.E for some affine imbedding i : ¥ — X with

wrreducible Y and irreducible O-coherent Dy -module E.
We will denote this irreducible holonomic module by L(Y, E).

¢) L(Y,E) = L(Y',E'") if and only if Y = Y’ and restrictions of E and E' to some subset U C Y NY”,

open in Y and in Y’ are isomorphic.

Remark. We also will use notation L(Y, E) for nonaffine imbeddings ¢ : Y — X. In this case we should
replace ©1E and i, E by their zero components H°(i1F) and H°(i,E) = i E, and denote by L(Y, E) the

image of itE — i, E.
Proof. a) According to theorem A, D x-modules i1 E and i, E are holonomic, and hence have finite lengths.

Let F be any irreducible submodule of i,E. Then since Hom(F,i,E) = Hom(i'F,E) # 0 and i'F
is irreducible, as well as E, we see that E = i'F. Since i'i,E = F, there exists only one irreducible
subquotient F of i, F with the property that i'F # 0 and in particular, only one irreducible submodule.

Applying the same arguments to i1 we see that it has a unique irreducible quotient.

Further, Hom(i\E,i,E) = Hom(E,i'i,E) = k, and the same is true for Hom(i1E, F), where F is a
unique irreducible submodule of i, E. This shows, that F' = Im(iE — i, E).
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b) Let F be an irreducible holonomic D-module, Y an open affine subset of an irreducible component of
Supp F. Then sheaf E = i'(F) is irreducible holonomic Dy-module and, decreasing Y, we can assume it

is O-coherent. Since Hom(F,i,.E) #0, F = L(Y, E).

c¢) The same proof that in a), b).

15. Sketch of the proof of Roos’s theorem.

Step 1. Let F = {— F' — F? — ... — F* —} be a complex of D x-modules, {¢, } good filtrations

on F;, which are compatible with d. Then it induces a complex of coherent Y-modules

Fs={0— F, — ... — Ft —0}.

Lemma. H(F)y is a subquotient of H'(FY).
In particular, if Fy is exact then F is exact. Also S.S.H*(F)) C Supp H(F%).

Step 2. The statement of theorem is local, so I will assume X to be small. Let F' be a Dx-module, ¢ a

good filtration on F, Fy; the associated graded X-mdoule.

Since T*X is regular of dim 7" X = 2n, I can find a free resolution C = {0=>Cs,—>...C, = Fx —
o} of ¥-mdoule Fy;. Then it is easy to check that I can lift C to a complex of free D x-modules with a
good filtration ¢ P = {0 > Py, »...— P, - F — 0} such that Py, = C. Then by step 1, P is a free

resolution of F.
Step 3. For any locally projective Dx-module P, I denote by *P the Dx-module Homp, (P, D$). By
definition, Ext(F, Dgz() are calculated as homologies of the complex

*P = {0 —rxPy —*xP_{ — ... — *P_Qn}.
If we consider the natural filtration on Dg} and induced filtration on *P, we will get precisely the complex
+C' = {Homy(C'_;,%)}. (Here I identify Qx with Ox.)

Now we should apply the fact, that the statement of the theorem is true for commutative regular ring

Y. Applying now step 1 we can deduce from this corresponding statement for D x-modules.
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4. Holonomic D-modules with regular singularities (RS-modules).

It turns out that class of holonomic D-modules contains a natural subclass, invariant with respect to

all operations - - subclass of RS-modules.

1. RS-modules on a curve.

First of all, let us consider the classical case-modules with regular singularities on a curve.

Let C be a curve. Choose a nonsingular curve CT, which contains C' as an open dense subset and a
point ¢ € C*t\C (it plays a role of infinity for C'). Let ¢ be a local parameter at ¢, = 8/, d = t0 € D¢c+.
We denote by D¢, the subsheaf of subalgebras of D¢+, generated by d and O¢+. It is clear that D{. and

element d in quotient algebra D¥/tD¥ do not depend on the choice of a local parameter t.

Definition. a) Let F' be an O-coherent Dc-module. We say that F' has a RS at the point c, if its direct
image F™ = (ic_,c+)+F is a union of O-coherent DY,-submodules.

b) We say that an O-coherent Do-module F is RS, if it has RS at all points on infinity (i.e., at all
points ¢ € C \ C' of the nonsingular completion C of the curve C).

Definition. Let F' be a holonomic Dc-module on a curve C. We say that F is RS if its restriction to

an open dense subset U C C' is O-coherent RS D¢ -module.

Lemma. Let C,C’ be irreducible curves 7 : C — C' a dominant (nonconstant) morphism. Then D¢ -

module F' is RS iff n'(F) is RS; also Dc-module H is RS iff m.(H) is RS.

2. RS D-modules.

Definition. a) Let F' be an O-coherent Dx -module. Then F is RS if its restriction to any curve is RS.
b) Let (Y, E) be an irreducible holonomic Dx-module. We say that F is RS if E is RS O-coherent
Dy -module.

¢) A holonomic Dx-module F' is RS if all its irreducible subgquotients are RS.

d) A holonomic Dx -complex F is RS if all its cohomology sheaves are RS.

We denote by RS (Dx) the full subcategory of Hol(Dx), consisting of RS-modules, and by Drs(Dx)
the full subcategory of D(Dx) consisting of RS D x-complexes.

Proposition. The category RS(Dx) is closed with respect to subquotients and extensions.
Proof. By definition.
3. Main Theorem B.

Main Theorem B.

1
a) Functors D, 7., m, m,m* preserve subcategory

DRs(D) C DHOI(D)-
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b) RS — criterion

An holonomic Dx -complez F is RS if and only if its restriction z'cF to any curve C C X is RS.

Remark. It would be more natural to take b) as a definition of RS D x-complexes. But then it would
be difficult to prove “subquotient” properties, like lemma in 2. So we prefer the definition, which makes
these properties trivial, and transfers all the difficulties into the “cohomological part”, where we have an

appropriate machinery to work with.

The proof of theorem B contains two technical results both due to P. Deligne. The first describes RS
property of O-coherent D-modules without referring to curves. The second proves that w, preserves RS

in a simplest case.
4. D-modules with regular singularities along a divisor.

Let X be an algebraic variety. A regular extension of X is a nonsingular variety X ¥, containing X as
an open subset, such that X¥ = X \ X is the divisor with normal crossings. We denote by J C Ox+
the ideal of X", T" the subsheaf of vector fields preserving J and D% the subalgebra of D x+, generated
by T% and Ox+.

Let F' be an O-coherent Dx-module F*© = (ix_, x+)4 F.

Proposition (P. Deligne).. The following conditions are equivalent.
(i) F* is a union of O-coherent D% submodules
(i) For any extended curve
o:(Ct,C) — (XT,X) (ie,0:CT —= Xt such that
o(C)C X, o(c) e XT\X) F|c has RS at c.
(iii) For each irreducible component W of XV there is an extended curve o : (CT,C) — (X, X) which

intersects W K transversally at ¢ such that F|c has RS at c.

Corollary. Suppose X is a complete reqular extension of X, F and O-coherent D x-module. Then F

is RS iff F* is a union of O-coherent D% -modules.
5. Proof of theorem B.

Key lemma. Letw, : Y — X be a morphism, where Y is a surface, X is a curve, X,Y are irreducible.

Let H be an O-coherent kRS Dy -module. Then for some open subset
XoCX T (H)|x, is RS.

We will prove this lemma in 6.

We also will use the following version of Hironaka’s desingularisation theorem.
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Proposition. Let m: Y — X be a morphism. Then there exists a reqular extensioni:Y — YT and a

morphism 77 : Yt — X such that 1 = 7toi and ©T is a proper morphism.

We will call the triple (7%,Y ™ i) the resolution of the morphism .
Now let us start the proof of theorem B. By definition RS is closed with respect to the duality D, and

hence Dgg is closed with respect to D.

Proof of theorem B for m,. We have a morphism 7 : ¥ — X and an RS Dy-complex H and we want
to prove that . (H) is RS. The proof is by induction on the dimension of S = Supp H. So we assume
that the statement is true for dom S < n. Also we assume that RS-criterion of theorem B is true for

dim F < n.

Step 1. Let 7 =i : Y — Y+ be an inclusion into a regular extension of Y, H be an RS O-coherent

Dy-module. Then i.(H) is RS Dy+-module.

Since i is an affine morphism i,(H) = i+ (H). Without loss of generality we can assume Y1 to
be complete. By Deligne’s proposition iy (H) is a union of O-coherent Dy-modules. Hence arbitrary
irreducible subquotient F of iy (H) has this property.

Let AZT = Supp F. Then it is easy to check that ZT is an irreducible component of an intersection
of some components of the divisor X” and F = L(Z, E), where Z is an open subset of Z*. It is clear
that EY =iz, 7+(E) is a union of O-coherent D%-modules, since DY is a quotient of the algebra D},

and E7T is a subquotient of Ht. Hence E is RS, i.e., F is RS.

6. Sketch of the proof of the key lemma.

We have a smooth morphism 7 : Y — X with dim Y = 2, dim X = 1. Then, after deleting several
points from X, we can find a regular complete extension Y+ of Y and a morphism 7t : Y+ — X T, where
X is the regular completion of X, such that

(i) = H(Xv)CY", where XV = XT\ X, YV=YT\Y

(i) #=*(X") contains all singularities of Y.

Denote by Ty and T% sheaves of vector fields on Y+ and X, which preserve Y and X*. Conditions
(i), (ii) imply that each local vector field £ € T% can be lifted locally to a vector field ¢ € Ty. This

means that the natural morphism of sheaves on Y+

a:TY — (@) T% =0y Q) 7 (T%)

7T+-OX+

is epimorphic.
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We denote by Ty, y the kernel of a. Consider sheaves of algebras Dy, and D% on Y+ and X7,
generated by T% and by T% and denote by ME(D%), M¥(D%) corresponding categories of right D"-
modules, and by DE(DY.), DE(D¥%) derived categories (here I prefer to work with right D-modules as all
formulae are simple).

Let us put DY, v = Oy+ ® 7t - (D%). This module is DY — 7t - (D% )-bimodule. Using Dy _, x
7t-Oyy
let us define the functor
my: DR(DYy) — DR(DY) by

L
w/(E) = R(x") - (BQQYDY _, x)-
Dy

Statement. (i) Let H be a right Dy-module, H+ = (iy)  H € Mf(Dy+). Then, if we consider H* as
Dy -module, we have

m(HY)=n.(H") as D%-module.

(ii) if E is an O-coherent D¥-module, then

w7 (E) is O-coherent D%-module.

*

This statement implies the key lemma. Indeed, if H is an RS O-coherent (right) Dy-module, then HT
is an inductive limit of Oy +-coherent DY -modules and hence 7, (H") = 7% (H™) is an inductive limit of

O x+-coherent DYy,-modules, i.e., it is RS.

Proof of statement. (i) is an immediate consequence of the projection formula and the fact that D} |y =
Dy, DY _ x|y = Dy_x.

(ii) Consider “De Rham” resolution of Dy _, x

0 — D;®T{;/X—)D§/ — Dy _.x —0.
Oy

Using it we see that as O x+-module
7/(E) = R(r) - (B ® Ty,;x — E).

Since 7t is a proper morphism, Rm™ maps coherent Oy+-modules into coherent Ox+-modules, i.e.,

7Y (E) is O-coherent for O-coherent E.

*

2. The following statement, due to P. Deligne, is a very useful criterion of RS.

Criterion. Let Xt be an irreducible complete normal (maybe singular) variety, X C XT an open

nonsingular subset, E an O-coherent D x -module. Assume that for any component W of X” = X T\ X of
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codimension 1 in X+, S is RS along W (i.e., E satisfies conditions (i), (ii), (iii) in 4 along W ). Then
E is RS.

Unfortunately, the only proof of this criterion I know is analytic. I would like to have an algebraic

proof.

8. RS-modules with given exponents.

Let us fix some Q-linear subspace A C kK, containing 1. Let C be a curve, Ct its regular extension
c€ CT\C, F an RS O-coherent De-module, F* = (i¢)4+ F. For any O-coherent D” submodule E C F'*
we denote by A (E) the set of eigenvalues of the operator d = t0 in the finite-dimensional space E/tE (t
is a local parameter at ¢, see 1). Now we define

A(F) = UA(E) for all O-coherent
c, B

D¥-submodules of F and all points ¢ € C* \ C.
The set A(F) is called the set of exponents of F. We say that F' is RSA if A(F) C A. We say that
Dx-complex F is RSA if for any curve C' C X all cohomology sheaves of Z'C(F) are RSA.
It is not difficult to prove that all functors D,n,,n',m,7* preserve Dpgrsa(py) — one should repeat
proofs in 1-5 with minor modifications. Apparently criterion 6 is also true for RSA (for A = Q it is

proved by Kashiwara). I would like to have an algebraic proof of it.
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5. Riemann-Hilbert correspondence.

In this lecture I will work over the field £ = C of complex numbers.

1. Constructible sheaves and complexes.

Let X be a complex algebraic variety. We denote by X" the correspondent analytic variety, considered
in classical topology.

Let Cx be the constant sheaf of complex numbers on X**. We denote by Sh(X%") the category of
sheaves of C'x-modules, i.e., the category of sheaves of C-vector spaces. Derived category of bounded
complexes of sheaves we denote by D(X ™). I will call sheaves F' € Sh(X*") Cx-modules and complexes
F € D(X*) Cx-compleges.

I call C'x-module F' constructible if there exists a stratification X = U X; of X by locally closed algebraic
subvarieties X;, such that F|X{" is finite dimensional and locally constant (in classical topology). 1
call Cx-complex F' constructible if all its cohomology sheaves are constructible C'x-modules. The full

subcategory of D(X ") consisting of constructible complexes I denote by Do (X ™).

Any morphism 7 : Y — X of algebraic varieties induces the continuous map 7" : Y — X% and we

can consider functors
m, T : DY) — D(X")

™, D(X) — D(Y")
also we will consider the Verdier duality functor
D;D(X*) — D(X™).
Theorem. Functors m,,m, 7,7 and Dk preserve subcategories D.,,( ). On this categories DD = Id

and

Dn*D = 71'!, Dm.D = m.

2. De Rham functor.
Denote by O%" the structure sheaf of the analytic variety X*". We will assign to each Ox-module F'

corresponding “analytic” sheaf of O%*-modules F*"*, which locally is given by
Fr =0y P F
Ox
This defines an exact functor
an : M(Ox) — M(0%").
In particular, sheaf D" is the sheaf of analytic differential operators on X", and we have an exact

functor

an: M(Dx) — M(DY).
Since this functor is exact it induces a functor

an: D(Dx) — D(DY").
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Definition. [ define the De Rham functor
DR:D(Dx) — D(X*) = D(Sh(X*™")) by

DR(F) = Q3*EPF*".

an
D%

Remarks. 1. We know that the complex DR(Dx) is a locally projective resolution of the right D x-module
(1 x. Hence

DR(F) = DRx (D)@ F*"|n| = DRx (F*")|n|,

an
D%

where n = dim X.

In particular, if F' is an O-coherent D y-module, corresponding to bundle with a flat connection and

L = F13 the local system of flat sections of F' (in classical topology), then by Poincaré lemma,
DR(F) = Lin|.
2. Kashiwara usually uses slightly different functor Sol : D.on(Dx)° — D(X),
Sol(F) = R Hompan (F**, 0%").
I claim that Sol(F) = DR(DF)| — dim X|. This follows ;from the formula

Homp, (P, Ox) = Qx@(*P),
Dx

which is true for any locally projective coherent D x-module P, where *P = Homp, (P, D).

3. Main Theorem C.
a) DR(Dpoi(Dx)) C Deon(X®™) and on the subcategory
Dpoyy DoDR=DRoD .
If FeDyy(Dx), HeD(Dy), then
Dr(FRH)~ DR(F)X DR(H).
b) On the subcategory Dgrs functor DR commutes with D, ., 7", m,7* and ®

¢) DR :Dgrs(Dx) — Deon(X*™) is an equivalence of categories.

4. First let us consider some basic properties of the functor DR.
(i) DR commutes with restriction to an open subset. For an étale covering 7 : ¥ — X DR commutes
with 7, and 7.
(ii) There exists a natural morphism of functors a : DR7w, — 7, o DR which is an isomorphism for proper

.
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In order to prove this let us consider the functor

2" D(DYY) — D(DY') on the categories of D*"-complexes,

which is given by

" (F ) R DX<—Y®F
Da.n

I claim that DR7?™ = m, o DR. Indeed,

L
DR(mi™(F) = Q¥ @ Rr"( DX(_YGBF) =

Dan Dan
L L L
Rr(r(QF") Q) DYy PF) = Rr™ (24" QF),
m Dan Danr Danr

since mQx ® Dx. vy ~ Qy as Dy-module.
w-Dx
Now there exists in general the natural isomorphism of functors

ano Rt (F) — Rrx“(anF).

This functor is not an isomorphism in general, since direct image on the left and on the right are taken
in different topologies. But according to Serre’s “GAGA” theorem it is an isomorphism for proper .
Combining these 2 observations we obtain (ii).

(ili)) On the category of coherent D x-complexes there exists a natural morphism of functors
B:DRoD(F) — Do DR(F)

which is an isomorphism for O-coherent F' and which is compatible with the isomorphism 7, DR = DR,
for proper m, described in (ii).

By definition of the duality functor D in the category D(X")
D(S) = RHomc (S, Cx|ddimX]|).

(Here Cx|2dimX]| is the dualizing sheaf of X%"). Hence in order to construct 3 it is sufficient to construct
a morphism

B': DRo D(F) ®¢, DR(F) — cin

where ¢ln is an injective resolution of Cx|2 dim X]|.
As we saw, DR o D(F) is naturally isomorphic to Sol (F)|dim X| = RHompgr (Fen, 0%)|dim X]|.
Let us realize DR(F) as DRx (F*) and DR o D(F) as Hompgr (F“" ¢]o™) where cl is an injective

resolution of kOx|dim X|. Then we have the natural morphism

B":DRo D(F) ®cy, DR(F) — DRx (cl*").
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Since DRx (cl*™) & DRx (0%")|dim X| = Cx|2dim X|, we have a morphism Dx(cl*™) — cln, which
composition with 3" gives us 8'. It is easy to check that 3 is an isomorphism for O-coherent F'. Com-
patibility condition with 7, it is sufficient to check for imbeddings and projections P x X — X, where it
is straightforward.

(iv) There is a natural morphism of functors
v:DR(FRH) — DR(F)XDR(H)

which is an isomorphism for O-coherent F'.

Morphism v is defined by the natural imbedding Q%" K¢ Q§* — Q%' y. If F' is O-coherent and H is
locally projectively is an isomorphism by partial Poincaré lemma. This implies the general statement.
(v) There is a natural morphism of functors § : DR o 7'(F) — 7' DR(F) which is an isomorphism for
smooth 7.

Indeed, for smooth 7 the isomorphism of these functors can be constructed on generators — locally
projective modules (for instance if 7 : ¥ =T x X — X is the projection, then 7'(F) = Op B F|dim T,
©'DR(F) = Cr R DR(F)|2dim T| = Dr(O7) X DR(F)|dim T'|). Consider the case of a closed imbedding
i:Y — X. Using i, which commutes with DR, we will identify sheaves on Y with sheaves on X,

supported on Y. Then i,i'F = RI‘mF in both categories, which gives the natural morphism

§: DRoi,i'(F) = DR(RT|y|F) — RI|y|DR(F) = i,i'DR(F).

5. Proof of Theorem C a) (case of holonomic complexes).

Let F' be a holonomic D x-complex. Consider the maximal Zariski open subset U C X such that
DR(F)|y is constructible. Since F' is O-coherent almost everywhere U is dense in X.

Let W be an irreducible component of X \ U. I want to show that DR(F’) is locally constant on some

dense Zariski open subset Wy C W.

Claim. 1 can assume that

X=PxW, W=pxW, where p € P,

U and V=UUW are open in X.

Indeed, consider an étale morphism of some open subset of W onto an open subset of an affine space
A* and extend it to an étale morphism of a neighbourhood of W onto an open subset of A” D A*. By
changing base from A*¥ to W, I can assume that V = U UW is an open subset of X’ = P"~* x W. Then
I can extend F' to some sheaf of X'.

Now consider the projection pr : X = P x W — W. Since it is a proper morphism DR(pr,(F)) =
pr«DR(F). Since pr,(F) is a holonomic Dyy-complex, it is 0-coherent almost everywhere, i.e., DR(pr.(F'))

is locally constant almost everywhere.
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Put S = DR(F) C D(X""). Replacing W on an open subset, we can assume that pr.(S) =
DR(pr.(F)) is locally constant. We have an exact triangle.

Sy — S — SX\V, where Sy = (iy) : (S/V) is extension by zero.

By the choice of U, S/V is constructible, i.e., Sy is constructible. Hence Pr (S'X\V) is constructible
and going to an open subset we can assume it is locally constant.

Now S'X\V is a direct sum of 2 sheaves (iw)1S/W and something concentrated on X \ V' '\ W. This
implies that S /W is a direct summand of the locally constant sheaf pr*(s x\v) and hence itself is locally

constant. QED

Now let F' be a holonomic complex. Put
Err(F) = Cone(DR o D(F) — D o DR(F)).

This sheaf vanishes on a dense open subset, where F' is O-coherent. Also function Err commutes with
direct image for proper morphisms. Repeating the arguments above we see that Err = 0, i.e., DR
commutes with D on Dye(Dx).

The same arguments show that DR(F X H) = DR(F) R DR(H) for holonomic F'.

Remark. Of course this proof is simply a variation of Deligne’s proof of “Théoremes de finitude” in SGA

41/2.

6. Proof of theorem C b) for direct image..

Let us prove that the morphism
DRom,(H) = m, o DR(H)

is an isomorphism for H € Dgs(Dy).
Case 1. m=1:Y — X is a regular extension and H is an RS 0-coherent Dy-module.

In this case the proof is straightforward, using the definition of RS (it was done by P. Deligne). Namely,
locally in the neighbourhood of a point z € X \ Y we can choose coordinates z1, ... ,z, such that X \V
is given by x1,... ,zr. Now we place z by an analytic neighbourhood of z. Then H and HT = i, (H)
are determined by monodromy representation of the fundamental group m, (X \ V). Since this group is
commutative, we can decompose H into 1-dimensional subquotients. Using commutativity with X we
can reduce to the case dim Y = 1. Hence as Oy-module H* is generated by one element e, which satisfies

the equation xd(e) = Ae. Now direct calculations show that

DR(H") = (i).DR(H).
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Case 2. H is an RS 0-coherent Dy -module.

In this case we decompose m = 7+ o4, where i : Y — YT is a regular extension and 7t : Y+ — X is a

proper morphism. DR commutes with ¢ by case 1 and with = by 4 (ii).

General Case. Tt is sufficient to check the statement on generators. Hence we can assume that H = i,(€),
where 7 : Z — Y is a locally closed imbedding and £ an RS 0-coherent Dz-module. Then

DR, (H) = DR(ri).(€) <= (wi), DR(€) =

T (iy DR(€)) =22 1, DR(i,(€)) = m.DR(H).

7. Proof of theorem C b).

Functors D, m, and X were considered in 5 and 6.
Functor 7'. In 4(v) I have constructed the morphism § : DRn' — 7' DR which is an isomorphism for
smooth 7. Hence it is sufficient to check that RS Dy-complexes ¢ is an isomorphism for the case of a
closed imbedding # =i : Y — X. Denote by j : V = X \ Y — X the imbedding of the complementary

open set. Then we have the morphism of exact triangles
DR(i.i'F)—DR(F)— DR(j.(F|v))
b e
ixi' DR(F)—DR(F)—j.(DR(F)|v).

Since « is an isomorphism by 6, 4 is an isomorphism.

Functors m and 7*. They commute with DR since m = D7, D and 7% = D#'D.

8. Proof of theorem C c).
First of all, let us prove that DR gives an equivalence of Drs(Dx) with a full subcategory of
Deon (X ™). We should prove that for F, Re Dgrs(Dx)

DR :Homp,,, (F,H) — Homp_,, (DR(F), DR(H))

coh

is an isomorphism.
It turns out that it is simpler to prove the isomorphism of RHom ( ). We have shown in lecture 3
that

RHom(F,H) = /X

Hom(F', H) = /

Hom(F', H) = / DEAT.
X X

Let us prove that in the category Deon (X ") RHom is given by the same formula we have
R Hom(R,DS") = RHom(R, R Hom(S", Dual)) =

R Hom(R ® S*,Dual) = D(R"® S") = DR'ADS".
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Hence
R Hom(R,S") = /R Hom(P,S") = /D(R)&S'.

This proves that DR gives an equivalence of the category Dgs(Dx ) with a full subcategory of Deon (X ™).

Now let us prove that this subcategory contains all isomorphism classes of Deon(X ). Since it is a
triangulated full subcategory, it is sufficient to check that it contains generators. As generators we can
choose C'x-complexes of the form i.(L) where ¢ : Y — X is an imbedding and L is a local system on
Y. Since DR commutes with direct images it is sufficient to check that there exists an RS 0-coherent
Dy-module ¢ such that DR(§) =~ L|dim Y|, i.e., such that the sheaf of flat sections kof £*" is isomorphic
to L. This is a result by P. Deligne.

9. Perverse sheaves, intersection cohomology and such.

Main theorem C gives us a dictionary which allows to translate problems, statements and notions from
D-modules to constructible sheaves and back.

Consider one particular example. The category Drs(Dx) of RS-complexes contains the natural full
abelian subcategory RS-category of RS-modules.

How to translate it in the language of constructible sheaves.

;From the description of the functor ' for locally closed imbedding one can immediately get the

following

Criterion. Let F' be a holonomic D x-complex. Then F' is concentrated in nonnegative degrees (i.e.,
H(F) = 0 for i < 0) if and only if it satisfies the following condition.

(*)rs For any locally closed imbedding i : Y — X there exists an open dense subset Yy C Y such that
z'(F ) |Y0 is an 0-coherent Dy,-complex, concentrated in degrees > 0.

In terms of constructible complexes this condition can be written as

(*)con  For any locally closed imbedding i : Y — X there exists an open dense subset Yy C Y such that
z'(S)|Y is locally constant and concentrated in degrees > - dim Y.

Thus we have proved the following.
Criterion. A constructible complex S* lies in the abelian subcategory
DR(RS(Dx)) iff § and DS satisfy (%)con.
Now it is easy to recognize this as a definition of a perverse sheaf on X",

Exercise. Let L(Y,¢) be an irreducible RS Dx-module. Then DR(L(Y,¢))| —dim Y| is the intersection
cohomology sheaf, associated to (Y, Loc. syst. &).

Thus intersection cohomology sheaves just correspond to irreducible RS d-modules.
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10. Analytic criterion of regularity.
For any point z € X I denote by 0%" and O™ algebras of convergent and formal power series on X

at the point . For any Dx-complex F' the natural inclusion O%" — O™ induces a morphism
v, : R Homp, (F,0%") — R Homp, (F, O%™).

We say that Fis good at z if v, is an isomorphism.
Proposition. Let F be an RS Ox-complex. Then F is good at all points.

Remark. One can show that conversely, if X is a complete variety and F' a holonomic D x-complex good

at all points z € X, then F is RS.

proof. For locally projective D x-module P we have
Homp (P,0°™) = Homy (P/M,P, k) = i (P)*.

Hence R Homp, (F,0°™) = ¢! (F)*|dim X|. If we put G = DF and remember that i¥ = Di}, D we see
that
R Homp, (F,0%™) = i*(G)|dim X].

i From the other side
R Homp, (F,0%") = fiber at z of Sol(F) = i*DR(G)|dim X]|.

Thus we can reformulate our problem, using the DR functor.

(*) Holonomic Dx-complex F' is good at  iff for G = DF the canonical morphism

ve 1itDR(G) — DR i%(G)
is an isomorphism.
Hence the proposition is simply a particular case of theorem C.

The proof of the converse statement is based on the criterion of RS which is discussed in 4.

Lecture 6. D-modules and the proof of the Kazhdan-Lusztig conjecture.

I would like to outline main steps of the proof of the Kazhdan-Lusztig conjecture. Only part of it is
connected with D-modules, but somehow it has the same spirit as the theory of D-modules, as I presented
it.

The amazing feature of the proof is that it does not try to solve the problem but just keeps translating
it in languages of different areas of mathematics (further and further away from the original problem)
until it runs into Deligne’s method of weight filtrations which is capable to solve it.

So, have a seat; it is going to be a long journey.
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Stop 1. g-modules, Verma modules and such.

Let g be a semisimple Lie algebra over C, f C g a Carton subalgebra, ¥ f* root system, X1 the
system of positive roots and n C g corresponding nilpotent subalgebra. To each weight x € f* we assign
g-module M, (it is called Verma module) which is a universal g-module, generated by 1 element f, such
that nfx = 0 and f, is an eigenvector of f with the eigencharacter x — p (here p is the halfsum of
positive roots). Each Verma module Mx has unique irreducible quotient Lx, has finite length and all its

irreducible subquotients are of the form L., for ¢ € f*. Hence we can write in the Grothendieck group
M,y = byyLy.

Problem. Calculate multiplicities by..

It is usually more convenient to work with the inverse matrix a,y, such that L, = Xa,yMy.

Also, using elements of the center z(g) C U(g) it is easy to show that a,y # 0 only if x and ¢ lie on
one orbit of the Weyl group. The most interesting case is the W-orbit of (—p). So let us put for w € W,
My = My(—p); Luw(-p) and formulate the

Problem A. Calculate matrix ., given by
Lw =X aww/er.

Stop 2. D-modules, Schubert cells ... .

Now we are going to translate Problem A into the language of D-modules.

Let G be an algebraic group corresponding to g, X the flag variety of G, i.e., X = G/B where B is a
Borel subgroup of G. The natural action of G, i.e., X = G/B where B is a Borel subgroup of G. The
natural action of G on X defines the morphism U(g) — Dx. Hence for each Dx-module F' the space
['(F) =T'(X, F) of global sections of F' has the natural structure of g-module. Our translation is based

on the following

Theorem (Beilinson, Bernstein).

The functor T : u(Dx) — u(g), F — [(F) gives an equivalence of the category u(Dx) with the
category pe(g) of g-modules with trivial infinitesimal character 6. Here 6 is the character of the center
Z(g) Cc Ulg), i.e., the homomorphism 0 : Z(g) — C, corresponding to the trivial representation of g.
We say that g-module M has infinitesimal character 0 if Ker 8 - M = 0.

The proof of the theorem consists of two parts:
1. We show that the functor I' is exact and each Dx-module F' is generated by its global sections. This
implies that u(Dx) is equivalent to the category of D(X)-modules, where D(X) = I'(X,Dx) is the
algebra of global differential operators. We already saw that this fact is true for projective spaces (see

lecture 2); though the proof is different, the effect has the same nature.
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2. We show that D(X) =U(g)/Ker 6 -U(g).

This is pure luck. The proof is just a direct calculation, which uses Kostant’s theorem on functions on
nilpotent cone.

This theorem allows us to translate all the problems of the representation theory, involving modules
in py(g) into the language of D-modules. Since My, L, € M(g) we can translate our problem. Let us
indicate how to do it.

It is easy to prove that on any module M = M,, or L,, the nilpotent algebra n acts locally nilpotent.
It means that we can exponentiate this action and define some algebraic action of the corresponding
nilpotent subgroup N C G. Hence on M we have two actions: action x of the Lie algebra g, and the
representation p of the Lie group N. It is clear that M is a (g, N)-module, i.e., it satisfies the following
conditions:

(i) Representation p is algebraic, i.e., M is a union of finite dimensional algebraic representations of the
algebraic group V.

(ii) Morphism & : g ® M — M is N-invariant with respect to the adjoint action of N on g and action p
of N on M.

(iii) On Lie algebra n, g actions « and dp coincide.

Translating in D x-modules we see that the Dx-module F', corresponding to M is really a (Dx, N)-
module, i.e., it is endowed with an action p of the group NV such that
(i) p is algebraic, i.e., F' is a union of coherent O-modules with algebraic action of N (compatible with
the natural action of N on X).
(ii) Action k : Dx ® F' — F is N-invariant.
(iii) On Lie algebra n of the group N action k, given by the natural morphism n — Vect. fields on X,
Dx coincides with dp.

In particular, it means that Supp F' is N-invariant. Using Bruhat decomposition we see that N haws

a finite number of orbits on X. Namely,

X = U Yy, whereY, = N(wzy),
wew
and zy € X is the point, corresponding to N. If Y is an open orbit of IV in the Supp F', then Z'Y(F) is an
(Dy, N)-module. Now, since N acts transitively on Y it is not difficult to describe all (Dy, N)-modules.
They all are direct sums of many copies of the standard (Dx, N)-module Oy.
Let us put py = (iy)1(Oy), Iy = (iy)«(Oy), Ly = Im(uy — Iy). Fortunately in this case Y is affine

(it is isomorphic to an affine space), so uy, Iy are (Dx, N)-modules, not complexes.

Lemma. u, = uy, corresponds to M,

L., = Ly, corresponds to L,
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It is not quite trivial to establish. But if we are interested only in the images of M, L in the Grothendieck
group, then it is easy to prove. Indeed, since each L,, is selfdual (since DOy = Oy), in Grothendieck
group p, ~ I,. Now it is very easy to directly compute I'(X, I,) as h-module and to show that it
coincides with M, /h. Since an element in the Grothendieck group is determined by its restriction to h,
this proves that p,, ~ M, (in Grothendieck group).

Now we an reformulate the problem.

Problem B. Calculate a,, given by

Ly = Yaww phw’ -

Stop 3. Constructible sheaves.

Now we can use Hilbert-Riemann correspondence, I have described in lecture 5, and translate the
whole problem into the language of constructible sheaves.

First of all, let us define the Grothendieck group K(Dpggs) of the category Dgs(Dx) as a group,
generated by RS-complexes and relations [F] + [H] = G for any exact triangle F' — G — H. It is easy
to prove that K g coincides with the Grothendieck group K (RS) of the category RS(Dx); isomorphism
z : K(Dgrs) — K(RS) is given by Euler characteristic z([F]) = S(=1)/[H(F)]. In the same way
K(D¢on) = K(con). For simplicity we restrict ourselves to the subcategories in K(RS) and K (con)
generated by sheaves, which are N-invariant. Functor DR gives us an isomorphism DR : D(Dgg) =
K(RS) = K(D¢on) = K(con). Let us look how to translate i, and L.

By definition p,, = (iv, )1(Oy). Hence DR(uy) = iv, )1(ly, )[dimY7,], where 1y is the trivial sheaf on
Y. If we denote by Ty, the element (iy, )i(ly,) € K(con), (extension by zero), we see that DR(u,,) =
(—1)4®™)T,,, where by definition £(w) = dimY,, (it is the usual length function on the Weyl group). As
we discussed in lecture 5, DR(L,,) = IC(Yy)[dimY,,], where IC(Y") is the intersection cohomology sheaf
of Y. Let us denote by IC,, the element of K (con), corresponding to IC(Y,,). Then we can reformulate

our problem.

Problem C. Find a,, given by
ICy = Sayy (—1)@ =),

Fast train. Etale cohomologies, changing of the field, ... .

What we have done so far is the translation of the very difficult problem A to the not less difficult
topological problem C. This problem is essentially the problem of calculating intersection cohomologies
of the highly singular varieties Y ,,. The only general method of solving such problems known so far is

based on algebraic geometry over finite fields. So we should go this way.
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Let us fix the stratification ® = (X = UY,,) and denote by Dg(X*") the subcategory of D(X"),
consisting of C'x-complexes, such that their cohomology sheaves are locally constant along each stratum
Yy (since Yy, is contractible, they in fact are constant along Y, ). Corresponding Grothendieck group we
denote Kg. It is clear that Ko = @ ¢ ZTw, and we just want to find the expression of elements of
IC,, € K in this basis.

It turns out that we can replace everywhere classical topology by etale topology and all properties of
constructible complexes, constructible sheaves, which can be expressed in terms of functors D, m,, 7, my, 7*
will not change.

Since etale topology is defined purely algebraically, we now can translate the whole situation to arbi-
trary field.

So, we now consider an algebraically closed field k of arbitrary characteristic p, a flag variety X of a
reductive group G over k, and ® = (X = UY,,) the Bruhat stratification. We consider derived category
Dg of complexes with cohomologies, constant along each stratum Y;,. In the Grothendieck group K4 of
this category we have a basis T,, and elements IC,, corresponding to IC-sheaves, and we want to find
an expression of IC,, via {Ty }.

There are theorems, which claim that the situation in etale topology over any field will be exactly the

same as in classical topology over C.

Remark. In etale topology we are working with f-adic sheaves whose stalks are vector spaces over the
algebraic closure @, of the field of (-adic numbers, where ¢ # chark. For simplicity we will identify @,
with C.

In fact, ¢-adic sheaves are not quite sheaves and elements of D¢ are not quite complexes. But it does

not matter since we can work with our functors D, 7., ... in the usual way.

Stop 4. Weil sheaves, Tate twist, Lefschetz formula.

Now suppose we are working over the field & which is the algebraic closure of a finite field F,. Also
we assume that our stratification @® is defined over Fg, i.e., each stratum Y, is given by equations and
inequalities with coeflicients in F,. Denote by Fr, the automorphism of the field k, given by ¢ — c?.
For any variety Y, defined over Fy, F'r, induces a bijection F'r, : Y (k) — Y (k), which turns out to be a
homeomorphism in etale topology.

Let us call Weil sheaf an {-adic sheaf F' together with the action of F'ry on F. In a similar way we
can consider Weil complexes of sheaves. Derived category of Weil complexes, whose cohomologies are
constant along strata of stratification ® we denote DY, and corresponding Grothendieck group KY .

These definitions make sense since each stratum Y, is invariant under F'ry.

Important example. Let us describe Weil sheaves on the variety pt, consisting of one point. Then any

sheaf F' is given by a vector space V. Hence Weil sheaf on pt is just a Q,-vector space V together with a
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linear transformation Fry : V — V.

Definition. Tate sheaf L over a point p is defined by one-dimensional vector space Q, together with the

morphism Fr, : Q, — Qy, which is the multiplication by q, i.e., Frq(a) = qa.

If 7 : Y = X is a morphism of algebraic varieties, which is defined over F,, it induces functors
Te,m : DV (Y) = DW(X), n*,n" : DW(X) — DW(Y). Also there is a functor of Verdier duality
D : DY (X) — D" (X). All these functors have the same properties, as we have discussed earlier. But
there is one important improvement:

*) If X is a nonsingular variety, then D(1x) = L=%mX . 1 y[2dimX].

Here 1x is the trivial sheaf on X, L we consider as a sheaf on X — this is the Tate sheaf lifted from the
point, and L% means (L~1)®*,

If we forget the action of F'r we have an old formula for dualizing sheaf. So (*) simply means that
though dualizing sheaf is essentially isomorphic to the constant sheaf, this isomorphism is not canonical;

in particular, Fr, changes it in ¢?™X times.
Exercise. Over a point D(L*) = L.

Digression. Weil sheaves and functions.
For each variety X, defined over Fj, denote by X (g) the finite set, consisting of points of X, which are
defined over F, (i.e., which are fixed points of Fr,). To each Weil complex F' I will assign the function

fr on the finite set X (g) given by
fr(z) = S(=1)trFrq(stalkH (F),)

(it makes sense since x is F'r, invariant). It is clear that fr depends only on the class of F in the

Grothendieck group k.

Theorem. Let 7 :Y — X be a morphism, defined over Fy, and m : Y (q) — X (q) the corresponding map
of finite sets. Then

f7r (F) = 77*(}5‘)7 f7|'|(H) = / fH7

where '€ DV (X), H € DY (Y) and operations 7 and fﬂ on functions are defined by

™ () = fx(y)) (/ Nay= > f)

n(y)=z

Here the first statement is triviality and the second is a deep generalization of Lefschetz fixed points
theorem.
This theorem claims that all usual operations with functions on finite sets we can rewrite on the

level of Weil sheaves (or at least, their Grothendieck group). The importance of this observation can
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be understood if you realize that starting from one Weil complex F we can construct the sequence of
functions: to any ¢’ which is a power of ¢ we will assign the function f%’ on the set X (¢'); and any natural
operation with all these functions can simultaneously be described by one operation with the complex F'.

This notion gives the formal definition of the “natural sequence of functions” on sets X (¢'), ¢’ = ¢'.

Example. Consider the projection pr : A¥ — pt of the affine space into a point. Then the theorem implies

that pri(aam ) = L*[—2k], (i.e., in KW pri(1) = L*).

Indeed, comparison with the classical case shows that dimH®(pri(ag)) = 0;2k, and the theorem

describes the action of Fr, on one-dimensional space H?2*(pr(ay)).

Stop 5. Weights and purity.

Let F' be a Weil complex over a point p, which is defined over some field F, . We say that w(F) (weight
of F) is less or equal to £ (notation w(F) < £) if for any i all eigenvalues of Fr, in the space H°(F') have
absolute value < (q’)%.

(Hey, what do you mean? They are supposed to be ¢-adic numbers.)

Well, if you remember, we have identified Q, with C, so we consider them as complex numbers, and
absolute value is the absolute value. Also Deligne proved that in all interesting cases they are algebraic
numbers, so it is all not so bad. And in any case, in what we are going to consider they will always be
powers of ¢. So do not worry).

It is clear that this notion does not depend on the choice of ¢, i.e., if we change ¢’ by ¢” = (¢')’, it
does not affect the condition.

Let now F be a Weil complex on X. Any point z € S is defined over k = Fyr, i.e., it is defined over
some field F, . We say that w(F") < € if for any point € X the stalk F, = i*(F) has weight < £.

We say that W (F) > £ if W(DF) < —f. We say that F'is pure of the weight ¢ if

W(E)<t and W(F)>L.

Deligne’s purity theorem. Let 7 : Y — X be a morphism, defined over F,. Then 7* and m decrease
weight, 7, and 7' increase weight, i.e.,

if W(F) < then W(r*F) < ¢

if W(H)<¢, then W(mH) </
if W(H)<¢, then W(m.H) >/
if W(F)<¢, then W(r'H)>1(.

In particular, proper morphism preserves purity.

Gabber’s purity theorem. Let Y be an irreducible algebraic variety, IC(Y") the intersection cohomol-
ogy Weil sheaf of Y (which coincides with 1y on the nonsingular part of Y'). Then IC(Y') is pure of the
weight 0
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Stop 6. Hecke algebra.

Get back to flag variety X = UY,,. Let us consider only complexes, for which all eigenvalues of all
morphisms F'ry, are powers of g. In general, this category is not invariant with respect to functors, but
in our particular case it is.

Let A= K (DY (pt)) be the Grothendieck group of the Weil sheaves over a point. Then A = Z[L*!],
the algebra of Laurent polynomials.

Denote by H the Grothendieck group K (DY (X)) of Weil sheaves constant along strata of ®. Then it
is clear that H is a free A-module with the basis {T},}.

For any w € W the intersection cohomology sheaf IC\,, € H satisfies the following relations
(i) D(IC,) = L-4mYs.]C,

(i) ICy =Ty + SPywTur,

where P, . € A satisfy the condition
(*) Pyw =0 ifYy ¢V, and deg Py, < 1/2(0(w) — ((w")).

Indeed, as a sheaf IC, is selfdual, and since in a neighborhood of Y,, it coincides with 7, and in this
neighbourhood DT, = L=%™Yw . T\, we have (i).

In order to prove (ii) let us fix some point & € Y,,,. Then by definition of IC,, stalks of all cohomology
sheaves H'(IC\,), equal 0 when i > dimY,, — dimY,, = {(w) — {(w'). By Gabber’s theorem w(IC,,) < 0,
i.e., the action of Fr, on H*(IC,,), has eigenvalues < ¢*/2. But it is clear that £(—1)*TrFr, (H*(ICy).) =
Py w (L = ¢). This proves (ii).

Relations (i) and (ii) gives a hope that if we are able to describe the action of the duality operator D
on H, then we would be able to find Kazhdan-Lusztig polynomials P, . After this we can forget about
Weil structure (i.e., specialize L — 1) and obtain the formulae for ...

In order to describe the action of D I will introduce on H the structure of an algebra.

The motivation for this came from comparison with functions. Informally H is a space of functions
on X(q) constant on N(q) orbits. There is the natural identification of N(g) orbits on X(g) with
G(q) orbits on X x X(q), so we can consider elements of H as (J(g)-invariant functions in 2 variables
flz,y), z,y € X(q). But space of functions in 2 variables has the natural operation-convolution, given
by

fxh(z,y) = /F(:c,z)h(z,y)dz
or, with more details

(.f * h)(m,y) = /f(xau)h(vay)substitute u=v=2zdz.

The discussion on the stop 4 allows us immediately to translate this operation in the derived category,

or in the Grothendieck group.
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First of all, consider the stratification ¥ of X x X by G-orbits and consider category DY (X x X) and
the corresponding group K. This group is naturally isomorphic to H = K}V'; isomorphism is given by
restriction of the sheaves F' on X x X to the fiber 7o x X ~ X. I will identify H and K} using this
isomorphism.

Now, let ', H € DY (X x X). I will define their convolution * by

F s H = pr/A*(F ® H), where

A XXX XxX 2> XxXxXxX, Azzy) =(z,22yY)

pro X x X xX->XxX, pr(z,z,y) = (z,v).

Proposition. H is an associative A-algebra with respect to convolution x with identity 1 = T.. If

Lww') = l(w) + L(w'), then Ty * Ty = Ty -

The last statement can be checked straightforwardly. Also it follows from the fact that it is true for
usual Hecke algebras, which consist of G(¢) invariant functions on X (g) x X (q).
These formulae imply that H as an A-algebra is generated by elements T, for simple reflections o.

In order to describe the action of D on H we use the following trick due to Lusztig.

Proposition. Let 0 € W be a simple reflection. Then for any h € H we have
D(T, +1)xh) =L YT, +1)* Dh
also (T, +1)? = (L + 1)(T, + 1).

Corollary. D is the automorphism of the algebra H. On generators T, D is given by DT, = L™'T, +
(L7t —1).

Indeed, the proposition shows that D((T, + 1) x h) = D(T, + 1)« Dh for all h. Since elements T}, + 1
generate H, we have D(f x h) = Df * Dh. The formula D(T, + 1) = L=Y(T, + 1) gives the action of D
on T,.

The proof of the proposition is based on the following observation. Denote by p, the parabolic subgroup
of G, obtained by adding to the Borel subgroup the simple root, corresponding to o, and consider the
algebraic variety X, = G/P,. The natural G-equivariant projection p, : X — X, has fibers, isomorphic
to the projective line P’. For instance, if we put z, = p, (o), then p;! = Y, UY, is the projective line
with the natural stratification. It means that T}, + 1 correspond to the sheaf R, which is the trivial sheaf

on p,!(z,), extended by zero. After this it is not difficult to prove that for any F € D" we have
(*) Ry % F = py(ps 1 F.

Now, since p, is proper, direct image (p, )1 = (py )« commutes with D. Since p, is smooth, p\ = L™1p*,
ie.,, Dp% = Lp:D (locally X ~ X, x P, so p*(F) = FR 1p/, i.e.,, Dpi(F) = DFR D(lp) = LDF K 1p =
Ly (DF).
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Also, it is clear that (ps)i(Rs) ~ (L + 1)T,, (in Grothendieck group) and p}(7T,,) = R,. This gives

o

the second formula of the proposition.
Last stop. Combinatorial problem.

Proposition. (simple combinatorics).
(i) There exists an A-algebra H which is free with basis T\,, such that
Ty Tw =Tww if Lw)—L(w") =L{ww').
(Ty +1)2=(L+1)(T, +1) for simple reflections o € W.
(i) There exists a unique automorphism D of the algebra H, such that
D(L)=L"!
D(T, +1)=L YT, +1) for simple reflections o € W.
(iii) For each w € W there exists a unique element Cy, € H such that
Co=T,+ Zw,gw DPw,w L, where Py, € A has degree
< 3(l(w) —L(w")) and DC, = L=t
In this case Py € Z[L).

Example. C, =T, + 1.
Polynomials P, . are called Kazhdan-Lusztig polynomials. Now, if we summarize our discussion, we

will obtain the combinatorial formula for multiplicity matrix @,q.
Answer. ay, = (—1)1@ - p, (1),
Some questions.

Question 1. Where is the solution? How can I find these polynomials?

In a sense there was no solution. We have just translated our original problem, adding a new parameter
L for rigidity, to a combinatorial problem and proved that this problem has a unique solution. Of course,
now we can obtain some recursive formulae for calculation of Kazhdan-Lusztig polynomials, but they are
quite complicated.

Whether there exist explicit formulae for py,, I think not, i.e., I think that some type of combinatorial
complexity is built into the problem.

In some cases one can ge explicit formulae for P. For instance, one can calculate intersection coho-
mology sheaves for Schubert varieties on usual Grassmannians (see Lascoux and Schutzenberger). But
Zelevinsky showed that in this case it is possible to construct small resolutions of singularities. I would say
that if you can compute a polynomial P for intersection cohomologies in some case without a computer,

then probably there is a small resolution, which gives it.

Question 2. What is the geometrical meaning of other coefficients of pyu?



53

Kazhdan and Lusztig showed that all stalks of the sheaves IC', are pure. Hence, if we choose a point
T € Yw’: then )
dim H*(ICy), =0 for odd ¢

=1/2 coefficient of py, for even i.
In the proof they used an observation, that transversal section to Y, of the variety Y, is conical, i.e., it
has an action of £* which contracts everything into a point x € Y.

In general, stalks of IC' sheaves are not pure. But there is one more case, calculated by Vogan and
Lusztig, namely the stratification of the flag variety byorbits of complexified maximal compact subgroup,
in which stalks always are pure. I do not know why.

Untwisting the situation back we can connect H'(IC,,) with

Emtfld)(g) (Myr, Ly,) o, if you want, with H'(n, Ly,).

Question 3. It is all very nice but is it really necessary to go into all this business with varieties over
finite fields? How are finite fields connected with g-modules?

In fact, it is not necessary. You can obtain the same results using Hodge theory for constructible
sheaves or, even better, directly Hodge theory for D-modules.

One small detail — these theories do not exist yet (there is a Hodge theory for locally constant sheaves
— this is Deligne’s theory of variations of Hodge structures — and it is quite powerful, but it is clearly not

enough). But at least we know what to think about.



