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§0. Introduction

0.1. In this paper, which was written in 1987, I continue the investigation of
induced representations of reductive p-adic groups, started in [BZ]. The main
tools of the investigation are induction functors i,,, and Jacquet functors r,,, .
More precisely, let G be a reductive p-adic group and Alg G the category of
algebraic (in other terminology, smooth) representations of G. For any parabolic
subgroup P < G with Levi component A we define the induction functor ¢, :
Alg M — Alg G and Jacquet functor r,,, : Alg G — Alg M as in [BZ].

Frobenius reciprocity implies that functor r,,. is left adjoint to i.,,. Re-
cently, I have discovered to my great surprise, that these functors are also ad-
joint in the opposite direction. More precisely, let P be the parabolic sub-
group opposite to P with Levi component M. Then we can define functors
gt Alg M — Alg G and 7,,, : Alg G — Alg M in the same way as i and r,
but using P instead of P.

Main theorem. Functori,, is left adjoint to T, and i, is left adjoint to
Tyo-

This innocent-looking statement is in fact very powerful. For instance, it
implicitly contains the strong admissibility theorem (indeed, it implies that
functors r,,, commute with direct product and hence products of quasicusp-
idal representations are quasicuspidal. But this means that for a given open
subgroup K C G there exists a uniform bound on supports of all K-invariant
matrix coefficients of all cuspidal representations of G, i.e. all these supports lie
in some subset S C G, compact modulo center).

The aim of this paper is to prove the main theorem and to show how it implies
many important results about induced representation: description of the center
of category Alg G, matrix Paley-Wiener theorem, cohomological duality in Alg
G.

More precise versions of the theorem are formulated in §. They allow to prove
Zelevinsky’s conjecture, that duality, which he defined on the Grothendieck
group of representations of GL(n), actually carries irreducible representations
into irreducible ones (see [Z]). I should add, that this way of proving Zelevinsky’s
conjecture was suggested to me by V. Drinfeld many years ago. He explained
to me that for the group G = SL(2), Ext! (trivial representation) = Steinberg
representation.



0.2. Contragredient properties of functor r, .

Another, essentially equivalent, form of the main theorem describes how
to compute contragredient representations of r,,, (7). For induction functor
we have the Frobenius reciprocity (is,, (p)) = i, (P), where ~ denotes the
contragredient representation (see [B2]).

Theorem. There is a functorial isomorphism

(rue (M) ~ Ty (1), meAlgG.

0.3. Matrix Paley-Wiener theorem.

Let p be an irreducible cuspidal representation of M. Consider the family of
induced representations m, = i,, (X -p), parametrized by unramified characters
x of M, with underlying family of vector spaces E,.

Let H = H(G) be the algebra of compactly supported locally constant
measures on G. Any element h € H(G) induces the family of operators h, =
m(h) : By = E,.

This family has the following properties:

(PW1) h, is aregular function of parameter x (unramified characters of M form
a group isomorphic to (C*)* and function h, is algebraic on (C*)).

(PW2) There exists an open subgroup K C G such that operators h, are left and
right invariant with respect to 7 (K).

(PW3) For any intertwaining operator A : E, — E,, one has h,» o A= Ao h,.

Theorem. Let ay : E, — E, be a family of operators, satisfying (PW1)-
(PW3). Then ay = h, for some h € H(G).

Remark. It is clear, that it is sufficient to check property (PW3) only on
Zariski dense subsets of parameters y and x’.

This theorem follows easily from the following corollary of the main theorem:
functor igas carries projective generators into projective generators.

0.4. Cohomological duality theorem.

Let us denote by v, and v, left and right actions of G on H(G). For
any m € Alg G, we can consider spaces Ext’(r) = Extf;(g) (7, (v,,H(G))) as
G-modules, using right action yg.

Theorem. If m is irreducible then for exactly one index i Exti(w) # 0. More-
over, representation Ext' () is irreducible and m — Ext*(7) defines a duality on
the set of equivalence classes of irreducible algebraic representations of G.

81. Generalities from Algebra and Category Theory



1.1. Idempotented Algebras and Nondegenerate Modules.
We consider a class of rings slightly more general than rings with identity.

Definition.  An associative ring H is called an idempotented ring if for each
finite subset {z;} € H there exists an idempotent e € H such that ex; = z; = z;e
for all ¢.

Example. Each ring with identity is an idempotented ring. More generally,

let H, a € I, be a direct system of rings and H = Hﬁm?—lw Suppose that the
ae
ordered set I is filtered (i.e. for each «, € I there exists v € I such that

a < 7,B <) and all H, are rings with identities (but ring homomorphisms
Ho — Hp for a < f are not supposed to map identities into identities). Then
‘H is an idempotented ring.

In fact, any idempotented ring can be presented in such a way. Namely,
consider the set I = IdemH of idempotents in H with partial order e < f if

eHe C fHf. Then ‘H = lim eHe, where eHe is the ring with identity e.
ec
Usually we consider H to be an algebra over some field £ and call H an

idempotented algebra.
A (left) module M over an idempotented ring H is called nondegenerate if

HM = M or equivalently lim eM = M. If H is a ring with identity, this is
ecldemH
just the usual condition that 1 acts on M as identity.

The category of nondegenerate H-modules we denote M(#H). Each H-
module M contains the maximal nondegenerate submodule H M, which we call
the nondegenerate part of M. It is easy to see that M(H) is an abelian category
with direct limits and filtered direct limits in M (#) are exact. Category M (H)
also has arbitrary direct products (and, hence, inverse limits). Namely, for a
family {M, € M(H)} the product [], My in M(#H) is equal to the nondegen-
erate part of the set theoretic direct product,

i) o )

ecldemH o

1.2. Projective and Injective 7{-Modules. For each idempotent e € H
the functor M — eM is exact on M(H). Since eM = Homy (He, M), it shows,
that He is a finitely generated projective object in M(#). The family of modules
He for e € Idem#H form a system of projective generators for category M (). In
particular, M(#) has enough projective objects, i.e. each module M € M(H)
is a quotient of a projective one.

Similarly, one can see that M(H) has enough injective objects. Namely for
each e € Idem? and each injective Z-module U denote by I(e, U) the nondegen-
erate part of #-module Homz(e?, U). Then the functor M — Homy (M, I(e,U)) =
Homyz(eM,U) is exact on M(H), i.e. I(e,U) is an injective object, and {I(e,U)}
form a system of injective cogenerators in M(H).

We will denote by M () the category of nondegenerate right H-modules,
which we identify with category M(#°), where H° is the opposite algebra. We
define in a usual way the tensor product M’ @ M of nondegenerate right and

H

left H-modules. It is easy to see that all the usual properties of @ hold in this
H



case; we will use them freely. Note, that formula M’ Q) (He) = M'e shows, that

He is a flat H-module, which implies that all project;[/e H-modules are flat.

Let H be an idempotented algebra over a field k. For each H-module
M € M(H) we define the contragredient module M € M®(H) as a nonde-
generate part of the dual space M* = Homyg (M, k), i.e. M = lim (Me)*.

ecldem™

Similarly we define the functor ~: M®(H) = M(H). It is easy to check that
~ is an exact contravariant functor, with duality property HomH(M ,N) =
HomH(ﬁ,M),M € M(H),N € ME(H). In particular, ~ maps projective
objects into injective ones.

1.3. Hecke Algebras.

Let G be an {-group, i.e. a Hausdorf topological group, which has a basis of
neighbourhoods of e € G, consisting of open compact subgroups (see [BZ1]). Let
H = H(G) be the Hecke algebra of locally constant distributions (or complex
valued measures) on G with compact support. Then H is an idempotented
algebra (over C) and category M(H(G)) is naturally identified with category
M(G) of G-modules (see..., [BZ1]).

Let K C G be an open compact subgroup, ex C H(G) be the normal-
ized Haar measure on K. Then exH(G)ex is the subalgebra H g (G) of K-bi-
invariant measures. The system of idempotents {ex} is cofinal in Idem H(G),

e, H(G) = lim Hic(G).

The involution ¢ : g = g~ ! on G defines the natural antiautomorphism

¢ H(G) — H(G). Using this antiautomorphism we will usually identify
M(H) with MP(H), though sometimes it is move convenient to separate them.

1.4. Jordan-Ho6lder Content of a Module.

We want to describe some general properties of the category M(H). It is
convenient to do it in a more general setting.

Let M be an abelian category with (arbitrary) direct sums (and, hence,
direct limits). We will assume that M satisfies some axioms.

(A1) Filtered direct limits in M are exact.
In [Gr] this axiom is called AB... It is equivalent (see [ ]) to

(A1) Let M, C M be a filtered system of submodules, N C M. Then

NN (ZQ:MQ> => (NnM,) .

@

An object M € M is called finitely generated if for any filtered system of
proper subobjects M, C M the subobject > M, C M is proper. For a
finitely generated object M the functor Hom(M, %) : M — Ab preserves
direct sums.

An object M € M is called noetherian, if every of its subobjects is finitely
generated or, equivalently, if each ascending chain of subobjects M; C
My C ... of M is stable.

Category M is called locally noetherian if each finitely generated object
of M is noetherian.



(A2) Every object M € M is a union of finitely generated subobjects.

In order to avoid set-theoretical troubles we also add
(A3) Isomorphism classes of finitely generated objects in M form a set.

We denote by IrrM the set of isomorphism classes of irreducible (i.e. simple)
objects in M. For every E € M we denote by JH(E) C IrrM the subset of
irreducible subquotients of E.

For each idempotented ring H the category M = M(H) satisfies axioms
Al — A3. We will denote Irr(M(H)) by IrrH and IrrM(G) by IrrG (see 1.3).

Lemma. (i) Let E' CE. Then JH(E)=JH(E')UJH(E/E").
(il) JH(E) =0 iff E=0
(iii) If Eo C E, then JH (3_, Eo) = U, JH(E,).

Proof:
(i) is clear.

(ii) Let E # 0. By A2 E has a nonzero finitely generated submodule E’. By
Zorn’s lemma E' has an irreducible quotient, i.e. JH(E) # 0.

(iii) Let I = {a} be the indexing set of E,. If I is finite, the statement
follows from (i) by induction. Hence, replacing system {E,} by a system,
consisting of finite sums of E, we can assume, that {E,} is a filtered
direct system. Let Q = E’/E” be a simple subquotient of )_  E,, i.e.
E" ; E' C Y, Eq. Suppose that for all & Q ¢ JH(E,). Then for every

a E'N (E + Ea) = E' By Al ENY. (E'+E,) = Y. E'N(E" +E,) =
E", which contradicts the inclusion E' C Yo Ea, since E" # E'.

1.5. Decomposition of Categories. Suppose that the category M is split
into a product of two subcategories M = M’ x M". This splitting induces a
disjoint union decomposition IrrM = IrrM' U IrrM”. We want to show that
this decomposition completely describes the splitting.

For each subset S C IrrM denote by M(S) the full subcategory of M
defined by M(S) = {E € M | JH(E) C S}. Lemma 1.4 shows that M(S)
is an abelian subcategory, closed with respect to subquotients, extensions and
direct limits. For every £ € M we denote by Eg the union of all submodules
E' C E, which lie in M(S). Then Eg also lies in M(S). Let S’ C IrrM be
another subset, which does not intersect S. Then for each E € M(S) N M(S’)
we have JH(E) =, i.e. E = 0. This implies that the categories M(S), M(S")
are orthogonal, i.e. Homap(E,E') = 0 for E € M(S), E' € M(S"). Also for
every EeM EsNEg =0,ie. ED Es® Eg.



Definition. = We say that a subset S € IrrM splits an object E € M if
E = Es © Eg, where S = IrrM\S. We say that S splits M if it splits all
objects in M.

More generally, suppose we have a disjoint union decomposition IrrM =

Uaca Sa- We say that this decomposition {S,} splits £ if E = @ Es,. We
acA
say that the decomposition {S,} splits M if it splits all objects in M. In this

case M is equivalent to the category [] M(Sq).
acA

Lemma. Let IrrM = J,c4 Sa be a disjoint union decomposition. Suppose it
splits an object E € M. Then it splits all subquotients of E.

Proof: Let £ = @ cy Ea, Eo € M(Sa). It is sufficient to check that for
every subobject L C EL =) (LNE,). Put C =L/)  (LNE,). Then for
a
JH(C) C JH (L/LNEy) C JH (E/Ey) C | J JH (Es) C S, .
BF#a
This implies, that JH(C) C N, (Sa) =0, i.e. C =0.

Remark. Let #H be an idempotented ring. Suppose category M = M(H) has
a decomposition M = [[ M,. Applying this decomposition to the H-module

[e]
H we see that H = @ H,. Since right multiplications in # are morphisms in

M(H) all H, are two-sided ideals. It is easy to see that M, = M(H,)-

Conversely, each decomposition H = € H, of H into a direct sum of two-
(e

sided ideals leads to the decomposition M(H) = [ M(Ha)-
(0%

1.6. Realization of an Abelian Category as a Category of Modules.
Let M be an abelian category, satisfying A1 — A3. Let P € M be a finitely
generated projective object, A = Enda(P)° (° denotes the opposite algebra).
We define the functor r = r, : M — M(A) by r(E) = Homam (P, E). It
is exact and commutes with direct sums. Functor r has a left adjoint functor
i =ip : M(A) - M. Indeed, every A-module M can be presented as a

cokernel of a morphism vy; of free A-modules vy : @A — @ A, where vy

is given by a matrix {vqs € A}. We define i(M) as a cokernel of a morphism
v @ P — @ P, where v' is given by the same matrix {v,s € A}. In case
o B
when M = M(H) the functor ¢ can be described as i(M) = P Q M.
A

Lemma. Suppose that P is a generator of the category M, i.e. the functor r
is faithful, or, equivalently, Homa (P, Q) # 0 for Q € IrrM. Then functor r
and i are inverse and define an equivalence of categories

M 5 M(A).

Proof: See | ]

This lemma allows us to realize M as a category of modules over some
algebra with identity. This realization is not unique, it depends on the choice
of P. Let us describe the relation between two such realizations.



Let A be an algebra with identity, P € M(A) a finitely generated projective
generator, A = (EndoP)°. Then P is an A — A-bimodule. We define a dual
A — A-bimodule P* by P* = Homx (P, A).

Proposition. P* is a finitely generated projective generator in M(A), End 5 (P*)

A° and the functors i : M(A) = M(A), r : M(A) — M(A) are canonically

isomorphic to r(E) = P*QE,E € M(A) and i(M) = Homy (P*,M), M €
A

M(A).

Proof:
Step 1. For any E € M(A) the natural morphism P* Q E — Homu (P, E) =
A

r(E) is an isomorphism.
Indeed, this is true for P = A, hence for P = A™ and hence for P which is
a direct summand of A™.

Step 2.  Since P is a generator of M(A), A is a direct summand of P™ for
some natural n. Hence r(A) = P* is a direct summand of r(P)"™ = A", i.e. P*
is a finitely generated projective A-module.

Step 3.  Since functors r and ¢ are mutually inverse, we have
Homa(E,i(M)) = Homy (r(E), M) =

= Homy (P* R E, M) = Hom 4 (E, Homy (P*, M))
A

which implies that (M) is canonically isomorphic to Homy (P*, M). Since the
functor 7 is faithful, P* is a generator of M(A).

Step 4. We have r(P) = Hom4(P,P) = A € M(A), r(A) = P*QA = P*

A
and hence i(A) = Homp (P*,A) = P, i(P*) = Homy (P*,P*) = A € M(4).
This implies that as an algebra End 5 (P*) = A°.

Corollary. P is a right projective A-module and Endy (P) = A.

Indeed, since P = Homy (P*, A), it is a right projective A-module, dual to
P*. Hence Endy (P) = Enda (P*)° = A.

1.7. Realization of a Subcategory as a Category of Modules.

Let P € M be a finitely generated projective object, which we do not sup-
pose to be a generator. Consider subset S = Sp C IrrM of irreducible quo-
tients of P. We say that P splits the category M if the subset S splits M, i.e.
M = M(S) x M(S). (see...).

Corollary. Suppose P splits M. Then functors r,i give equivalence of cat-
egories M(S)‘LT, M(A).  Moreover, M(S) = {E € M(S) | Hom(P,E) = 0}
M(S) ={E € M(S) | E is a quotient of @ P}.

This easily follows from 1.6.



Example. Let #H be an idempotented ring M = M(H). Choose an idempo-
tent e € ‘H and put P = He. Then P is a finitely generated projective object
in M, A = (EndyP)° coincides with the subalgebra eHe C H and functors r :
M(H) = M(AN), i: M(A) - M(H) are given by r(E) =eE, i(M)=PQ M.

A
We say that idempotent e splits M if the subset S = Se = {w € Irr M | ew # 0}
splits M. In this case functors r and ¢ give equivalence of categories M (SS) <_f, M(A)
and M(S) = {E € M(H) | E is generated by eE}, M(S) = {E € M(H) |
ek =0}.
1.8. The Central Algebra of M.
Let M be an abelian category.

Definition.  The central algebra Z(M) is defined as Z(M) = End(Idn),
where Idyg : M — M is the identity functor. In other words, an element
z € Z(M) is a collection of morphisms zp : M — M for all M € ObM, such
that for each morphism

a: M — N ZNOQ = QOZ) .

If M = M(H) or M(G) we will also use notations Z(H) or Z(G) instead of
Z(M(H)) or Z(M(G)).

Lemma. Let H be an idempotented ring. Then the morphism z — zy identifies
Z(H) with the algebra Endyxye (H) of endomorphisms of H which commute
with right and left multiplications. In particular, if H has an identity, Z(H) is
isomorphic to the center of H.

Proof: is straightforward, see...

Corollary. Let P be a finitely generated projective generator in M, A = (Endp P)°.
Then the natural morphism z — zp € A gives an isomorphism of Z(M) with
the center of A.

This follows from the lemma and 1.6.
8§2. Decomposition theorem

2.0. Let G be a connected reductive p-adic group, O(G) the set of infinites-
imal characters of G, ©(G) = UO its decomposition into the union of con-
nected components. For each © consider the subset Sg = inf -ch™'(0) C IrrG
and denote by M(0) = M(G, Se) the corresponding subcategory in M(G),
M(©) = {E € M(G)|JH(E) C Se} (see 1 ). In this section we prove the
following

Decomposition theorem. M(G) = [[ M(O), where © runs through all con-
©
nected components of O(G).

Our proof follows the proof in [ | with slight modifications, which we will use
later.



Generalization. Let B be a commutative algebra with identity. Put M(©; B) =
{E € M(G;B)|E € M(0) is G-module} . Then decomposition theorem im-
plies that M(G; B) = [[ M(©; B).

)

2.1. Separation of compactly supported G-modules.

Let G be an arbitrary ¢-group as in 1. A G-module F is called compactly
supported if for each open compact subgroup K C G and each £ € E the function
g — (e, ge, )¢ has a compact support of G. This implies that £ has compactly
supported matrix coeflicients. Using this fact and arguing exactly like in a case
of compact groups, one can prove the following.

Proposition. (see [ ]). Let V be a finitely generated compactly supported G-
module. Then V is admissible and has finite length. The finite subset S =
JH(V) C IrrG splits the category M(G) and each module E € M(G;S) is
completely reducible.

2.2. Separation of cuspidal components.

Let G be a reductive p-adic group. If the center Z(G) of G is compact,
cuspidal G-modules are compactly supported and we can use 2.1 to separate
them. In general they are compactly supported modulo center Z(G). To study
this case we will use the following property of G.

(*) G has an open normal subgroup G° such that Z(G) N G° is compact,
Z(@G) - G° has finite index in G and the group A = G/G? is a lattice, i.e.
is isomorphic to Z%, d € Z+.

It is easy to see that such a subgroup G is unique. By definition the group
U (@) of unramified characters of G coincides with

Hom (A,C*)={¢p: G —- C" :¢p|go =1} .

Lemma. Let (p,V') be a simple G-module. Then

(i) plgo is completely reducible of finite length. The subset S, = JH(p|go) C
IrrGO is finite and is a G-orbit of the natural action of G on IrrGP.

(ii) The correspondence p — S, gives a bijection of the set of ¥(G) - orbits in
IrrG and G-orbits in IrrG°, i.e. S, = S, iff p' = ¢p for some ¢ € ¥(G).

(iii) The stabilizer St(p, V) of p in ©(G) is finite. If we choose for each ¢ €
St (p,¥) a nonzero morphism ay : (p,V) = (Yp,V), then {ay} is a
C-basis of Endgo (V).

Proof: (i), (ii) are proven in [ ]. (iii) Put A = Endgo(V) and define the
action of G on A by g(a) = p(g)ap(g)~*. This action is trivial on G°. Because
of Schur’s lemma it is also trivial on Z(G), so it is an action of the finite abelian
group G/G" - Z(G). Using this we can decompose A = ®A,, where A, are
eigenspaces of the action. But Ay = Homg(p,¥p) = C - ay by Schur’s lemma,
ie. A=@C-ay with ¢ € St(p, ¥) C Hom (G/G° - Z(G),C*).

¥



Harish-Chandra theorem. (see [ ]) Let m be a quasicuspidal G-module, i.e.
Tye (M) = 0 for all subgroups M ; G. Then it is compactly supported modulo
center, i.e. 7r|G0 18 compactly supported.

Corollary. Let (p,V) be a cuspidal irreducible G-module. Then the cuspidal
component D = U(G) - p C IrrG splits the category M(G).

Proof: Put S =S, = JH(p|_,) C IrrG°. By 2.1 every G-module E has a
decomposition E = Eg ® Eg with E € M(G%; S), Eg € M(G%S). Since this
decomposition is canonical it is G-invariant, i.e. Eg and Eg are G-submodules.
Lemma 2.2 implies that Es € M(G, D), Exz € M(G, D).

2.3. Functors i,,, and r,,.

In order to deal with noncuspidal components we will use functors ¢,, and
Ty Let us recall some elementary properties of these functors. For simplicity
we consider only the case when M is a standard Levi subgroup.

(i) Transitivity. Let M < N < G. Then i, =1
(canonical isomorphisms).

o1 r =r or

GN NM)?» " MG MN NG

(ii) Functor r,,, is left adjoint to i,,, (canonical adjointness). See [ ].

MG

(iii) Functors i,, and r,,, are exact and preserve direct sums. See [ ]

GM MG

(iv) There exists a functorial isomorphism i,,, () = (is,, (0)) , 0 € M(M)
(canonical isomorphism). See [ ]

(v) Functor r,,, maps finitely generated G-modules into finitely generated
M-modules. See [ ].

(vi) Composition of functors r and .

We need some notations. For each w € W we fix a representative w €
Norm (M, @). For each subgroup H C G we put w(H) = wHw ! and
denote by w the corresponding functor w : M(H) — M(w(H)).

Let M,N < @. Each double coset Wyx\W¢g /W)y, has a unique represen-
tative of minimal length; we denote the set of these representatives by
WEM. For each w € WM we put

My =MnNw ™ (N)<M, N,=w(M,)=wM)NN<N .

Composition theorem. Consider functors F,F, : M(M) - M(N),
for w e WEM defined by F =1, 0ig,, Fo =iy, owor, .. More
precisely, choose any ordering {w1,...,w,} of WévM such that w; < w;
implies i > j (here < is the standard partial order on W, see [ ]). Then
F has a canonical filtration 0 = Fy C Fy C --- C Fy = F and F;/F;_; is
canonically isomorphic to F,,.

See the proof in [ ]. Canonicity of isomorphisms in .... and .... is discussed
in appendix ...

10



(vii) Let K C G be an open compact subgroup. We will use the following simple
lemma, which describes K-invariant vectors in induced G-modules.

Lemma. Let (P,M) be a standard parabolic pair. Fiz a system (g1,...,9n) of
representatives of double cosets P\G /K and consider open compact subgroups
[y,...,0,, C M defined by T; = pr,._,,,(PNgKg~'). Also fit a Haar measure
on the unipotent radical U C P. Then for every V.€ M(M) and E =i, (V)

n
there exists a canonical functorial isomorphism EX ~ @ Vi,
i=1

Proof: is straightforward.

2.4. Functors i. , and r, , and their properties.

Let (M, D) be a standard cuspidal block (notation (M,D) < (G,0(Q))).
It means that M < G and D is a cuspidal component of @(M). The subset
© =i, (D) C ©(G) is a connected component. We say that the component ©
corresponds to the block (M, D) and use the notation (M, D) < (G, ©). Another
standard cuspidal block (N, D') corresponds to the same component © if and
only if there exists w € Wy such that w(M,D) = (N,D’), i.e. N = w(M),
D' = w(D). In this case we say that (N, D’) is associate to (M, D) (notation
(N, D') ~ (M, D)).

Standard cuspidal blocks will play a role similar to standard Levi subgroups.
By 2.2. M(D) is a direct summand of M(M). We denote by in, : M(D) —
M(M) and pr, : M(M) — M(D) the corresponding inclusion and projection
functors.

Consider the functors

igp = ligy ©in, : M(D) = M(G)
Tpg =Plp OTye M(G) - M(D) .

The following properties of these functors immediately follow from 2.3.
(i) 7, is left adjoint to i, .
(ii) 4., and r,,, are exact and preserve direct sums.
(i)
Composition theorem. Let (M, D), (N, D') be standard cuspidal blocks
F:r,, oig, : M(D)— M(D'). Then F =0 unless (M,D) ~ (N,D").

If they are associate, F is glued from the functors w : M(D) — M(D'),
where w € {w € WM |w(M, D) = (N, D")}.

Proof: By composition theorem F'is glued from prp: oiy owor, . oin,.

If My, # M, we have r,, ,, oin, =0. If N, # N, we have pr_, oi,, =0 (as
right adjoint to 7, _, oin,, = 0). This proves the theorem.

Proposition. (i) The system of functors r,, for all (M,D,) < (G,0(Q))
is faithful, i.e. Tpc(E) =0 for all (M,D) implies that E = 0.

11



(it) Fiz a connected component @ C O(G). Then the system of functors r,
with (M, D) < (G, ©) is faithful on M(O).

(iii) Let E be a G-module such thatr ,, (E) = 0 for all standard cuspidal blocks
(N, D') which do not correspond to the component ©. Then E € M(O).

(iv) Conversely, if E € M(©), thenr,, (E)=0 for (N,D") £ (G,0).
(v) If (M, D) < (G,0), then i,,(M(D)) C M(O).

Lemma. Let w € IrrG, 0 = inf -ch w € O(G) and © be a connected component
of 8. There exists a cuspidal block (M,D) < (G,0©) such that r,,(w) # 0. For
each cuspidal block (N, D') which does not correspond to © r _, (w) = 0.

D'G

Proof: We can find a cuspidal pair (M, p) such that M < G and w € i,,(p).
Let D C ©(M) be a connected component of p. Then Homg(w,i,,(p)) =
Hom(r,, (w),p) # 0, ie. r,,(w) # 0. If (N,D') # (M, D), then r,, _(w) C
"o ©fap(p) = 0 by composition theorem 2.4 (iii).
Proof of the proposition. Since functors r,. are exact the lemma implies
(i), (i) and (iii). Since for (N, D') # (M,D) r_,  oi., =0, (iii) implies (iv).

Let us prove (iv). Let (N, D') be a standard Levi block such that the cor-
responding component ©' differs from ©. Put V =r , (E) € M(D'). By (v)
igy (V) € M(0O') and hence Hompy (V, V) =Homp(r,, (E),V) =Homg(E,i_,, (V)) =
0,ie. V=0.

DG

D’G(

Corollary. Let N < G, © C O(G) be a connected component. Consider all
components On C ign(0) C O(N) and the corresponding product category

M' = 1] M(On). Then
On

iy (M) C M(©) and 1, (M(©)) C M' .

Proof: it easily follows from the composition theorem in 2.3 and the propo-
sition.

2.5. Proof of decomposition theorem.

Step 1. For each standard cuspidal block (M, D) define a functor Tp = i, ©
e @ M(G) = M(G). Since the functor r,, is left adjoint to i, , for
each G-module E we have a canonical functorial morphism o, : E —
Tp(E). If L C E, then the restriction a,|, : L = Tp(E) corresponds
to the morphism r,,, (L) = r,, (E). Since the functor r,, is exact, this
morphism is an inclusion. This proves that «, (L) = 0 if and only if
rye (L) =0.

DG

Step 2. Consider the product morphism

a= [ ew:E—~ [] To(®)

(M,D) (M,D)

where the product is over all standard cuspidal blocks (M, D). Then
r,. (Ker @) = 0 for all (M, D), and, since {r} is a faithful system of
functors, Ker a = 0.

12



Step 3. We want to show that the decomposition IrrG = | J Se splits a G-module
e
E. Since E C [] Tp(E) it is sufficient to check that {Se} splits this

(M,D)
product (see 1...). By proposition 2.4. (v) {Se} splits @ Tp(E), hence
(M,D)
it would be sufficient to prove that @ Tp(E) ~ [] Tp(E). This
(M,D) (M,D)

follows from the following general statement.

(*) Let Vo € M(0): © C O(G). Then @ Vo ~ [ Ve.
€] (€]

Step 4. As wesaw in ... [[Vo = hfr{)n(]_[ V&), Hence (*) follows from
e e

(**) Let K C G be an open compact subgroup. Then V£ = 0 for all but
a finite number of components 0, so @ VI =[] V&,
© ©

Put Sk = {L € IrrG|LX # 0}, Ok(G) = inf ch - Sk. If VI # 0, then
Ve has an irreducible subquotient in Si. Hence (**) follows from

(***) ©k(G) is a union of a finite number of components.

Let ® C ©(G) be a connected component (M, D) < (G, 0), (p,V) € D.
For every ¢ put E, = i_,,(¢¥p) € M(G). The lemma 2.3 ( ) shows that
the space B does not depend on ¢ and is equal to @ V'. For a given

(2
infinitesimal character § = (M,p) € © the fiber inf-ch *(®) C IrrG
coincides with JH(E,). This implies, that § € Og(G) iff @V # 0.

13
Hence O either lies in Ok (G) or does not intersect it, i.e. Ok (G) is a
union of components. Moreover, © C Og(G) iff D C Or,(M) for some
i. So, using induction in dim M, we should estimate only the number of
cuspidal components. In other words (***) follows from

K (G) contains a finite number of cuspidal connected components.
XN Ok (G tai finit b f idal ted t
Step 5. Using 2.2 we see that (***') is equivalent to

(****) IrriGO has a finite number of compactly supported G°-modules.

This statement is deduced in [ ] from the following

Uniform admissibiliy theorem. Let K C G be an open compact subgroup.
There exists an effective constant C = C(G,K) such that for each simple G-
module L dimL* < C(G,K).

Remark.  The proof in | ] does not give an effective estimate for the
number and type of cuspidal components in ©(G). In ... we will give an
effective estimate.

13



2.6. The faithfulness of the functor r_,.

Fix a connected component © C O(G). As we saw in 2.4. the system of
functors {r,.|(M,D) < (G,0)} is faithful on M(©). In fact, each of these
functors is faithful. This fact allows us to simplify notations in many proofs.

Proposition. Let (M, D) < (G,0). Then the functorr,,, is faithful on M(0O).
In particular, for every G-module E € M(©) the morphism ap : E — TpE,
described in 2.5 is an inclusion.

The proof is based on the following lemma, due to Casselman

Lemma. Let M < G be a mazimal Levi subgroup, D C ©(M) a cuspidal
component, p € D. Suppose that for some w € Wg, wM < G and w(M,D) #
(M, D). Then the G-module m =i, (p) is irreducible.

Proof:

Step 1. Let R(G) be the Grothendieck group of G-modules of finite length. By
Langlands theory R(G) is generated by i, (¢o), where N < G, ¢ €
W(N), o € IrrN is a tempered N-module.

Consider the infinitesimal character 8, corresponding to (3, p) and a sub-
group R(0) C R(G), generated by G-modules with infinitesimal character
6. Let i, (o) € R(#). If N # G then, since M is maximal, (N, o)
is conjugate to (M,p) and hence i, (o) ~ w. Hence if exclude the
possibility N = G, then R(f) = Z - 7, i.e. 7 is irreducible.

Suppose there exists a tempered G-module o € IrrG, and ¢ € ¥(G) such
that vo € R(f). Replacing p by ¢~!p we can assume that ¢» = 1, i.e. inf.
ch. o = 6. Replacing the cuspidal pair (M, p) by a conjugate one we can
assume, that o ; .

Step 2. Since M is a maximal Levi subgroup, there exist modulo W,
nontrivial element w € W such that wM < G (see [ ]).

Put N =wM, D' =wD, n" =i, (wp). We have r,.(7) = p, r,, . (7) =
wp. Since the system of functors r,,, r,,, is faithful on M(6) and
The(0) # 0, this implies that r,. (o) = p, v, (7/0) = wp and hence
7,,.(0) = 0. This shows that m has length 2. Similarly, 7’ has length 2.
Since o € JH(n') = JH(w) and o ¢ 7', there exists a nontrivial morphism

7 = 0.

only one

Step 3. For every G-module 7 denote by 7+ the Hermitian contragredient G-
module. Then o7 & o, since o is tempered and hence unitary. Also
pT lies on the same component D as p, since D contains some unitary
M-modules. This implies that 7 = (7')* has a form 7 = i, (p') with
peD.

Nontrivial morphism 7’ — ¢ gives a nontrivial morphism ¢ = ¢t — 7.
But Homg(o,7) =Homg(0,isy (p')) =Homp(r,,,(0),p') ie. r,, (o) #
0, which contradicts Step 2. This contradiction proves the lemma.

Proof of the proposition.
Let E € M(0), E # 0. We have to prove that r,,(E) # 0. By ... we can
find a standard cuspidal block (IV, D'), associate to (M, D) such that r , . (E) #

14



0. Let (N,D') = w(M,D), w € Wg. We call the map w : M — N elementary
if there exists a Levi subgroup L < G such that M < L, N < L, w € W,
and M is a maximal Levi subgroup in L. It is shown in | ] that any map
w : M — N can be obtained as a composition of elementary maps. Hence we
can assume that w: M — N is elementary.

Let © = i,,,(D) = i,,(D") C ©(L), V = r,,(E) € M(L). Since
ro, (V) =r,, . (E) # 0,V has a nontrivial D'-component. Hence replacing
G by L and E by the ©'-component of V we can assume that M < G is a
maximal Levi subgroup. We can also assume that (M, D) # (N,D’), other-
wise 7, (E) = r,,.(E) # 0. Choose an irreducible subquotient w € E. Then
w € JH(i,,, (p)) for some p € D. By the lemma, i, (p) is irreducible, i.e.
w = ig,,(p). This implies that r,, (w) # 0 and hence 7, (E) # 0.

Thus we have proved that r,, is faithful on M(©). The same arguments as
in 2.5 show that «,, : E = TpE is an inclusion.

§3. Decomposition of category M(G) with
respect to a compact subgroup

3.1. Let K C G be an open compact subgroup Hx = Hg(G). Put Sk =
{L C IrrG|L¥ # 0}. We say that the subgroup K splits M(G) if the subset
Sk splits M(G), i.e. M(G) = M(Sk) x M(Sk). As shown in ... in this case
we have

M(Sk) = {E € M(G)|Eis generated by EX},
M(Sk) = {E € M(G)|EX =0}

and the functors

r: M(Sk) = M(Hg),
i: M(Hg)— M(Sk)

given by r(E) = EX (M) = H® M are mutually inverse equivalences of
H
categories. “

We want to show that there are a lot of subgroups K which split M(G). In
order to do this we describe some geometrical sufficient conditions on K.

First of all, let us notice, that if Sx is a union of subsets Sg for some
components O, then K splits M(G). In fact, one can prove that any splitting
subset S C IrrG is a union of Sg (it follows, for instance, from the description
of Z(M(G)) below). So we want to find conditions which imply that Sk is a
union of Se.

3.2. Let P C G be a parabolic subgroup M = P/U. For a compact open
subgroup K C G put Kp=KNP, Ky =pr,._,,(Kp). Let K CG,T" C M be
open compact subgroups. Consider the following conditions on K and I'.

(I) For each g € G the subgroup (YK)y; C M contains a subgroup, conjugate
toI'.

15



(IT) For any open subgroup N C G the subset (pr,_,,) (') - N contains a
subgroup conjugate to K.

Note that these conditions are invariant with respect to conjugation of P,
KorT.

Lemma. (see.....).

(i) Suppose K, T satisfy I. Then for each M -module V, VY =0 =i, (V)X =
0.

(i) OSuppose K, T satisfy II. Then for each G-module E, E¥ =0 = rliG (BE)' =

Proof:
(i) Follows from Lemma ....

(ii) V is isomorphic to E, as I'-module (see ...). Denote by A : E — Ey
the natural projection. Suppose that Ef, # 0 and choose { € E such
that v = A{ € E},\0. Let N be the stabilizer of { in g. Then for each
gEpr,_ (1)t N we have

A(g€) = A(yn)§ = vA(n§) =yAl =y =v .

Choose a subgroup K' C pr=!(T') - U, conjugate to K. Then A(e,,§) =
v#0,ie. EX #£0and EX £0.

Corollary. Let K C G be an open compact subgroup such that for each parabolic
subgroup P the pair K,T' = Ky C M satisfy both conditions I and II. Then Sk
is a union of Se and hence K splits M(G).

Proof: Let © C ©(G) be a connected component (M, D) < (G,0) a corre-
sponding standard cuspidal block. Let L € Sg. Then by ... r (L) # 0, so for
some 1 € ¥(M) there exists an epimorphism r,, (L) — tp and an inclusion
L — i, (¥p). Hence

LK=0=r,,(L)f =0= V" =0and
Vi=0=i,,Wp)=0=>LK=0.
Thus the condition L¥ =0 does not depend on L € Sg, i.e. either So C Sk or
Se C Sk.
Remarks.

(i) It is sufficient to check condition (I) for (finite number of) representatives
{gi} of double cosets P\G/Norm K. In particular, if K is a congruence
subgroup, which is normalized by the maximal compact subgroup Ky,
then Iwasava decomposition G = PKj implies that I holds for I' = K.

(ii) Let (f’, P) be a parabolic pair. Suppose that K C U I' U, where ' C M =
PN P. Then condition II holds. Indeed, put C =pr _ _ (K). Then we
uru 4

can find a € Z(M) for which ¢C' is arbitrarily small, and hence lie in N,
which implies *K C U T' N.
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Examples.

(1) A congruence subgroup K of a nonzero level is normalized by Ky and
satisfies KU U KU for each standard parabolic pair (P, P). Hence it
splits M(G).

(2) Let I be an Iwahori subgroup (see ...). Then it is easy to see that I C
UIyU. Choosing representatives w € W = Ko/l in P\G/I it is easy to
check that K, K satisfy condition I for each standard parabolic subgroup
p. Thus I splits M(G). Another proof of the fact see in [ ]. In this case
S consists of one component Sg.

(3) The maximal compact subgroup K¢ does not split M(G) since trivial and
Steinberg G-modules C and St lie over the same component © C ©(G),
but CKo £ 0 while Stfc = 0.

§4. Noetherian properties of M(G)

4.1. Structure of category M (D) for a cuspidal component D.

Let D C ©(G) be a cuspidal component. Fix (p,V) € D. Denote by F
the algebra of regular functions on algebraic variety ¥(G). It coincides with
the group algebra of the lattice L = G/G° and hence has a natural structure
of G — F-module. This module describes a universal 4 (G)-family of unramified
characters of G since its specialization at a point ¢ € ¥(G) is Cy,.

We denote by II(p) the G — F-modules II(p) = FQ V. As G-module II(p)

C

does not depend on the choice of a point p € D (up to a noncanonical isomor-
phism). So we denote this G-module as II(D).

For every ¢ € Stab (p,¥(G)) we choose an isomorphism «, : (p,V) —
(¢p, V) and extend it to the automorphism of II(D) by ay (v, f) = ay(v)@9Y(f),

where (f) is defined as (f)(11) = f(¥ " ¢1).
Proposition. Let D C ©(G) be a cuspidal component, (p,V) € D.
(i) II(D) is a finitely generated projective generator in the category M(D).

(ii) End g II(D) = @ F - ay where ¢ € Stab(p, ¥(G)).
¥

Proof:

(i) Since F = ind$ (C), where C is the trivial G°-module, II(D) = ind%o (Ploo)-
Hence for every G-module E we have Homg(II(D), E) = Homgo(V, E).
If E € M(D) its restriction to G° is completely reducible (see 2.1), i.e.
the functor E — Homg(II(D), E) = Homgo(V, E) is exact and faithful.
Hence I1(D) is a projective generator of M (D). Since G° is open in G,
II(D) is finitely generated.

(ii) Homg(II(D),II(D)) = Homgo(V, F @ V) = = F Q Homgo(V, V), so the
il

statement follows from 2.2.
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Using ... we see that the category M(D) has a fairly simple description.
Namely, put A = Endg(II(D))°. Then M(D) is equivalent to the category
M(A). The algebra A is a free module over the subalgebra F' with generators
ay, i.e. A= F -ay with ¢ € Stab(p, ¥(GF)), and following relations

¥

(a) ayfay' =¢(f), f € F.

(b) ayay, = c(¥,X)ayy, where c(i,x) € C are some constants, defining a
projective representation of Stab(p, ¥(G)) in V.

Corollary. (i) The center Z(M(D)) of the category M(D) is isomorphic to
the algebra Z(D) C F C End(II(D)) of regular functions on D.

(ii) Category M(D) is locally noetherian.
(iii) Every finitely generated G-module E € M(D) is Z(D) admissible.

Proof:

(i) Relations (a) - (b) show that Z(D) coincides with the center of A. Using
.. we see that it coincides with Z(M(D)).

(ii) Since D ~ ¥(G)/Stab(p, ¥(G)), F, and hence A, is a finitely generated
Z(D)-module. Since Z(D) is a noetherian algebra, the category M(A) ~
M(D) is locally noetherian.

(iii) Since pl,, is admissible (see 2.1), I[I(D) is F-admissible and hence Z(D)-
admissible. Since any finitely generated G-module E € M(D) is a quo-
tient of II(D)™, n € Z™, it is also Z(D) admissible.

4.2. Noetherian properties of M(G).

Theorem. Category M(G) is locally noetherian. Functors r and i map finitely
generated modules into finitely generated ones.

Proof:

Step 1. Functor r maps finitely generated modules into finitely generated ones.
This easily follows from Iwasava decomposition (see [ D.

Step 2. Let (M, D) be a standard cuspidal block, V' € M(D) be a finitely gener-
ated M-module. Then G-module E =i, (V) is noetherian.

Let © =i, (D) C ©(G). Then E € M(O) (see ...). Since the functor
T, is faithful and exact on M(O) it is sufficient to check, that r,, (E) is
noetherian. But by 2.4 r,,(E) =7, 0i,,(V) is glued from M-modules
wV, w € W(D), each of which is noetherian by Proposition 4.1.

Step 3. Let E be a finitely generated G-module. Then it is noetherian. Indeed,

by 2... E imbeds into € TpkFE. Since it is finitely generated, its image
(M,D)

lies in a finite sum. Using Steps 1,2 we see that each G-module TpE =

Tup ©Tpe () is noetherian, and hence E is noetherian.
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Step 4. Let N < G, V € M(N) be a noetherian M-module. Then i, (V) is
noetherian G-module.

Repeating arguments in Step 3 we see that V' is contained in a finite sum

( ) )iND or, (V). Hence i, (V) is contained in a finite sum @i, or,, (V),
M.,D
which is noetherian by Steps 1,2.

Generalization. Let B be a commutative noetherian C-algebra with iden-
tity. Then category M(G; B) is locally noetherian, and functors ¢, 7 map noethe-
rian G — B-modules into noetherian ones.

Generalization. Let B be a commutative algebra with identity. Then
M(D;B) = M(AQ B), Z(M(D,B)) = Z(D) @ B. If B is noetherian, then
C C
Z(D) @ B is noetherian, since Z(D) is a finitely generated C-algebra. This
C
implies that M (D, B) is noetherian.

85. Stabilization Theorem

5.1. Let K C G be an open compact subgroup. For each g € G we put
h(g) = erger, € Hyi, where g stands for o-distribution at g. In other words,
h(g) is the unique normalized bi- K-invariant measure, supported on KgK.

In some cases we have equalities h(a’) = h(a)® for i > 0 or h(ab) = h(a)h(b).
(geometrically it means that KigK = (KgK)! and KabK = KaKbk respec-
tively). We want to describe some sufficient conditions for these equalities.
Essentially these conditions mean that a,b are dominant with respect to some
parabolic pair.

Definition. Let (P, P) be a parabolic pair. We say that subgroup K is in a
good position with respect to (P, P) if

(x) K=KTK, ,where K_.=KnU, I'=KnM, K; =KnU .

Suppose (P,P) and K are in a good position. We call element a € M
dominant with respect to (P, P, K) if

(%%) a'K_aCcK_, ala*=0, aKia ' CK, .

For each compact subgroup C' C G we denote by e. the distribution on G,
which is the image of the normalized Haar measure on c. If K is in a good
position with respect to (P, P), we have

€K — EK_€reéx, — €K, €erex_ .

If a, b are dominant with respect to (P, P, K) we have h(ab) = h(a)h(b). Indeed,

KaKbK = KaK, TK_bK = K(aK,a ") (al'a™")ab(b" ' K_b)K = KabK .
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Example. Let A C Z(Mpy) be the maximal split torus, A = Homgg.gr. (4, F*)
its character lattice, ¥ C A the root system of G and ¥* C ¥ the system of
positive roots, corresponding to Py. Put AT = {a € A | |a(a)] < 1 for all
a € X7} Then there exist arbitrary small open compact subgroups K C G
(congruence subgroups) such that (P, Pg) and K are in a good position, and
all elements a € A* are dominant with respect to (Py, P, K). In particular, H
contains a very big commutative subalgebra A = span{h(a)|la € AT}.

In fact these congruence subgroups are in a good position with respect to
each standard parabolic pair (P, P) and all elements in At NZ (M) are dominant
with respect to (P, P,K) (see [ ]).

5.2. To each element g € G naturally corresponds a parabolic pair. Namely,
put P, = {z € G| the sequence g'zg~%, i =1,2,..., is bounded in G}.
Statement. P, is a parabolic subgroup of G, (Pg, Pg—1) is a parabolic pair.

For regular semisimple g the statement is proved in [c]. It is enough for our
purposes.
Definition. Let (P, P) be a parabolic pair. We say that an element a € M is
strictly dominant with respect to (P, P) if (P,P) = (P,, P,-1). Geometrically
it means that operators Ada|y and Ada™'| are strictly contractable and the
family of operators {Ada’| i € Z} is uniformly bounded on M.

Let (P, P) and K be in a good position. We say that an element a € M is
strictly dominant with respect to (P, P, K) if it is dominant and strictly dominant
with respect to (P, P).

Lemma. (i) Let g € G, (P,P) = (P;,P,-1). There exist arbitrary small
open subgroups K C G in a good position with respect to (P, P) such that
g 1s strictly dominant with respect to (P, P, K).

(ii) Let K be in a good position with respect to (P, ?l. There exist an element
a € Z(M) strictly dominant with respect to (P, P, K).

Proof: Statement (i) is proved in [ ], (ii) is straightforward.
Fix an element strictly dominant with respect to (P, P,K) and consider
increasing sequences of subgroups

Uo=a "K,a"CU , U,=a"K a"CU.

When n — oo these subgroups become arbitrary large, when n — —oo they
become arbitrary small.
Put h = h(a). Using formulae in 5.1, we get for n > 0

h" =exa"ek
exa" = a"ey, ereg
h"* =ega"ex = a"ey, ek
and similarly

h" = egey a”.
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Proposition. Let E be a G-module, Ey the space of U-coinvariants of E
(see...) and A : E — Ey the natural M -equivariant projection. Denote by
Ay, the corresponding morphism Ay : EX — EX = (Ey)Y. Then

(1) AKhn = a”AK.

(i) For ¢ €ef WE=0iffey, =0

In particular

Ker Ax = UKereUn |lpx={¢ € EX | h"¢=0 for larger} .

(iii) If ¢ € E is U_,-invariant, then a"er A& = Aega€. In particular, for
each 1) € E}, a™n € Im Ak for large n, i.e. [Ja™"Im Ag = Ef,.

Proof: Formula h" = a"ey, ek implies (i). Since the operator a on EY; is
invertible, it also implies (ii). Using formula a"ey, erer_ = exa™ we see that
aerA (eﬁ_nf) = a"Aey, ereg_ § = Aa"ey, ereg_ § = Aega™¢ which proves
(iii).

This proposition means, that space Ell} together with operator g is naturally
isomorphic to the localization of EX with respect to operator h.

5.3. Stabilization Theorem. Let (P, P) be a parabolic pair, K C G an
open compact subgroup, in a good position with respect to (P, P). Denote by
C = Ck a constant in uniform admissibility theorem (see.....), i.e. a bound for
dim L¥ for L € IrrG.

Let a € M be an element strictly dominant with respect to (P, P, K). Put
h = h(a) € Hg. For each G-module E consider h as an endomorphism of EX.

Stabilization theorem. (i) For each G-module E there exists a unique de-
composition EX = Ef & EX into h-invariant subspaces such that h B =
0 and h is invertible on EX. Namely, B = Kerh™ |, EX = Imh" for
anyn > C.

(ii) Let C C U, C C U be sufficiently large open compact subgroups. Then for
each G-module E

Eé< = FE NKerec , Ef =exezE .
In particular, Ef, EX do not depend on the choice of a.

(iii) Consider the natural morphism Ay : EX — Ell} Then EX = Ker Ax , Ay -
EX — EL is an isomorphism.

Proof: Using formulas h" = a"ey,ex = exeg a™, we see that (i) implies (ii)

for subgroups C D U, = a "K,a" , C D U, = a"K_a~". Using proposition
5.2 we see that (i) implies (iii). Hence it is enough to prove (i).
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Step 1.  Let L be a C[z]-module, i.e. a vector space with an endomorphism z.
We say that L is z-stable if L has an z-invariant decomposition L = Ly@® L, such
that xLyp = 0 and z is invertible on L,. Clearly, L is z-stable <= L = Kerz &
Imz <= Keraz? = Kerz, Imz? = Imz <= « is invertible on L/ Kerz ~ Im .

It is easy to check that the direct sum of xz-stable modules is z-stable and
for each morphism a : L — L’ of z-stable C[z]-modules Ker a and Coker a are
x-stable Clz]-modules.

Step 2. Denote by M' C M(G) the subcategory of G-modules E such that
E* is h®-stable. We have to show that M’ = M(G).

As follows from Step 1 direct sums of modules in M’ and kernels and cok-
ernels of morphisms of modules in M’ lie in M'.

Also, M’ contains all irreducible G-modules. Indeed, for each irreducible G-
module L dim L¥ < C, and hence the sequence of subspaces Im k¢ is constant
for i > C, i.e. h is invertible on Im h®.

Step 3. Let B be a commutative noetherian C-algebra, E B-admissible
0 — B-module. Suppose that ry;q(E) is B-admissible M — B-module. Then for
some n > 0 EX is h-stable.
Indeed, since E¥ is noetherian B-module, the sequence of submodules Ker A"
is stable. By proposition....Ker A% = | JKer h", and hence Ker Ax = Ker h" for
n

some 1 > 0.

By proposition..... E}; is a union of B-submodules =" Im Aj,. Since E}; is
finitely generated B-module it is equal to a~! Im A for some I' > 0. Since a
is invertible on EJ, we see that El, = Im Ay = E¥/ Ker Ak.

Thus the operator h is invertible on EX /Ker Ay, = EX/Ker h", which im-
plies that E¥ is k™ stable.

Step 4. Let (N, D) be a standard cuspidal block, (p,V) € D,II(D) = FV
be G — F-module described in... Put (II, E) = ig,,(II(D)). Then for some n > 0
EX is h™-stable.

It is sufficient to check that E and ry¢(E) are F-admissible modules. By
composition theorem ;¢ (E) is glued from M-modules ipspr, cw(II(D)). Hence
F-admissibility of E and ryq(E) follows from the following.

Lemma. The functorigy : M(A, B) = M(G, B) maps B-admissible modules
into B-admissible ones.

This lemma is an immediate consequence of lemma...

Step 5.  Module (I, E) is step 4 which lies in M', i.e. EX is h%-stable.
Indeed, it is sufficient to check that Ker h* C Ker h®. Let £ € ker b, &' = hC¢.
For each ¢ € ¥(M) consider specialization morphism II(D) — ¢p and the
corresponding morphism oy : E = Ey = iqgnm(¥p).

Lemma. (see [ ]) For generic ¢ G-module Ey, is irreducible.

This lemma implies that for generic ¢ E, € M’. Since h™ay(€) = 0, this
implies that ay(¢') = h%ay(€) = 0 and hence ¢ = 0.
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Step 6. Let (N, D) be a standard cuspidal block. Then igy(M (D)) C M'.

Let ¢ € M(D). Since II(D) is a projective generator in M(D) we can
represent o as a cokernel of some morphism v : ®,II(D) — ®gII(D). Then
ign (o) = Coker (d,I1 — @&3II) (since functor i, is exact and preserves direct
sums). Since II € M’ Step 2 implies that o € M'.

Step 7. Each G-module E lies in M'. Indeed, we can embed E into module
E' = ®n,p)icp o rpa(E) as in..... By Step 6 E' € M'. Similarly we embed
E'/E into E' € M'. Then E = ker(E' — E") lies in M’ by step 2.

5.4. Corollaries and Remarks to the Stabilization Theorem.

Generalized Jacquet Lemma. Let K be in a good position with respect to
(P,P). Then for each G-module E the morphism Ax : EX — El is an epi-
morphism. Moreover, it has a right inverse morphism B, functorial in E, i.e.
E[F] can be realized in a natural way as a direct summand of EX.

Corollary. Functor rl,. maps B-admissible G — B-modules into B-admissible
M — B-modules.

We will prove more a general result.

Let B be a commutative C-algebra with identity. Fix a class of objects
C C M(B) closed with respect to isomorphisms, finite direct sums and taking
of direct summands (i.e. for t®y~ Z, Z € C it XY € C). Examples: C is
the class of finitely generated B-modules, or the class of projective B-modules,
or the class of flat B-modules and so on. We say that G — B-module E is of
C-type if for each open compact subgroup K C G' B-module EX lies in C.

Proposition. Fiz a class C C M(B) as above. Then functorsit,,, : M(M,B) —
M(G, B) o : M(G,B) — M(M, B) map C-type modules into C-type mod-
ules.

Proof: For functor igys this follows from lemma..... Let E be a G — B-
module of type C' and 'y C M an open compact subgroup. Choose an open
compact subgroup K C G in a good position with respect to (P, P) such that
' =KnNM CTy. Then E[l}o is a direct summand of E};, which is a direct
summand of EX. Hence B-module E'°U lies in C', which proves the proposition
for functor rpq.

Remark. 1. Consider the decreasing sequence of right ideals J, = h"Hg C
Hy. Applying stabilization theorem to G-module H(G)ex we see that it is
stable, namely

(*) Jo=Jo for n>C.

In fact this statement is equivalent to the theorem. Indeed, it implies that
Imh" = Imh® for each G-module E. Using the natural anti-involution of
H(G), given by the antiautomorphism g — ¢g~! on G, we can deduce from (*)
that Hxh™ = HxhC® for n > C, which implies that Ker A" = Ker h°.

Note, that (*) is purely geometrical statement, which has nothing to do
with the representation theory. It would be very interesting to find a direct
geometrical proof of (x). Such proof would probably give a reasonably precise
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estimate for constant C' in (x). I was able to find such proof for congruence
subgroups in GL(Z), but not for higher rank. Another form of the statement
(%), which does not involve the choice of a, is (s*) For sufficiently large open
compact subgroups C' C U the ideal Jo = execH(G)ex does not depend on
C. Namely, this is true for C D a=“ K a®.

5.5. An Effective Bound of the Number of Cuspidal Components With
a Given Conductor.

Fix an open compact subgroup K C G. We want to give an effective bound
of the number of cuspidal components D C Ok (G).

Let E-be a G-module, £ € EK,E € EX. We denote by Pre the matrix
coefficient ¢ (9) = (€, 98).

Proposition. There exists a compact subset S C G°, which can be effectively
described in terms of G and K, such that for each quasicuspidal G-module E,
£ € EX, ¢ € EX the matriz coefficient ©g ¢ vanishes on G°\S.

This proposition gives a desired bound. Indeed, let Dy,..., D, be different
cuspidal components in O (G),V; € D;, 0 £ & e VE 0 £ & e VE, o = PF ¢
for i = 1,...,r. By 2.. matrix coefficients ¢; are linearly independent on G°.
Since they vanish on G°\S and are K-biinvariant, their number r is less or equal
to #(K\S/K).

Proof of Proposition. Let A C Z(Mj) be the maximal split torus, L the
lattice of coweights of A, which we will identify with the quotient L = A/A°
of A by its maximal compact subgroup. Let L° = L N G° be the semisimple
part of L, L°T = L°N AT, where AT is defined in example 5.1. In other words,
Lt ={a€ L] (a,a) <0 foral a € X} is the Weyl chamber, corresponding
to Po.

Let us fix a homomorphism L — A, inverse to the projection A — L, and
using it identifies L with a subgroup of A. By Cartan decomposition there exists
a compact subset 2 C G° such that G° = Q~1L°+Q.

Choose a congruence subgroup K', which lies in the open subset (| zKz~!
e

and denote by C' = Ck+ the constant in uniform admissibility theorem for K'.
Put S° = L°t\ [L°T + ¢(L°T\0)], S = Q715°Q. We claim that S is a desired
subset. First of all, since L°* is a strictly convex cone, set S° is finite, i.e.., S is
compact. Let E be a quasicuspidal G-module, £ € EX| ¢ € EX,| g€ G°\S. We
want to show that ¢z ;(9) = 0. By definition g = z~ta'y, where z,y € Q, d €
L°t is of the form @' = b+ ca, b € L>*, a € L°T\0. Put h(a) = exraex: and
similarly for a’,b. Since a € L°T\0 the corresponding parabolic subgroup P,
differs from G, i.e. 4, (E) = 0. Hence for each vector n € E h(a)"n = 0 for

large n and by the stabilization theorem, h(a)“n = 0. Hence
#5e(9) = 0,,¢(0) = (a8, a'yg) = (€ h(a')y€) = (€, hB)A(a) y€) = 0

Here we used that vectors x£~ and y¢& are K'-invariant. Formula h(a') =
h(b)h(a)® follows from 5.1. Note, that addition in L becomes multiplication,
when L is considered as a subgroup of G.
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Remark. All bounds we described are effective, but quite excessive. The
most excessive is the estimate for the constant C' = Ck in the proof of uniform
admissibility theorem. It would be interesting to find more precise bounds.

§6. Main Theorems About Functors Randi

6.1. Pairing Between EU and Ey.
Let (P,P) be a parabolic pair. For each G-module E denote by E the
contragredient G-module and consider M-modules Ey = (E)g and Ey.

Theorem. There ezxists a unique pairing { } : Eﬁ x Ey — C satisfying the
following condition on the asymptotic of matrixz coefficients.

(ASS) Let K C G be an open compact subgroup, a € M be an element strictly
dominant with respect to (P, P). Then there ezists ng, depending only on

a and K, such that for each € € E, £ € E, i > ngy (§,a'¢) = {ZE, Alg}
(here A: E — Eg, A: E — Ey are natural projections).

The pairing { } is M-equivariant, functorial in E and it gives an isomor-
phism of M-modules Eg~(Ey)™.

~

Corollary. There exists a canonical functorial isomorphism T‘EG (E) ~ (rhc(E)

In particular, for a standard Levi subgroup M < G Tya(E) = rvua(E)™

Proof: Indeed, by definition i, (E) = By ® A% vk (B) = By @ A,
Since Ay and Ay are canonically dual (see appendix.....), the theorem implies
the corollary.

6.2. Proof of Theorem 6.1.

Step 1. Let K C G be an open compact subgroup in a good position with
respect to (P, P), I' = K N M. First let us define the pairing { } : EJ x
Ej; — C. By the stabilization theorem Ax : EX — E}; is an isomorphism,
so we can identify E}, with a subspace EX C EX. Applying the stabilization
theorem to the parabolic pair (P, P), subgroup K and G-module E we can
identify E% with the subspace E,f{ C EX. Then the restriction of the pairing

( , ):EX x EX - C defines a pairing { }:E%XEE—HC.

Step 2. Choose an element a € M strictly dominant with respect to P, P, K

(see 5.2) and put h = h(a), h* = h(a™!). For each £ € EX | ¢ € EX we have
(€a") = (€ "¢ = (€ h"¢) = ((h)"€€) -

Using stability theorem, we see that for n > Ck ('{, a®¢) depends only on pro-
jections of € on EX and of ¢ and EX. This shows that the pairing { } satisfies
condition (ASS) for a and K. Since h is invertible on EX, { } is uniquely
determined by condition (ASS).
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Step 3. Let K' C K be a smaller subgroup, such that a is strictly dominant
with respect to P, P, K'. Consider the corresponding pairing { } ' Eg XEEI —
C. It satisfies (ASS) and by uniqueness property of { } the restriction of { }'
to E% x B}, coincides with { }. Hence, choosing smaller and smaller subgroups
K, we can define a pairing { } : EﬁxEﬁ — C satisfying (ASS), and this pairing
is unique. By construction the pairing { } does not depend on a. This implies
that it is M-equivariant.

Step 4. For each subgroup K the space EX is dual to EX and the operator
h* in EX is dual to the operator h in EX. Hence EX is dual to EX. By
definition of { } E% ~ EX is dual to E}; ~ EX, which implies that { } gives
an isomorphism of Eﬁ with module (Ey)™ contragredient to Ey .

6.3. Completion of 0-Modules. We want to describe the pairing { } in
a more direct and visual way, using the notion of completion of G-modules.

Definition. Let E be a G-module. We define its completion E” in any of
three equivalent ways

(i) EN = Homg(H(G), E).
ii) EN = lim EX, where the inverse limit is over all open compact subgroups
K

K C G and for K' C K the connecting morphism E% — EX is given by
f = er.

(iii) E” is the completion of F in the topology, generated by open subset
Kereg for open compact subgroups K C G.

The algebra D¢ (G) of compactly supported distributions on G acts on the
completion E™ by d¢”(h) = £ (h*d). This action is continuous in the topology,
described in (iii) and its restriction to E C E” coincides with the natural action
of D¢(G) on E. In particular, G acts on E”, but this representation usually is
not smooth. The smooth part of E” coincides with E = H(G)E".

It is easy to check that the functor E — E” is exact and faithful. Moreover,
if E' C E, then (E')" = Closure E' in E" = {¢" € E" | H(G)¢N C E' C E}.

It is easy to check that (L) ~ L* (the dual space). This gives the following
realization of E”, convenient for computations:

Let us realize E as a submodule of L for some G-module L and then E” can
be described as B

EN={¢ eL* | HG)*CECL}.

6.4.

Theorem. Let (P, P) be a parabolic pair, E a G-module. Then there erists a
canonical isomorphism _
T (B 5(Ep)

where (EM)Y is the space of U-invariants in E™. For each " C (EM)Y the
vector n™ = AEN is uniquely characterized by the following property.

(*) For each subgroup K C G in a good position with respect to (P, P) Aex & =
A
e,
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This theorem allows us to give another description of the pairing { } in the-
orem 6.1. Namely, applying it to G-module E we see that ((E)")Y = (E*)Y =

(Eu)* is canonically isomorphic to (E)". Hence E = smooth part of (Eg)" =
smooth part of (Ey)* = (Ey)™, which is the statement of theorem 6.1.

Proof of the Theorem.

Step 1. Let K' C K C G be open compact subgroups in a good position with
respect to (P, P). Then for each ¢ € EX' ex¢' € EX and Aexé' = e, A¢'. In-
deed, let C' C U be a very large open compact subgroup, L = ecE. By stabiliza-
tion theorem (applied to P, P,K) EX = ex L and EX' = ¢/ L, which implies
that EX = ex EX'. Moreover, for each n € L A(exn) = Alex,erex_n) =
e.Alex_n) = e.A(n) and similarly for K'. Hence if & = eg/n, we have
Alex€') = erA(n) = er(er A(n)) = er A(£').

Step 2.  Consider the inverse system {ex} where K runs through all good
subgroups (i.e. open compact subgroups in a good position with respect to
(P, P)). Step 1 shows that {EX} form a subsystem in {Ex} and A : EfﬁE%
gives an isomorphism of this subsystem with the system {E%} This allows us
to identify (Ey)" = lién E")U, with the subspace E/ = hfr%n(Ef) C lifr%n(EK) =

E™. Clearly E = {¢" € E" | ex&" C EX for all good K}.

Step 3. Let us prove that E = (E")V. Indeed P¢N € E2 < for all good
K exé" € EEP < for all good K and all open compact subgroups C' C U
exé" € exe.EP < for all C C V and all good K ex&" € exec EP < for
all C C U, & lies in the closure of e, E <= for all C C U, ec&" = €.

This last condition implies that £” is U-univariant. Conversely, suppose that
&N is U-invariant and prove that for each C C U ec&” = €*. Choose a small
subgroup K C G normalized by C. Then the vector £ = ex&” is C-invariant
which implies that ec€ = €. Hence execé” = ecexé” = ecé = € = e
Since this is true for arbitrary small K, ec&" = &/,

6.5. Second Adjointness of Functors i and r.

Theorem. Let (P, P) be a parabolic pair, M = PN P. Then the functor it :
M(M) = M(Q) is canonically left adjoint to the functor ri;. : M(G) —
M(M). In particular, for a standard Levi subgroup M < G the functor igy is
left adjoint to Ty -

This theorem follows from Theorem 6.4 and the following form of Frobenius
reciprocity.

Proposition. Let G be an {-group (see...), H C G a closed subgroup. Define
the induction functor ind : M(H) — M(G) as in (] 1), i.e., for V.e M(H)
we define G-module E =ind(G, H,V) as

E={f:G— V| f(hg) =hf(g) forh € H, support of f is compact modulo H
and f is locally constant}.

Define the twisted induction functor ind®(V)) = ind (Ve AgAy'). Then
for each’ Ve M(H), E € M(G) there is a canonical functorial isomorphism

Homg (indA(V),E) = Homg(V, E") .
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In other words, the functor ind® s left adjoint to the functor S, given by S(E) =
H -smooth part of E".

Proof of Proposition. Let S(G) be the space of locally constant compactly

supported functions on G with left action of G. We have a canonical isomor-

phism H(G) = S(G) ® Ag(f ® M — f - M). We will identify S(G) with

ind(G, 1,C) (since G acts on ind(C) from the right, this identification involves

change g — ¢g~!). By transitivity of induction we have ind(G, H, S(H)) = S(G).
This implies, that

ind®(H(H)) = ind(S(H)-Ag-A7-Ap) = Ag-ind(S(H)) = Ag-S(G) = H(G) .

Since ind® is an exact functor, preserving direct sums and H(H) is a projective
generator of M(H), ind®(V) = H(G) @ V. This implies, that
H(H)

Homg(ind*(V), E) = Home | H(G) Q) V,E | =
H(H)
= Homy (V,Homg(H(G), E)) = Homy (V,E") =
= Hompy (V,S(E)) .

All isomorphisms above are canonical.

Remark. Let us describe explicitly morphism a : V — indA(V)/\, cor-
responding to identity morphism of ind®(V). For v € V we define a(v) €
indA(V)/\ by condition, that for each open compact subgroup K C G the func-
tion fx = exa(v) € ind®(V) has the following form and vanishes outside of
HK and

f(hK) = hepnxv ® Mg @ My (Ma(K) " My(HNK)) .

where Mg € Ag, My € Apg.

Proof of the Theorem. Let V C M(M),E € M(G). Using canonical
isomorphisms AgAZ! = A[_Jl and A[_Jl = Ay we have

Homg (i (V), E) = Homg (ind® (G, P,V @ A/*)E) =
= Homp (V ® A%J/Z, EV) = Homs (V ® A%J/Z, (EV)U) =

= Hom (V, Er® Alﬁﬂ) = Hom s (V, rAF/IGE) .

Remark. Let us write explicitly morphism a : V' = TygicuV. Let v € V.
Choose a subgroup K, in a good position with respect to (P, P), such that
e;v = v. Then a(v) is represented by M;J/c2, where f: G — V @ U™'/? is
supported on PK and for k € K f(K) = UM[_]1/2 MG (K)Mp(K N P).

Here My € Dy, My € Ay are dual and Mg = My - Mp. In particular,
MG (K) Mp(KNP) = MZ'(K_). Identifying M[_Jl/2 with ./\/llﬁ/2 we can

| U
write
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/a(v) = </I<’U-MU> M%l(K,) =v.

This shows that a coincides with the morphism in the composition theorem,
corresponding to the big cell PP and the point w =1 € PP (see.....).
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