
Natural 3-valued Logics|Characterizationand Proof TheoryArnon Avron1 IntroductionMany-valued logics in general and 3-valued logic in particular is an old subjectwhich had its beginning in the work of Lukasiewicz [Luk]. Recently there isa revived interest in this topic, both for its own sake (see, e.g. [Ho]), and alsobecause of its potential applications in several areas of computer science, like:proving correctness of programs ([Jo]), knowledge bases ([CP]) and Arti�cialIntelligence ([Tu]). There are, however, a huge number of 3-valued systemswhich logicians have studied throughout the years. The motivation behindthem and their properties are not always clear and their proof theory isfrequently not well developed. This state of a�airs makes both the use of3-valued logics and doing fruitful research on them rather di�cult.Our �rst goal in this work is, accordingly, to identify and characterizea class of 3-valued logics which might be called natural. For this we usethe general framework for characterizing and investigating logics which wehave developed in [Av1]. Not many 3-valued logics appear as natural withinthis framework, but it turns out that those that do include some of the bestknown ones. These include the 3-valued logics of Lukasiewicz, Kleene andSoboci�nski, the logic LPF used in the VDM project, the Logic RM3 fromthe relevance family and the paraconsistent 3-valued logic of [dCA]. Ourpresentation provides justi�cations for the introduction of certain connectivesin these logics which are often regarded as ad-hoc. It also shows that they areall closely related to each other. It is shown, for example, that Lukasiewicz3-valued logic and RM3 (the strongest logic in the family of relevance logics)are in a strong sense dual to each other, and that both are derivable by the1



same general construction from, respectively, Kleene 3-valued logic and the3-valued paraconsistent logic.Our second goal is to provide a proof-theoretical analysis of all the 3-valued systems we discuss. This includes:� Hilbert type representations with M.P. as the sole rule of inferenceof almost every system (or fragment thereof) which includes an ap-propriate implication connective in its language (including the purelyimplicational ones)1.� Cut-free Gentzen-type formulations of all the systems we discuss. Inthe cases of Lukasiewicz and RM3 this will be possible only by employ-ing a calculus of hypersequents, which are �nite sequences of ordinarysequents. 2All the 3-valued systems we consider below are based on the followingbasic structure:� Three truth-values :T;F and ?. T and F correspond to the classicaltwo truth values.� An operation :, which is de�ned on these truth-values. It behaves likeclassical negation on fT;Fg, while : ?=?.The language of all the systems we consider includes a negation connective,also denoted by :, which corresponds to the operation above. Most of theminclude also the connectives ^ and _. The corresponding truth tables arede�ned as follows: a^b = min(a; b), a_b = max(a; b), where F <?< T . Weshall see that the introduction of these connectives as well as the way theyare de�ned are dictated by the interpretation of the operation : as negation.Traditionally, the di�erences between the various systems are with respectto:1RM3 and its fragments with either ^ or _ are the only exceptions.2By a Gentzen-type system we mean here a system that treats only two-sided sequentsand whose language is not tailored to the needs of a speci�c n-valued logic. In [Car], e.g.,tableaux systems are introduced which use signed formulae so that to every truth-valueof the logic corresponds a di�erent \sign". Hence the syntax of any of the systems therealready determines the fact that it corresponds to an n-valued logic and even determinesthe exact n. Our proof-theoretical investigations are done, in contrast, within an absolutelygeneral framework (the method of hypersequents was used, e.g., in [Av5] to provide a cut-free Gentzen-type formulation of RM which is an in�nite-valued logic).2



� What other connectives are taken as basic. Especially: what is theo�cial \implication" connective of the language.� What truth-values are taken to be designated.Examples:Kleene 3-valued logic: This logic has, essentially, the basic connectiveswe describe above with the same truth tables. In addition its standardpresentation includes also a connective!K de�ned bya!K b = :a _ bT is here the only designated value.LPF: This is an extension of Kleene's logic which was developed within theVDM project (see [BCJ], [Jo]). On the propositional level it is obtainedfrom Kleene by adding a connective � such that:�(a) = ( F a =?T a = T;FLukasiewicz: This was the �rst 3-valued logic ever to be invented. Besidesthe basic 3 connectives above it has also an implication connective!so that: a! b = ( :a _ b a > bT otherwiseAgain T is taken as the only designated value.RM3 : This is the strongest logic in the family of relevance logics ([AB],[Du]). It has both T and ? as designated. Besides the 3 basic con-nectives above it has an implication connective ! (�rst introduced in[Sob]) so that: a! b = 8><>: ? a = b =?F a > bT otherwise3



3-valued paraconsistent logic: This logic also has both T and ? as des-ignated. In addition to the 3 basic connectives above it has one extraimplication connective �. It is de�ned as follows:a � b = ( T a = Fb otherwiseThe truth table for this connective was �rst introduced in [OdC] andused also in [dC]. The corresponding logic was investigated and axiom-atized in [Av3], where it is shown to be a maximal paraconsistent logic(i.e. a logic in which contradictions do not imply everything).For obvious reasons, all these systems take T as designated and nonetakes F . This leads into two main directions, corresponding to whetheror not we take ? as designated. The decision depends, of course, on theintended intuitive interpretation of ?. If it corresponds to some notion ofincomplete information, like \unde�ned" or \unknown" then usually it is nottaken as designated. If, on the other hand, it corresponds to inconsistentinformation (so its meaning is something like \known to be both true andfalse") then it does. Accordingly, the logics below will be divided into twoclasses, corresponding to these two interpretations. We shall see that eachclass has one basic logic from which all the rest are derivable by generalmethods.The above two criteria do not really su�ce for characterizing the variouslogics we discuss. We shall see below, for example, that LPF and Lukasiewicz3-valued logic have exactly the same expressive power: every primitive orde�nable connective of one is also a primitive or de�nable connective of theother. Also both have T as the only designated value. The only di�erenceis therefore with respect to what connectives are taken as primitive. Usuallythis is not taken as an essential issue 3, unless this choice re
ects somethingdeeper. This can only be (especially when we are dealing with \implication"connectives) a di�erence with respect to the consequence relation associatedwith the logic. We shall begin therefore our discussion with this crucialnotion as our starting point.3In the literature one can �nd a lot of di�erent formulations of classical logic withdi�erent choices of the primitive connectives| and they all are generally taken to beequivalent! 4



2 General ConsiderationsThe notion of a consequence relation between �nite sets of formulae and for-mulae was �rst introduced by Tarski. It was generalized to a relation between�nite sets of formulae in [Sc1] and [Sc2]. Scott's notion is extensively usedin [Ur] for characterizing many-valued logics. In what follows we shall need,however, a further generalization (from [Av1]) of Scott's de�nition (see therefor explanations and motivations):De�nition: A consequence relation (C.R.) on a set � of formulae is a binaryrelation ` between �nite multisets of formulae s.t.:(I) Re
exivity: A ` A for every formula A.(II) Transitivity, or \Cut": if �1 ` �1; A and A;�2 ` �2, then �1;�2 `�1;�2.It is more customary to take a C.R. to be a relation between sets, ratherthan multisets (which are \sets" in which an element may occur more thanonce). We de�ne, accordingly, a C.R. to be regular if it can be viewed in thisway (equivalently, if it is closed under contraction and its converse). Thereare, however, logics the full understanding of which requires us to make �nerdistinctions that only the use of multisets enable us to make. Examplesare provided in [Av1] and below. Another standard condition that we �ndnecessary to omit is closure under weakening. In what follows we shall callordinary any regular C.R. which satis�es this condition4 .Other concepts from [Av1] that will be of great importance below arethose of internal and combining connectives. The internal connectives areconnectives that make it possible to transform a given sequent to an equiv-alent one that has a special required form. The combining connectives, onthe other hand, make it possible to combine certain pairs of sequents intoa single one, which is valid i� the original two are valid. In [Av1] we havecharacterized several logics (including classical, intuitionistic, relevant andlinear logic) in terms of the internal and combining connectives available inthem and the structural rules under which they are closed. We repeat here4The concept of an ordinary C.R. coincides with the original concept of a C.R. due toScott. 5



the de�nitions of the internal negation and implication and of the combiningconjunction and disjunction:De�nition: Let ` be a C.R.Internal Negation: We call a unary connective : a right internal negationif for all �;�; A: �; A ` � i� � ` �;:A :We call a unary connective : a left internal negation if for all �;�; A:� ` �; A i� �;:A ` � .It can easily be shown that : is a right internal negation i� it is a leftone. We shall use therefore just the term internal negation to denoteboth. We shall call a C.R. which has an internal negation symmetri-cal.Internal Implication: 5 We call a binary connective! an internal impli-cation if for all �;�; A;B:�; A ` �; B i� � ` �; A! B :Combining Conjunction: We call a connective ^ a combining conjunctioni� for all �;�; A;B:� ` �; A ^B i� � ` �; A and � ` �; B :Combining Disjunction: We call a connective _ a combining disjunctioni� for all �;�; A;B:A _B;� ` � i� A;� ` � and B;� ` � :The following facts were shown in [Av1]:1. : is an internal negation i� ` is closed under the rules:A;� ` �� ` �;:A � ` �; A:A;� ` � :5This was called strong intensional implication in [Av1]. We believe that the presentterminology is better. 6



2. ^ is a combining conjunction i� ` is closed under the rules:�; A ` ��; A ^B ` � �; B ` ��; A ^B ` � � ` �; A � ` �; B� ` �; A ^B .3. _ is a combining disjunction i� ` is closed under the rules:� ` �; A� ` �; A _ B � ` �; B� ` �; A _ B �; A ` � �; B ` ��; A _ B ` � .4. ! is an internal implication i� ` is closed under the rules:�; A ` B;�� ` A! B;� �1 ` �1; A B;�2 ` �2�1;�2; A! B ` �1;�2 :The most important of these connectives (for our present purposes) is theinternal negation. Indeed, all the C.R.s we discuss in this work are eitherordinary or symmetrical (i.e., have an internal negation), but not both. Theonly exception is, of course, classical logic (which can, in fact, be characterizedby these two properties).Suppose that ` is a C.R., and that : is a unary connective in its language.How can we reasonably change ` to make : an internal negation? There aretwo possible directions in which a solution to this problem may be sought.One involves weakening `, the other involves strengthening it. Speci�cally,call a sequent �0 ` �0 a version of � ` � if it can be obtained from the laterby �nite number of steps, in each of which a formula is transferred from oneside of a sequent to the other while removing a : symbol from its beginningor adding one there. If we de�ne a sequent to be w-valid i� some of itsversions is valid in ` then the minimal C.R. for which all w-valid sequentsobtain is also the minimal C.R. which extends ` and relative to which : isan internal negation. Classical Logic is obtained from Intuitionistic Logic inthis way. Alternatively we might try to restrict ` by demanding a sequentto be strongly valid i� every version of it is valid. Unfortunately, this is toostrong: Unless : is already an internal negation even the re
exivity conditionfails for this new relation. Nevertheless, if we demand the new relation to bea strengthening only of the single-conclusioned fragment of the old one (i.e.,those sequents which have exactly one formula on the r.h.s of the `) thenunder certain natural conditions we can do better:7



De�nition: Let ` be a C.R. so that both A ` ::A and ::A ` A (theseconditions will be called below the symmetry conditions for negation). De-�ne `S , the derived symmetrical version of `, as follows: � `S � i� everysingle-conclusioned version of � ` � obtains.Proposition:1. `S is a C.R..2. If � `S A then � ` A.3. : is an internal negation with respect to `S .4. `S is the maximal C.R. having the above properties.5. ` and `S have the same logical theorems, i.e. for any A, ` A i� `S A.6. A1; : : : ; Am `S B1; : : : ; Bni� for every 1 � i � m and 1 � j � n we have:A1; : : : ; Ai�1; Ai+1; : : : ; Am;:B1; : : : ;:Bn ` :AiA1; : : : ; Am;:B1; : : : ;:Bj�1;:Bj+1; : : : ;:Bn ` BjWe leave the easy proof of this proposition to the reader. We note thatthe last claim in it provides an e�ective alternative de�nition of the derivedsymmetrical C.R.. It is also easy to see that the symmetry conditions fornegation are in fact necessary for getting a C.R. from this construction. Theyare obviously satis�ed by any C.R. based on the above 3-valued semantics(with respect, of course, to the connective : de�ned there).Our next goal is to �nd conditions on ` which guarantee that `S has theother connectives we have de�ned.Proposition: Let ^ be a combining conjunction for `. Suppose also that `is closed under the rules:�;:A ` � �;:B ` ��;:(A ^B) ` � � ` �;:A� ` �;:(A ^B) � ` �;:B� ` �;:(A ^B)8



(we shall call these conditions the symmetry conditions for conjunction).Then ^ is a combining conjunction for `S.Proof: Suppose � `S �; A and � `S �; B. We want to show that � `S�; A ^ B. Let, accordingly, �0 ` C be a single-conclusioned version of� ` �; A ^ B. We want to prove that this sequent is true. There aretwo possible cases to consider:1. C is A ^ B.By our assumptions, �0 ` A and �0 ` B are both true. Hence also�0 ` A ^ B is true, since ^ is a combining conjunction for `.2. :(A ^B) is in �0.In this case our assumptions and the �rst symmetry condition for ^easily entail that �0 ` C.For the converse, we should show that if � `S �; A ^ B then � `S �; Aand � `S �; B. The proofs can again be split into two cases. The secondsymmetry condition for ^ is used for one of them, the other part of the de�ni-tion of a combining conjunction| for the other. Details are left to the reader.Analogous symmetry conditions for the existence of a combining disjunc-tion can easily be formulated, but in the presence of an internal negation anda combining conjunction such a connective is available anyway.We next turn our attention to the problem of having an internal impli-cation for `S. If ! is such a connective then `S A ! B i� A `S B i�A ` B and :B ` :A. Suppose now that ` has an internal implication �and a combining conjunction ^. Then the last two conditions are togetherequivalent to ` (A � B) ^ (:B � :A). This, in turn, is equivalent to`S (A � B) ^ (:B � :A) (by 5. of the last proposition). Hence the lastformula provides an obvious candidate for de�ning!. Our next propositioncontains natural conditions for this candidate to succeed.Proposition: Suppose ^ is a combining conjunction for ` which satis�es(in `) the corresponding symmetry conditions. Suppose also that � is an9



internal implication for ` and that ` is closed under the following rules:�; A;:B ` ��;:(A � B) ` � �1 ` �1; A �2 ` �2;:B�1;�2 ` �1;�2;:(A � B)(These two rules will be called below the symmetry conditions for implica-tion). De�ne: A! B =Df (A � B) ^ (:B � :A)Then ! is an internal implication for `S.The proof of this proposition is left to the reader. We only note thatthe naturalness of the above symmetry conditions for implication can mostclearly be seen by working out the details of this proof!By collecting the various conditions at which we arrive in this section weget a Gentzen-type system for the minimal ordinary C.R. for which all theseconditions obtain. This system, with or without its implicational rules, willbe called below The Basic System, and it will provide the basis for all theformal representations of the ordinary C.R.s which we present below. It hasa 4-valued semantics which will be discussed elsewhere. Cut-elimination canbe shown for it rather easily.3 Consequence Relations based on 3-valuedSemantics3.1 The \Unde�ned" InterpretationIn this section we investigate several C.R.s in which? is taken as correspond-ing to a truth gap, and so T is the only designated value. We start with thebasic relation which naturally corresponds to this interpretation. As we shallsee, all the others are essentially based on it.De�nition: `Kl is the C.R. de�ned by:� `Kl � i� any valuation v (in the basic 3-valued structure) whichassigns (the designated value) T to all the sentences in � assignsit also to at least one of the sentences in �.10



Two obvious facts about this C.R. are:� `Kl is an ordinary C.R..� : satis�es the symmetry conditions for negation, but it is not an inter-nal negation.We next check how can we de�ne operations on the basic structure so thatwe get combining conjunction and internal implication, both satisfying thecorresponding symmetry conditions. The main conclusion is that these re-quirements completely determine the truth-tables for such connectives.Proposition:1. The connective ^ which was described in the introduction (a ^ b =min(a; b) where F <?< T ) is a combining conjunction for `Kl whichsatis�es the symmetry conditions. Moreover, it is the only possibleconnective on this structure which has these properties. Similar resultshold for _ from the introduction with respect to disjunction.2. De�ne a connective � on the basic 3-valued structure as follows:a � b = ( b a = TT otherwiseThen � de�nes an internal implication for `Kl which satis�es the sym-metry conditions. Moreover, � is the only possible connective on thisstructure which has these properties. 6The proof of the above proposition is straightforward, so its details are leftto the reader (compare with section 3.2.2). We turn now to investigate someknown logics that are obtained using the connectives that were introducedin it and the general constructions of the previous section.6This table for implication has already been de�ned by Monteiro in [Mo] and Wojcickiin [Wo] (we thank the referee for this information).11



3.1.1 Kleene's 3-valued logicThis logic can now be characterized as `Kl in a language which has, besides:, also the above unique combining conjunction (or disjunction) that satis�esthe symmetry conditions.An important property of this logic is that it has no logical theorems:`Kl A for no A in its language. This means, �rst of all, that no correspondinginternal implication exists in its language (since at least A ! A should bea theorem for any possible candidate !) 7. Since an internal disjunction isavailable it follows also that no possible internal negation is de�nable (andso not only the o�cial : fails to be one).The o�cial \implication connective" usually associated with this logic isnot an implication in any sense, and it is just one out of many connectivesthat are de�nable from : and ^.3.1.2 LPFThis logic is `Kl in a language which has, in addition to Kleene's connectives,also the internal implication de�ned above. It is, of course, an ordinary con-servative extension of the original logic of Kleene, and the basic connectivesof Kleene retain in it their properties.At the introduction we follow [BCJ] and de�ne LPF in terms of anotherconnective, �. We have, however, the following relations between this con-nective and our �:�A = :(A � :A) where A � B =Df (A � B) ^ (B � A)A � B = �A ^A!K B = :�A _ :A _B:These relations mean that the expressive powers of the two languages arethe same. Since the C.R. associated with both is `Kl, 8 the two versionsare equivalent. The present version seems to us more natural, though, andit opens the door to interesting observations, like the one given in our nextproposition.7The same consideration will apply to any possible C.R. which is based on Kleene'sconnectives.8In the case of the original LPF this is obvious from the natural deduction systempresented in [BCJ]. 12



Proposition: The positive fragment of LPF (i.e. the f_;^;�g-fragment)is identical to the corresponding classical one. In particular every classicalpositive tautology is valid in it.The proof of this fact is by showing that every axiom and rule of thestandard Gentzen-type representation of positive classical logic is valid inthe 3-valued semantics (the converse is obvious). All these rules are includedin the basic system of the previous section, the rules of which are all validhere.3.1.3 The 3-valued C.R. of LukasiewiczAs observed above, `Kl is not symmetrical. Nevertheless, the various sym-metry conditions concerning :;_;^ obtain for it, and those concerning im-plication hold for � in the extended version. We can apply therefore ourgeneral construction to get the symmetrical versions of both. We shall de-note the symmetrical version of Kleene's basic logic by `WLuk and that of itsextension with � by `Eluk. When we mean either we shall just use `Luk . Wegive �rst a semantical characterization of this C.R.:Proposition: � `Luk � i� for every assignment, either one of the sentencesin � gets T , or one of the sentences in � gets F , or at least two (occurrencesof) sentences in �;� get ? 9.Proof: Suppose �rst that the condition holds. Let �0 ` A be a singleconclusioned version of � ` � and v an assignment for which all the sen-tences in �0 get T . This means that the third possibility mentioned in theproposition does not obtain, since at most the ancestor of A can gets ?. Onthe other hand, each of the other two possibilities obviously guarantees thatA gets T in case all the sentences in �0 get T .For the converse, suppose that v is an assignment for which the conditionabove fails for the sequent � ` �. If there is no sentence in � or � which gets? then no single-conclusioned version of � ` � belongs to `Kl. Otherwiselet �0 ` A be the single conclusioned version of � ` � in which A is theunique sentence in � ` � which gets ? (if it occurs in �) or its negation (if9Note that they can both be in � or both be in �!13



it occurs in �). The failure of the condition entails that all the sentences in�0 get T , and so the resulting single-conclusioned version does not belong to`Kl, and � ` � does not belong to `Luk.Our next proposition just summarizes the properties which `Luk has ac-cording to the general discussion of the previous section:Proposition:1. If � `Luk A then � `Kl A.2. : is an internal negation for `Luk.3. ^ and _ are, respectively, combining conjunction and disjunction for`Luk.4. `Eluk is a conservative extension of `WLuk .5. De�ne: A! B =DF (A � B) ^ (:B � :A)Then ! is an internal implication for `Eluk.The relation between the derived symmetrical version of `Kl and Lukasiewicz3-valued logic (which justi�es the name `Luk) is given in the next propositionand its corollary:Proposition: ! of the previous proposition is exactly Lukasiewicz' im-plication.Corollary: A1; : : : ; An `Luk B i� A1 ! (A2 ! : : : ! (An ! B) : : :) isvalid in Lukasiewicz 3-valued logic.We show now that the di�erence between Lukasiewicz 3-valued logic andLPF is only with respect to the associated C.R.:Proposition: Lukasiewicz 3-valued logic and LPF have the same expres-sive power. 14



Proof: We have seen already that Lukasiewicz implication is de�nable using:;^ and �. for the converse something even stronger holds: � is de�nablefrom! alone. In fact, we have:a � b = a! (a! b)It is worth to recall at this point that _ is also de�nable from ! alone,since a _ b = (a! b)! b. Hence the languages of f:;!g and that of LPFare equivalent.We note, �nally a quite remarkable property of `Luk:Proposition: `Luk is not closed under contraction. Hence it is not reg-ular (note, however, that it is still closed under weakening).Proof: We have, e.g., that :A ^ A;:A ^ A `WLuk B is valid while :A ^A `WLuk B is not.The last proposition is re
ected in the fact that (A! (A! B))! (A!B) is not a theorem of Lukasiewicz logic. Note, however, that the examplewe gave is not connected with ! at all, and applies also to `WLuk!3.2 The \Inconsistent" InterpretationIn this section we investigate several C.R.s in which the meaning of ? is\both true and false", and so ? will be designated. The discussion will par-allel that of the \unknown" case, and there will be a lot of similarities. Westart it, as before, by introducing the basic associated C.R.:De�nition: `Pac is the C.R. de�ned by:� `Pac � i� every valuation v (in the basic three-valued structure)which assigned either T or ? to all the sentences of � does thesame to at least one sentence of �.Again it is obvious that `Pac is an ordinary C.R. in which : satis�es the sym-metry conditions (but is not an internal negation). Another aspect in which15



`Pac resembles `Kl is that for `Pac too there is exactly one possible way tode�ne an internal implication and a combining conjunction (or disjunction)which satisfy the symmetry conditions. For the combining connectives ex-actly the same truth-tables do the job as before, with a very similar proof.We shall see, however, that for the implication a new truth-table will beneeded.We shall examine now the associated and derived logics.3.2.1 The basic 3-valued paraconsistent logicThis logic is `Pac in the language of the usual : and ^. :;^ and _ havein it exactly the same properties they have in Kleene's logic. On the otherhand, unlike `Kl (which has no logical theorems at all) `Pac has a very dis-tinguished set of logical theorems:Proposition: `Pac A i� A is a classical tautology.Proof: One direction is trivial. For the converse, suppose that v is a 3-valued valuation. Let w be the two-valued valuation which assigns T to anatomic variable p i� v(p) is designated. It is easy to prove by induction on thecomplexity of A that if w(A) = T then v(A) 2 fT;?g, and if w(A) = F thenv(A) 2 fF;?g. It follows that if w(A) = T for every two-valued valuation wthen v(A) is designated for every 3-valued v.An alternative proof is to note that the classical equivalences which areused for reducing a sentence to its conjunctive normal form are valid in `Pacin the strong sense that both sides of each equivalence always have the sametruth-value. It is also easy to see that a sentence in such normal form isclassically valid if it is valid in the present 3-valued semantics.It is important to note that despite the last proposition classical logicand the basic `Pac are not identical. In classical logic, e.g., contradictionsentail everything. This is not the case for `Pac: in general :A;A 6`Pac B.This means that `Pac is paraconsistent in the sense of [dC]. 10 Moreover, thebasic `Pac has no logical contradictions : A `Pac for no A . This entailsimmediately (since we have an internal conjunction in the language) that no10The relations between paraconsistent logics and many-valued logics in general arestudied, e.g., in [dCA] and [Se]. 16



de�nable internal negation is available. It is also possible to show that nointernal implication is de�nable.3.2.2 3-valued Paraconsistent Logic with Internal ImplicationLike in the `Kl case, our next goal is to enrich the language of `Pac withan internal implication. Again, demanding also the symmetry conditions forthis connective determines it completely:� The condition A;A � B `Pac B implies that a � F = F if a 2 fT;?g(i.e., if a is designated).� The conditions B `Pac A � B and `Pac A � A imply that a � b isdesignated in all other cases.� The conditions :(A � B) `Pac A and :(A � B) `Pac :B imply,respectively, that F � a = T and a � T = T� The condition A;:B `Pac :(A � B) implies that if a is designated andb =? then a � b cannot be T . Since by the second fact it cannot be Feither, it should be ?.The above facts leads us to a single candidate: the � of the 3-valued para-consistent logic which was described in the introduction. It is not di�cultto show that this � does really meet the requirements. The situation istherefore completely analogous to the one in the case of `Kl. This is clearlyre
ected also in the next proposition, which summarizes the main propertiesof `Pac in the full language of the 3-valued paraconsistent logic:Proposition: In the extended language for `Pac we have:1. : satis�es the symmetry conditions (but again A;:A 6`Pac B).2. ^ and _ are combining conjunction and disjunction, respectively. Bothsatisfy the symmetry conditions.3. � is an internal implication which satis�es the symmetry conditions.4. The positive fragment of `Pac is identical to the corresponding fragmentof the classical, two-valued C.R..17



It follows from the last proposition that `Pac and `Kl have quite similarproperties concerning ^;_;�, and the di�erences are all connected with theirnegation connective!3.2.3 RM3 and Soboci�nski C.R..Exactly like `Kl, `Pac is not symmetrical, but all the needed symmetry con-ditions hold for it. Hence we can apply our general construction again to getthe symmetrical versions of it in both the basic language and its extensionwith �. We shall denote these versions, respectively, by `WSob and `ESob,and use `Sob to denote either. The semantical characterization this time (theproof of which we leave to the reader) is the following:Proposition: � `Sob � i� for every assignment, either one of the sentencesin � gets F , or one of the sentences in � gets T , or the sequent is not emptyand all its sentences get ?.`Sob has the same basic properties of `Luk which were described in thesecond proposition of 2.1.3, and its internal implication was again knownand used before:Proposition: The internal implication of `ESob, de�ned as usual byA! B =Df (A � B) ^ (:B � :A)is identical to the ! of RM3 (i.e., it is Soboci�nski 3-valued implication).Corollary: A1; : : : ; An `Sob B i� A1 ! (A2 ! : : : ! (An ! B) : : :) isa theorem of RM3.Proposition: The languages of RM3 and `Pac have the same expressivepower.Proof: It is enough to note that � is de�nable in RM3 by:a � b = b _ (a! b)The most remarkable property of `Sob, and the main aspect in which itdi�ers from `Luk is given in the following18



Proposition: `Sob is a regular C.R. but it is not ordinary: Weakening failsfor it.The last proposition entails that A ! (B ! A) is not a theorem ofRM3. This is a characteristic feature of a Relevance logic. RM3 is indeed thestrongest logic in the family of logics which were created by the relevantists'school (see [AB] and [Du]).3.3 Merging The Two InterpretationsIn this section we investigate C.R.s which are based on a four-valued struc-ture, in which both the \unde�ned" and \inconsistent" interpretations of ?have a counterpart.De�nition: The lattice KB4 consists of the four elements T;F;?N;?B,together with the order relation � de�ned by the following diagram:T?N ?BF(i.e: F �?N ;?B� T ).We de�ne the operations :;_;^ on KB4 as follows: _ and ^ are theusual lattice operations. :T = F; :F = T; : ?N=?N ; : ?B=?B.Historically a structure which closely resembles KB4 11 was �rst intro-duced in order to characterize the valid relevant �rst-degree entailments(f.d.e.). These are the theorems of the usual relevant logics (R and E -see [AB] , [Du]) which have the form A! B where ! (the \relevant impli-cation") occurs in neither A nor B (i.e the only connectives occurring in Aor in B are :;_;^). The characterization is given in the following:Fact: A f.d.e. A ! B is provable in the relevance systems R and E i�11But in which only T is taken as designated and ! is di�erently de�ned.19



v(A) � v(B) for every valuation v in KB4.In [Be1] and [Be2] Belnap suggests the use of this 4-valued structure foranswering queries in knowledge bases. In his interpretation ?N correspondsto Kleene's? while?B corresponds to that of `Pac. Following him, we take Tand ?B as designated, and de�ne the corresponding C.R. in the obvious way:De�nition: � `Be � i� every valuation which makes all the sentences in �true (i.e. assigns to them either T or ?B) makes at least one of the sentencesin � true.`Be has the familiar properties of `Kl and `Pac: it is ordinary. : is notinternal negation for it but it satis�es the symmetry conditions. ^ and _ arecombining conjunction and disjunction for it which satis�es the symmetryconditions, and they are the only possible connectives with these properties(proof | as usual). Like `Kl, `Be has no logical theorems, and like `Pac itis paraconsistent. As for the existence of a well-behaved internal implicationthe situation is exactly like in the 3-valued fragments, with a similar proof:Proposition: There is exactly one possible way to de�ne an operation � onKB4 so that the symmetry conditions for it obtain. It is characterized bythe following two principles:� If a is not designated (i.e. a =?N ; F ) then a � b = T .� If a is designated (i.e. a =?B; T ) then a � b = b.Our next step is to introduce `SBe| the symmetrical version of `Be. Forthis C.R. both weakening and contraction fail. This, and the fact that it hasall the standard internal and combining connectives, makes it a very closerelative of the Linear C.R. 12. Accordingly, the internal implication of `SBe,de�ned as usual, has a lot in common with the relevant implication of theRelevance Logic R, and even more| with the linear implication of Girard.13.12Linear Logic was introduced in [Gi]. Its C.R. is characterized in [Av1]. Its connectionswith Relevance Logic are explained in [Av2].13One di�erence is that for `SBe the converse of contraction is valid, while for LinearLogic and the standard Relevance logics it is not. RM is the most famous exception inthis respect. RMI of [Av4] is another. 20



As in the previous case, the two implications, � and !, are equivalentas far as expressive power goes. A ! B is equivalent, as usual, to (A �B) ^ (:B � :A). A � B, on the other hand is equivalent this time toB _ (A! (A! B)).4 Proof Theory of The Ordinary C.R.s4.1 Gentzen-type SystemsIn this section we provide Gentzen-type systems for the ordinary C.R.s we in-troduce above. They are based on the basic system from the end of section 2.Theorem:1. By adding A;:A ` to the basic system we get a Gentzen-type formu-lation for `Kl.2. By adding ` A;:A to the basic system we get a Gentzen-type formu-lation for `Pac.3. By adding both ` A;:A and A;:A ` to the basic system we get aGentzen-type formulation for classical logic.Proof: The proof in all three cases is basicly the same. We �rst replace, inthe usual way, each of the pairs of rules for (^ `); (:_ `); (` _) and(` :^) bya single rule (the possibility of doing so is due to the soundness of weakeningand contraction). The rules of the resulting system are all easily seen to beinvertible from both the semantical and the proof-theoretical point of view.By this we mean that the conclusion of each rule is valid i� all its premisesare valid, and it is provable i� they are provable (cuts are needed for showingthe last part!). It follows that for any given sequent we can construct a�nite set of sequents, consisting only of atomic formulae or their negations,so that the given sequent is valid i� all the sequents in the set we constructare, and provable i� all of them are. It remains therefore to check that asequent of this form is valid in one of the above C.R.s i� it is provable in thecorresponding system. This is easy. 21



4.2 Hilbert-type formulationsThe system HBeDe�ned connective: A � B =Df (A � B) ^ (B � A)Axioms:I1 A � (B � A)I2 (A � (B � C)) � ((A � B) � (A � C))I3 ((A � B) � A) � AC1 A ^B � AC2 A ^B � BC3 A � (B � A ^B)D1 A � A _ BD2 B � A _ BD3 (A � C) � ((B � C) � (A _B � C))N1 :(A _ B) � :A ^ :BN2 :(A ^ B) � :A _ :BN3 ::A � AN4 :(A � B) � A ^ :BRule of Inference: A A � BBNote: The �rst nine axioms provide a standard axiomatization of classicalpositive logic.Theorem: A1; : : : ; An ` B1; : : : ; Bm is provable in the basic system i�A1 ^ : : : ^An � B1 _ : : : _Bm is a theorem of HBe.The details of the proof of this theorem are standard and we leave them tothe reader. We note only that the fact that any positive tautology is provable22



in HBe (as follows from the above note) makes the proof here particularlyeasy.Theorems on extensions:1. If we add either :A _A or (A � B) � (:A � B) � B to HBe we geta sound and complete Hilbert-type axiomatization of `Pac.2. If we add either :A � (A � B) or (B � A) � (B � :A) � :B to HBewe get a sound and complete Hilbert-type axiomatization of `Kl.3. By adding both :A _ A and :A � (A � B) (say) to HBe we getclassical logic.Proof: Using the previous theorem, it is straightforward to show the equiv-alence of these Hilbert-type systems and the Gentzen-type system of theprevious subsection.5 Proof-theory of Lukasiewicz 3-valued Logic5.1 A Hilbert-type formulationA Hilbert-type formulation of Lukasiewicz 3-valued logic was �rst given in[Wa]. An axiomatization of the implicational fragment of this logic was pro-vided in [MM]. Other Axiomatizations can be found in [Sch] and [Ep]. Forthe sake of completeness, and since we shall need the Hilbert-type formu-lations later, we include here a formulation and a completeness proof for itwhich is simpler than any other we were able to �nd in the literature. Aspecial care was taken to provide a well-axiomatization. This means thatany fragment of the logic which contains ! is completely axiomatized bythose axioms below which mention just the connectives of that fragment.This includes the implicational fragment itself14.14We believe that the present axiomatization is simpler and more transparent than theone given in [MM]. It is certainly shorter, since axiom I3 below is easily seen to be derivablefrom I1,I2 and I4 (we still prefer to include it as an axiom, since together with I1-I2 itprovides a very natural subsystem). It was noted by the referee that our axiomatization,though independently found, is a special case of those given in [Sch].23



5.1.1 The system HLukAxioms:I1 A! (B ! A)I2 (A! B)! ((B ! C)! (A! C))I3 (A! (B ! C))! (B ! (A! C))I4 ((A! B)! B)! ((B ! A)! A)I5 ((((A! B)! A)! A)! (B ! C))! (B ! C)C1 A ^ B ! AC2 A ^ B ! BC3 (A! B)! ((A! C)! (A! B ^ C))D1 A! A _BD2 B ! A _BD3 (A! C)! ((B ! C)! (A _B ! C))N1 (:B ! :A)! (A! B)Rule of Inference: A A! BBTheorem: HLuk is sound and complete for Lukasiewicz 3-valued logic.Moreover, T `HLuk � i� v(�) = T for any valuation v which assigns Tto all the sentences in T.Notes:1. `HLuk corresponds to (the single-conclusioned fragment of) `Kl, notto that of `Luk. Thus A ! A ! B;A `HLuk B though A ! A !B;A 6`Luk B. Recall, however, that the two C.R.s have the same logicaltheorems!2. It is a standard task to show that a sentence is derivable from I1{I3alone (using M.P.) i� it has a proof without contraction in the intu-itionistic Gentzen-type implicational calculus. Since the last criterionis very easy to apply, we shall feel free below to claim derivability usingI1{I3 without giving the formal derivation.24



3. Since (A! B)! B is equivalent to A _B, Axioms I4 and I5 are justpurely implicational formulations of, respectively, the more perspicuouspropositions A _B ! B _A and A _ (A! B) _ (B ! C).Proof of the theorem: The soundness part is easy. The completeness isa special case of the second claim. Suppose therefore by contraposition thatT6`HLuk �. Let T0 be a maximal extension of T such that T0 6`HLuk �. Themain property of T0 is:T0 6`HLuk A i� T0; A `HLuk �De�ne now: v(A) = 8><>: T T0 `HLuk AF T0 `HLuk A! B for every B? otherwiseObviously v(A) = T for every A in T while v(�) 6= T . It remains to showthat v is really a valuation, i.e., it respects the operations. For this we need�rst two lemmas.Lemma 1: If T0 `HLuk (A! B)! B then either T0 `HLuk A or T0 `HLuk B.Proof: First use I1-I3 and an induction on the length of proofs to show thatif T0; A `HLuk B then T0; (A ! C) ! C `HLuk (B ! C) ! C. This andI4 (and the fact that C ! C is derivable from I1{I3) easily imply that ifT0; A `HLuk C and T0; B `HLuk C then T0; (A ! B) ! B `HLuk C. TheLemma follows from this fact and the above main property of T015.Lemma 2: For every A and B, either v(A) = T or v(B) = F or v(A! B) =T .Proof: Applying Lemma 1 to axiom I5 we get that either T0 `HLuk B ! Cfor every C or T0 `HLuk ((A! B)! A)! A. In the �rst case v(B) = F .In the second case v(A) = T or v(A ! B) = T by another application ofLemma 1.We are ready now to prove that v respects the various operations. Asan example we shall show that v(A! B) = v(A)! v(B) (The other casesare easier and are left to the reader). Well, This equation is immediate ifv(A) = F , or if v(A) = T , or if v(B) = T , while in case v(A) = v(B) =? it15The proof of this Lemma just follows standard proofs from [AB] that maximal theorieswith certain properties are prime, i.e.,A_B is provable in them i� either A or B is provable.25



follows from Lemma 2. Suppose �nally that v(A) =? and v(B) = F . Thenthere exists D such that T0 6`HLuk A! D, while T0 `HLuk B ! D. Hence,by I2, T0 6`HLuk A ! B and so v(A! B) 6= T . Since neither A nor B aretheorems of T0, it follows by Lemma 1 that T0 6`HLuk (A! B)! B and sov(A! B) 6= F . Hence v(A! B) =?= v(A)! v(B) in this case as well.5.2 A Gentzen-type formulationAs was emphasized above the structural rule of contraction is not valid for`Luk. A natural �rst attempt to construct a Gentzen-type formalism for itwould be, therefore, to delete this rule from (an appropriate version of) thecorresponding classical system. The resulting formalism is equivalent to theHilbert-type system which is obtained from HLuk above by dropping I4 andI5. To capture the whole system we need to employ a calculus of Hyperse-quents 16. We start by recalling the de�nition of a Hypersequent in [Av5]:De�nition: Let L be a language. A hypersequent is a creature of the form:�1 ) �1j�2 ) �2j : : : j�n ) �nwhere �i;�i are �nite sequences of formulae of L. The �i ) �i -s will becalled the components of the hypersequent. We shall use G;H as metavari-ables for (possibly empty, i.e., without components) hypersequents.The intended semantics of hypersequents is given in the following naturalgeneralization of the semantics of `Luk:De�nition: A hypersequent G is `Luk -valid if for every valuation v, there isa component of G which contains either a formula on its r.h.s. which gets T(under v), or a formula on its l.h.s. which gets F , or two di�erent occurrencesof formulae which get ?.We next provide a corresponding (generalized) Gentzen-type formalism.Axioms: A) A16Such a calculus was �rst introduce in [Pot] for the modal S5, and independently in[Av5] for the semi-relevant RM. 26



External structural rules:EW (External Weakening): GGjHEC (External Contraction):Gj�) �j�) �Gj�) �EP (External Permutation):Gj�1 ) �1j�2 ) �2jHGj�2 ) �2j�1 ) �1jHInternal structural rules:IW (Internal Weakening):Gj�) �GjA;�) � Gj�) �Gj�) �; AIP (Internal Permutation):Gj�1; A;B;�2 ) �Gj�1; B;A;�2 ) � Gj�) �1; A;B;�2Gj�) �1; B;A;�2M (Merging):Gj�1;�2;�3 ) �1;�2;�3 Gj�01;�02;�03 ) �01;�02;�03Gj�1;�01 ) �1;�01j�2;�02 ) �2;�02j�3;�03 ) �3;�03Logical Rules: These are exactly like in Classical Logic, but with \side"sequents allowed. For example, the rules for conjunction are:Gj�; A) �Gj�; A ^B ) � Gj�; B ) �Gj�; A ^B ) � Gj�) �; A Gj�) �; BGj�) �; A ^B27



The Cut-elimination Theorem: If Gj�1 ) �1; A and GjA;�2 ) �2 areboth derivable in Gluk then so is also Gj�1;�2 ) �1;�2.The proof of this theorem uses the \history" technique of [Av5]. Like inthe case of the hypersequential formulation of RM which was investigatedthere, external contraction is the source of the main di�culties. The proof,however, closely follows that in [Av5] and since it is rather tedious we shallnot repeat it here (the lack of the internal contraction rule somewhat sim-pli�es the proof in the present case, though).Soundness Theorem: Every Hypersequent which is derivable in Gluk isvalid.Proof: By checking that every rule leads from valid hypersequents to avalid hypersequent. The only non-standard case is rule M . Given a valua-tion v, there is again only one intersting case to note: when both �1;�2;�3 )�1;�2;�3 and �01;�02;�03 ) �01;�02;�03 from the premises of the rule havetwo occurrences of formulae which get ? under v. In this case, however, thepigeon-hole principle entails that one of the components of the conclusionwill have this property as well.De�nition: Let G be a hypersequent, which is not the empty sequent. Wede�ne its translation, �G as follows:� if G is of the form A1; : : : ; An ) B then �G is A1 ! (A2 ! : : : !(An ! B) : : :).� If G has a single nonempty component then �G is any translation ofone of its single-conclusioned versions (recall that `Luk is symmetric!).� If G has the form S1jS2j : : : jSn, where the Si's are ordinary sequentsthen �G is �S1 _ �S2 _ : : : _ �Sn .Lemma: G is provable in GLuk i� ) �G is.Proof: It is easy to see that if G is derivable so is �G. The converse isalso not di�cult, using the cut elimination theorem. The most signi�cantstep is to show that if) A1_: : :_An is provable then so is) A1j : : : j ) An.28



For this it is enough to show that in general, if Gj� ) �; A _ B is prov-able then so is Gj� ) �; Aj� ) �; B. This can be done by using twocuts (followed by external contractions), if we start from the given provablehypersequent and A _ B ) AjA _ B ) B. The last hypersequent can bederived as follows: By applying rule M to A) A and B ) B we can inferA ) BjB ) A. Two applications of (_ )) to this sequent and to its twopremises give then the desired result.Proof of the completeness of GLuk: By the last Lemma and the com-pleteness of the Hilbert-type system HLuk it is enough to show that everytheorem of the later is derivable in GLuk. The only problematic cases forthis are I4 and I5. Now by applying rule M to A) A and to B ) B we canobtain B ) j ) AjA) B. From each of the 3 components of this hyper-sequent one can easily derive both ) I4 and ) I5 in the classical system,without using contractions or cuts (for example: starting from B ) and theeasily derived) A;A! B one can infer (A! B)! B ) A and then I4 byweakening and two applications of )!). Since we can independently workwith each component, we can use these three classical proofs and externalcontractions to obtain I4 and I5.6 Proof-theory of RM3Hilbert-type representations of RM3 and its various fragments were exten-sively investigated in the past. We refer the reader to [AB] and [Du] fordetails and references17. Gentzen-type formulations, on the other hand, wereknown so far only for the fragments without the combining connectives18. Weremedy this now by introducing a Gentzen-type formulation for the full sys-tem. Again we �nd it necessary to employ hypersequents in order to achievethis purpose. The discussion closely resembles that of the previous section,and so we shall make it as brief as possible.The system GRM3Axioms, external structural rules and logical rules: Like in GLuk.17[Av6] includes an axiomatization of the pure implicational fragment which is moreperspicuous than those mentioned in these two resources.18Such a formulation appears, e.g., in [Av5], but was known long before.29



Internal structural rules:IC (Internal Contraction):Gj�; A;A) �Gj�; A) � Gj�) �; A;AGj�) �; AIP (Internal Permutation): Like in GLuk.Mi (Mingle): Gj�1 ) �1 Gj�2 ) �2Gj�1;�2 ) �1;�2WW (Weak Weakening):Gj�1;�2 ) �1;�2Gj�1 ) �1j�2;�0 ) �2;�0provided �1 ) �1 is not empty.The Soundness of GRM3 can easily be proved, while cut-elimination canagain be proved with the help of the history technique. Having done this wecan use the same method of translation as before in order to prove complete-ness (using the completeness of the Hilbert-type formulations). The use ofhypersequents is necessary for proving the distribution axiom A^ (B_C)!(A^B)_ (A^C) 19 and the characteristic axiom of RM3: A_A! B. Theproof of the last formula uses, of course, the WW rule. Other details are leftto the reader.7 References[AB] Anderson A.R. and Belnap N.D., Entailment vol. 1, Princeton Uni-versity Press, Princeton,N.J., 1975.[Av1] Avron A., Simple Consequence Relations, Information and Computa-tion, vol 92 (1991), pp. 105-139.19The proof is identical to that given in [Av5] for the RM case.30
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