
Se
ond adjointness for representations of redu
tive p-adi
 groupsJoseph BernsteinTel Aviv Universityx0. Introdu
tion0.1. In this paper, whi
h was written in 1987, I 
ontinue the investigation ofindu
ed representations of redu
tive p-adi
 groups, started in [BZ℄. The maintools of the investigation are indu
tion fun
tors iGM and Ja
quet fun
tors rMG .More pre
isely, let G be a redu
tive p-adi
 group and Alg G the 
ategory ofalgebrai
 (in other terminology, smooth) representations of G. For any paraboli
subgroup P < G with Levi 
omponent M we de�ne the indu
tion fun
tor iGM :Alg M ! Alg G and Ja
quet fun
tor rMG : Alg G! Alg M as in [BZ℄.Frobenius re
ipro
ity implies that fun
tor rMG is left adjoint to iGM . Re-
ently, I have dis
overed to my great surprise, that these fun
tors are also ad-joint in the opposite dire
tion. More pre
isely, let P be the paraboli
 sub-group opposite to P with Levi 
omponent M . Then we 
an de�ne fun
torsiG;M : Alg M ! Alg G and rMG : Alg G! Alg M in the same way as i and r,but using P instead of P .Main theorem. Fun
tor iGM is left adjoint to rMG , and iGM is left adjoint torMG .This inno
ent-looking statement is in fa
t very powerful. For instan
e, itimpli
itly 
ontains the strong admissibility theorem (indeed, it implies thatfun
tors rMG 
ommute with dire
t produ
t and hen
e produ
ts of quasi
usp-idal representations are quasi
uspidal. But this means that for a given opensubgroup K � G there exists a uniform bound on supports of all K-invariantmatrix 
oeÆ
ients of all 
uspidal representations of G, i.e. all these supports liein some subset S � G, 
ompa
t modulo 
enter).The aim of this paper is to prove the main theorem and to show how it impliesmany important results about indu
ed representation: des
ription of the 
enterof 
ategory Alg G, matrix Paley-Wiener theorem, 
ohomologi
al duality in AlgG. More pre
ise versions of the theorem are formulated in x. They allow to proveZelevinsky's 
onje
ture, that duality, whi
h he de�ned on the Grothendie
kgroup of representations of GL(n), a
tually 
arries irredu
ible representationsinto irredu
ible ones (see [Z℄). I should add, that this way of proving Zelevinsky's
onje
ture was suggested to me by V. Drinfeld many years ago. He explainedto me that for the group G = SL(2), Ext1 (trivial representation) = Steinbergrepresentation. 1



0.2. Contragredient properties of fun
tor rHG .Another, essentially equivalent, form of the main theorem des
ribes howto 
ompute 
ontragredient representations of rMG(�). For indu
tion fun
torwe have the Frobenius re
ipro
ity (iGM (�))~ = iGM (~�), where ~ denotes the
ontragredient representation (see [B2℄).Theorem. There is a fun
torial isomorphism(rMG(�))~ � rMG(~�); � 2 Alg G :0.3. Matrix Paley-Wiener theorem.Let � be an irredu
ible 
uspidal representation ofM . Consider the family ofindu
ed representations �� = iGM (� ��), parametrized by unrami�ed 
hara
ters� of M , with underlying family of ve
tor spa
es E�.Let H = H(G) be the algebra of 
ompa
tly supported lo
ally 
onstantmeasures on G. Any element h 2 H(G) indu
es the family of operators h� =��(h) : E� ! E�.This family has the following properties:(PW1) h� is a regular fun
tion of parameter � (unrami�ed 
hara
ters ofM forma group isomorphi
 to (C � )` and fun
tion h� is algebrai
 on (C � )`).(PW2) There exists an open subgroup K � G su
h that operators h� are left andright invariant with respe
t to �(K).(PW3) For any intertwaining operator A : E� ! E�0 one has h�0 ÆA = A Æ h�.Theorem. Let a� : E� ! E� be a family of operators, satisfying (PW1)-(PW3). Then a� = h� for some h 2 H(G).Remark. It is 
lear, that it is suÆ
ient to 
he
k property (PW3) only onZariski dense subsets of parameters � and �0.This theorem follows easily from the following 
orollary of the main theorem:fun
tor iGM 
arries proje
tive generators into proje
tive generators.0.4. Cohomologi
al duality theorem.Let us denote by 
L and 
R left and right a
tions of G on H(G). Forany � 2 Alg G, we 
an 
onsider spa
es Exti(�) = ExtiA(G)(�; (
L ; H(G))) asG-modules, using right a
tion 
R.Theorem. If � is irredu
ible then for exa
tly one index i Exti(�) 6= 0. More-over, representation Exti(�) is irredu
ible and � 7! Exti(�) de�nes a duality onthe set of equivalen
e 
lasses of irredu
ible algebrai
 representations of G.x1. Generalities from Algebra and Category Theory2



1.1. Idempotented Algebras and Nondegenerate Modules.We 
onsider a 
lass of rings slightly more general than rings with identity.De�nition. An asso
iative ring H is 
alled an idempotented ring if for ea
h�nite subset fxig 2 H there exists an idempotent e 2 H su
h that exi = xi = xiefor all i.Example. Ea
h ring with identity is an idempotented ring. More generally,let H�, � 2 I , be a dire
t system of rings and H = lim��!�2IH�. Suppose that theordered set I is �ltered (i.e. for ea
h �; � 2 I there exists 
 2 I su
h that� < 
; � < 
) and all H� are rings with identities (but ring homomorphismsH� �! H� for � < � are not supposed to map identities into identities). ThenH is an idempotented ring.In fa
t, any idempotented ring 
an be presented in su
h a way. Namely,
onsider the set I = IdemH of idempotents in H with partial order e � f ifeHe � fHf . Then H = lim��!e2I eHe, where eHe is the ring with identity e.Usually we 
onsider H to be an algebra over some �eld k and 
all H anidempotented algebra.A (left) module M over an idempotented ring H is 
alled nondegenerate ifHM =M or equivalently lim������!e2IdemH eM =M . If H is a ring with identity, this isjust the usual 
ondition that 1 a
ts on M as identity.The 
ategory of nondegenerate H-modules we denote M(H). Ea
h H-module M 
ontains the maximal nondegenerate submodule HM , whi
h we 
allthe nondegenerate part ofM . It is easy to see thatM(H) is an abelian 
ategorywith dire
t limits and �ltered dire
t limits inM(H) are exa
t. CategoryM(H)also has arbitrary dire
t produ
ts (and, hen
e, inverse limits). Namely, for afamily fM� 2 M(H)g the produ
t Q�M� in M(H) is equal to the nondegen-erate part of the set theoreti
 dire
t produ
t,Y� M� = H setY� M�! = lim������!e2IdemH Y� (eM�)! :1.2. Proje
tive and Inje
tive H-Modules. For ea
h idempotent e 2 Hthe fun
tor M ! eM is exa
t onM(H). Sin
e eM = HomH(He;M), it shows,thatHe is a �nitely generated proje
tive obje
t inM(H). The family of modulesHe for e 2 IdemH form a system of proje
tive generators for 
ategoryM(H). Inparti
ular, M(H) has enough proje
tive obje
ts, i.e. ea
h module M 2 M(H)is a quotient of a proje
tive one.Similarly, one 
an see that M(H) has enough inje
tive obje
ts. Namely forea
h e 2 IdemH and ea
h inje
tive Z-moduleU denote by I(e; U) the nondegen-erate part ofH-module HomZ(eH; U). Then the fun
torM ! HomH (M; I(e; U)) =HomZ(eM;U) is exa
t onM(H), i.e. I(e; U) is an inje
tive obje
t, and fI(e; U)gform a system of inje
tive 
ogenerators in M(H).We will denote by MR(H) the 
ategory of nondegenerate right H-modules,whi
h we identify with 
ategoryM(HÆ), where HÆ is the opposite algebra. Wede�ne in a usual way the tensor produ
t M 0NH M of nondegenerate right andleft H-modules. It is easy to see that all the usual properties ofNH hold in this3




ase; we will use them freely. Note, that formulaM 0NH (He) =M 0e shows, thatHe is a 
at H-module, whi
h implies that all proje
tive H-modules are 
at.Let H be an idempotented algebra over a �eld k. For ea
h H-moduleM 2 M(H) we de�ne the 
ontragredient module fM 2 MR(H) as a nonde-generate part of the dual spa
e M� = Homk(M;k), i.e. fM = lim������!e2IdemH(Me)�.Similarly we de�ne the fun
tor �: MR(H) ! M(H). It is easy to 
he
k that� is an exa
t 
ontravariant fun
tor, with duality property HomH(fM;N) =HomH( eN;M);M 2 M(H); N 2 MR(H). In parti
ular, � maps proje
tiveobje
ts into inje
tive ones.1.3. He
ke Algebras.Let G be an `-group, i.e. a Hausdorf topologi
al group, whi
h has a basis ofneighbourhoods of e 2 G, 
onsisting of open 
ompa
t subgroups (see [BZ1℄). LetH = H(G) be the He
ke algebra of lo
ally 
onstant distributions (or 
omplexvalued measures) on G with 
ompa
t support. Then H is an idempotentedalgebra (over C ) and 
ategory M(H(G)) is naturally identi�ed with 
ategoryM(G) of G-modules (see..., [BZ1℄).Let K � G be an open 
ompa
t subgroup, eK � H(G) be the normal-ized Haar measure on K. Then eKH(G)eK is the subalgebra HK(G) of K-bi-invariant measures. The system of idempotents feKg is 
o�nal in Idem H(G),i.e. H(G) = lim�!K HK(G).The involution � : g 7! g�1 on G de�nes the natural antiautomorphism� : H(G) �! H(G). Using this antiautomorphism we will usually identifyM(H) withMR(H), though sometimes it is move 
onvenient to separate them.1.4. Jordan-H�older Content of a Module.We want to des
ribe some general properties of the 
ategory M(H). It is
onvenient to do it in a more general setting.Let M be an abelian 
ategory with (arbitrary) dire
t sums (and, hen
e,dire
t limits). We will assume that M satis�es some axioms.(A1) Filtered dire
t limits in M are exa
t.In [Gr℄ this axiom is 
alled AB... It is equivalent (see [ ℄) to(A10) Let M� �M be a �ltered system of submodules, N �M . ThenN \ X� M�! =X� (N \M�) :An obje
t M 2 M is 
alled �nitely generated if for any �ltered system ofproper subobje
ts M� � M the subobje
t P�M� � M is proper. For a�nitely generated obje
t M the fun
tor Hom(M; �) : M ! Ab preservesdire
t sums.An obje
tM 2M is 
alled noetherian, if every of its subobje
ts is �nitelygenerated or, equivalently, if ea
h as
ending 
hain of subobje
ts M1 �M2 � ::: of M is stable.Category M is 
alled lo
ally noetherian if ea
h �nitely generated obje
tof M is noetherian. 4



(A2) Every obje
t M 2M is a union of �nitely generated subobje
ts.In order to avoid set-theoreti
al troubles we also add(A3) Isomorphism 
lasses of �nitely generated obje
ts in M form a set.We denote by IrrM the set of isomorphism 
lasses of irredu
ible (i.e. simple)obje
ts in M. For every E 2 M we denote by JH(E) � IrrM the subset ofirredu
ible subquotients of E.For ea
h idempotented ring H the 
ategory M = M(H) satis�es axiomsA1�A3. We will denote Irr(M(H)) by IrrH and IrrM(G) by IrrG (see 1.3).Lemma. (i) Let E0 � E. Then JH(E) = JH(E0) [ JH(E=E0).(ii) JH(E) = ; i� E = 0(iii) If E� � E, then JH (P�E�) = S� JH(E�).Proof:(i) is 
lear.(ii) Let E 6= 0. By A2 E has a nonzero �nitely generated submodule E0. ByZorn's lemma E0 has an irredu
ible quotient, i.e. JH(E) 6= ;.(iii) Let I = f�g be the indexing set of E�. If I is �nite, the statementfollows from (i) by indu
tion. Hen
e, repla
ing system fE�g by a system,
onsisting of �nite sums of E� we 
an assume, that fE�g is a �ltereddire
t system. Let Q = E0=E00 be a simple subquotient of P�E�, i.e.E00 $ E0 �P�E�. Suppose that for all � Q 62 JH(E�). Then for every� E0\�E00 +E�� = E00 . By A10 E0\P�(E00+E�) =PE0\(E00+E�) =E00 , whi
h 
ontradi
ts the in
lusion E0 �P�E�, sin
e E00 6= E0.1.5. De
omposition of Categories. Suppose that the 
ategoryM is splitinto a produ
t of two sub
ategories M = M0 �M00 . This splitting indu
es adisjoint union de
omposition IrrM = IrrM0 [ IrrM00 . We want to show thatthis de
omposition 
ompletely des
ribes the splitting.For ea
h subset S � IrrM denote by M(S) the full sub
ategory of Mde�ned by M(S) = fE 2 M j JH(E) � Sg. Lemma 1.4 shows that M(S)is an abelian sub
ategory, 
losed with respe
t to subquotients, extensions anddire
t limits. For every E 2 M we denote by ES the union of all submodulesE0 � E, whi
h lie in M(S). Then ES also lies in M(S). Let S0 � IrrM beanother subset, whi
h does not interse
t S. Then for ea
h E 2 M(S) \M(S0)we have JH(E) = ;, i.e. E = 0. This implies that the 
ategoriesM(S);M(S0)are orthogonal, i.e. HomM(E;E0) = 0 for E 2 M(S), E0 2 M(S0). Also forevery E 2M ES \ ES0 = 0, i.e. E � ES �ES0 .5



De�nition. We say that a subset S 2 IrrM splits an obje
t E 2 M ifE = ES � ES , where S = IrrMnS. We say that S splits M if it splits allobje
ts in M.More generally, suppose we have a disjoint union de
omposition IrrM =S�2A S�. We say that this de
omposition fS�g splits E if E = L�2AES� . Wesay that the de
omposition fS�g splits M if it splits all obje
ts in M. In this
ase M is equivalent to the 
ategory Q�2AM(S�).Lemma. Let IrrM = S�2A S� be a disjoint union de
omposition. Suppose itsplits an obje
t E 2M. Then it splits all subquotients of E.Proof: Let E = L�2AE�, E� 2 M(S�). It is suÆ
ient to 
he
k that forevery subobje
t L � EL =P� (L \ E�). Put C = L=P� (L \ E�). Then for� JH(C) � JH (L=L \ E�) � JH (E=E�) � [� 6=�JH (E�) � S� :This implies, that JH(C) � T� �S�� = ;, i.e. C = 0.Remark. LetH be an idempotented ring. Suppose 
ategoryM =M(H) hasa de
omposition M = Q� M�. Applying this de
omposition to the H-moduleH we see that H = L� H�. Sin
e right multipli
ations in H are morphisms inM(H) all H� are two-sided ideals. It is easy to see that M� =M(H�).Conversely, ea
h de
omposition H = L� H� of H into a dire
t sum of two-sided ideals leads to the de
omposition M(H) =Q� M(H�).1.6. Realization of an Abelian Category as a Category of Modules.Let M be an abelian 
ategory, satisfying A1 � A3. Let P 2 M be a �nitelygenerated proje
tive obje
t, � = EndM(P )Æ (Æ denotes the opposite algebra).We de�ne the fun
tor r = rP : M ! M(�) by r(E) = HomM(P;E). Itis exa
t and 
ommutes with dire
t sums. Fun
tor r has a left adjoint fun
tori = iP : M(�) ! M. Indeed, every �-module M 
an be presented as a
okernel of a morphism �M of free �-modules �M : L� � �! L� �, where �Mis given by a matrix f��� 2 �g. We de�ne i(M) as a 
okernel of a morphism�0 : L� P �! L� P , where �0 is given by the same matrix f��� 2 �g. In 
asewhen M =M(H) the fun
tor i 
an be des
ribed as i(M) = PN� M .Lemma. Suppose that P is a generator of the 
ategory M, i.e. the fun
tor ris faithful, or, equivalently, HomM(P;Q) 6= 0 for Q 2 IrrM. Then fun
tor rand i are inverse and de�ne an equivalen
e of 
ategoriesM i ��!r M(�):Proof: See [ ...℄This lemma allows us to realize M as a 
ategory of modules over somealgebra with identity. This realization is not unique, it depends on the 
hoi
eof P . Let us des
ribe the relation between two su
h realizations.6



Let A be an algebra with identity, P 2M(A) a �nitely generated proje
tivegenerator, � = (EndAP )Æ. Then P is an A � �-bimodule. We de�ne a dual��A-bimodule P � by P � = HomA(P;A).Proposition. P � is a �nitely generated proje
tive generator inM(�), End �(P �) =AÆ and the fun
tors i : M(�) ! M(A), r : M(A) ! M(�) are 
anoni
allyisomorphi
 to r(E) = P �NA E;E 2 M(A) and i(M) = Hom�(P �;M); M 2M(�).Proof:Step 1. For any E 2 M(A) the natural morphism P �NA E ! HomA(P;E) =r(E) is an isomorphism.Indeed, this is true for P = A, hen
e for P = An and hen
e for P whi
h isa dire
t summand of An.Step 2. Sin
e P is a generator of M(A), A is a dire
t summand of Pn forsome natural n. Hen
e r(A) = P � is a dire
t summand of r(P )n = �n, i.e. P �is a �nitely generated proje
tive �-module.Step 3. Sin
e fun
tors r and i are mutually inverse, we haveHomA(E; i(M)) = Hom�(r(E);M) == Hom� P �OA E;M! = HomA(E;Hom� (P �;M))whi
h implies that i(M) is 
anoni
ally isomorphi
 to Hom� (P �;M). Sin
e thefun
tor i is faithful, P � is a generator of M(�).Step 4. We have r(P ) = HomA(P; P ) = � 2 M(�); r(A) = P �NA A = P �and hen
e i(�) = Hom�(P �;�) = P , i(P �) = Hom�(P �; P �) = A 2 M(A).This implies that as an algebra End�(P �) = AÆ.Corollary. P is a right proje
tive �-module and End�(P ) = A.Indeed, sin
e P = Hom�(P �;�), it is a right proje
tive �-module, dual toP �. Hen
e End�(P ) = End�(P �)Æ = A.1.7. Realization of a Sub
ategory as a Category of Modules.Let P 2 M be a �nitely generated proje
tive obje
t, whi
h we do not sup-pose to be a generator. Consider subset S = SP � IrrM of irredu
ible quo-tients of P . We say that P splits the 
ategoryM if the subset S splits M, i.e.M =M(S)�M(S). (see...).Corollary. Suppose P splits M. Then fun
tors r; i give equivalen
e of 
at-egories M(S) i ��!r M(�). Moreover, M(S) = fE 2 M(S) j Hom(P;E) = 0gM(S) = �E 2M(S) j E is a quotient of L� P	.This easily follows from 1.6. 7



Example. Let H be an idempotented ringM =M(H). Choose an idempo-tent e 2 H and put P = He. Then P is a �nitely generated proje
tive obje
tin M, � = (EndMP )Æ 
oin
ides with the subalgebra eHe � H and fun
tors r :M(H)!M(�); i :M(�)!M(H) are given by r(E) = eE; i(M) = PN� M .We say that idempotent e splitsM if the subset S = Se = f! 2 IrrM j e! 6= 0gsplitsM. In this 
ase fun
tors r and i give equivalen
e of 
ategoriesM(S) i ��!r M(�)and M(S) = fE 2 M(H) j E is generated by eEg, M(S) = fE 2 M(H) jeE = 0g.1.8. The Central Algebra of M.Let M be an abelian 
ategory.De�nition. The 
entral algebra Z(M) is de�ned as Z(M) = End(IdM),where IdM : M ! M is the identity fun
tor. In other words, an elementz 2 Z(M) is a 
olle
tion of morphisms zM : M ! M for all M 2 ObM, su
hthat for ea
h morphism� :M ! N zN Æ � = � Æ zM :If M = M(H) or M(G) we will also use notations Z(H) or Z(G) instead ofZ(M(H)) or Z(M(G)).Lemma. Let H be an idempotented ring. Then the morphism z 7! zH identi�esZ(H) with the algebra EndH�HÆ(H) of endomorphisms of H whi
h 
ommutewith right and left multipli
ations. In parti
ular, if H has an identity, Z(H) isisomorphi
 to the 
enter of H.Proof: is straightforward, see...Corollary. Let P be a �nitely generated proje
tive generator inM, � = (End�P )Æ.Then the natural morphism z 7! zP 2 � gives an isomorphism of Z(M) withthe 
enter of �.This follows from the lemma and 1.6.x2. De
omposition theorem2.0. Let G be a 
onne
ted redu
tive p-adi
 group, �(G) the set of in�nites-imal 
hara
ters of G, �(G) = [� its de
omposition into the union of 
on-ne
ted 
omponents. For ea
h � 
onsider the subset S� = inf �
h�1(�) � IrrGand denote by M(�) = M(G;S�) the 
orresponding sub
ategory in M(G),M(�) = fE 2 M(G)jJH(E) � S�g (see 1 ). In this se
tion we prove thefollowingDe
omposition theorem. M(G) =Q� M(�), where � runs through all 
on-ne
ted 
omponents of �(G).Our proof follows the proof in [ ℄ with slight modi�
ations, whi
h we will uselater. 8



Generalization. Let B be a 
ommutative algebra with identity. PutM(�;B) =fE 2 M(G;B)jE 2 M(�) is G-moduleg . Then de
omposition theorem im-plies that M(G;B) =Q� M(�;B).2.1. Separation of 
ompa
tly supported G-modules.Let G be an arbitrary `-group as in 1. A G-module E is 
alled 
ompa
tlysupported if for ea
h open 
ompa
t subgroupK � G and ea
h � 2 E the fun
tiong 7! (eK geK )� has a 
ompa
t support of G. This implies that E has 
ompa
tlysupported matrix 
oeÆ
ients. Using this fa
t and arguing exa
tly like in a 
aseof 
ompa
t groups, one 
an prove the following.Proposition. (see [ ℄). Let V be a �nitely generated 
ompa
tly supported G-module. Then V is admissible and has �nite length. The �nite subset S =JH(V ) � IrrG splits the 
ategory M(G) and ea
h module E 2 M(G;S) is
ompletely redu
ible.2.2. Separation of 
uspidal 
omponents.Let G be a redu
tive p-adi
 group. If the 
enter Z(G) of G is 
ompa
t,
uspidal G-modules are 
ompa
tly supported and we 
an use 2.1 to separatethem. In general they are 
ompa
tly supported modulo 
enter Z(G). To studythis 
ase we will use the following property of G.(*) G has an open normal subgroup G0 su
h that Z(G) \ G0 is 
ompa
t,Z(G) �G0 has �nite index in G and the group � = G=G0 is a latti
e, i.e.is isomorphi
 to Zd, d 2 Z+.It is easy to see that su
h a subgroup G0 is unique. By de�nition the group	(G) of unrami�ed 
hara
ters of G 
oin
ides withHom (�; C � ) = f : G! C � :  jG0 = 1g :Lemma. Let (�; V ) be a simple G-module. Then(i) �jG0 is 
ompletely redu
ible of �nite length. The subset S� = JH(�jG0) �IrrG0 is �nite and is a G-orbit of the natural a
tion of G on IrrG0.(ii) The 
orresponden
e � 7! S� gives a bije
tion of the set of 	(G) - orbits inIrrG and G-orbits in IrrG0, i.e. S� = S�0 i� �0 �  � for some  2 	(G).(iii) The stabilizer St(�;	) of � in 	(G) is �nite. If we 
hoose for ea
h  2St (�;	) a nonzero morphism � : (�; V ) ! ( �; V ), then f� g is aC -basis of EndG0(V ).Proof: (i), (ii) are proven in [ ℄. (iii) Put A = EndG0(V ) and de�ne thea
tion of G on A by g(a) = �(g)a�(g)�1. This a
tion is trivial on G0. Be
auseof S
hur's lemma it is also trivial on Z(G), so it is an a
tion of the �nite abeliangroup G=G0 � Z(G). Using this we 
an de
ompose A = �A , where A areeigenspa
es of the a
tion. But A = HomG(�;  �) = C � a by S
hur's lemma,i.e. A =L C � a with  2 St(�;	) � Hom (G=G0 � Z(G); C � ).9



Harish-Chandra theorem. (see [ ℄) Let � be a quasi
uspidal G-module, i.e.rMG(�) = 0 for all subgroups M $ G. Then it is 
ompa
tly supported modulo
enter, i.e. �jG0 is 
ompa
tly supported.Corollary. Let (�; V ) be a 
uspidal irredu
ible G-module. Then the 
uspidal
omponent D = 	(G) � � � IrrG splits the 
ategory M(G).Proof: Put S = S� = JH(�jG0 ) � IrrG0. By 2.1 every G-module E has ade
omposition E = ES � E �S with E 2 M(G0;S), E �S 2 M(G0;S). Sin
e thisde
omposition is 
anoni
al it is G-invariant, i.e. ES and E �S are G-submodules.Lemma 2.2 implies that ES 2 M(G;D), E?S 2M(G;D).2.3. Fun
tors iGM and rMG .In order to deal with non
uspidal 
omponents we will use fun
tors iGM andrMG . Let us re
all some elementary properties of these fun
tors. For simpli
itywe 
onsider only the 
ase when M is a standard Levi subgroup.(i) Transitivity. Let M < N < G. Then iGM = iGN Æ iNM , rMG = rMN Æ rNG(
anoni
al isomorphisms).(ii) Fun
tor rMG is left adjoint to iGM (
anoni
al adjointness). See [ ℄.(iii) Fun
tors iGM and rMG are exa
t and preserve dire
t sums. See [ ℄(iv) There exists a fun
torial isomorphism iGM (~�) = (iGM (�))~ , � 2 M(M)(
anoni
al isomorphism). See [ ℄(v) Fun
tor rGM maps �nitely generated G-modules into �nitely generatedM -modules. See [ ℄.(vi) Composition of fun
tors r and i.We need some notations. For ea
h w 2 WG we �x a representative w 2Norm (M0; G). For ea
h subgroup H � G we put w(H) = �wH �w�1 anddenote by w the 
orresponding fun
tor w :M(H)!M(w(H)).Let M;N < G. Ea
h double 
oset WNnWG=WM has a unique represen-tative of minimal length; we denote the set of these representatives byWNMG . For ea
h w 2 WNMG we putMw =M \ w�1(N) < M; Nw = w(Mw) = w(M) \N < N :Composition theorem. Consider fun
tors F; Fw : M(M) ! M(N),for w 2 WNMG , de�ned by F = rNG Æ iGM , Fw = iNNw Æ w Æ rMwM . Morepre
isely, 
hoose any ordering fw1; : : : ; wrg of WNMG su
h that wi < wjimplies i � j (here < is the standard partial order on W , see [ ℄). ThenF has a 
anoni
al �ltration 0 = F0 � F1 � � � � � FV = F and Fi=Fi�1 is
anoni
ally isomorphi
 to Fwi .See the proof in [ ℄. Canoni
ity of isomorphisms in .... and .... is dis
ussedin appendix ... 10



(vii) LetK � G be an open 
ompa
t subgroup. We will use the following simplelemma, whi
h des
ribes K-invariant ve
tors in indu
ed G-modules.Lemma. Let (P;M) be a standard paraboli
 pair. Fix a system (g1; : : : ; gn) ofrepresentatives of double 
osets PnG=K and 
onsider open 
ompa
t subgroups�1; : : : ;�n � M de�ned by �i = prP!M (P \ gKg�1). Also �x a Haar measureon the unipotent radi
al U � P . Then for every V 2 M(M) and E = iGM (V )there exists a 
anoni
al fun
torial isomorphism EK � nLi=1 V �i .Proof: is straightforward.2.4. Fun
tors iG;D and rD;G and their properties.Let (M;D) be a standard 
uspidal blo
k (notation (M;D) < (G;�(G))).It means that M < G and D is a 
uspidal 
omponent of �(M). The subset� = iGM (D) � �(G) is a 
onne
ted 
omponent. We say that the 
omponent �
orresponds to the blo
k (M;D) and use the notation (M;D) < (G;�). Anotherstandard 
uspidal blo
k (N;D0) 
orresponds to the same 
omponent � if andonly if there exists w 2 WG su
h that w(M;D) = (N;D0), i.e. N = w(M),D0 = w(D). In this 
ase we say that (N;D0) is asso
iate to (M;D) (notation(N;D0) � (M;D)).Standard 
uspidal blo
ks will play a role similar to standard Levi subgroups.By 2.2. M(D) is a dire
t summand of M(M). We denote by inD : M(D) !M(M) and prD :M(M) !M(D) the 
orresponding in
lusion and proje
tionfun
tors.Consider the fun
torsiGD = iGM Æ inD :M(D)!M(G)rDG = prD Æ rMG :M(G)!M(D) :The following properties of these fun
tors immediately follow from 2.3.(i) rDG is left adjoint to iGD .(ii) iGD and rDG are exa
t and preserve dire
t sums.(iii) Composition theorem. Let (M;D), (N;D0) be standard 
uspidal blo
ksF : rD0G Æ iGD :M(D) !M(D0). Then F = 0 unless (M;D) � (N;D0).If they are asso
iate, F is glued from the fun
tors w : M(D) ! M(D0),where w 2 fw 2WNMG jw(M;D) = (N;D0)g.Proof: By 
omposition theorem F is glued from prD0 Æ iNNw Æw Æ rMwM Æ inD .If Mw 6=M , we have rMwM Æ inD = 0. If Nw 6= N , we have prD0 Æ iNNw = 0 (asright adjoint to rNwN Æ inD0 = 0). This proves the theorem.Proposition. (i) The system of fun
tors rDG for all (M;D; ) < (G;�(G))is faithful, i.e. rDG(E) = 0 for all (M;D) implies that E = 0.11



(ii) Fix a 
onne
ted 
omponent � � �(G). Then the system of fun
tors rDGwith (M;D) < (G;�) is faithful on M(�).(iii) Let E be a G-module su
h that rD0G(E) = 0 for all standard 
uspidal blo
ks(N;D0) whi
h do not 
orrespond to the 
omponent �. Then E 2 M(�).(iv) Conversely, if E 2M(�), then rD0G(E) = 0 for (N;D0) 6< (G;�).(v) If (M;D) < (G;�), then iGD(M(D)) �M(�).Lemma. Let w 2 IrrG, � = inf �
h w 2 �(G) and � be a 
onne
ted 
omponentof �. There exists a 
uspidal blo
k (M;D) < (G;�) su
h that rDG (w) 6= 0. Forea
h 
uspidal blo
k (N;D0) whi
h does not 
orrespond to � rD0G(w) = 0.Proof: We 
an �nd a 
uspidal pair (M;�) su
h that M < G and w 2 iGM (�).Let D � �(M) be a 
onne
ted 
omponent of �. Then HomG(w; iGD (�)) =Hom(rDG (w); �) 6= 0, i.e. rDG (w) 6= 0. If (N;D0) 6� (M;D), then rD0G(w) �rD0G Æ iGD (�) = 0 by 
omposition theorem 2.4 (iii).Proof of the proposition. Sin
e fun
tors rDG are exa
t the lemma implies(i), (ii) and (iii). Sin
e for (N;D0) 6� (M;D) rD0G Æ iGD = 0, (iii) implies (iv).Let us prove (iv). Let (N;D0) be a standard Levi blo
k su
h that the 
or-responding 
omponent �0 di�ers from �. Put V = rD0G(E) 2 M(D0). By (v)iGN (v) 2M(�0) and hen
e HomN (V; V ) =HomN(rD0G(E); V ) =HomG(E; iGD0 (V )) =0, i.e. V = 0.Corollary. Let N < G, � � �(G) be a 
onne
ted 
omponent. Consider all
omponents �N � i�1GN(�) � �(N) and the 
orresponding produ
t 
ategoryM0 = Q�NM(�N). TheniGN (M0) �M(�) and rNG(M(�)) �M0 :Proof: it easily follows from the 
omposition theorem in 2.3 and the propo-sition.2.5. Proof of de
omposition theorem.Step 1. For ea
h standard 
uspidal blo
k (M;D) de�ne a fun
tor TD = iGD ÆrDG : M(G) ! M(G). Sin
e the fun
tor rGD is left adjoint to iGD , forea
h G-module E we have a 
anoni
al fun
torial morphism �D : E !TD(E). If L � E, then the restri
tion �D jL : L ! TD(E) 
orrespondsto the morphism rDG(L) ! rDG(E). Sin
e the fun
tor rDG is exa
t, thismorphism is an in
lusion. This proves that �D (L) = 0 if and only ifrDG (L) = 0.Step 2. Consider the produ
t morphism� = Y(M;D)�D : E ! Y(M;D)TD(E)where the produ
t is over all standard 
uspidal blo
ks (M;D). ThenrDG (Ker �) = 0 for all (M;D), and, sin
e frg is a faithful system offun
tors, Ker � = 0. 12



Step 3. We want to show that the de
omposition IrrG = S� S� splits a G-moduleE. Sin
e E � Q(M;D)TD(E) it is suÆ
ient to 
he
k that fS�g splits thisprodu
t (see 1...). By proposition 2.4. (v) fS�g splits L(M;D)TD(E), hen
eit would be suÆ
ient to prove that L(M;D)TD(E) � Q(M;D)TD(E). Thisfollows from the following general statement.(*) Let V� 2M(�) : � � �(G). Then L� V� �Q� V�.Step 4. As we saw in ... Q� V� = lim�!K (Q� V K� ). Hen
e (*) follows from(**) Let K � G be an open 
ompa
t subgroup. Then V K� = 0 for all buta �nite number of 
omponents �, soL� V K� =Q� V K� .Put SK = fL 2 IrrGjLK 6= 0g, �K(G) = inf �
h � SK . If V K� 6= 0, thenV� has an irredu
ible subquotient in SK . Hen
e (**) follows from(***) �K(G) is a union of a �nite number of 
omponents.Let � � �(G) be a 
onne
ted 
omponent (M;D) < (G;�), (�; V ) 2 D.For every  put E = iGM ( �) 2 M(G). The lemma 2.3 ( ) shows thatthe spa
e EK does not depend on  and is equal to Li V �i . For a givenin�nitesimal 
hara
ter � = (M; �) 2 � the �ber inf �
h�1(�) � IrrG
oin
ides with JH(E ). This implies, that � 2 �K(G) i� Li V �i 6= 0.Hen
e � either lies in �K(G) or does not interse
t it, i.e. �K(G) is aunion of 
omponents. Moreover, � � �K(G) i� D � ��i(M) for somei. So, using indu
tion in dim M , we should estimate only the number of
uspidal 
omponents. In other words (***) follows from(***0) �K(G) 
ontains a �nite number of 
uspidal 
onne
ted 
omponents.Step 5. Using 2.2 we see that (***0) is equivalent to(****) IrrKG0 has a �nite number of 
ompa
tly supported G0-modules.This statement is dedu
ed in [ ℄ from the followingUniform admissibiliy theorem. Let K � G be an open 
ompa
t subgroup.There exists an e�e
tive 
onstant C = C(G;K) su
h that for ea
h simple G-module L dimLK � C(G;K).Remark. The proof in [ ℄ does not give an e�e
tive estimate for thenumber and type of 
uspidal 
omponents in �(G). In .... we will give ane�e
tive estimate. 13



2.6. The faithfulness of the fun
tor rDG .Fix a 
onne
ted 
omponent � � �(G). As we saw in 2.4. the system offun
tors frDG j(M;D) < (G;�)g is faithful on M(�). In fa
t, ea
h of thesefun
tors is faithful. This fa
t allows us to simplify notations in many proofs.Proposition. Let (M;D) < (G;�). Then the fun
tor rDG is faithful onM(�).In parti
ular, for every G-module E 2 M(�) the morphism �D : E ! TDE,des
ribed in 2.5 is an in
lusion.The proof is based on the following lemma, due to CasselmanLemma. Let M < G be a maximal Levi subgroup, D � �(M) a 
uspidal
omponent, � 2 D. Suppose that for some w 2 WG, wM < G and w(M;D) 6=(M;D). Then the G-module � = iGM (�) is irredu
ible.Proof:Step 1. Let R(G) be the Grothendie
k group of G-modules of �nite length. ByLanglands theory R(G) is generated by iGN ( �), where N < G,  2	(N), � 2 IrrN is a tempered N -module.Consider the in�nitesimal 
hara
ter �, 
orresponding to (M;�) and a sub-group R(�) � R(G), generated by G-modules with in�nitesimal 
hara
ter�. Let iGN ( �) 2 R(�). If N 6= G then, sin
e M is maximal, (N; �)is 
onjugate to (M;�) and hen
e iGN ( �) � �. Hen
e if ex
lude thepossibility N = G, then R(�) = Z � �, i.e. � is irredu
ible.Suppose there exists a tempered G-module � 2 IrrG, and  2 	(G) su
hthat  � 2 R(�). Repla
ing � by  �1� we 
an assume that  = 1, i.e. inf.
h. � = �. Repla
ing the 
uspidal pair (M;�) by a 
onjugate one we 
anassume, that � $ �.Step 2. Sin
e M is a maximal Levi subgroup, there exist modulo WM , only onenontrivial element w 2 WG su
h that wM < G (see [ ℄).Put N = wM , D0 = wD, �0 = iGN (w�). We have rDG(�) = �, rD0G(�) =w�. Sin
e the system of fun
tors rDG , rD0G is faithful on M(�) andrDG (�) 6= 0, this implies that rDG(�) = �, rD0G(�=�) = w� and hen
erD0G(�) = 0. This shows that � has length 2. Similarly, �0 has length 2.Sin
e � 2 JH(�0) = JH(�) and � 6� �0, there exists a nontrivial morphism�0 ! �.Step 3. For every G-module � denote by �+ the Hermitian 
ontragredient G-module. Then �+ � �, sin
e � is tempered and hen
e unitary. Also�+ lies on the same 
omponent D as �, sin
e D 
ontains some unitaryM -modules. This implies that � = (�0)+ has a form � = iGN (�0) with�0 2 D0.Nontrivial morphism �0 ! � gives a nontrivial morphism � = �+ ! � .But HomG(�; �) =HomG(�; iGN (�0)) =HomN(rD0G(�); �0) i.e. rD0G(�) 6=0, whi
h 
ontradi
ts Step 2. This 
ontradi
tion proves the lemma.Proof of the proposition.Let E 2 M(�), E 6= 0. We have to prove that rDG(E) 6= 0. By ... we 
an�nd a standard 
uspidal blo
k (N;D0), asso
iate to (M;D) su
h that rD0G(E) 6=14



0. Let (N;D0) = w(M;D), w 2 WG. We 
all the map w : M ! N elementaryif there exists a Levi subgroup L < G su
h that M < L, N < L, w 2 WLand M is a maximal Levi subgroup in L. It is shown in [ ℄ that any mapw : M ! N 
an be obtained as a 
omposition of elementary maps. Hen
e we
an assume that w :M ! N is elementary.Let �0 = iLM (D) = iLN (D0) � �(L), V = rLG(E) 2 M(L). Sin
erD0L(V ) = rD0G(E) 6= 0, V has a nontrivial D0-
omponent. Hen
e repla
ingG by L and E by the �0-
omponent of V we 
an assume that M < G is amaximal Levi subgroup. We 
an also assume that (M;D) 6= (N;D0), other-wise rDG (E) = rD0G(E) 6= 0. Choose an irredu
ible subquotient w 2 E. Thenw 2 JH(iGM (�)) for some � 2 D. By the lemma, iGM (�) is irredu
ible, i.e.w = iGM (�). This implies that rDG (w) 6= 0 and hen
e rDG (E) 6= 0.Thus we have proved that rDG is faithful onM(�). The same arguments asin 2.5 show that �D : E ! TDE is an in
lusion.x3. De
omposition of 
ategory M(G) withrespe
t to a 
ompa
t subgroup3.1. Let K � G be an open 
ompa
t subgroup HK = HK(G). Put SK =fL � IrrGjLK 6= 0g. We say that the subgroup K splits M(G) if the subsetSK splits M(G), i.e. M(G) =M(SK) �M(SK). As shown in ... in this 
asewe have M(SK) = fE 2 M(G)jEis generated by EKg;M(SK) = fE 2M(G)jEK = 0gand the fun
tors r :M(SK)!M(HK);i :M(HK)!M(SK)given by r(E) = EK , i(M) = H NHKM are mutually inverse equivalen
es of
ategories.We want to show that there are a lot of subgroups K whi
h split M(G). Inorder to do this we des
ribe some geometri
al suÆ
ient 
onditions on K.First of all, let us noti
e, that if SK is a union of subsets S� for some
omponents �, then K splits M(G). In fa
t, one 
an prove that any splittingsubset S � IrrG is a union of S� (it follows, for instan
e, from the des
riptionof Z(M(G)) below). So we want to �nd 
onditions whi
h imply that SK is aunion of S�.3.2. Let P � G be a paraboli
 subgroup M = P=U . For a 
ompa
t opensubgroup K � G put KP = K \ P , KM = prP!M (KP ). Let K � G, � �M beopen 
ompa
t subgroups. Consider the following 
onditions on K and �.(I) For ea
h g 2 G the subgroup (gK)M �M 
ontains a subgroup, 
onjugateto �. 15



(II) For any open subgroup N � G the subset (prP!M )�1(�) � N 
ontains asubgroup 
onjugate to K.Note that these 
onditions are invariant with respe
t to 
onjugation of P ,K or �.Lemma. (see.....).(i) Suppose K;� satisfy I. Then for ea
hM-module V , V � = 0) iGM (V )K =0.(ii) Suppose K, � satisfy II. Then for ea
h G-module E, EK = 0) rPMG(E)� =0.Proof:(i) Follows from Lemma ....(ii) V is isomorphi
 to Ev as �-module (see ...). Denote by A : E ! EVthe natural proje
tion. Suppose that ErV 6= 0 and 
hoose � 2 E su
hthat v = A� 2 ErV n0. Let N be the stabilizer of � in g. Then for ea
hg 2 prP!M (r)�1 �N we haveA(g�) = A(
n)� = 
A(n�) = 
A� = 
v = v :Choose a subgroup K 0 � pr�1(�) � U , 
onjugate to K. Then A(eK0 �) =v 6= 0, i.e. EK0 6= 0 and EK 6= 0.Corollary. Let K � G be an open 
ompa
t subgroup su
h that for ea
h paraboli
subgroup P the pair K;� = KM �M satisfy both 
onditions I and II. Then SKis a union of S� and hen
e K splits M(G).Proof: Let � � �(G) be a 
onne
ted 
omponent (M;D) < (G;�) a 
orre-sponding standard 
uspidal blo
k. Let L 2 S�. Then by ... rDG(L) 6= 0, so forsome  2 	(M) there exists an epimorphism rDG (L) !  � and an in
lusionL! iGM ( �). Hen
eLK = 0) rDG (L)� = 0) V � = 0andV � = 0) iGM ( �) = 0) LK = 0 :Thus the 
ondition LK = 0 does not depend on L 2 S�, i.e. either S� � SK orS� � SK .Remarks.(i) It is suÆ
ient to 
he
k 
ondition (I) for (�nite number of) representativesfgig of double 
osets PnG=Norm K. In parti
ular, if K is a 
ongruen
esubgroup, whi
h is normalized by the maximal 
ompa
t subgroup K0,then Iwasava de
omposition G = PK0 implies that I holds for � = KM .(ii) Let (P; P ) be a paraboli
 pair. Suppose that K � U � U , where � �M =P \ P . Then 
ondition II holds. Indeed, put C = prU�U!!V (K). Then we
an �nd a 2 Z(M) for whi
h aC is arbitrarily small, and hen
e lie in N ,whi
h implies aK � U � N . 16



Examples.(1) A 
ongruen
e subgroup K of a nonzero level is normalized by K0 andsatis�es KU [ KMU for ea
h standard paraboli
 pair (P; P ). Hen
e itsplits M(G).(2) Let I be an Iwahori subgroup (see ...). Then it is easy to see that I �UIMU . Choosing representatives w 2 W = K0=I in PnG=I it is easy to
he
k thatK,KM satisfy 
ondition I for ea
h standard paraboli
 subgroupp. Thus I splits M(G). Another proof of the fa
t see in [ ℄. In this 
aseSI 
onsists of one 
omponent S�.(3) The maximal 
ompa
t subgroup K0 does not splitM(G) sin
e trivial andSteinberg G-modules C and St lie over the same 
omponent � � �(G),but CK0 6= 0 while StK0 = 0.x4. Noetherian properties of M(G)4.1. Stru
ture of 
ategory M(D) for a 
uspidal 
omponent D.Let D � �(G) be a 
uspidal 
omponent. Fix (�; V ) 2 D. Denote by Fthe algebra of regular fun
tions on algebrai
 variety 	(G). It 
oin
ides withthe group algebra of the latti
e L = G=G0 and hen
e has a natural stru
tureof G�F -module. This module des
ribes a universal  (G)-family of unrami�ed
hara
ters of G sin
e its spe
ialization at a point  2 	(G) is C  .We denote by �(�) the G� F -modules �(�) = FNC V . As G-module �(�)does not depend on the 
hoi
e of a point � 2 D (up to a non
anoni
al isomor-phism). So we denote this G-module as �(D).For every  2 Stab (�;	(G)) we 
hoose an isomorphism �F : (�; V ) !( �; V ) and extend it to the automorphism of �(D) by � (v; f) = � (v)
 (f),where  (f) is de�ned as  (f)( 1) = f( �1 1).Proposition. Let D � �(G) be a 
uspidal 
omponent, (�; V ) 2 D.(i) �(D) is a �nitely generated proje
tive generator in the 
ategory M(D).(ii) EndG�(D) =L F � a where  2 Stab(�;	(G)).Proof:(i) Sin
e F = indGG0(C ), where C is the trivialG0-module, �(D) = indGG0(�jG0 ).Hen
e for every G-module E we have HomG(�(D); E) = HomG0(V;E).If E 2 M(D) its restri
tion to G0 is 
ompletely redu
ible (see 2.1), i.e.the fun
tor E 7! HomG(�(D); E) = HomG0(V;E) is exa
t and faithful.Hen
e �(D) is a proje
tive generator of M(D). Sin
e G0 is open in G,�(D) is �nitely generated.(ii) HomG(�(D);�(D)) = HomG0(V; F 
 V ) = = FNC HomG0(V; V ), so thestatement follows from 2.2. 17



Using ... we see that the 
ategory M(D) has a fairly simple des
ription.Namely, put � = EndG(�(D))0. Then M(D) is equivalent to the 
ategoryM(�). The algebra � is a free module over the subalgebra F with generatorsa , i.e. � =L F � a with  2 Stab(�;	(G)), and following relations(a) a fa�1 =  (f), f 2 F .(b) a a� = 
( ; �)a �, where 
( ; �) 2 C are some 
onstants, de�ning aproje
tive representation of Stab(�;	(G)) in V .Corollary. (i) The 
enter Z(M(D)) of the 
ategory M(D) is isomorphi
 tothe algebra Z(D) � F � End(�(D)) of regular fun
tions on D.(ii) Category M(D) is lo
ally noetherian.(iii) Every �nitely generated G-module E 2 M(D) is Z(D) admissible.Proof:(i) Relations (a) - (b) show that Z(D) 
oin
ides with the 
enter of �. Using... we see that it 
oin
ides with Z(M(D)).(ii) Sin
e D � 	(G)=Stab(�;	(G)), F , and hen
e �, is a �nitely generatedZ(D)-module. Sin
e Z(D) is a noetherian algebra, the 
ategoryM(�) �M(D) is lo
ally noetherian.(iii) Sin
e �jG0 is admissible (see 2.1), �(D) is F -admissible and hen
e Z(D)-admissible. Sin
e any �nitely generated G-module E 2 M(D) is a quo-tient of �(D)n, n 2 Z+, it is also Z(D) admissible.4.2. Noetherian properties of M(G).Theorem. Category M(G) is lo
ally noetherian. Fun
tors r and i map �nitelygenerated modules into �nitely generated ones.Proof:Step 1. Fun
tor r maps �nitely generated modules into �nitely generated ones.This easily follows from Iwasava de
omposition (see [ ℄).Step 2. Let (M;D) be a standard 
uspidal blo
k, V 2 M(D) be a �nitely gener-ated M -module. Then G-module E = iGD(V ) is noetherian.Let � = iGM (D) � �(G). Then E 2 M(�) (see ...). Sin
e the fun
torrDG is faithful and exa
t onM(�) it is suÆ
ient to 
he
k, that rDG(E) isnoetherian. But by 2.4 rDG (E) = rDG Æ iGD(V ) is glued from M -moduleswV , w 2 W (D), ea
h of whi
h is noetherian by Proposition 4.1.Step 3. Let E be a �nitely generated G-module. Then it is noetherian. Indeed,by 2... E imbeds into L(M;D)TDE. Sin
e it is �nitely generated, its imagelies in a �nite sum. Using Steps 1,2 we see that ea
h G-module TDE =rGD Æ rDG (E) is noetherian, and hen
e E is noetherian.18



Step 4. Let N < G, V 2 M(N) be a noetherian M -module. Then iGN (V ) isnoetherian G-module.Repeating arguments in Step 3 we see that V is 
ontained in a �nite sumL(M;D) iND Æ rDN (V ). Hen
e iGN (V ) is 
ontained in a �nite sum �iGD Æ rDN (V ),whi
h is noetherian by Steps 1,2.Generalization. Let B be a 
ommutative noetherian C -algebra with iden-tity. Then 
ategoryM(G;B) is lo
ally noetherian, and fun
tors i; r map noethe-rian G�B-modules into noetherian ones.Generalization. Let B be a 
ommutative algebra with identity. ThenM(D;B) � M(�NC B), Z(M(D;B)) = Z(D)NC B. If B is noetherian, thenZ(D)NC B is noetherian, sin
e Z(D) is a �nitely generated C -algebra. Thisimplies that M(D;B) is noetherian.x5. Stabilization Theorem5.1. Let K � G be an open 
ompa
t subgroup. For ea
h g 2 G we puth(g) = ekgek 2 HK , where g stands for Æ-distribution at g. In other words,h(g) is the unique normalized bi-K-invariant measure, supported on KgK.In some 
ases we have equalities h(ai) = h(a)i for i � 0 or h(ab) = h(a)h(b).(geometri
ally it means that KigK = (KgK)i and KabK = KaKbk respe
-tively). We want to des
ribe some suÆ
ient 
onditions for these equalities.Essentially these 
onditions mean that a; b are dominant with respe
t to someparaboli
 pair.De�nition. Let (P; P ) be a paraboli
 pair. We say that subgroup K is in agood position with respe
t to (P; P ) if(�) K = K��K+ ;where K� = K \ U; � = K \M; K+ = K \ U :Suppose (P; P ) and K are in a good position. We 
all element a 2 Mdominant with respe
t to (P; P ;K) if(��) a�1K�a � K� ; a�a�1 = � ; aK+a�1 � K+ :For ea
h 
ompa
t subgroup C � G we denote by e
 the distribution on G,whi
h is the image of the normalized Haar measure on 
. If K is in a goodposition with respe
t to (P; P ), we haveeK = eK�e�eK+ = eK+e�eK� :If a; b are dominant with respe
t to (P; P ;K) we have h(ab) = h(a)h(b). Indeed,KaKbK = KaK+�K�bK = K(aK+a�1)(a�a�1)ab(b�1K�b)K = KabK :19



Example. Let A � Z(M0) be the maximal split torus, � = Homalg:gr:(A;F �)its 
hara
ter latti
e, � � � the root system of G and �+ � � the system ofpositive roots, 
orresponding to P0. Put A+ = fa 2 A j j�(a)j � 1 for all� 2 �+g. Then there exist arbitrary small open 
ompa
t subgroups K � G(
ongruen
e subgroups) su
h that (P0; P 0) and K are in a good position, andall elements a 2 A+ are dominant with respe
t to (P0; P ;K). In parti
ular, HK
ontains a very big 
ommutative subalgebra A = spanfh(a)ja 2 A+g.In fa
t these 
ongruen
e subgroups are in a good position with respe
t toea
h standard paraboli
 pair (P; P ) and all elements in A+\Z(M) are dominantwith respe
t to (P; P ;K) (see [ ℄).5.2. To ea
h element g 2 G naturally 
orresponds a paraboli
 pair. Namely,put Pg = fx 2 Gj the sequen
e gixg�i; i = 1; 2; : : : ; is bounded in Gg.Statement. Pg is a paraboli
 subgroup of G, �Pg ; Pg�1� is a paraboli
 pair.For regular semisimple g the statement is proved in [
℄. It is enough for ourpurposes.De�nition. Let (P; P ) be a paraboli
 pair. We say that an element a 2M isstri
tly dominant with respe
t to (P; P ) if (P; P ) = (Pa; Pa�1). Geometri
allyit means that operators AdajU and Ada�1jU are stri
tly 
ontra
table and thefamily of operators fAdai j i 2 Zg is uniformly bounded on M .Let (P; P ) and K be in a good position. We say that an element a 2 M isstri
tly dominant with respe
t to (P; P ;K) if it is dominant and stri
tly dominantwith respe
t to (P; P ).Lemma. (i) Let g 2 G; (P; P ) = (Pg ; Pg�1 ). There exist arbitrary smallopen subgroups K � G in a good position with respe
t to (P; P ) su
h thatg is stri
tly dominant with respe
t to (P; P ;K).(ii) Let K be in a good position with respe
t to (P; P ). There exist an elementa 2 Z(M) stri
tly dominant with respe
t to (P; P ;K).Proof: Statement (i) is proved in [ ℄, (ii) is straightforward.Fix an element stri
tly dominant with respe
t to (P; P ;K) and 
onsiderin
reasing sequen
es of subgroupsUn = a�nK+an � U ; Un = anK�a�n � U :When n ! 1 these subgroups be
ome arbitrary large, when n ! �1 theybe
ome arbitrary small.Put h = h(a). Using formulae in 5.1, we get for n � 0hn = eKaneKeKan = aneUne�eU�nhn = eKaneK = aneUneKand similarlyhn = eKeUnan:20



Proposition. Let E be a G-module, EU the spa
e of U-
oinvariants of E(see...) and A : E ! EU the natural M-equivariant proje
tion. Denote byAk the 
orresponding morphism AK : EK ! EU� = (EU )�. Then(i) AKhn = anAK .(ii) For � 2 eK hn� = 0 i� eUn� = 0In parti
ularKerAK =[n Ker eUn jEK= �� 2 EK j hn� = 0 for larger	 :(iii) If � 2 E is U�n-invariant, then ane�A� = AeKan�. In parti
ular, forea
h � 2 E�U an� 2 ImAK for large n, i.e. Sn a�n ImAK = E�U .Proof: Formula hn = aneUneK implies (i). Sin
e the operator a on E�U isinvertible, it also implies (ii). Using formula aneUne�eU�n = eKan we see thatane�A�eU�n�� = anAeUne�eU�n� = AaneUne�eU�n� = AeKan� whi
h proves(iii).This proposition means, that spa
e E�U together with operator g is naturallyisomorphi
 to the lo
alization of EK with respe
t to operator h.5.3. Stabilization Theorem. Let (P; P ) be a paraboli
 pair, K � G anopen 
ompa
t subgroup, in a good position with respe
t to (P; P ). Denote byC = CK a 
onstant in uniform admissibility theorem (see.....), i.e. a bound fordimLK for L 2 IrrG.Let a 2 M be an element stri
tly dominant with respe
t to (P; P ;K). Puth = h(a) 2 HK . For ea
h G-module E 
onsider h as an endomorphism of EK .Stabilization theorem. (i) For ea
h G-module E there exists a unique de-
omposition EK = EK0 �EK� into h-invariant subspa
es su
h that h
EK0 =0 and h is invertible on EK� . Namely, EK0 = Kerhn ; EK� = Imhn forany n � C.(ii) Let C � U , C � U be suÆ
iently large open 
ompa
t subgroups. Then forea
h G-module EEK0 = EK \Ker eC ; EK� = eKeCE :In parti
ular, EK0 , EK� do not depend on the 
hoi
e of a.(iii) Consider the natural morphism AK : EK ! E�U . Then EK0 = KerAK ; AK :EK� ! E�U is an isomorphism.Proof: Using formulas hn = aneUneK = eKeUnan, we see that (i) implies (ii)for subgroups C � Un = a�nK+an ; C � Un = anK�a�n. Using proposition5.2 we see that (i) implies (iii). Hen
e it is enough to prove (i).21



Step 1. Let L be a C [x℄-module, i.e. a ve
tor spa
e with an endomorphism x.We say that L is x-stable if L has an x-invariant de
omposition L = L0�L� su
hthat xL0 = 0 and x is invertible on L�. Clearly, L is x-stable () L = Kerx�Imx() Kerx2 = Kerx, Imx2 = Imx() x is invertible on L=Kerx � Imx.It is easy to 
he
k that the dire
t sum of x-stable modules is x-stable andfor ea
h morphism � : L! L0 of x-stable C [x℄-modules Ker� and Coker� arex-stable C [x℄-modules.Step 2. Denote by M0 �M(G) the sub
ategory of G-modules E su
h thatEk is hC-stable. We have to show that M0 =M(G).As follows from Step 1 dire
t sums of modules in M0 and kernels and 
ok-ernels of morphisms of modules in M0 lie in M0.Also,M0 
ontains all irredu
ible G-modules. Indeed, for ea
h irredu
ible G-module L dimLK � C, and hen
e the sequen
e of subspa
es Imhi is 
onstantfor i � C, i.e. h is invertible on ImhC .Step 3. Let B be a 
ommutative noetherian C -algebra, E B-admissible��B-module. Suppose that rMG(E) is B-admissibleM �B-module. Then forsome n > 0 EK is hn-stable.Indeed, sin
eEK is noetherianB-module, the sequen
e of submodules Kerhnis stable. By proposition....KerAK = Sn Kerhn, and hen
e KerAK = Kerhn forsome n > 0.By proposition..... E�U is a union of B-submodules a�n ImAk. Sin
e E�U is�nitely generated B-module it is equal to a�� ImAK for some � > 0. Sin
e ais invertible on ErU we see that E�U = ImAk = Ek=KerAK .Thus the operator h is invertible on EK=KerAk = EK=Kerhn, whi
h im-plies that EK is hn stable.Step 4. Let (N;D) be a standard 
uspidal blo
k, (�; V ) 2 D, �(D) = F 
Vbe G�F -module des
ribed in... Put (�; E) = iGM (�(D)). Then for some n > 0EK is hn-stable.It is suÆ
ient to 
he
k that E and rMG(E) are F -admissible modules. By
omposition theorem rMG(E) is glued fromM -modules iMMw Æw(�(D)). Hen
eF-admissibility of E and rMG(E) follows from the following.Lemma. The fun
tor iGM :M(A;B)!M(G;B) maps B-admissible modulesinto B-admissible ones.This lemma is an immediate 
onsequen
e of lemma...Step 5. Module (�; E) is step 4 whi
h lies in M0, i.e. EK is hC-stable.Indeed, it is suÆ
ient to 
he
k that Kerhn � KerhC . Let � 2 kerhn, �0 = hC�.For ea
h  2 	(M) 
onsider spe
ialization morphism �(D) !  � and the
orresponding morphism � : E ! E = iGM ( �).Lemma. (see [ ℄) For generi
  G-module E is irredu
ible.This lemma implies that for generi
  E 2 M0. Sin
e hn� (�) = 0, thisimplies that � (�0) = hC� (�) = 0 and hen
e �0 = 0.22



Step 6. Let (N;D) be a standard 
uspidal blo
k. Then iGN(M(D)) �M0.Let � 2 M(D). Sin
e �(D) is a proje
tive generator in M(D) we 
anrepresent � as a 
okernel of some morphism 
 : ���(D) ! ���(D). TheniGN (�) = Coker (���! ���) (sin
e fun
tor iGN is exa
t and preserves dire
tsums). Sin
e � 2M0 Step 2 implies that � 2 M0.Step 7. Ea
h G-module E lies in M0. Indeed, we 
an embed E into moduleE0 = �(N;D)iGD Æ rDG(E) as in..... By Step 6 E0 2 M0. Similarly we embedE0=E into E00 2 M0. Then E = ker(E0 ! E00) lies in M0 by step 2.5.4. Corollaries and Remarks to the Stabilization Theorem.Generalized Ja
quet Lemma. Let K be in a good position with respe
t to(P; P ). Then for ea
h G-module E the morphism AK : EK ! E�U is an epi-morphism. Moreover, it has a right inverse morphism B, fun
torial in E, i.e.E�U 
an be realized in a natural way as a dire
t summand of EK .Corollary. Fun
tor rPMG maps B-admissible G�B-modules into B-admissibleM �B-modules.We will prove more a general result.Let B be a 
ommutative C -algebra with identity. Fix a 
lass of obje
tsC � M(B) 
losed with respe
t to isomorphisms, �nite dire
t sums and takingof dire
t summands (i.e. for x � y � Z; Z 2 C i� X;Y 2 C). Examples: C isthe 
lass of �nitely generated B-modules, or the 
lass of proje
tive B-modules,or the 
lass of 
at B-modules and so on. We say that G � B-module E is ofC-type if for ea
h open 
ompa
t subgroup K � G B-module EK lies in C.Proposition. Fix a 
lass C �M(B) as above. Then fun
tors iPGM :M(M;B)!M(G;B) rPMG : M(G;B) ! M(M;B) map C-type modules into C-type mod-ules.Proof: For fun
tor iGM this follows from lemma..... Let E be a G � B-module of type C and �0 � M an open 
ompa
t subgroup. Choose an open
ompa
t subgroup K � G in a good position with respe
t to (P; P ) su
h that� = K \M � �0. Then E�0U is a dire
t summand of E�U , whi
h is a dire
tsummand of EK . Hen
e B-module E�0U lies in C, whi
h proves the propositionfor fun
tor rMG.Remark. 1. Consider the de
reasing sequen
e of right ideals Jn = hnHK �HK . Applying stabilization theorem to G-module H(G)eK we see that it isstable, namely(�) Jn = JC for n � C :In fa
t this statement is equivalent to the theorem. Indeed, it implies thatImhn = ImhC for ea
h G-module E. Using the natural anti-involution ofH(G), given by the antiautomorphism g 7! g�1 on G, we 
an dedu
e from (*)that HKhn = HKhC for n � C, whi
h implies that Kerhn = KerhC .Note, that (*) is purely geometri
al statement, whi
h has nothing to dowith the representation theory. It would be very interesting to �nd a dire
tgeometri
al proof of (�). Su
h proof would probably give a reasonably pre
ise23



estimate for 
onstant C in (�). I was able to �nd su
h proof for 
ongruen
esubgroups in GL(Z), but not for higher rank. Another form of the statement(�), whi
h does not involve the 
hoi
e of a, is (��) For suÆ
iently large open
ompa
t subgroups C � U the ideal JC = eKeCH(G)eK does not depend onC. Namely, this is true for C � a�CK+aC .5.5. An E�e
tive Bound of the Number of Cuspidal ComponentsWitha Given Condu
tor.Fix an open 
ompa
t subgroup K � G. We want to give an e�e
tive boundof the number of 
uspidal 
omponents D � �K(G).Let E-be a G-module, � 2 EK ; e� 2 eEK . We denote by 'e�;� the matrix
oeÆ
ient 'e�;�(g) = he�; ge�i.Proposition. There exists a 
ompa
t subset S � GÆ, whi
h 
an be e�e
tivelydes
ribed in terms of G and K, su
h that for ea
h quasi
uspidal G-module E,� 2 EK ; e� 2 eEK the matrix 
oeÆ
ient '�;� vanishes on GÆnS.This proposition gives a desired bound. Indeed, let D1; : : : ; Dr be di�erent
uspidal 
omponents in �K(G), Vi 2 Di; 0 6= �i 2 V Ki ; 0 6= e�i 2 V Ki , 'i = '�i;�ifor i = 1; : : : ; r. By 2.. matrix 
oeÆ
ients 'i are linearly independent on GÆ.Sin
e they vanish on GÆnS and areK-biinvariant, their number r is less or equalto #(KnS=K).Proof of Proposition. Let A � Z(M0) be the maximal split torus, L thelatti
e of 
oweights of A, whi
h we will identify with the quotient L = A=AÆof A by its maximal 
ompa
t subgroup. Let LÆ = L \ GÆ be the semisimplepart of L, LÆ+ = LÆ \A+, where A+ is de�ned in example 5.1. In other words,LÆ+ = fa 2 L j (�; a) � 0 for all � 2 �+g is the Weyl 
hamber, 
orrespondingto P0.Let us �x a homomorphism L ! A, inverse to the proje
tion A ! L, andusing it identi�es L with a subgroup of A. By Cartan de
omposition there existsa 
ompa
t subset 
 � GÆ su
h that GÆ = 
�1LÆ+
.Choose a 
ongruen
e subgroup K 0, whi
h lies in the open subset Tx2
xKx�1and denote by C = CK0 the 
onstant in uniform admissibility theorem for K 0.Put SÆ = LÆ+n [LÆ+ + 
(LÆ+n0)℄ ; S = 
�1SÆ
. We 
laim that S is a desiredsubset. First of all, sin
e LÆ+ is a stri
tly 
onvex 
one, set SÆ is �nite, i.e.., S is
ompa
t. Let E be a quasi
uspidal G-module, � 2 EK ; � 2 EK ; g 2 GÆnS. Wewant to show that '�;xi(g) = 0. By de�nition g = x�1a0y, where x; y 2 
; a0 2LÆ+ is of the form a0 = b+ 
a; b 2 LÆ;+; a 2 LÆ+n0. Put h(a) = eK0aeK0 andsimilarly for a0; b. Sin
e a 2 LÆ+n0 the 
orresponding paraboli
 subgroup Padi�ers from G, i.e. rPMG(E) = 0. Hen
e for ea
h ve
tor � 2 E h(a)n� = 0 forlarge n and by the stabilization theorem, h(a)C� = 0. Hen
e'e��(g) = 'xe�;y�(a0) = �xe�; a0y�� = �xe�; h(a0)y�� = �xe�; h(b)h(a)Cy�� = 0Here we used that ve
tors xe� and y� are K 0-invariant. Formula h(a0) =h(b)h(a)C follows from 5.1. Note, that addition in L be
omes multipli
ation,when L is 
onsidered as a subgroup of G.24



Remark. All bounds we des
ribed are e�e
tive, but quite ex
essive. Themost ex
essive is the estimate for the 
onstant C = CK in the proof of uniformadmissibility theorem. It would be interesting to �nd more pre
ise bounds.x6. Main Theorems About Fun
tors Randi6.1. Pairing Between eEU and EU .Let (P; P ) be a paraboli
 pair. For ea
h G-module E denote by eE the
ontragredient G-module and 
onsider M -modules eEU = ( eE)U and EU .Theorem. There exists a unique pairing f g : eEU � EU ! C satisfying thefollowing 
ondition on the asymptoti
 of matrix 
oeÆ
ients.(ASS) Let K � G be an open 
ompa
t subgroup, a 2 M be an element stri
tlydominant with respe
t to (P; P ). Then there exists n0, depending only ona and K, su
h that for ea
h e� 2 eE; � 2 E, i > n0 (�; ai�) = fAe�; Ai�g(here A : eE ! eEU , A : E ! EU are natural proje
tions).The pairing f g is M-equivariant, fun
torial in E and it gives an isomor-phism of M-modules eEU�!(EU )�.Corollary. There exists a 
anoni
al fun
torial isomorphism rPMG( eE) � �rPMG(E)��.In parti
ular, for a standard Levi subgroup M < G rMG( eE) = rMG(E)�.Proof: Indeed, by de�nition rPMG( eE) = eEU 
 �1=2U ; rPMG(E) = EU 
 �1=2U .Sin
e �U and �U are 
anoni
ally dual (see appendix.....), the theorem impliesthe 
orollary.6.2. Proof of Theorem 6.1.Step 1. Let K � G be an open 
ompa
t subgroup in a good position withrespe
t to (P; P ); � = K \ M . First let us de�ne the pairing f g : eErU �ErU ! C . By the stabilization theorem AK : EK� ! E�U is an isomorphism,so we 
an identify E�U with a subspa
e EK� � EK . Applying the stabilizationtheorem to the paraboli
 pair (P ; P ), subgroup K and G-module eE we 
anidentify eE�U with the subspa
e eEK� � eEK . Then the restri
tion of the pairing( ; ) : eEK �EK ! C de�nes a pairing f g : eE�U �E�U ! C .Step 2. Choose an element a 2M stri
tly dominant with respe
t to P; P ;K(see 5.2) and put h = h(a); h� = h(a�1). For ea
h e� 2 eEK , � 2 EK we have(e�; an�) = (e�; hn�) = (e�; hn�) = �(h�)ne�; �� :Using stability theorem, we see that for n > CK(e�; aa�) depends only on pro-je
tions of e� on eEK� and of � and EK� . This shows that the pairing f g satis�es
ondition (ASS) for a and K. Sin
e h is invertible on EK� , f g is uniquelydetermined by 
ondition (ASS). 25



Step 3. Let K 0 � K be a smaller subgroup, su
h that a is stri
tly dominantwith respe
t to P; P ;K 0. Consider the 
orresponding pairing f g :0 eE�0U �E�0U !C . It satis�es (ASS) and by uniqueness property of f g the restri
tion of f g0to eE�U�E�U 
oin
ides with f g. Hen
e, 
hoosing smaller and smaller subgroupsK, we 
an de�ne a pairing f g : eEU�EU ! C satisfying (ASS), and this pairingis unique. By 
onstru
tion the pairing f g does not depend on a. This impliesthat it is M -equivariant.Step 4. For ea
h subgroup K the spa
e eEK is dual to EK and the operatorh� in eEK is dual to the operator h in EK . Hen
e eEK� is dual to EK� . Byde�nition of f g eE�U � eEK� is dual to E�U � EK� , whi
h implies that f g givesan isomorphism of eEU with module (EU )� 
ontragredient to EU .6.3. Completion of �-Modules. We want to des
ribe the pairing f g ina more dire
t and visual way, using the notion of 
ompletion of G-modules.De�nition. Let E be a G-module. We de�ne its 
ompletion E^ in any ofthree equivalent ways(i) E^ = HomG(H(G); E).(ii) E^ = lim�!K EK , where the inverse limit is over all open 
ompa
t subgroupsK � G and for K 0 � K the 
onne
ting morphism EK; ! EK is given by� 7! eK�.(iii) E^ is the 
ompletion of E in the topology, generated by open subsetKer eK for open 
ompa
t subgroups K � G.The algebra DC(G) of 
ompa
tly supported distributions on G a
ts on the
ompletion E^ by d�^(h) = �^(h�d). This a
tion is 
ontinuous in the topology,des
ribed in (iii) and its restri
tion to E � E^ 
oin
ides with the natural a
tionof DC(G) on E. In parti
ular, G a
ts on E^, but this representation usually isnot smooth. The smooth part of E^ 
oin
ides with E = H(G)E^.It is easy to 
he
k that the fun
tor E 7! E^ is exa
t and faithful. Moreover,if E0 � E, then (E0)^ = ClosureE0 in E^ = f�^ 2 E^ j H(G)�^ � E0 � Eg.It is easy to 
he
k that (eL)^ � L� (the dual spa
e). This gives the followingrealization of E^, 
onvenient for 
omputations:Let us realize E as a submodule of eL for some G-module L and then E^ 
anbe des
ribed as E^ = f�� 2 L� j H(G)�� � E � eLg :6.4.Theorem. Let (P; P ) be a paraboli
 pair, E a G-module. Then there exists a
anoni
al isomorphism A : (E^)U�!(EU )^where (E^)U is the spa
e of U-invariants in E^. For ea
h �^ � (E^)U theve
tor �^ = A�^ is uniquely 
hara
terized by the following property.(*) For ea
h subgroupK � G in a good position with respe
t to (P; P ) AeK�^ =er�^. 26



This theorem allows us to give another des
ription of the pairing f g in the-orem 6.1. Namely, applying it to G-module eE we see that (( eE)^)U = (E�)U =(EU )� is 
anoni
ally isomorphi
 to ( eEU )^. Hen
e eEU = smooth part of ( eEU )^ =smooth part of (EU )� = (EU )�, whi
h is the statement of theorem 6.1.Proof of the Theorem.Step 1. LetK 0 � K � G be open 
ompa
t subgroups in a good position withrespe
t to (P; P ). Then for ea
h �0 2 EK0� eK�0 2 EK� and AeK�0 = erA�0. In-deed, let C � U be a very large open 
ompa
t subgroup, L = eCE. By stabiliza-tion theorem (applied to P ; P;K) EK� = eKL and EK0� = eK0L, whi
h impliesthat EK� = eKEK0� . Moreover, for ea
h � 2 L A(eK�) = A(eK+ereK��) =erA(eK��) = erA(�) and similarly for K 0. Hen
e if �0 = eK0�, we haveA(eK�0) = e�A(�) = e�(e�0A(�)) = e�A(�0).Step 2. Consider the inverse system feKg where K runs through all goodsubgroups (i.e. open 
ompa
t subgroups in a good position with respe
t to(P; P )). Step 1 shows that fEK� g form a subsystem in fEKg and A : EK� �!E�Ugives an isomorphism of this subsystem with the system fE�Ug. This allows usto identify (EU )^ = lim�!K E�)U , with the subspa
e E�̂ = lim�!K (EK� ) � lim�!K (EK) =E^. Clearly E�̂ = f�^ 2 E^ j eK�^ � EK� for all good Kg.Step 3. Let us prove that E�̂ = (E^)U . Indeed P�^ 2 E�̂ () for all goodK eK�^ 2 EK� P () for all good K and all open 
ompa
t subgroups C � UeK�^ 2 eKe
EP () for all C � V and all good K eK�^ 2 eKeCEP () forall C � U , �^ lies in the 
losure of e
E () for all C � U , eC�^ = �^.This last 
ondition implies that �^ is U -univariant. Conversely, suppose that�^ is U -invariant and prove that for ea
h C � U eC�^ = �^. Choose a smallsubgroup K � G normalized by C. Then the ve
tor � = eK�^ is C-invariantwhi
h implies that eC� = �. Hen
e eKeC�^ = eCeK�^ = eC� = � = eK�^.Sin
e this is true for arbitrary small K, eC�^ = �^.6.5. Se
ond Adjointness of Fun
tors i and r.Theorem. Let (P; P ) be a paraboli
 pair, M = P \ P . Then the fun
tor iPGM :M(M) ! M(G) is 
anoni
ally left adjoint to the fun
tor rPMG : M(G) !M(M). In parti
ular, for a standard Levi subgroup M < G the fun
tor iGM isleft adjoint to rMG.This theorem follows from Theorem 6.4 and the following form of Frobeniusre
ipro
ity.Proposition. Let G be an `-group (see...), H � G a 
losed subgroup. De�nethe indu
tion fun
tor ind :M(H)!M(G) as in ([ ℄), i.e., for V 2 M(H)we de�ne G-module E = ind(G;H; V ) asE = ff : G! V j f(hg) = hf(g) for h 2 H; support of f is 
ompa
t modulo Hand f is lo
ally 
onstantg.De�ne the twisted indu
tion fun
tor ind�(V )) = ind �V 
�G��1H �. Thenfor ea
h V 2M(H); E 2M(G) there is a 
anoni
al fun
torial isomorphismHomG �ind�(V ); E� = HomG(V;E^) :27



In other words, the fun
tor ind� is left adjoint to the fun
tor S, given by S(E) =H-smooth part of E^.Proof of Proposition. Let S(G) be the spa
e of lo
ally 
onstant 
ompa
tlysupported fun
tions on G with left a
tion of G. We have a 
anoni
al isomor-phism H(G) = S(G) 
 �G(f 
 M ! f � M). We will identify S(G) withind(G; 1; C ) (sin
e G a
ts on ind(C ) from the right, this identi�
ation involves
hange g 7! g�1). By transitivity of indu
tion we have ind(G;H; S(H)) = S(G).This implies, thatind�(H(H)) = ind(S(H)��G���1H ��H) = �G�ind(S(H)) = �G�S(G) = H(G) :Sin
e ind� is an exa
t fun
tor, preserving dire
t sums and H(H) is a proje
tivegenerator of M(H), ind�(V ) = H(G) NH(H) V . This implies, thatHomG(ind�(V ); E) = HomG0�H(G) OH(H) V;E1A == HomH (V;HomG(H(G); E)) = HomH(V;E^) == HomH(V; S(E)) :All isomorphisms above are 
anoni
al.Remark. Let us des
ribe expli
itly morphism � : V ! ind�(V )^, 
or-responding to identity morphism of ind�(V ). For v 2 V we de�ne �(v) 2ind�(V )^ by 
ondition, that for ea
h open 
ompa
t subgroup K � G the fun
-tion fK = eK�(v) 2 ind�(V ) has the following form and vanishes outside ofHK and f(hK) = heH\Kv 
MG 
M�1H �MG(K)�1MH(H \K)� :where MG 2 �G;MH 2 �H .Proof of the Theorem. Let V � M(M); E 2 M(G). Using 
anoni
alisomorphisms �G��1P = ��1U and ��1U = �U we haveHomG �iPGM (V ); E� = HomG �ind�(G;P; V 
�1=2U )E� == HomP �V 
�1=2U ; E_� = HomM �V 
�1=2U ; (E_)U� == HomM �V;EU 
�1=2U � = HomM �V; rPMGE� :Remark. Let us write expli
itly morphism � : V ! rMGiGMV . Let v 2 V .Choose a subgroup K, in a good position with respe
t to (P; P ), su
h thaterv = v. Then �(v) is represented by M1=2jf , where f : G ! V 
� U�1=2 issupported on PK and for k 2 K f(K) = vM�1=2U M�1G (K)MP (K \ P ).Here MU 2 DU ;MU 2 �U are dual and MG = MU � MP . In parti
ular,M�1G (K) MP (K \ P ) = M�1U (K�). Identifying M�1=2U with M1=2U we 
anwrite 28



ZU �(v) =  ZK�v�MU!M�1U (K�) = v :This shows that � 
oin
ides with the morphism in the 
omposition theorem,
orresponding to the big 
ell PP and the point w = 1 2 PP (see.....).
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