
Seond adjointness for representations of redutive p-adi groupsJoseph BernsteinTel Aviv Universityx0. Introdution0.1. In this paper, whih was written in 1987, I ontinue the investigation ofindued representations of redutive p-adi groups, started in [BZ℄. The maintools of the investigation are indution funtors iGM and Jaquet funtors rMG .More preisely, let G be a redutive p-adi group and Alg G the ategory ofalgebrai (in other terminology, smooth) representations of G. For any parabolisubgroup P < G with Levi omponent M we de�ne the indution funtor iGM :Alg M ! Alg G and Jaquet funtor rMG : Alg G! Alg M as in [BZ℄.Frobenius reiproity implies that funtor rMG is left adjoint to iGM . Re-ently, I have disovered to my great surprise, that these funtors are also ad-joint in the opposite diretion. More preisely, let P be the paraboli sub-group opposite to P with Levi omponent M . Then we an de�ne funtorsiG;M : Alg M ! Alg G and rMG : Alg G! Alg M in the same way as i and r,but using P instead of P .Main theorem. Funtor iGM is left adjoint to rMG , and iGM is left adjoint torMG .This innoent-looking statement is in fat very powerful. For instane, itimpliitly ontains the strong admissibility theorem (indeed, it implies thatfuntors rMG ommute with diret produt and hene produts of quasiusp-idal representations are quasiuspidal. But this means that for a given opensubgroup K � G there exists a uniform bound on supports of all K-invariantmatrix oeÆients of all uspidal representations of G, i.e. all these supports liein some subset S � G, ompat modulo enter).The aim of this paper is to prove the main theorem and to show how it impliesmany important results about indued representation: desription of the enterof ategory Alg G, matrix Paley-Wiener theorem, ohomologial duality in AlgG. More preise versions of the theorem are formulated in x. They allow to proveZelevinsky's onjeture, that duality, whih he de�ned on the Grothendiekgroup of representations of GL(n), atually arries irreduible representationsinto irreduible ones (see [Z℄). I should add, that this way of proving Zelevinsky'sonjeture was suggested to me by V. Drinfeld many years ago. He explainedto me that for the group G = SL(2), Ext1 (trivial representation) = Steinbergrepresentation. 1



0.2. Contragredient properties of funtor rHG .Another, essentially equivalent, form of the main theorem desribes howto ompute ontragredient representations of rMG(�). For indution funtorwe have the Frobenius reiproity (iGM (�))~ = iGM (~�), where ~ denotes theontragredient representation (see [B2℄).Theorem. There is a funtorial isomorphism(rMG(�))~ � rMG(~�); � 2 Alg G :0.3. Matrix Paley-Wiener theorem.Let � be an irreduible uspidal representation ofM . Consider the family ofindued representations �� = iGM (� ��), parametrized by unrami�ed haraters� of M , with underlying family of vetor spaes E�.Let H = H(G) be the algebra of ompatly supported loally onstantmeasures on G. Any element h 2 H(G) indues the family of operators h� =��(h) : E� ! E�.This family has the following properties:(PW1) h� is a regular funtion of parameter � (unrami�ed haraters ofM forma group isomorphi to (C � )` and funtion h� is algebrai on (C � )`).(PW2) There exists an open subgroup K � G suh that operators h� are left andright invariant with respet to �(K).(PW3) For any intertwaining operator A : E� ! E�0 one has h�0 ÆA = A Æ h�.Theorem. Let a� : E� ! E� be a family of operators, satisfying (PW1)-(PW3). Then a� = h� for some h 2 H(G).Remark. It is lear, that it is suÆient to hek property (PW3) only onZariski dense subsets of parameters � and �0.This theorem follows easily from the following orollary of the main theorem:funtor iGM arries projetive generators into projetive generators.0.4. Cohomologial duality theorem.Let us denote by L and R left and right ations of G on H(G). Forany � 2 Alg G, we an onsider spaes Exti(�) = ExtiA(G)(�; (L ; H(G))) asG-modules, using right ation R.Theorem. If � is irreduible then for exatly one index i Exti(�) 6= 0. More-over, representation Exti(�) is irreduible and � 7! Exti(�) de�nes a duality onthe set of equivalene lasses of irreduible algebrai representations of G.x1. Generalities from Algebra and Category Theory2



1.1. Idempotented Algebras and Nondegenerate Modules.We onsider a lass of rings slightly more general than rings with identity.De�nition. An assoiative ring H is alled an idempotented ring if for eah�nite subset fxig 2 H there exists an idempotent e 2 H suh that exi = xi = xiefor all i.Example. Eah ring with identity is an idempotented ring. More generally,let H�, � 2 I , be a diret system of rings and H = lim��!�2IH�. Suppose that theordered set I is �ltered (i.e. for eah �; � 2 I there exists  2 I suh that� < ; � < ) and all H� are rings with identities (but ring homomorphismsH� �! H� for � < � are not supposed to map identities into identities). ThenH is an idempotented ring.In fat, any idempotented ring an be presented in suh a way. Namely,onsider the set I = IdemH of idempotents in H with partial order e � f ifeHe � fHf . Then H = lim��!e2I eHe, where eHe is the ring with identity e.Usually we onsider H to be an algebra over some �eld k and all H anidempotented algebra.A (left) module M over an idempotented ring H is alled nondegenerate ifHM =M or equivalently lim������!e2IdemH eM =M . If H is a ring with identity, this isjust the usual ondition that 1 ats on M as identity.The ategory of nondegenerate H-modules we denote M(H). Eah H-module M ontains the maximal nondegenerate submodule HM , whih we allthe nondegenerate part ofM . It is easy to see thatM(H) is an abelian ategorywith diret limits and �ltered diret limits inM(H) are exat. CategoryM(H)also has arbitrary diret produts (and, hene, inverse limits). Namely, for afamily fM� 2 M(H)g the produt Q�M� in M(H) is equal to the nondegen-erate part of the set theoreti diret produt,Y� M� = H setY� M�! = lim������!e2IdemH Y� (eM�)! :1.2. Projetive and Injetive H-Modules. For eah idempotent e 2 Hthe funtor M ! eM is exat onM(H). Sine eM = HomH(He;M), it shows,thatHe is a �nitely generated projetive objet inM(H). The family of modulesHe for e 2 IdemH form a system of projetive generators for ategoryM(H). Inpartiular, M(H) has enough projetive objets, i.e. eah module M 2 M(H)is a quotient of a projetive one.Similarly, one an see that M(H) has enough injetive objets. Namely foreah e 2 IdemH and eah injetive Z-moduleU denote by I(e; U) the nondegen-erate part ofH-module HomZ(eH; U). Then the funtorM ! HomH (M; I(e; U)) =HomZ(eM;U) is exat onM(H), i.e. I(e; U) is an injetive objet, and fI(e; U)gform a system of injetive ogenerators in M(H).We will denote by MR(H) the ategory of nondegenerate right H-modules,whih we identify with ategoryM(HÆ), where HÆ is the opposite algebra. Wede�ne in a usual way the tensor produt M 0NH M of nondegenerate right andleft H-modules. It is easy to see that all the usual properties ofNH hold in this3



ase; we will use them freely. Note, that formulaM 0NH (He) =M 0e shows, thatHe is a at H-module, whih implies that all projetive H-modules are at.Let H be an idempotented algebra over a �eld k. For eah H-moduleM 2 M(H) we de�ne the ontragredient module fM 2 MR(H) as a nonde-generate part of the dual spae M� = Homk(M;k), i.e. fM = lim������!e2IdemH(Me)�.Similarly we de�ne the funtor �: MR(H) ! M(H). It is easy to hek that� is an exat ontravariant funtor, with duality property HomH(fM;N) =HomH( eN;M);M 2 M(H); N 2 MR(H). In partiular, � maps projetiveobjets into injetive ones.1.3. Heke Algebras.Let G be an `-group, i.e. a Hausdorf topologial group, whih has a basis ofneighbourhoods of e 2 G, onsisting of open ompat subgroups (see [BZ1℄). LetH = H(G) be the Heke algebra of loally onstant distributions (or omplexvalued measures) on G with ompat support. Then H is an idempotentedalgebra (over C ) and ategory M(H(G)) is naturally identi�ed with ategoryM(G) of G-modules (see..., [BZ1℄).Let K � G be an open ompat subgroup, eK � H(G) be the normal-ized Haar measure on K. Then eKH(G)eK is the subalgebra HK(G) of K-bi-invariant measures. The system of idempotents feKg is o�nal in Idem H(G),i.e. H(G) = lim�!K HK(G).The involution � : g 7! g�1 on G de�nes the natural antiautomorphism� : H(G) �! H(G). Using this antiautomorphism we will usually identifyM(H) withMR(H), though sometimes it is move onvenient to separate them.1.4. Jordan-H�older Content of a Module.We want to desribe some general properties of the ategory M(H). It isonvenient to do it in a more general setting.Let M be an abelian ategory with (arbitrary) diret sums (and, hene,diret limits). We will assume that M satis�es some axioms.(A1) Filtered diret limits in M are exat.In [Gr℄ this axiom is alled AB... It is equivalent (see [ ℄) to(A10) Let M� �M be a �ltered system of submodules, N �M . ThenN \ X� M�! =X� (N \M�) :An objet M 2 M is alled �nitely generated if for any �ltered system ofproper subobjets M� � M the subobjet P�M� � M is proper. For a�nitely generated objet M the funtor Hom(M; �) : M ! Ab preservesdiret sums.An objetM 2M is alled noetherian, if every of its subobjets is �nitelygenerated or, equivalently, if eah asending hain of subobjets M1 �M2 � ::: of M is stable.Category M is alled loally noetherian if eah �nitely generated objetof M is noetherian. 4



(A2) Every objet M 2M is a union of �nitely generated subobjets.In order to avoid set-theoretial troubles we also add(A3) Isomorphism lasses of �nitely generated objets in M form a set.We denote by IrrM the set of isomorphism lasses of irreduible (i.e. simple)objets in M. For every E 2 M we denote by JH(E) � IrrM the subset ofirreduible subquotients of E.For eah idempotented ring H the ategory M = M(H) satis�es axiomsA1�A3. We will denote Irr(M(H)) by IrrH and IrrM(G) by IrrG (see 1.3).Lemma. (i) Let E0 � E. Then JH(E) = JH(E0) [ JH(E=E0).(ii) JH(E) = ; i� E = 0(iii) If E� � E, then JH (P�E�) = S� JH(E�).Proof:(i) is lear.(ii) Let E 6= 0. By A2 E has a nonzero �nitely generated submodule E0. ByZorn's lemma E0 has an irreduible quotient, i.e. JH(E) 6= ;.(iii) Let I = f�g be the indexing set of E�. If I is �nite, the statementfollows from (i) by indution. Hene, replaing system fE�g by a system,onsisting of �nite sums of E� we an assume, that fE�g is a �ltereddiret system. Let Q = E0=E00 be a simple subquotient of P�E�, i.e.E00 $ E0 �P�E�. Suppose that for all � Q 62 JH(E�). Then for every� E0\�E00 +E�� = E00 . By A10 E0\P�(E00+E�) =PE0\(E00+E�) =E00 , whih ontradits the inlusion E0 �P�E�, sine E00 6= E0.1.5. Deomposition of Categories. Suppose that the ategoryM is splitinto a produt of two subategories M = M0 �M00 . This splitting indues adisjoint union deomposition IrrM = IrrM0 [ IrrM00 . We want to show thatthis deomposition ompletely desribes the splitting.For eah subset S � IrrM denote by M(S) the full subategory of Mde�ned by M(S) = fE 2 M j JH(E) � Sg. Lemma 1.4 shows that M(S)is an abelian subategory, losed with respet to subquotients, extensions anddiret limits. For every E 2 M we denote by ES the union of all submodulesE0 � E, whih lie in M(S). Then ES also lies in M(S). Let S0 � IrrM beanother subset, whih does not interset S. Then for eah E 2 M(S) \M(S0)we have JH(E) = ;, i.e. E = 0. This implies that the ategoriesM(S);M(S0)are orthogonal, i.e. HomM(E;E0) = 0 for E 2 M(S), E0 2 M(S0). Also forevery E 2M ES \ ES0 = 0, i.e. E � ES �ES0 .5



De�nition. We say that a subset S 2 IrrM splits an objet E 2 M ifE = ES � ES , where S = IrrMnS. We say that S splits M if it splits allobjets in M.More generally, suppose we have a disjoint union deomposition IrrM =S�2A S�. We say that this deomposition fS�g splits E if E = L�2AES� . Wesay that the deomposition fS�g splits M if it splits all objets in M. In thisase M is equivalent to the ategory Q�2AM(S�).Lemma. Let IrrM = S�2A S� be a disjoint union deomposition. Suppose itsplits an objet E 2M. Then it splits all subquotients of E.Proof: Let E = L�2AE�, E� 2 M(S�). It is suÆient to hek that forevery subobjet L � EL =P� (L \ E�). Put C = L=P� (L \ E�). Then for� JH(C) � JH (L=L \ E�) � JH (E=E�) � [� 6=�JH (E�) � S� :This implies, that JH(C) � T� �S�� = ;, i.e. C = 0.Remark. LetH be an idempotented ring. Suppose ategoryM =M(H) hasa deomposition M = Q� M�. Applying this deomposition to the H-moduleH we see that H = L� H�. Sine right multipliations in H are morphisms inM(H) all H� are two-sided ideals. It is easy to see that M� =M(H�).Conversely, eah deomposition H = L� H� of H into a diret sum of two-sided ideals leads to the deomposition M(H) =Q� M(H�).1.6. Realization of an Abelian Category as a Category of Modules.Let M be an abelian ategory, satisfying A1 � A3. Let P 2 M be a �nitelygenerated projetive objet, � = EndM(P )Æ (Æ denotes the opposite algebra).We de�ne the funtor r = rP : M ! M(�) by r(E) = HomM(P;E). Itis exat and ommutes with diret sums. Funtor r has a left adjoint funtori = iP : M(�) ! M. Indeed, every �-module M an be presented as aokernel of a morphism �M of free �-modules �M : L� � �! L� �, where �Mis given by a matrix f��� 2 �g. We de�ne i(M) as a okernel of a morphism�0 : L� P �! L� P , where �0 is given by the same matrix f��� 2 �g. In asewhen M =M(H) the funtor i an be desribed as i(M) = PN� M .Lemma. Suppose that P is a generator of the ategory M, i.e. the funtor ris faithful, or, equivalently, HomM(P;Q) 6= 0 for Q 2 IrrM. Then funtor rand i are inverse and de�ne an equivalene of ategoriesM i ��!r M(�):Proof: See [ ...℄This lemma allows us to realize M as a ategory of modules over somealgebra with identity. This realization is not unique, it depends on the hoieof P . Let us desribe the relation between two suh realizations.6



Let A be an algebra with identity, P 2M(A) a �nitely generated projetivegenerator, � = (EndAP )Æ. Then P is an A � �-bimodule. We de�ne a dual��A-bimodule P � by P � = HomA(P;A).Proposition. P � is a �nitely generated projetive generator inM(�), End �(P �) =AÆ and the funtors i : M(�) ! M(A), r : M(A) ! M(�) are anoniallyisomorphi to r(E) = P �NA E;E 2 M(A) and i(M) = Hom�(P �;M); M 2M(�).Proof:Step 1. For any E 2 M(A) the natural morphism P �NA E ! HomA(P;E) =r(E) is an isomorphism.Indeed, this is true for P = A, hene for P = An and hene for P whih isa diret summand of An.Step 2. Sine P is a generator of M(A), A is a diret summand of Pn forsome natural n. Hene r(A) = P � is a diret summand of r(P )n = �n, i.e. P �is a �nitely generated projetive �-module.Step 3. Sine funtors r and i are mutually inverse, we haveHomA(E; i(M)) = Hom�(r(E);M) == Hom� P �OA E;M! = HomA(E;Hom� (P �;M))whih implies that i(M) is anonially isomorphi to Hom� (P �;M). Sine thefuntor i is faithful, P � is a generator of M(�).Step 4. We have r(P ) = HomA(P; P ) = � 2 M(�); r(A) = P �NA A = P �and hene i(�) = Hom�(P �;�) = P , i(P �) = Hom�(P �; P �) = A 2 M(A).This implies that as an algebra End�(P �) = AÆ.Corollary. P is a right projetive �-module and End�(P ) = A.Indeed, sine P = Hom�(P �;�), it is a right projetive �-module, dual toP �. Hene End�(P ) = End�(P �)Æ = A.1.7. Realization of a Subategory as a Category of Modules.Let P 2 M be a �nitely generated projetive objet, whih we do not sup-pose to be a generator. Consider subset S = SP � IrrM of irreduible quo-tients of P . We say that P splits the ategoryM if the subset S splits M, i.e.M =M(S)�M(S). (see...).Corollary. Suppose P splits M. Then funtors r; i give equivalene of at-egories M(S) i ��!r M(�). Moreover, M(S) = fE 2 M(S) j Hom(P;E) = 0gM(S) = �E 2M(S) j E is a quotient of L� P	.This easily follows from 1.6. 7



Example. Let H be an idempotented ringM =M(H). Choose an idempo-tent e 2 H and put P = He. Then P is a �nitely generated projetive objetin M, � = (EndMP )Æ oinides with the subalgebra eHe � H and funtors r :M(H)!M(�); i :M(�)!M(H) are given by r(E) = eE; i(M) = PN� M .We say that idempotent e splitsM if the subset S = Se = f! 2 IrrM j e! 6= 0gsplitsM. In this ase funtors r and i give equivalene of ategoriesM(S) i ��!r M(�)and M(S) = fE 2 M(H) j E is generated by eEg, M(S) = fE 2 M(H) jeE = 0g.1.8. The Central Algebra of M.Let M be an abelian ategory.De�nition. The entral algebra Z(M) is de�ned as Z(M) = End(IdM),where IdM : M ! M is the identity funtor. In other words, an elementz 2 Z(M) is a olletion of morphisms zM : M ! M for all M 2 ObM, suhthat for eah morphism� :M ! N zN Æ � = � Æ zM :If M = M(H) or M(G) we will also use notations Z(H) or Z(G) instead ofZ(M(H)) or Z(M(G)).Lemma. Let H be an idempotented ring. Then the morphism z 7! zH identi�esZ(H) with the algebra EndH�HÆ(H) of endomorphisms of H whih ommutewith right and left multipliations. In partiular, if H has an identity, Z(H) isisomorphi to the enter of H.Proof: is straightforward, see...Corollary. Let P be a �nitely generated projetive generator inM, � = (End�P )Æ.Then the natural morphism z 7! zP 2 � gives an isomorphism of Z(M) withthe enter of �.This follows from the lemma and 1.6.x2. Deomposition theorem2.0. Let G be a onneted redutive p-adi group, �(G) the set of in�nites-imal haraters of G, �(G) = [� its deomposition into the union of on-neted omponents. For eah � onsider the subset S� = inf �h�1(�) � IrrGand denote by M(�) = M(G;S�) the orresponding subategory in M(G),M(�) = fE 2 M(G)jJH(E) � S�g (see 1 ). In this setion we prove thefollowingDeomposition theorem. M(G) =Q� M(�), where � runs through all on-neted omponents of �(G).Our proof follows the proof in [ ℄ with slight modi�ations, whih we will uselater. 8



Generalization. Let B be a ommutative algebra with identity. PutM(�;B) =fE 2 M(G;B)jE 2 M(�) is G-moduleg . Then deomposition theorem im-plies that M(G;B) =Q� M(�;B).2.1. Separation of ompatly supported G-modules.Let G be an arbitrary `-group as in 1. A G-module E is alled ompatlysupported if for eah open ompat subgroupK � G and eah � 2 E the funtiong 7! (eK geK )� has a ompat support of G. This implies that E has ompatlysupported matrix oeÆients. Using this fat and arguing exatly like in a aseof ompat groups, one an prove the following.Proposition. (see [ ℄). Let V be a �nitely generated ompatly supported G-module. Then V is admissible and has �nite length. The �nite subset S =JH(V ) � IrrG splits the ategory M(G) and eah module E 2 M(G;S) isompletely reduible.2.2. Separation of uspidal omponents.Let G be a redutive p-adi group. If the enter Z(G) of G is ompat,uspidal G-modules are ompatly supported and we an use 2.1 to separatethem. In general they are ompatly supported modulo enter Z(G). To studythis ase we will use the following property of G.(*) G has an open normal subgroup G0 suh that Z(G) \ G0 is ompat,Z(G) �G0 has �nite index in G and the group � = G=G0 is a lattie, i.e.is isomorphi to Zd, d 2 Z+.It is easy to see that suh a subgroup G0 is unique. By de�nition the group	(G) of unrami�ed haraters of G oinides withHom (�; C � ) = f : G! C � :  jG0 = 1g :Lemma. Let (�; V ) be a simple G-module. Then(i) �jG0 is ompletely reduible of �nite length. The subset S� = JH(�jG0) �IrrG0 is �nite and is a G-orbit of the natural ation of G on IrrG0.(ii) The orrespondene � 7! S� gives a bijetion of the set of 	(G) - orbits inIrrG and G-orbits in IrrG0, i.e. S� = S�0 i� �0 �  � for some  2 	(G).(iii) The stabilizer St(�;	) of � in 	(G) is �nite. If we hoose for eah  2St (�;	) a nonzero morphism � : (�; V ) ! ( �; V ), then f� g is aC -basis of EndG0(V ).Proof: (i), (ii) are proven in [ ℄. (iii) Put A = EndG0(V ) and de�ne theation of G on A by g(a) = �(g)a�(g)�1. This ation is trivial on G0. Beauseof Shur's lemma it is also trivial on Z(G), so it is an ation of the �nite abeliangroup G=G0 � Z(G). Using this we an deompose A = �A , where A areeigenspaes of the ation. But A = HomG(�;  �) = C � a by Shur's lemma,i.e. A =L C � a with  2 St(�;	) � Hom (G=G0 � Z(G); C � ).9



Harish-Chandra theorem. (see [ ℄) Let � be a quasiuspidal G-module, i.e.rMG(�) = 0 for all subgroups M $ G. Then it is ompatly supported moduloenter, i.e. �jG0 is ompatly supported.Corollary. Let (�; V ) be a uspidal irreduible G-module. Then the uspidalomponent D = 	(G) � � � IrrG splits the ategory M(G).Proof: Put S = S� = JH(�jG0 ) � IrrG0. By 2.1 every G-module E has adeomposition E = ES � E �S with E 2 M(G0;S), E �S 2 M(G0;S). Sine thisdeomposition is anonial it is G-invariant, i.e. ES and E �S are G-submodules.Lemma 2.2 implies that ES 2 M(G;D), E?S 2M(G;D).2.3. Funtors iGM and rMG .In order to deal with nonuspidal omponents we will use funtors iGM andrMG . Let us reall some elementary properties of these funtors. For simpliitywe onsider only the ase when M is a standard Levi subgroup.(i) Transitivity. Let M < N < G. Then iGM = iGN Æ iNM , rMG = rMN Æ rNG(anonial isomorphisms).(ii) Funtor rMG is left adjoint to iGM (anonial adjointness). See [ ℄.(iii) Funtors iGM and rMG are exat and preserve diret sums. See [ ℄(iv) There exists a funtorial isomorphism iGM (~�) = (iGM (�))~ , � 2 M(M)(anonial isomorphism). See [ ℄(v) Funtor rGM maps �nitely generated G-modules into �nitely generatedM -modules. See [ ℄.(vi) Composition of funtors r and i.We need some notations. For eah w 2 WG we �x a representative w 2Norm (M0; G). For eah subgroup H � G we put w(H) = �wH �w�1 anddenote by w the orresponding funtor w :M(H)!M(w(H)).Let M;N < G. Eah double oset WNnWG=WM has a unique represen-tative of minimal length; we denote the set of these representatives byWNMG . For eah w 2 WNMG we putMw =M \ w�1(N) < M; Nw = w(Mw) = w(M) \N < N :Composition theorem. Consider funtors F; Fw : M(M) ! M(N),for w 2 WNMG , de�ned by F = rNG Æ iGM , Fw = iNNw Æ w Æ rMwM . Morepreisely, hoose any ordering fw1; : : : ; wrg of WNMG suh that wi < wjimplies i � j (here < is the standard partial order on W , see [ ℄). ThenF has a anonial �ltration 0 = F0 � F1 � � � � � FV = F and Fi=Fi�1 isanonially isomorphi to Fwi .See the proof in [ ℄. Canoniity of isomorphisms in .... and .... is disussedin appendix ... 10



(vii) LetK � G be an open ompat subgroup. We will use the following simplelemma, whih desribes K-invariant vetors in indued G-modules.Lemma. Let (P;M) be a standard paraboli pair. Fix a system (g1; : : : ; gn) ofrepresentatives of double osets PnG=K and onsider open ompat subgroups�1; : : : ;�n � M de�ned by �i = prP!M (P \ gKg�1). Also �x a Haar measureon the unipotent radial U � P . Then for every V 2 M(M) and E = iGM (V )there exists a anonial funtorial isomorphism EK � nLi=1 V �i .Proof: is straightforward.2.4. Funtors iG;D and rD;G and their properties.Let (M;D) be a standard uspidal blok (notation (M;D) < (G;�(G))).It means that M < G and D is a uspidal omponent of �(M). The subset� = iGM (D) � �(G) is a onneted omponent. We say that the omponent �orresponds to the blok (M;D) and use the notation (M;D) < (G;�). Anotherstandard uspidal blok (N;D0) orresponds to the same omponent � if andonly if there exists w 2 WG suh that w(M;D) = (N;D0), i.e. N = w(M),D0 = w(D). In this ase we say that (N;D0) is assoiate to (M;D) (notation(N;D0) � (M;D)).Standard uspidal bloks will play a role similar to standard Levi subgroups.By 2.2. M(D) is a diret summand of M(M). We denote by inD : M(D) !M(M) and prD :M(M) !M(D) the orresponding inlusion and projetionfuntors.Consider the funtorsiGD = iGM Æ inD :M(D)!M(G)rDG = prD Æ rMG :M(G)!M(D) :The following properties of these funtors immediately follow from 2.3.(i) rDG is left adjoint to iGD .(ii) iGD and rDG are exat and preserve diret sums.(iii) Composition theorem. Let (M;D), (N;D0) be standard uspidal bloksF : rD0G Æ iGD :M(D) !M(D0). Then F = 0 unless (M;D) � (N;D0).If they are assoiate, F is glued from the funtors w : M(D) ! M(D0),where w 2 fw 2WNMG jw(M;D) = (N;D0)g.Proof: By omposition theorem F is glued from prD0 Æ iNNw Æw Æ rMwM Æ inD .If Mw 6=M , we have rMwM Æ inD = 0. If Nw 6= N , we have prD0 Æ iNNw = 0 (asright adjoint to rNwN Æ inD0 = 0). This proves the theorem.Proposition. (i) The system of funtors rDG for all (M;D; ) < (G;�(G))is faithful, i.e. rDG(E) = 0 for all (M;D) implies that E = 0.11



(ii) Fix a onneted omponent � � �(G). Then the system of funtors rDGwith (M;D) < (G;�) is faithful on M(�).(iii) Let E be a G-module suh that rD0G(E) = 0 for all standard uspidal bloks(N;D0) whih do not orrespond to the omponent �. Then E 2 M(�).(iv) Conversely, if E 2M(�), then rD0G(E) = 0 for (N;D0) 6< (G;�).(v) If (M;D) < (G;�), then iGD(M(D)) �M(�).Lemma. Let w 2 IrrG, � = inf �h w 2 �(G) and � be a onneted omponentof �. There exists a uspidal blok (M;D) < (G;�) suh that rDG (w) 6= 0. Foreah uspidal blok (N;D0) whih does not orrespond to � rD0G(w) = 0.Proof: We an �nd a uspidal pair (M;�) suh that M < G and w 2 iGM (�).Let D � �(M) be a onneted omponent of �. Then HomG(w; iGD (�)) =Hom(rDG (w); �) 6= 0, i.e. rDG (w) 6= 0. If (N;D0) 6� (M;D), then rD0G(w) �rD0G Æ iGD (�) = 0 by omposition theorem 2.4 (iii).Proof of the proposition. Sine funtors rDG are exat the lemma implies(i), (ii) and (iii). Sine for (N;D0) 6� (M;D) rD0G Æ iGD = 0, (iii) implies (iv).Let us prove (iv). Let (N;D0) be a standard Levi blok suh that the or-responding omponent �0 di�ers from �. Put V = rD0G(E) 2 M(D0). By (v)iGN (v) 2M(�0) and hene HomN (V; V ) =HomN(rD0G(E); V ) =HomG(E; iGD0 (V )) =0, i.e. V = 0.Corollary. Let N < G, � � �(G) be a onneted omponent. Consider allomponents �N � i�1GN(�) � �(N) and the orresponding produt ategoryM0 = Q�NM(�N). TheniGN (M0) �M(�) and rNG(M(�)) �M0 :Proof: it easily follows from the omposition theorem in 2.3 and the propo-sition.2.5. Proof of deomposition theorem.Step 1. For eah standard uspidal blok (M;D) de�ne a funtor TD = iGD ÆrDG : M(G) ! M(G). Sine the funtor rGD is left adjoint to iGD , foreah G-module E we have a anonial funtorial morphism �D : E !TD(E). If L � E, then the restrition �D jL : L ! TD(E) orrespondsto the morphism rDG(L) ! rDG(E). Sine the funtor rDG is exat, thismorphism is an inlusion. This proves that �D (L) = 0 if and only ifrDG (L) = 0.Step 2. Consider the produt morphism� = Y(M;D)�D : E ! Y(M;D)TD(E)where the produt is over all standard uspidal bloks (M;D). ThenrDG (Ker �) = 0 for all (M;D), and, sine frg is a faithful system offuntors, Ker � = 0. 12



Step 3. We want to show that the deomposition IrrG = S� S� splits a G-moduleE. Sine E � Q(M;D)TD(E) it is suÆient to hek that fS�g splits thisprodut (see 1...). By proposition 2.4. (v) fS�g splits L(M;D)TD(E), heneit would be suÆient to prove that L(M;D)TD(E) � Q(M;D)TD(E). Thisfollows from the following general statement.(*) Let V� 2M(�) : � � �(G). Then L� V� �Q� V�.Step 4. As we saw in ... Q� V� = lim�!K (Q� V K� ). Hene (*) follows from(**) Let K � G be an open ompat subgroup. Then V K� = 0 for all buta �nite number of omponents �, soL� V K� =Q� V K� .Put SK = fL 2 IrrGjLK 6= 0g, �K(G) = inf �h � SK . If V K� 6= 0, thenV� has an irreduible subquotient in SK . Hene (**) follows from(***) �K(G) is a union of a �nite number of omponents.Let � � �(G) be a onneted omponent (M;D) < (G;�), (�; V ) 2 D.For every  put E = iGM ( �) 2 M(G). The lemma 2.3 ( ) shows thatthe spae EK does not depend on  and is equal to Li V �i . For a givenin�nitesimal harater � = (M; �) 2 � the �ber inf �h�1(�) � IrrGoinides with JH(E ). This implies, that � 2 �K(G) i� Li V �i 6= 0.Hene � either lies in �K(G) or does not interset it, i.e. �K(G) is aunion of omponents. Moreover, � � �K(G) i� D � ��i(M) for somei. So, using indution in dim M , we should estimate only the number ofuspidal omponents. In other words (***) follows from(***0) �K(G) ontains a �nite number of uspidal onneted omponents.Step 5. Using 2.2 we see that (***0) is equivalent to(****) IrrKG0 has a �nite number of ompatly supported G0-modules.This statement is dedued in [ ℄ from the followingUniform admissibiliy theorem. Let K � G be an open ompat subgroup.There exists an e�etive onstant C = C(G;K) suh that for eah simple G-module L dimLK � C(G;K).Remark. The proof in [ ℄ does not give an e�etive estimate for thenumber and type of uspidal omponents in �(G). In .... we will give ane�etive estimate. 13



2.6. The faithfulness of the funtor rDG .Fix a onneted omponent � � �(G). As we saw in 2.4. the system offuntors frDG j(M;D) < (G;�)g is faithful on M(�). In fat, eah of thesefuntors is faithful. This fat allows us to simplify notations in many proofs.Proposition. Let (M;D) < (G;�). Then the funtor rDG is faithful onM(�).In partiular, for every G-module E 2 M(�) the morphism �D : E ! TDE,desribed in 2.5 is an inlusion.The proof is based on the following lemma, due to CasselmanLemma. Let M < G be a maximal Levi subgroup, D � �(M) a uspidalomponent, � 2 D. Suppose that for some w 2 WG, wM < G and w(M;D) 6=(M;D). Then the G-module � = iGM (�) is irreduible.Proof:Step 1. Let R(G) be the Grothendiek group of G-modules of �nite length. ByLanglands theory R(G) is generated by iGN ( �), where N < G,  2	(N), � 2 IrrN is a tempered N -module.Consider the in�nitesimal harater �, orresponding to (M;�) and a sub-group R(�) � R(G), generated by G-modules with in�nitesimal harater�. Let iGN ( �) 2 R(�). If N 6= G then, sine M is maximal, (N; �)is onjugate to (M;�) and hene iGN ( �) � �. Hene if exlude thepossibility N = G, then R(�) = Z � �, i.e. � is irreduible.Suppose there exists a tempered G-module � 2 IrrG, and  2 	(G) suhthat  � 2 R(�). Replaing � by  �1� we an assume that  = 1, i.e. inf.h. � = �. Replaing the uspidal pair (M;�) by a onjugate one we anassume, that � $ �.Step 2. Sine M is a maximal Levi subgroup, there exist modulo WM , only onenontrivial element w 2 WG suh that wM < G (see [ ℄).Put N = wM , D0 = wD, �0 = iGN (w�). We have rDG(�) = �, rD0G(�) =w�. Sine the system of funtors rDG , rD0G is faithful on M(�) andrDG (�) 6= 0, this implies that rDG(�) = �, rD0G(�=�) = w� and henerD0G(�) = 0. This shows that � has length 2. Similarly, �0 has length 2.Sine � 2 JH(�0) = JH(�) and � 6� �0, there exists a nontrivial morphism�0 ! �.Step 3. For every G-module � denote by �+ the Hermitian ontragredient G-module. Then �+ � �, sine � is tempered and hene unitary. Also�+ lies on the same omponent D as �, sine D ontains some unitaryM -modules. This implies that � = (�0)+ has a form � = iGN (�0) with�0 2 D0.Nontrivial morphism �0 ! � gives a nontrivial morphism � = �+ ! � .But HomG(�; �) =HomG(�; iGN (�0)) =HomN(rD0G(�); �0) i.e. rD0G(�) 6=0, whih ontradits Step 2. This ontradition proves the lemma.Proof of the proposition.Let E 2 M(�), E 6= 0. We have to prove that rDG(E) 6= 0. By ... we an�nd a standard uspidal blok (N;D0), assoiate to (M;D) suh that rD0G(E) 6=14



0. Let (N;D0) = w(M;D), w 2 WG. We all the map w : M ! N elementaryif there exists a Levi subgroup L < G suh that M < L, N < L, w 2 WLand M is a maximal Levi subgroup in L. It is shown in [ ℄ that any mapw : M ! N an be obtained as a omposition of elementary maps. Hene wean assume that w :M ! N is elementary.Let �0 = iLM (D) = iLN (D0) � �(L), V = rLG(E) 2 M(L). SinerD0L(V ) = rD0G(E) 6= 0, V has a nontrivial D0-omponent. Hene replaingG by L and E by the �0-omponent of V we an assume that M < G is amaximal Levi subgroup. We an also assume that (M;D) 6= (N;D0), other-wise rDG (E) = rD0G(E) 6= 0. Choose an irreduible subquotient w 2 E. Thenw 2 JH(iGM (�)) for some � 2 D. By the lemma, iGM (�) is irreduible, i.e.w = iGM (�). This implies that rDG (w) 6= 0 and hene rDG (E) 6= 0.Thus we have proved that rDG is faithful onM(�). The same arguments asin 2.5 show that �D : E ! TDE is an inlusion.x3. Deomposition of ategory M(G) withrespet to a ompat subgroup3.1. Let K � G be an open ompat subgroup HK = HK(G). Put SK =fL � IrrGjLK 6= 0g. We say that the subgroup K splits M(G) if the subsetSK splits M(G), i.e. M(G) =M(SK) �M(SK). As shown in ... in this asewe have M(SK) = fE 2 M(G)jEis generated by EKg;M(SK) = fE 2M(G)jEK = 0gand the funtors r :M(SK)!M(HK);i :M(HK)!M(SK)given by r(E) = EK , i(M) = H NHKM are mutually inverse equivalenes ofategories.We want to show that there are a lot of subgroups K whih split M(G). Inorder to do this we desribe some geometrial suÆient onditions on K.First of all, let us notie, that if SK is a union of subsets S� for someomponents �, then K splits M(G). In fat, one an prove that any splittingsubset S � IrrG is a union of S� (it follows, for instane, from the desriptionof Z(M(G)) below). So we want to �nd onditions whih imply that SK is aunion of S�.3.2. Let P � G be a paraboli subgroup M = P=U . For a ompat opensubgroup K � G put KP = K \ P , KM = prP!M (KP ). Let K � G, � �M beopen ompat subgroups. Consider the following onditions on K and �.(I) For eah g 2 G the subgroup (gK)M �M ontains a subgroup, onjugateto �. 15



(II) For any open subgroup N � G the subset (prP!M )�1(�) � N ontains asubgroup onjugate to K.Note that these onditions are invariant with respet to onjugation of P ,K or �.Lemma. (see.....).(i) Suppose K;� satisfy I. Then for eahM-module V , V � = 0) iGM (V )K =0.(ii) Suppose K, � satisfy II. Then for eah G-module E, EK = 0) rPMG(E)� =0.Proof:(i) Follows from Lemma ....(ii) V is isomorphi to Ev as �-module (see ...). Denote by A : E ! EVthe natural projetion. Suppose that ErV 6= 0 and hoose � 2 E suhthat v = A� 2 ErV n0. Let N be the stabilizer of � in g. Then for eahg 2 prP!M (r)�1 �N we haveA(g�) = A(n)� = A(n�) = A� = v = v :Choose a subgroup K 0 � pr�1(�) � U , onjugate to K. Then A(eK0 �) =v 6= 0, i.e. EK0 6= 0 and EK 6= 0.Corollary. Let K � G be an open ompat subgroup suh that for eah parabolisubgroup P the pair K;� = KM �M satisfy both onditions I and II. Then SKis a union of S� and hene K splits M(G).Proof: Let � � �(G) be a onneted omponent (M;D) < (G;�) a orre-sponding standard uspidal blok. Let L 2 S�. Then by ... rDG(L) 6= 0, so forsome  2 	(M) there exists an epimorphism rDG (L) !  � and an inlusionL! iGM ( �). HeneLK = 0) rDG (L)� = 0) V � = 0andV � = 0) iGM ( �) = 0) LK = 0 :Thus the ondition LK = 0 does not depend on L 2 S�, i.e. either S� � SK orS� � SK .Remarks.(i) It is suÆient to hek ondition (I) for (�nite number of) representativesfgig of double osets PnG=Norm K. In partiular, if K is a ongruenesubgroup, whih is normalized by the maximal ompat subgroup K0,then Iwasava deomposition G = PK0 implies that I holds for � = KM .(ii) Let (P; P ) be a paraboli pair. Suppose that K � U � U , where � �M =P \ P . Then ondition II holds. Indeed, put C = prU�U!!V (K). Then wean �nd a 2 Z(M) for whih aC is arbitrarily small, and hene lie in N ,whih implies aK � U � N . 16



Examples.(1) A ongruene subgroup K of a nonzero level is normalized by K0 andsatis�es KU [ KMU for eah standard paraboli pair (P; P ). Hene itsplits M(G).(2) Let I be an Iwahori subgroup (see ...). Then it is easy to see that I �UIMU . Choosing representatives w 2 W = K0=I in PnG=I it is easy tohek thatK,KM satisfy ondition I for eah standard paraboli subgroupp. Thus I splits M(G). Another proof of the fat see in [ ℄. In this aseSI onsists of one omponent S�.(3) The maximal ompat subgroup K0 does not splitM(G) sine trivial andSteinberg G-modules C and St lie over the same omponent � � �(G),but CK0 6= 0 while StK0 = 0.x4. Noetherian properties of M(G)4.1. Struture of ategory M(D) for a uspidal omponent D.Let D � �(G) be a uspidal omponent. Fix (�; V ) 2 D. Denote by Fthe algebra of regular funtions on algebrai variety 	(G). It oinides withthe group algebra of the lattie L = G=G0 and hene has a natural strutureof G�F -module. This module desribes a universal  (G)-family of unrami�edharaters of G sine its speialization at a point  2 	(G) is C  .We denote by �(�) the G� F -modules �(�) = FNC V . As G-module �(�)does not depend on the hoie of a point � 2 D (up to a nonanonial isomor-phism). So we denote this G-module as �(D).For every  2 Stab (�;	(G)) we hoose an isomorphism �F : (�; V ) !( �; V ) and extend it to the automorphism of �(D) by � (v; f) = � (v)
 (f),where  (f) is de�ned as  (f)( 1) = f( �1 1).Proposition. Let D � �(G) be a uspidal omponent, (�; V ) 2 D.(i) �(D) is a �nitely generated projetive generator in the ategory M(D).(ii) EndG�(D) =L F � a where  2 Stab(�;	(G)).Proof:(i) Sine F = indGG0(C ), where C is the trivialG0-module, �(D) = indGG0(�jG0 ).Hene for every G-module E we have HomG(�(D); E) = HomG0(V;E).If E 2 M(D) its restrition to G0 is ompletely reduible (see 2.1), i.e.the funtor E 7! HomG(�(D); E) = HomG0(V;E) is exat and faithful.Hene �(D) is a projetive generator of M(D). Sine G0 is open in G,�(D) is �nitely generated.(ii) HomG(�(D);�(D)) = HomG0(V; F 
 V ) = = FNC HomG0(V; V ), so thestatement follows from 2.2. 17



Using ... we see that the ategory M(D) has a fairly simple desription.Namely, put � = EndG(�(D))0. Then M(D) is equivalent to the ategoryM(�). The algebra � is a free module over the subalgebra F with generatorsa , i.e. � =L F � a with  2 Stab(�;	(G)), and following relations(a) a fa�1 =  (f), f 2 F .(b) a a� = ( ; �)a �, where ( ; �) 2 C are some onstants, de�ning aprojetive representation of Stab(�;	(G)) in V .Corollary. (i) The enter Z(M(D)) of the ategory M(D) is isomorphi tothe algebra Z(D) � F � End(�(D)) of regular funtions on D.(ii) Category M(D) is loally noetherian.(iii) Every �nitely generated G-module E 2 M(D) is Z(D) admissible.Proof:(i) Relations (a) - (b) show that Z(D) oinides with the enter of �. Using... we see that it oinides with Z(M(D)).(ii) Sine D � 	(G)=Stab(�;	(G)), F , and hene �, is a �nitely generatedZ(D)-module. Sine Z(D) is a noetherian algebra, the ategoryM(�) �M(D) is loally noetherian.(iii) Sine �jG0 is admissible (see 2.1), �(D) is F -admissible and hene Z(D)-admissible. Sine any �nitely generated G-module E 2 M(D) is a quo-tient of �(D)n, n 2 Z+, it is also Z(D) admissible.4.2. Noetherian properties of M(G).Theorem. Category M(G) is loally noetherian. Funtors r and i map �nitelygenerated modules into �nitely generated ones.Proof:Step 1. Funtor r maps �nitely generated modules into �nitely generated ones.This easily follows from Iwasava deomposition (see [ ℄).Step 2. Let (M;D) be a standard uspidal blok, V 2 M(D) be a �nitely gener-ated M -module. Then G-module E = iGD(V ) is noetherian.Let � = iGM (D) � �(G). Then E 2 M(�) (see ...). Sine the funtorrDG is faithful and exat onM(�) it is suÆient to hek, that rDG(E) isnoetherian. But by 2.4 rDG (E) = rDG Æ iGD(V ) is glued from M -moduleswV , w 2 W (D), eah of whih is noetherian by Proposition 4.1.Step 3. Let E be a �nitely generated G-module. Then it is noetherian. Indeed,by 2... E imbeds into L(M;D)TDE. Sine it is �nitely generated, its imagelies in a �nite sum. Using Steps 1,2 we see that eah G-module TDE =rGD Æ rDG (E) is noetherian, and hene E is noetherian.18



Step 4. Let N < G, V 2 M(N) be a noetherian M -module. Then iGN (V ) isnoetherian G-module.Repeating arguments in Step 3 we see that V is ontained in a �nite sumL(M;D) iND Æ rDN (V ). Hene iGN (V ) is ontained in a �nite sum �iGD Æ rDN (V ),whih is noetherian by Steps 1,2.Generalization. Let B be a ommutative noetherian C -algebra with iden-tity. Then ategoryM(G;B) is loally noetherian, and funtors i; r map noethe-rian G�B-modules into noetherian ones.Generalization. Let B be a ommutative algebra with identity. ThenM(D;B) � M(�NC B), Z(M(D;B)) = Z(D)NC B. If B is noetherian, thenZ(D)NC B is noetherian, sine Z(D) is a �nitely generated C -algebra. Thisimplies that M(D;B) is noetherian.x5. Stabilization Theorem5.1. Let K � G be an open ompat subgroup. For eah g 2 G we puth(g) = ekgek 2 HK , where g stands for Æ-distribution at g. In other words,h(g) is the unique normalized bi-K-invariant measure, supported on KgK.In some ases we have equalities h(ai) = h(a)i for i � 0 or h(ab) = h(a)h(b).(geometrially it means that KigK = (KgK)i and KabK = KaKbk respe-tively). We want to desribe some suÆient onditions for these equalities.Essentially these onditions mean that a; b are dominant with respet to someparaboli pair.De�nition. Let (P; P ) be a paraboli pair. We say that subgroup K is in agood position with respet to (P; P ) if(�) K = K��K+ ;where K� = K \ U; � = K \M; K+ = K \ U :Suppose (P; P ) and K are in a good position. We all element a 2 Mdominant with respet to (P; P ;K) if(��) a�1K�a � K� ; a�a�1 = � ; aK+a�1 � K+ :For eah ompat subgroup C � G we denote by e the distribution on G,whih is the image of the normalized Haar measure on . If K is in a goodposition with respet to (P; P ), we haveeK = eK�e�eK+ = eK+e�eK� :If a; b are dominant with respet to (P; P ;K) we have h(ab) = h(a)h(b). Indeed,KaKbK = KaK+�K�bK = K(aK+a�1)(a�a�1)ab(b�1K�b)K = KabK :19



Example. Let A � Z(M0) be the maximal split torus, � = Homalg:gr:(A;F �)its harater lattie, � � � the root system of G and �+ � � the system ofpositive roots, orresponding to P0. Put A+ = fa 2 A j j�(a)j � 1 for all� 2 �+g. Then there exist arbitrary small open ompat subgroups K � G(ongruene subgroups) suh that (P0; P 0) and K are in a good position, andall elements a 2 A+ are dominant with respet to (P0; P ;K). In partiular, HKontains a very big ommutative subalgebra A = spanfh(a)ja 2 A+g.In fat these ongruene subgroups are in a good position with respet toeah standard paraboli pair (P; P ) and all elements in A+\Z(M) are dominantwith respet to (P; P ;K) (see [ ℄).5.2. To eah element g 2 G naturally orresponds a paraboli pair. Namely,put Pg = fx 2 Gj the sequene gixg�i; i = 1; 2; : : : ; is bounded in Gg.Statement. Pg is a paraboli subgroup of G, �Pg ; Pg�1� is a paraboli pair.For regular semisimple g the statement is proved in [℄. It is enough for ourpurposes.De�nition. Let (P; P ) be a paraboli pair. We say that an element a 2M isstritly dominant with respet to (P; P ) if (P; P ) = (Pa; Pa�1). Geometriallyit means that operators AdajU and Ada�1jU are stritly ontratable and thefamily of operators fAdai j i 2 Zg is uniformly bounded on M .Let (P; P ) and K be in a good position. We say that an element a 2 M isstritly dominant with respet to (P; P ;K) if it is dominant and stritly dominantwith respet to (P; P ).Lemma. (i) Let g 2 G; (P; P ) = (Pg ; Pg�1 ). There exist arbitrary smallopen subgroups K � G in a good position with respet to (P; P ) suh thatg is stritly dominant with respet to (P; P ;K).(ii) Let K be in a good position with respet to (P; P ). There exist an elementa 2 Z(M) stritly dominant with respet to (P; P ;K).Proof: Statement (i) is proved in [ ℄, (ii) is straightforward.Fix an element stritly dominant with respet to (P; P ;K) and onsiderinreasing sequenes of subgroupsUn = a�nK+an � U ; Un = anK�a�n � U :When n ! 1 these subgroups beome arbitrary large, when n ! �1 theybeome arbitrary small.Put h = h(a). Using formulae in 5.1, we get for n � 0hn = eKaneKeKan = aneUne�eU�nhn = eKaneK = aneUneKand similarlyhn = eKeUnan:20



Proposition. Let E be a G-module, EU the spae of U-oinvariants of E(see...) and A : E ! EU the natural M-equivariant projetion. Denote byAk the orresponding morphism AK : EK ! EU� = (EU )�. Then(i) AKhn = anAK .(ii) For � 2 eK hn� = 0 i� eUn� = 0In partiularKerAK =[n Ker eUn jEK= �� 2 EK j hn� = 0 for larger	 :(iii) If � 2 E is U�n-invariant, then ane�A� = AeKan�. In partiular, foreah � 2 E�U an� 2 ImAK for large n, i.e. Sn a�n ImAK = E�U .Proof: Formula hn = aneUneK implies (i). Sine the operator a on E�U isinvertible, it also implies (ii). Using formula aneUne�eU�n = eKan we see thatane�A�eU�n�� = anAeUne�eU�n� = AaneUne�eU�n� = AeKan� whih proves(iii).This proposition means, that spae E�U together with operator g is naturallyisomorphi to the loalization of EK with respet to operator h.5.3. Stabilization Theorem. Let (P; P ) be a paraboli pair, K � G anopen ompat subgroup, in a good position with respet to (P; P ). Denote byC = CK a onstant in uniform admissibility theorem (see.....), i.e. a bound fordimLK for L 2 IrrG.Let a 2 M be an element stritly dominant with respet to (P; P ;K). Puth = h(a) 2 HK . For eah G-module E onsider h as an endomorphism of EK .Stabilization theorem. (i) For eah G-module E there exists a unique de-omposition EK = EK0 �EK� into h-invariant subspaes suh that hEK0 =0 and h is invertible on EK� . Namely, EK0 = Kerhn ; EK� = Imhn forany n � C.(ii) Let C � U , C � U be suÆiently large open ompat subgroups. Then foreah G-module EEK0 = EK \Ker eC ; EK� = eKeCE :In partiular, EK0 , EK� do not depend on the hoie of a.(iii) Consider the natural morphism AK : EK ! E�U . Then EK0 = KerAK ; AK :EK� ! E�U is an isomorphism.Proof: Using formulas hn = aneUneK = eKeUnan, we see that (i) implies (ii)for subgroups C � Un = a�nK+an ; C � Un = anK�a�n. Using proposition5.2 we see that (i) implies (iii). Hene it is enough to prove (i).21



Step 1. Let L be a C [x℄-module, i.e. a vetor spae with an endomorphism x.We say that L is x-stable if L has an x-invariant deomposition L = L0�L� suhthat xL0 = 0 and x is invertible on L�. Clearly, L is x-stable () L = Kerx�Imx() Kerx2 = Kerx, Imx2 = Imx() x is invertible on L=Kerx � Imx.It is easy to hek that the diret sum of x-stable modules is x-stable andfor eah morphism � : L! L0 of x-stable C [x℄-modules Ker� and Coker� arex-stable C [x℄-modules.Step 2. Denote by M0 �M(G) the subategory of G-modules E suh thatEk is hC-stable. We have to show that M0 =M(G).As follows from Step 1 diret sums of modules in M0 and kernels and ok-ernels of morphisms of modules in M0 lie in M0.Also,M0 ontains all irreduible G-modules. Indeed, for eah irreduible G-module L dimLK � C, and hene the sequene of subspaes Imhi is onstantfor i � C, i.e. h is invertible on ImhC .Step 3. Let B be a ommutative noetherian C -algebra, E B-admissible��B-module. Suppose that rMG(E) is B-admissibleM �B-module. Then forsome n > 0 EK is hn-stable.Indeed, sineEK is noetherianB-module, the sequene of submodules Kerhnis stable. By proposition....KerAK = Sn Kerhn, and hene KerAK = Kerhn forsome n > 0.By proposition..... E�U is a union of B-submodules a�n ImAk. Sine E�U is�nitely generated B-module it is equal to a�� ImAK for some � > 0. Sine ais invertible on ErU we see that E�U = ImAk = Ek=KerAK .Thus the operator h is invertible on EK=KerAk = EK=Kerhn, whih im-plies that EK is hn stable.Step 4. Let (N;D) be a standard uspidal blok, (�; V ) 2 D, �(D) = F 
Vbe G�F -module desribed in... Put (�; E) = iGM (�(D)). Then for some n > 0EK is hn-stable.It is suÆient to hek that E and rMG(E) are F -admissible modules. Byomposition theorem rMG(E) is glued fromM -modules iMMw Æw(�(D)). HeneF-admissibility of E and rMG(E) follows from the following.Lemma. The funtor iGM :M(A;B)!M(G;B) maps B-admissible modulesinto B-admissible ones.This lemma is an immediate onsequene of lemma...Step 5. Module (�; E) is step 4 whih lies in M0, i.e. EK is hC-stable.Indeed, it is suÆient to hek that Kerhn � KerhC . Let � 2 kerhn, �0 = hC�.For eah  2 	(M) onsider speialization morphism �(D) !  � and theorresponding morphism � : E ! E = iGM ( �).Lemma. (see [ ℄) For generi  G-module E is irreduible.This lemma implies that for generi  E 2 M0. Sine hn� (�) = 0, thisimplies that � (�0) = hC� (�) = 0 and hene �0 = 0.22



Step 6. Let (N;D) be a standard uspidal blok. Then iGN(M(D)) �M0.Let � 2 M(D). Sine �(D) is a projetive generator in M(D) we anrepresent � as a okernel of some morphism  : ���(D) ! ���(D). TheniGN (�) = Coker (���! ���) (sine funtor iGN is exat and preserves diretsums). Sine � 2M0 Step 2 implies that � 2 M0.Step 7. Eah G-module E lies in M0. Indeed, we an embed E into moduleE0 = �(N;D)iGD Æ rDG(E) as in..... By Step 6 E0 2 M0. Similarly we embedE0=E into E00 2 M0. Then E = ker(E0 ! E00) lies in M0 by step 2.5.4. Corollaries and Remarks to the Stabilization Theorem.Generalized Jaquet Lemma. Let K be in a good position with respet to(P; P ). Then for eah G-module E the morphism AK : EK ! E�U is an epi-morphism. Moreover, it has a right inverse morphism B, funtorial in E, i.e.E�U an be realized in a natural way as a diret summand of EK .Corollary. Funtor rPMG maps B-admissible G�B-modules into B-admissibleM �B-modules.We will prove more a general result.Let B be a ommutative C -algebra with identity. Fix a lass of objetsC � M(B) losed with respet to isomorphisms, �nite diret sums and takingof diret summands (i.e. for x � y � Z; Z 2 C i� X;Y 2 C). Examples: C isthe lass of �nitely generated B-modules, or the lass of projetive B-modules,or the lass of at B-modules and so on. We say that G � B-module E is ofC-type if for eah open ompat subgroup K � G B-module EK lies in C.Proposition. Fix a lass C �M(B) as above. Then funtors iPGM :M(M;B)!M(G;B) rPMG : M(G;B) ! M(M;B) map C-type modules into C-type mod-ules.Proof: For funtor iGM this follows from lemma..... Let E be a G � B-module of type C and �0 � M an open ompat subgroup. Choose an openompat subgroup K � G in a good position with respet to (P; P ) suh that� = K \M � �0. Then E�0U is a diret summand of E�U , whih is a diretsummand of EK . Hene B-module E�0U lies in C, whih proves the propositionfor funtor rMG.Remark. 1. Consider the dereasing sequene of right ideals Jn = hnHK �HK . Applying stabilization theorem to G-module H(G)eK we see that it isstable, namely(�) Jn = JC for n � C :In fat this statement is equivalent to the theorem. Indeed, it implies thatImhn = ImhC for eah G-module E. Using the natural anti-involution ofH(G), given by the antiautomorphism g 7! g�1 on G, we an dedue from (*)that HKhn = HKhC for n � C, whih implies that Kerhn = KerhC .Note, that (*) is purely geometrial statement, whih has nothing to dowith the representation theory. It would be very interesting to �nd a diretgeometrial proof of (�). Suh proof would probably give a reasonably preise23



estimate for onstant C in (�). I was able to �nd suh proof for ongruenesubgroups in GL(Z), but not for higher rank. Another form of the statement(�), whih does not involve the hoie of a, is (��) For suÆiently large openompat subgroups C � U the ideal JC = eKeCH(G)eK does not depend onC. Namely, this is true for C � a�CK+aC .5.5. An E�etive Bound of the Number of Cuspidal ComponentsWitha Given Condutor.Fix an open ompat subgroup K � G. We want to give an e�etive boundof the number of uspidal omponents D � �K(G).Let E-be a G-module, � 2 EK ; e� 2 eEK . We denote by 'e�;� the matrixoeÆient 'e�;�(g) = he�; ge�i.Proposition. There exists a ompat subset S � GÆ, whih an be e�etivelydesribed in terms of G and K, suh that for eah quasiuspidal G-module E,� 2 EK ; e� 2 eEK the matrix oeÆient '�;� vanishes on GÆnS.This proposition gives a desired bound. Indeed, let D1; : : : ; Dr be di�erentuspidal omponents in �K(G), Vi 2 Di; 0 6= �i 2 V Ki ; 0 6= e�i 2 V Ki , 'i = '�i;�ifor i = 1; : : : ; r. By 2.. matrix oeÆients 'i are linearly independent on GÆ.Sine they vanish on GÆnS and areK-biinvariant, their number r is less or equalto #(KnS=K).Proof of Proposition. Let A � Z(M0) be the maximal split torus, L thelattie of oweights of A, whih we will identify with the quotient L = A=AÆof A by its maximal ompat subgroup. Let LÆ = L \ GÆ be the semisimplepart of L, LÆ+ = LÆ \A+, where A+ is de�ned in example 5.1. In other words,LÆ+ = fa 2 L j (�; a) � 0 for all � 2 �+g is the Weyl hamber, orrespondingto P0.Let us �x a homomorphism L ! A, inverse to the projetion A ! L, andusing it identi�es L with a subgroup of A. By Cartan deomposition there existsa ompat subset 
 � GÆ suh that GÆ = 
�1LÆ+
.Choose a ongruene subgroup K 0, whih lies in the open subset Tx2
xKx�1and denote by C = CK0 the onstant in uniform admissibility theorem for K 0.Put SÆ = LÆ+n [LÆ+ + (LÆ+n0)℄ ; S = 
�1SÆ
. We laim that S is a desiredsubset. First of all, sine LÆ+ is a stritly onvex one, set SÆ is �nite, i.e.., S isompat. Let E be a quasiuspidal G-module, � 2 EK ; � 2 EK ; g 2 GÆnS. Wewant to show that '�;xi(g) = 0. By de�nition g = x�1a0y, where x; y 2 
; a0 2LÆ+ is of the form a0 = b+ a; b 2 LÆ;+; a 2 LÆ+n0. Put h(a) = eK0aeK0 andsimilarly for a0; b. Sine a 2 LÆ+n0 the orresponding paraboli subgroup Padi�ers from G, i.e. rPMG(E) = 0. Hene for eah vetor � 2 E h(a)n� = 0 forlarge n and by the stabilization theorem, h(a)C� = 0. Hene'e��(g) = 'xe�;y�(a0) = �xe�; a0y�� = �xe�; h(a0)y�� = �xe�; h(b)h(a)Cy�� = 0Here we used that vetors xe� and y� are K 0-invariant. Formula h(a0) =h(b)h(a)C follows from 5.1. Note, that addition in L beomes multipliation,when L is onsidered as a subgroup of G.24



Remark. All bounds we desribed are e�etive, but quite exessive. Themost exessive is the estimate for the onstant C = CK in the proof of uniformadmissibility theorem. It would be interesting to �nd more preise bounds.x6. Main Theorems About Funtors Randi6.1. Pairing Between eEU and EU .Let (P; P ) be a paraboli pair. For eah G-module E denote by eE theontragredient G-module and onsider M -modules eEU = ( eE)U and EU .Theorem. There exists a unique pairing f g : eEU � EU ! C satisfying thefollowing ondition on the asymptoti of matrix oeÆients.(ASS) Let K � G be an open ompat subgroup, a 2 M be an element stritlydominant with respet to (P; P ). Then there exists n0, depending only ona and K, suh that for eah e� 2 eE; � 2 E, i > n0 (�; ai�) = fAe�; Ai�g(here A : eE ! eEU , A : E ! EU are natural projetions).The pairing f g is M-equivariant, funtorial in E and it gives an isomor-phism of M-modules eEU�!(EU )�.Corollary. There exists a anonial funtorial isomorphism rPMG( eE) � �rPMG(E)��.In partiular, for a standard Levi subgroup M < G rMG( eE) = rMG(E)�.Proof: Indeed, by de�nition rPMG( eE) = eEU 
 �1=2U ; rPMG(E) = EU 
 �1=2U .Sine �U and �U are anonially dual (see appendix.....), the theorem impliesthe orollary.6.2. Proof of Theorem 6.1.Step 1. Let K � G be an open ompat subgroup in a good position withrespet to (P; P ); � = K \ M . First let us de�ne the pairing f g : eErU �ErU ! C . By the stabilization theorem AK : EK� ! E�U is an isomorphism,so we an identify E�U with a subspae EK� � EK . Applying the stabilizationtheorem to the paraboli pair (P ; P ), subgroup K and G-module eE we anidentify eE�U with the subspae eEK� � eEK . Then the restrition of the pairing( ; ) : eEK �EK ! C de�nes a pairing f g : eE�U �E�U ! C .Step 2. Choose an element a 2M stritly dominant with respet to P; P ;K(see 5.2) and put h = h(a); h� = h(a�1). For eah e� 2 eEK , � 2 EK we have(e�; an�) = (e�; hn�) = (e�; hn�) = �(h�)ne�; �� :Using stability theorem, we see that for n > CK(e�; aa�) depends only on pro-jetions of e� on eEK� and of � and EK� . This shows that the pairing f g satis�esondition (ASS) for a and K. Sine h is invertible on EK� , f g is uniquelydetermined by ondition (ASS). 25



Step 3. Let K 0 � K be a smaller subgroup, suh that a is stritly dominantwith respet to P; P ;K 0. Consider the orresponding pairing f g :0 eE�0U �E�0U !C . It satis�es (ASS) and by uniqueness property of f g the restrition of f g0to eE�U�E�U oinides with f g. Hene, hoosing smaller and smaller subgroupsK, we an de�ne a pairing f g : eEU�EU ! C satisfying (ASS), and this pairingis unique. By onstrution the pairing f g does not depend on a. This impliesthat it is M -equivariant.Step 4. For eah subgroup K the spae eEK is dual to EK and the operatorh� in eEK is dual to the operator h in EK . Hene eEK� is dual to EK� . Byde�nition of f g eE�U � eEK� is dual to E�U � EK� , whih implies that f g givesan isomorphism of eEU with module (EU )� ontragredient to EU .6.3. Completion of �-Modules. We want to desribe the pairing f g ina more diret and visual way, using the notion of ompletion of G-modules.De�nition. Let E be a G-module. We de�ne its ompletion E^ in any ofthree equivalent ways(i) E^ = HomG(H(G); E).(ii) E^ = lim�!K EK , where the inverse limit is over all open ompat subgroupsK � G and for K 0 � K the onneting morphism EK; ! EK is given by� 7! eK�.(iii) E^ is the ompletion of E in the topology, generated by open subsetKer eK for open ompat subgroups K � G.The algebra DC(G) of ompatly supported distributions on G ats on theompletion E^ by d�^(h) = �^(h�d). This ation is ontinuous in the topology,desribed in (iii) and its restrition to E � E^ oinides with the natural ationof DC(G) on E. In partiular, G ats on E^, but this representation usually isnot smooth. The smooth part of E^ oinides with E = H(G)E^.It is easy to hek that the funtor E 7! E^ is exat and faithful. Moreover,if E0 � E, then (E0)^ = ClosureE0 in E^ = f�^ 2 E^ j H(G)�^ � E0 � Eg.It is easy to hek that (eL)^ � L� (the dual spae). This gives the followingrealization of E^, onvenient for omputations:Let us realize E as a submodule of eL for some G-module L and then E^ anbe desribed as E^ = f�� 2 L� j H(G)�� � E � eLg :6.4.Theorem. Let (P; P ) be a paraboli pair, E a G-module. Then there exists aanonial isomorphism A : (E^)U�!(EU )^where (E^)U is the spae of U-invariants in E^. For eah �^ � (E^)U thevetor �^ = A�^ is uniquely haraterized by the following property.(*) For eah subgroupK � G in a good position with respet to (P; P ) AeK�^ =er�^. 26



This theorem allows us to give another desription of the pairing f g in the-orem 6.1. Namely, applying it to G-module eE we see that (( eE)^)U = (E�)U =(EU )� is anonially isomorphi to ( eEU )^. Hene eEU = smooth part of ( eEU )^ =smooth part of (EU )� = (EU )�, whih is the statement of theorem 6.1.Proof of the Theorem.Step 1. LetK 0 � K � G be open ompat subgroups in a good position withrespet to (P; P ). Then for eah �0 2 EK0� eK�0 2 EK� and AeK�0 = erA�0. In-deed, let C � U be a very large open ompat subgroup, L = eCE. By stabiliza-tion theorem (applied to P ; P;K) EK� = eKL and EK0� = eK0L, whih impliesthat EK� = eKEK0� . Moreover, for eah � 2 L A(eK�) = A(eK+ereK��) =erA(eK��) = erA(�) and similarly for K 0. Hene if �0 = eK0�, we haveA(eK�0) = e�A(�) = e�(e�0A(�)) = e�A(�0).Step 2. Consider the inverse system feKg where K runs through all goodsubgroups (i.e. open ompat subgroups in a good position with respet to(P; P )). Step 1 shows that fEK� g form a subsystem in fEKg and A : EK� �!E�Ugives an isomorphism of this subsystem with the system fE�Ug. This allows usto identify (EU )^ = lim�!K E�)U , with the subspae E�̂ = lim�!K (EK� ) � lim�!K (EK) =E^. Clearly E�̂ = f�^ 2 E^ j eK�^ � EK� for all good Kg.Step 3. Let us prove that E�̂ = (E^)U . Indeed P�^ 2 E�̂ () for all goodK eK�^ 2 EK� P () for all good K and all open ompat subgroups C � UeK�^ 2 eKeEP () for all C � V and all good K eK�^ 2 eKeCEP () forall C � U , �^ lies in the losure of eE () for all C � U , eC�^ = �^.This last ondition implies that �^ is U -univariant. Conversely, suppose that�^ is U -invariant and prove that for eah C � U eC�^ = �^. Choose a smallsubgroup K � G normalized by C. Then the vetor � = eK�^ is C-invariantwhih implies that eC� = �. Hene eKeC�^ = eCeK�^ = eC� = � = eK�^.Sine this is true for arbitrary small K, eC�^ = �^.6.5. Seond Adjointness of Funtors i and r.Theorem. Let (P; P ) be a paraboli pair, M = P \ P . Then the funtor iPGM :M(M) ! M(G) is anonially left adjoint to the funtor rPMG : M(G) !M(M). In partiular, for a standard Levi subgroup M < G the funtor iGM isleft adjoint to rMG.This theorem follows from Theorem 6.4 and the following form of Frobeniusreiproity.Proposition. Let G be an `-group (see...), H � G a losed subgroup. De�nethe indution funtor ind :M(H)!M(G) as in ([ ℄), i.e., for V 2 M(H)we de�ne G-module E = ind(G;H; V ) asE = ff : G! V j f(hg) = hf(g) for h 2 H; support of f is ompat modulo Hand f is loally onstantg.De�ne the twisted indution funtor ind�(V )) = ind �V 
�G��1H �. Thenfor eah V 2M(H); E 2M(G) there is a anonial funtorial isomorphismHomG �ind�(V ); E� = HomG(V;E^) :27



In other words, the funtor ind� is left adjoint to the funtor S, given by S(E) =H-smooth part of E^.Proof of Proposition. Let S(G) be the spae of loally onstant ompatlysupported funtions on G with left ation of G. We have a anonial isomor-phism H(G) = S(G) 
 �G(f 
 M ! f � M). We will identify S(G) withind(G; 1; C ) (sine G ats on ind(C ) from the right, this identi�ation involveshange g 7! g�1). By transitivity of indution we have ind(G;H; S(H)) = S(G).This implies, thatind�(H(H)) = ind(S(H)��G���1H ��H) = �G�ind(S(H)) = �G�S(G) = H(G) :Sine ind� is an exat funtor, preserving diret sums and H(H) is a projetivegenerator of M(H), ind�(V ) = H(G) NH(H) V . This implies, thatHomG(ind�(V ); E) = HomG0�H(G) OH(H) V;E1A == HomH (V;HomG(H(G); E)) = HomH(V;E^) == HomH(V; S(E)) :All isomorphisms above are anonial.Remark. Let us desribe expliitly morphism � : V ! ind�(V )^, or-responding to identity morphism of ind�(V ). For v 2 V we de�ne �(v) 2ind�(V )^ by ondition, that for eah open ompat subgroup K � G the fun-tion fK = eK�(v) 2 ind�(V ) has the following form and vanishes outside ofHK and f(hK) = heH\Kv 
MG 
M�1H �MG(K)�1MH(H \K)� :where MG 2 �G;MH 2 �H .Proof of the Theorem. Let V � M(M); E 2 M(G). Using anonialisomorphisms �G��1P = ��1U and ��1U = �U we haveHomG �iPGM (V ); E� = HomG �ind�(G;P; V 
�1=2U )E� == HomP �V 
�1=2U ; E_� = HomM �V 
�1=2U ; (E_)U� == HomM �V;EU 
�1=2U � = HomM �V; rPMGE� :Remark. Let us write expliitly morphism � : V ! rMGiGMV . Let v 2 V .Choose a subgroup K, in a good position with respet to (P; P ), suh thaterv = v. Then �(v) is represented by M1=2jf , where f : G ! V 
� U�1=2 issupported on PK and for k 2 K f(K) = vM�1=2U M�1G (K)MP (K \ P ).Here MU 2 DU ;MU 2 �U are dual and MG = MU � MP . In partiular,M�1G (K) MP (K \ P ) = M�1U (K�). Identifying M�1=2U with M1=2U we anwrite 28



ZU �(v) =  ZK�v�MU!M�1U (K�) = v :This shows that � oinides with the morphism in the omposition theorem,orresponding to the big ell PP and the point w = 1 2 PP (see.....).
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