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1 Introduction

Many-valued logics in general and 3-valued logic in particular is an old subject
which had its beginning in the work of Lukasiewicz [Luk]|. Recently there is
a revived interest in this topic, both for its own sake (see, e.g. [Ho]), and also
because of its potential applications in several areas of computer science, like:
proving correctness of programs ([Jo]), knowledge bases ([CP]) and Artificial
Intelligence ([Tu]). There are, however, a huge number of 3-valued systems
which logicians have studied throughout the years. The motivation behind
them and their properties are not always clear and their proof theory is
frequently not well developed. This state of affairs makes both the use of
3-valued logics and doing fruitful research on them rather difficult.

Our first goal in this work is, accordingly, to identify and characterize
a class of 3-valued logics which might be called natural. For this we use
the general framework for characterizing and investigating logics which we
have developed in [Av1]. Not many 3-valued logics appear as natural within
this framework, but it turns out that those that do include some of the best
known ones. These include the 3-valued logics of Lukasiewicz, Kleene and
Sobocinski, the logic LPF used in the VDM project, the Logic RMj3 from
the relevance family and the paraconsistent 3-valued logic of [dCA]. Our
presentation provides justifications for the introduction of certain connectives
in these logics which are often regarded as ad-hoc. It also shows that they are
all closely related to each other. It is shown, for example, that Lukasiewicz
3-valued logic and RMj3 (the strongest logic in the family of relevance logics)
are in a strong sense dual to each other, and that both are derivable by the



same general construction from, respectively, Kleene 3-valued logic and the
3-valued paraconsistent logic.

Our second goal is to provide a proof-theoretical analysis of all the 3-
valued systems we discuss. This includes:

e Hilbert type representations with M.P. as the sole rule of inference
of almost every system (or fragment thereof) which includes an ap-
propriate implication connective in its language (including the purely

implicational ones)!.

o Cut-free Gentzen-type formulations of all the systems we discuss. In
the cases of Lukasiewicz and RMj this will be possible only by employ-
ing a calculus of hypersequents, which are finite sequences of ordinary
sequents. 2

All the 3-valued systems we consider below are based on the following
basic structure:

o Three truth-values :T, F and L. T and F' correspond to the classical
two truth values.

e An operation —, which is defined on these truth-values. It behaves like
classical negation on {7, F'}, while = 1=1.

The language of all the systems we consider includes a negation connective,
also denoted by —, which corresponds to the operation above. Most of them
include also the connectives A and V. The corresponding truth tables are
defined as follows: a Ab = min(a,b), aVb = max(a,b), where FF <1< T. We
shall see that the introduction of these connectives as well as the way they
are defined are dictated by the interpretation of the operation — as negation.

Traditionally, the differences between the various systems are with respect
to:

LRMj5 and its fragments with either A or V are the only exceptions.

?By a Gentzen-type system we mean here a system that treats only two-sided sequents
and whose language is not tailored to the needs of a specific n-valued logic. In [Car], e.g.,
tableaux systems are introduced which use signed formulae so that to every truth-value
of the logic corresponds a different “sign”. Hence the syntaz of any of the systems there
already determines the fact that it corresponds to an n-valued logic and even determines
the exact n. Our proof-theoretical investigations are done, in contrast, within an absolutely
general framework (the method of hypersequents was used, e.g., in [Av5] to provide a cut-
free Gentzen-type formulation of RM which is an infinite-valued logic).



e What other connectives are taken as basic. Especially: what is the
official “implication” connective of the language.

o What truth-values are taken to be designated.
Examples:

Kleene 3-valued logic: This logic has, essentially, the basic connectives
we describe above with the same truth tables. In addition its standard
presentation includes also a connective — defined by

a —gb=-aVb
T is here the only designated value.

LPF: This is an extension of Kleene’s logic which was developed within the
VDM project (see [BCJ], [Jo]). On the propositional level it is obtained
from Kleene by adding a connective A such that:

Foa=1
A(“):{T a=T,F

Lukasiewicz: This was the first 3-valued logic ever to be invented. Besides
the basic 3 connectives above it has also an implication connective —

so that:
b —aVb a>b
“ T otherwise

Again T is taken as the only designated value.

RM; : This is the strongest logic in the family of relevance logics ([AB],
[Du]). It has both T and L as designated. Besides the 3 basic con-
nectives above it has an implication connective — (first introduced in
[Sob]) so that:

L a=b=1
a—b=¢ F a>0
T otherwise



3-valued paraconsistent logic: This logic also has both 7" and L as des-
ignated. In addition to the 3 basic connectives above it has one extra
implication connective D. It is defined as follows:

an:{T a=F

b otherwise

The truth table for this connective was first introduced in [OdC] and
used also in [dC]. The corresponding logic was investigated and axiom-
atized in [Av3], where it is shown to be a maximal paraconsistent logic
(i.e. a logic in which contradictions do not imply everything).

For obvious reasons, all these systems take T' as designated and none
takes F'. This leads into two main directions, corresponding to whether
or not we take | as designated. The decision depends, of course, on the
intended intuitive interpretation of L. If it corresponds to some notion of
incomplete information, like “undefined” or “unknown” then usually it is not
taken as designated. If, on the other hand, it corresponds to inconsistent
information (so its meaning is something like “known to be both true and
false”) then it does. Accordingly, the logics below will be divided into two
classes, corresponding to these two interpretations. We shall see that each
class has one basic logic from which all the rest are derivable by general
methods.

The above two criteria do not really suffice for characterizing the various
logics we discuss. We shall see below, for example, that LPF and Lukasiewicz
3-valued logic have exactly the same expressive power: every primitive or
definable connective of one is also a primitive or definable connective of the
other. Also both have T as the only designated value. The only difference
is therefore with respect to what connectives are taken as primitive. Usually
this is not taken as an essential issue ®, unless this choice reflects something
deeper. This can only be (especially when we are dealing with “implication”
connectives) a difference with respect to the consequence relation associated
with the logic. We shall begin therefore our discussion with this crucial
notion as our starting point.

3In the literature one can find a lot of different formulations of classical logic with
different choices of the primitive connectives— and they all are generally taken to be
equivalent!



2 General Considerations

The notion of a consequence relation between finite sets of formulae and for-
mulae was first introduced by Tarski. It was generalized to a relation between
finite sets of formulae in [Scl] and [Sc2]. Scott’s notion is extensively used
in [Ur] for characterizing many-valued logics. In what follows we shall need,
however, a further generalization (from [Av1]) of Scott’s definition (see there
for explanations and motivations):

Definition: A consequence relation (C.R.) on a set ¥ of formulae is a binary
relation F between finite multisets of formulae s.t.:

(I) Reflexivity: A F A for every formula A.

(IT) Transitivity, or “Cut”: if I'y - Ay, A and A, 'y F Ay, then 'y, T3
Ay, A,

It is more customary to take a C.R. to be a relation between sets, rather
than multisets (which are “sets” in which an element may occur more than
once). We define, accordingly, a C.R. to be regular if it can be viewed in this
way (equivalently, if it is closed under contraction and its converse). There
are, however, logics the full understanding of which requires us to make finer
distinctions that only the use of multisets enable us to make. Examples
are provided in [Avl] and below. Another standard condition that we find
necessary to omit is closure under weakening. In what follows we shall call
ordinary any regular C.R. which satisfies this condition? .

Other concepts from [Av1] that will be of great importance below are
those of internal and combining connectives. The internal connectives are
connectives that make it possible to transform a given sequent to an equiv-
alent one that has a special required form. The combining connectives, on
the other hand, make it possible to combine certain pairs of sequents into
a single one, which is valid iff the original two are valid. In [Av1] we have
characterized several logics (including classical, intuitionistic, relevant and
linear logic) in terms of the internal and combining connectives available in
them and the structural rules under which they are closed. We repeat here

*The concept of an ordinary C.R. coincides with the original concept of a C.R. due to
Scott.



the definitions of the internal negation and implication and of the combining
conjunction and disjunction:

Definition: Let F be a C.R.

Internal Negation: We call a unary connective — a right internal negation
if for all I', A, A:
NAFA iff THA-A.

We call a unary connective — a left internal negation if for all ', A, A:
A A iff T)-AFA.

It can easily be shown that — is a right internal negation iff it is a left
one. We shall use therefore just the term internal negation to denote
both. We shall call a C.R. which has an internal negation symmetri-
cal.

Internal Implication: ® We call a binary connective — an internal impli-

cation if for all I') A, A, B:
NAFAB iff TEFAJA—B.

Combining Conjunction: We call a connective A a combining conjunction

iff for all I' A, A, B:
rEAJAANB iff TEFAJA and THAB.

Combining Disjunction: We call a connective V a combining disjunction

iff for all I' A, A, B:
AVvBTEFA iff ATFA and B, I'FA.

The following facts were shown in [Av1]:

1. = is an internal negation iff - is closed under the rules:

ATFA  TFAA
TFA-A -ATFA’

>This was called strong intensional implication in [Av1]. We believe that the present
terminology is better.



2. A is a combining conjunction iff - is closed under the rules:

T AR A I,BFA I'FAA TFAB
TAANBFA T,AANBFE A TFAAAB

3. Vis a combining disjunction iff I- is closed under the rules:

T'FA, A I'FA,B IAFA T,BFA
TFAAVB TFAAVE TAVBEA

4. — is an internal implication iff I is closed under the rules:

IAFBA Ty FALA B TokF A,
F|_A—>B,A Fl,FQ,AHBFAhAQ

The most important of these connectives (for our present purposes) is the
internal negation. Indeed, all the C.R.s we discuss in this work are either
ordinary or symmetrical (i.e., have an internal negation), but not both. The
only exception is, of course, classical logic (which can, in fact, be characterized
by these two properties).

Suppose that - is a C.R., and that — is a unary connective in its language.
How can we reasonably change - to make — an internal negationI’ There are
two possible directions in which a solution to this problem may be sought.
One involves weakening -, the other involves strengthening it. Specifically,
call a sequent T = A" a version of I' - A if it can be obtained from the later
by finite number of steps, in each of which a formula is transferred from one
side of a sequent to the other while removing a — symbol from its beginning
or adding one there. If we define a sequent to be w-valid iff some of its
versions is valid in = then the minimal C.R. for which all w-valid sequents
obtain is also the minimal C.R. which extends F and relative to which — is
an internal negation. Classical Logic is obtained from Intuitionistic Logic in
this way. Alternatively we might try to restrict - by demanding a sequent
to be strongly valid iff every version of it is valid. Unfortunately, this is too
strong: Unless — is already an internal negation even the reflexivity condition
fails for this new relation. Nevertheless, if we demand the new relation to be
a strengthening only of the single-conclusioned fragment of the old one (i.e.,
those sequents which have exactly one formula on the r.h.s of the ) then
under certain natural conditions we can do better:



Definition: Let - be a C.R. so that both A+ —==A and ==A F A (these
conditions will be called below the symmetry conditions for negation). De-
fine %, the derived symmetrical version of -, as follows: I' F¥ A iff every
single-conclusioned version of I' = A obtains.

Proposition:
1. F¥isa C.R..
2. f '+ A then '+ A.
3. — is an internal negation with respect to °.

4. 9 is the maximal C.R. having the above properties.

ot

. F and ¥ have the same logical theorems, i.e. for any A, = A iff =5 A,

Ai,..., A, F° By,.... B,

iff for every 1 <17 <m and 1 < j <n we have:
A, oo A, A, A, 0By, B DA
Ay, oo An, By, B, 2By, ..., B, F B

We leave the easy proof of this proposition to the reader. We note that
the last claim in it provides an effective alternative definition of the derived
symmetrical C.R.. It is also easy to see that the symmetry conditions for
negation are in fact necessary for getting a C.R. from this construction. They
are obviously satisfied by any C.R. based on the above 3-valued semantics
(with respect, of course, to the connective — defined there).

Our next goal is to find conditions on - which guarantee that - has the
other connectives we have defined.

Proposition: Let A be a combining conjunction for . Suppose also that
is closed under the rules:

I-AFA T,-BFA T'FA,-A I'FA,-B
T,~(AAB)F A TFA ~(AANB) TFA,~(AADB)

8



(we shall call these conditions the symmetry conditions for conjunction).
Then A is a combining conjunction for +2,

Proof: Suppose I' F¥ A, A and I' ¥ A, B. We want to show that I' F°
A,A N B. Let, accordingly, I' F C be a single-conclusioned version of
I' = AJAAN B. We want to prove that this sequent is true. There are
two possible cases to consider:

1. Cis ANB.
By our assumptions, I' F A and I - B are both true. Hence also
I A A B is true, since A is a combining conjunction for F.

2. "(AAB)isin I
In this case our assumptions and the first symmetry condition for A
easily entail that I F (',

For the converse, we should show that if I' F¥ A, A A B then I' F¥ A, A
and I' % A, B. The proofs can again be split into two cases. The second
symmetry condition for A is used for one of them, the other part of the defini-
tion of a combining conjunction— for the other. Details are left to the reader.

Analogous symmetry conditions for the existence of a combining disjunc-
tion can easily be formulated, but in the presence of an internal negation and
a combining conjunction such a connective is available anyway.

We next turn our attention to the problem of having an internal impli-
cation for F°. If — is such a connective then F° A — B iff A F° B iff
AF B and =B F —A. Suppose now that - has an internal implication D
and a combining conjunction A. Then the last two conditions are together
equivalent to = (A D B) A (=B D —A). This, in turn, is equivalent to
F5 (A D B)A (=B D —A) (by 5. of the last proposition). Hence the last
formula provides an obvious candidate for defining —. Our next proposition
contains natural conditions for this candidate to succeed.

Proposition: Suppose A is a combining conjunction for = which satisfies
(in F) the corresponding symmetry conditions. Suppose also that D is an



internal implication for - and that I is closed under the following rules:

F,A,_‘BFA F1|_A1,A FQFAQ,ﬁB
F,_'(ADB)FA Fl,FQFAl,AQ,ﬁ(ADB)

(These two rules will be called below the symmetry conditions for implica-
tion). Define:

Then — is an internal implication for .

The proof of this proposition is left to the reader. We only note that
the naturalness of the above symmetry conditions for implication can most
clearly be seen by working out the details of this proof!

By collecting the various conditions at which we arrive in this section we
get a Gentzen-type system for the minimal ordinary C.R. for which all these
conditions obtain. This system, with or without its implicational rules, will
be called below The Basic System, and it will provide the basis for all the
formal representations of the ordinary C.R.s which we present below. It has
a 4-valued semantics which will be discussed elsewhere. Cut-elimination can
be shown for it rather easily.

3 Consequence Relations based on 3-valued
Semantics

3.1 The “Undefined” Interpretation

In this section we investigate several C.R.s in which L is taken as correspond-
ing to a truth gap, and so T is the only designated value. We start with the
basic relation which naturally corresponds to this interpretation. As we shall
see, all the others are essentially based on it.

Definition: Fg; is the C.R. defined by:

I' Frr Aiff any valuation v (in the basic 3-valued structure) which
assigns (the designated value) T' to all the sentences in I' assigns
it also to at least one of the sentences in A.

10



Two obvious facts about this C.R. are:
e gy is an ordinary C.R..

o — satisfies the symmetry conditions for negation, but it is not an inter-
nal negation.

We next check how can we define operations on the basic structure so that
we get combining conjunction and internal implication, both satisfying the
corresponding symmetry conditions. The main conclusion is that these re-
quirements completely determine the truth-tables for such connectives.

Proposition:

1. The connective A which was described in the introduction (a A b =
min(a,b) where F' <1< T) is a combining conjunction for Fx; which
satisfies the symmetry conditions. Moreover, it is the only possible
connective on this structure which has these properties. Similar results
hold for V from the introduction with respect to disjunction.

2. Define a connective D on the basic 3-valued structure as follows:

an:{b a=T

T otherwise

Then O defines an internal implication for j; which satisfies the sym-
metry conditions. Moreover, D is the only possible connective on this

structure which has these properties. ©

The proof of the above proposition is straightforward, so its details are left
to the reader (compare with section 3.2.2). We turn now to investigate some
known logics that are obtained using the connectives that were introduced
in it and the general constructions of the previous section.

SThis table for implication has already been defined by Monteiro in [Mo] and Wojcicki
in [Wo] (we thank the referee for this information).

11



3.1.1 Kleene’s 3-valued logic

This logic can now be characterized as Fg; in a language which has, besides
=, also the above unique combining conjunction (or disjunction) that satisfies
the symmetry conditions.

An important property of this logic is that it has no logical theorems:
Fri A for no A in its language. This means, first of all, that no corresponding
internal implication exists in its language (since at least A — A should be
a theorem for any possible candidate —) 7. Since an internal disjunction is
available it follows also that no possible internal negation is definable (and
so not only the official = fails to be one).

The official “implication connective” usually associated with this logic is
not an implication in any sense, and it is just one out of many connectives
that are definable from — and A.

3.1.2 LPF

This logic is F gy in a language which has, in addition to Kleene’s connectives,
also the internal implication defined above. It is, of course, an ordinary con-
servative extension of the original logic of Kleene, and the basic connectives
of Kleene retain in it their properties.

At the introduction we follow [BCJ] and define LPF in terms of another
connective, A. We have, however, the following relations between this con-
nective and our D:

AA=—-(A=-A) where A=B=p; (ADB)A(BDA)

ADB=AANA g B=-AAV-AVB.

These relations mean that the expressive powers of the two languages are
the same. Since the C.R. associated with both is Fg;, ® the two versions
are equivalent. The present version seems to us more natural, though, and
it opens the door to interesting observations, like the one given in our next
proposition.

"The same consideration will apply to any possible C.R. which is based on Kleene’s
connectives.

8In the case of the original LPF this is obvious from the natural deduction system
presented in [BCIJ].

12



Proposition: The positive fragment of LPF (i.e. the {V, A, D}-fragment)
is identical to the corresponding classical one. In particular every classical
positive tautology is valid in it.

The proof of this fact is by showing that every axiom and rule of the
standard Gentzen-type representation of positive classical logic is valid in
the 3-valued semantics (the converse is obvious). All these rules are included
in the basic system of the previous section, the rules of which are all valid
here.

3.1.3 The 3-valued C.R. of Lukasiewicz

As observed above, Fg; is not symmetrical. Nevertheless, the various sym-
metry conditions concerning —, V, A obtain for it, and those concerning im-
plication hold for D in the extended version. We can apply therefore our
general construction to get the symmetrical versions of both. We shall de-
note the symmetrical version of Kleene’s basic logic by Fw .. and that of its
extension with D by Fg.. When we mean either we shall just use Fp... We
give first a semantical characterization of this C.R.:

Proposition: I' Fp,. A iff for every assignment, either one of the sentences
in A gets T', or one of the sentences in I' gets F, or at least two (occurrences
of ) sentences in I', A get 1 .

Proof: Suppose first that the condition holds. Let T" + A be a single
conclusioned version of I' = A and v an assignment for which all the sen-
tences in I get T. This means that the third possibility mentioned in the
proposition does not obtain, since at most the ancestor of A can gets 1. On
the other hand, each of the other two possibilities obviously guarantees that
A gets T in case all the sentences in T get T'.

For the converse, suppose that v is an assignment for which the condition
above fails for the sequent I' = A. If there is no sentence in I or A which gets
1 then no single-conclusioned version of I' = A belongs to ;. Otherwise
let T" F A be the single conclusioned version of T' = A in which A is the
unique sentence in I' = A which gets L (if it occurs in A) or its negation (if

9Note that they can both be in T or both be in A!

13



it occurs in I'). The failure of the condition entails that all the sentences in
I get T, and so the resulting single-conclusioned version does not belong to
Fxi, and I' = A does not belong to Fz,%.

Our next proposition just summarizes the properties which Fr,; has ac-
cording to the general discussion of the previous section:

Proposition:
1. T |_Luk A then I |_Kl A.
2. — is an internal negation for .

3. A and V are, respectively, combining conjunction and disjunction for
|_Luk-

4. F g 18 a conservative extension of Fyyr,k.

5. Define:

Then — is an internal implication for b gjy.

The relation between the derived symmetrical version of Fx; and Lukasiewicz
3-valued logic (which justifies the name 1, ) is given in the next proposition
and its corollary:

Proposition: — of the previous proposition is exactly Lukasiewicz’ im-
plication.

Corollary: Ay,..., A, Fru Bifl Ay — (Ay — ... — (A, — B)...) is

valid in Lukasiewicz 3-valued logic.

We show now that the difference between Lukasiewicz 3-valued logic and
LPF is only with respect to the associated C.R.:

Proposition: Lukasiewicz 3-valued logic and LPF have the same expres-
sive power.

14



Proof: We have seen already that Lukasiewicz implication is definable using
—, A and D. for the converse something even stronger holds: D is definable
from — alone. In fact, we have:

adb=a— (a—0b)

It is worth to recall at this point that V is also definable from — alone,
since a Vb= (a — b) — b. Hence the languages of {=, —} and that of LPF
are equivalent.

We note, finally a quite remarkable property of Fpz:

Proposition: Fp,; is not closed under contraction. Hence it is not reg-
ular (note, however, that it is still closed under weakening).

Proof: We have, e.g., that ~A AN A, -A AN A Fwpu B is valid while =A A
A |_WLuk B 1s not.

The last proposition is reflected in the fact that (A — (A — B)) — (A —
B) is not a theorem of Lukasiewicz logic. Note, however, that the example
we gave is not connected with — at all, and applies also to Fyw !

3.2 The “Inconsistent” Interpretation

In this section we investigate several C.R.s in which the meaning of L is
“both true and false”, and so L will be designated. The discussion will par-
allel that of the “unknown” case, and there will be a lot of similarities. We
start it, as before, by introducing the basic associated C.R.:

Definition: Fp,. is the C.R. defined by:

I' Fpae Aiff every valuation v (in the basic three-valued structure)
which assigned either 7" or L to all the sentences of I' does the
same to at least one sentence of A.

Again it is obvious that Fp,. is an ordinary C.R. in which — satisfies the sym-
metry conditions (but is not an internal negation). Another aspect in which

15



Fpae resembles Fg; is that for Fp,. too there is exactly one possible way to
define an internal implication and a combining conjunction (or disjunction)
which satisfy the symmetry conditions. For the combining connectives ex-
actly the same truth-tables do the job as before, with a very similar proof.
We shall see, however, that for the implication a new truth-table will be
needed.

We shall examine now the associated and derived logics.

3.2.1 The basic 3-valued paraconsistent logic

This logic is Fpg. in the language of the usual = and A. =, A and V have
in it exactly the same properties they have in Kleene’s logic. On the other
hand, unlike Fg; (which has no logical theorems at all) Fp,. has a very dis-
tinguished set of logical theorems:

Proposition: Fp,. A iff A is a classical tautology.

Proof: One direction is trivial. For the converse, suppose that v is a 3-
valued valuation. Let w be the two-valued valuation which assigns T' to an
atomic variable p iff v(p) is designated. It is easy to prove by induction on the
complexity of A that if w(A) =T then v(A) € {T, L}, and if w(A) = F then
v(A) € {F, L}. It follows that if w(A) = T for every two-valued valuation w
then v(A) is designated for every 3-valued v.

An alternative proof is to note that the classical equivalences which are
used for reducing a sentence to its conjunctive normal form are valid in Fp,.
in the strong sense that both sides of each equivalence always have the same
truth-value. It is also easy to see that a sentence in such normal form is
classically valid if it is valid in the present 3-valued semantics.

It is important to note that despite the last proposition classical logic
and the basic Fp,. are not identical. In classical logic, e.g., contradictions
entail everything. This is not the case for Fp,.: in general A, A t/p,. B.
This means that bp,. is paraconsistent in the sense of [dC]. '° Moreover, the
basic Fp,. has no logical contradictions : A Fp,. for no A . This entails
immediately (since we have an internal conjunction in the language) that no

10The relations between paraconsistent logics and many-valued logics in general are

studied, e.g., in [dCA] and [Se].
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definable internal negation is available. It is also possible to show that no
internal implication is definable.

3.2.2 3-valued Paraconsistent Logic with Internal Implication

Like in the Fg; case, our next goal is to enrich the language of Fp,. with
an internal implication. Again, demanding also the symmetry conditions for
this connective determines it completely:

e The condition A, A D B Fp,. B implies that « D F = Fifa € {T, L}
(i.e., if a is designated).

e The conditions B Fp,. A D B and Fp,e A DO A imply that a D b is
designated in all other cases.

e The conditions =(A D B) Fps. A and =(A D B) Fpy,. =B imply,
respectively, that FF Da=Tand a DT =T

e The condition A, =B Fp,. =(A D B) implies that if a is designated and
b =1 then ¢ D b cannot be T. Since by the second fact it cannot be F
either, it should be L.

The above facts leads us to a single candidate: the D of the 3-valued para-
consistent logic which was described in the introduction. It is not difficult
to show that this D does really meet the requirements. The situation is
therefore completely analogous to the one in the case of Fg;. This is clearly
reflected also in the next proposition, which summarizes the main properties
of Fp,. in the full language of the 3-valued paraconsistent logic:

Proposition: In the extended language for Fp,. we have:
1. — satisfies the symmetry conditions (but again A, —~A Fp,. B).

2. A and V are combining conjunction and disjunction, respectively. Both
satisfy the symmetry conditions.

3. D is an internal implication which satisfies the symmetry conditions.

4. The positive fragment of -p,. is identical to the corresponding fragment
of the classical, two-valued C.R..

17



It follows from the last proposition that Fp,. and Fx; have quite similar
properties concerning A, V, D, and the differences are all connected with their
negation connective!

3.2.3 RMs; and Sobocinski C.R..

Exactly like b, Fpae is not symmetrical, but all the needed symmetry con-
ditions hold for it. Hence we can apply our general construction again to get
the symmetrical versions of it in both the basic language and its extension
with D. We shall denote these versions, respectively, by Fwso and Fgses,
and use F g, to denote either. The semantical characterization this time (the
proof of which we leave to the reader) is the following:

Proposition: T' Fg,, A iff for every assignment, either one of the sentences
in I' gets F', or one of the sentences in A gets 7', or the sequent is not empty
and all its sentences get L.

Fsop has the same basic properties of by, which were described in the
second proposition of 2.1.3, and its internal implication was again known
and used before:

Proposition: The internal implication of Fgg.;, defined as usual by

is identical to the — of RMj (i.e., it is Sobocinski 3-valued implication).

Corollary: Ay,..., A, Fsyp Biff Ay — (Ay — ... — (A, — B)...) is
a theorem of RMs5.

Proposition: The languages of RMs and Fp,. have the same expressive
power.

Proof: It is enough to note that D is definable in RM; by:
aD>b=bV(a—b)

The most remarkable property of Fg.;, and the main aspect in which it
differs from Fp,; is given in the following
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Proposition: kg, is a regular C.R. but it is not ordinary: Weakening fails
for it.

The last proposition entails that A — (B — A) is not a theorem of
RMs;. This is a characteristic feature of a Relevance logic. RMj3 is indeed the
strongest logic in the family of logics which were created by the relevantists’

school (see [AB] and [Du]).

3.3 Merging The Two Interpretations

In this section we investigate C.R.s which are based on a four-valued struc-
ture, in which both the “undefined” and “inconsistent” interpretations of L
have a counterpart.

Definition: The lattice K B4 consists of the four elements T, F, Ly, Lp,
together with the order relation < defined by the following diagram:

Ly 1g
F

(i.e: F SJ_N,J_BS T)
We define the operations —,V, A on K B4 as follows: V and A are the
usual lattice operations. =T = F, =F =T, = ILy=1yn, - Lp=15.

Historically a structure which closely resembles K B4 ! was first intro-
duced in order to characterize the valid relevant first-degree entailments
(f.d.e.). These are the theorems of the usual relevant logics (R and E -
see [AB], [Du]) which have the form A — B where — (the “relevant impli-
cation”) occurs in neither A nor B (i.e the only connectives occurring in A
or in B are =, V, A). The characterization is given in the following:

Fact: A f.d.e. A — B is provable in the relevance systems R and E iff

1But in which only T is taken as designated and — is differently defined.
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v(A) < v(B) for every valuation v in K B4.

In [Bel] and [Be2] Belnap suggests the use of this 4-valued structure for
answering queries in knowledge bases. In his interpretation |y corresponds
to Kleene’s | while L g corresponds to that of Fp,.. Following him, we take T'
and 1 g as designated, and define the corresponding C.R. in the obvious way:

Definition: I' Fg. A iff every valuation which makes all the sentences in I'
true (i.e. assigns to them either T or Lp) makes at least one of the sentences
in A true.

Fg. has the familiar properties of Fg; and Fp,.: it is ordinary. — is not
internal negation for it but it satisfies the symmetry conditions. A and V are
combining conjunction and disjunction for it which satisfies the symmetry
conditions, and they are the only possible connectives with these properties
(proof — as usual). Like Fxq, Fp. has no logical theorems, and like Fp,. it
is paraconsistent. As for the existence of a well-behaved internal implication
the situation is exactly like in the 3-valued fragments, with a similar proof:

Proposition: There is exactly one possible way to define an operation O on
K B4 so that the symmetry conditions for it obtain. It is characterized by
the following two principles:

e If a is not designated (i.e. ¢ =Ly, F)thena D b=T.
e If ais designated (i.e. a =Lp,T) then a D b=b.

Our next step is to introduce F%_— the symmetrical version of Fp.. For
this C.R. both weakening and contraction fail. This, and the fact that it has
all the standard internal and combining connectives, makes it a very close
relative of the Linear C.R. 2. Accordingly, the internal implication of 5 _,
defined as usual, has a lot in common with the relevant implication of the
Relevance Logic R, and even more— with the linear implication of Girard.!?.

12Linear Logic was introduced in [Gi]. Its C.R. is characterized in [Av1]. Its connections
with Relevance Logic are explained in [Av2].

130ne difference is that for I—%e the converse of contraction is valid, while for Linear
Logic and the standard Relevance logics it is not. RM is the most famous exception in
this respect. RMT of [Av4] is another.
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As in the previous case, the two implications, D and —, are equivalent
as far as expressive power goes. A — B is equivalent, as usual, to (A D
B)AN (=B D —A). A D B, on the other hand is equivalent this time to
BV (A— (A— B)).

4 Proof Theory of The Ordinary C.R.s

4.1 Gentzen-type Systems

In this section we provide Gentzen-type systems for the ordinary C.R.s we in-
troduce above. They are based on the basic system from the end of section 2.

Theorem:

1. By adding A, —A F to the basic system we get a Gentzen-type formu-
lation for ;.

2. By adding = A, —~A to the basic system we get a Gentzen-type formu-
lation for Fpge.

3. By adding both F A,—~A and A,—A I to the basic system we get a
Gentzen-type formulation for classical logic.

Proof: The proof in all three cases is basicly the same. We first replace, in
the usual way, each of the pairs of rules for (A F), (=V F), (F V) and(F =A) by
a single rule (the possibility of doing so is due to the soundness of weakening
and contraction). The rules of the resulting system are all easily seen to be
invertible from both the semantical and the proof-theoretical point of view.
By this we mean that the conclusion of each rule is valid iff all its premises
are valid, and it is provable iff they are provable (cuts are needed for showing
the last part!). It follows that for any given sequent we can construct a
finite set of sequents, consisting only of atomic formulae or their negations,
so that the given sequent is valid iff all the sequents in the set we construct
are, and provable iff all of them are. It remains therefore to check that a
sequent of this form is valid in one of the above C.R.s iff it is provable in the
corresponding system. This is easy.
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4.2 Hilbert-type formulations
The system HBe

Defined connective: A= B =p; (A D B)A(B D A)
Axioms:

I1 AD>(BD>A)
I2 (AD(BDC)D((ADB)D>(ADC())
I3 (A>B)DA)DA
Cl AANBDA
C2 AANBDB
C3 AD(BD>AAB)
D1 ADAVB
D2 BD>AVE
D3 (ADC)D((BD>C)D(AVBDC(Q))
N1 -(AvB)=-AA-B
N2 -(AAB)=-AvV-B
N3 ——A=4
N4 —(ADB)=AA-B
Rule of Inference:

A ADB
B

Note: The first nine axioms provide a standard axiomatization of classical
positive logic.

Theorem: A,,...,A, b Bi,..., B, is provable in the basic system iff
AINONA, D BiV...V B, 1s a theorem of HBe.

The details of the proof of this theorem are standard and we leave them to
the reader. We note only that the fact that any positive tautology is provable
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in HBe (as follows from the above note) makes the proof here particularly
easy.

Theorems on extensions:

1. If we add either ~AV A or (A D B) D (-A D B) D B to HBe we get

a sound and complete Hilbert-type axiomatization of Fp,..

2. If we add either ~A D (A D B)or (B> A) D (B D> —A) D> —BtoHBe

we get a sound and complete Hilbert-type axiomatization of Fg;.

3. By adding both =AV A and -4 D (A D B) (say) to HBe we get

classical logic.

Proof: Using the previous theorem, it is straightforward to show the equiv-
alence of these Hilbert-type systems and the Gentzen-type system of the
previous subsection.

5 Proof-theory of Lukasiewicz 3-valued Logic

5.1 A Hilbert-type formulation

A Hilbert-type formulation of Lukasiewicz 3-valued logic was first given in
[Wal]. An axiomatization of the implicational fragment of this logic was pro-
vided in [MM]. Other Axiomatizations can be found in [Sch] and [Ep]. For
the sake of completeness, and since we shall need the Hilbert-type formu-
lations later, we include here a formulation and a completeness proof for it
which is simpler than any other we were able to find in the literature. A
special care was taken to provide a well-axiomatization. This means that
any fragment of the logic which contains — is completely axiomatized by
those axioms below which mention just the connectives of that fragment.
This includes the implicational fragment itself'4.

14We believe that the present axiomatization is simpler and more transparent than the
one given in [MM]. Tt is certainly shorter, since axiom I3 below is easily seen to be derivable
from T1,12 and T4 (we still prefer to include it as an axiom, since together with T1-12 it
provides a very natural subsystem). It was noted by the referee that our axiomatization,
though independently found, is a special case of those given in [Sch].
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5.1.1 The system HLuk
Axioms:

I1 A—(B— A)
12 (A= B) = (B = C) = (4 C))
13 (A= (B— ()= (B— (4 —C))
14 (A B) = B) = (B — 4) = A)
15 (A= B) = 4) = A) = (B = C)) = (B — C)
Cl ANB— A
C2 ANB— B
C3 (A—-B)—(A—=-C)—= (A—= BAC())
D1 A—-AVEB
D2 B—-AVBEB
D3 (A—-C)—=(B—C)—=(AVB—C())
N1 (=B — -A) - (A— B)
Rule of Inference:
A A—B
—
Theorem: HLuk is sound and complete for Lukasiewicz 3-valued logic.

Moreover, T Fgpu ¢ iff v(¢) = T for any valuation v which assigns T
to all the sentences in T.

Notes:

1. Fprue corresponds to (the single-conclusioned fragment of) g, not
to that of Fr,. Thus A - A — B, A Fgpu B though A — A —
B, AV B. Recall, however, that the two C.R.s have the same logical
theorems!

2. Tt is a standard task to show that a sentence is derivable from 11-I3
alone (using M.P.) iff it has a proof without contraction in the intu-
itionistic Gentzen-type implicational calculus. Since the last criterion
is very easy to apply, we shall feel free below to claim derivability using
[1-13 without giving the formal derivation.
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3. Since (A — B) — B is equivalent to AV B, Axioms [4 and I5 are just
purely implicational formulations of, respectively, the more perspicuous

propositions AV B — BV Aand AV (A— B)V(B—C).

Proof of the theorem: The soundness part is easy. The completeness is
a special case of the second claim. Suppose therefore by contraposition that
THrruwe ¢ Let To be a maximal extension of T such that To Fgpur ¢. The

main property of Ty is:
To Vurue A it To, Abypu ¢

Define now:

T TobFogru A
v(A)=<% F ToFyru A — B for every B

1 otherwise

Obviously v(A) = T for every A in T while v(¢) # T. It remains to show
that v is really a valuation, i.e., it respects the operations. For this we need
first two lemmas.
Lemma 1: If To Fpru (A — B) — B then either To Fppur Aor To Fppus B.
Proof: First use 11-13 and an induction on the length of proofs to show that
if To, A Fgrue B then To, (A — C) — C Fypu (B — C) — C. This and
[4 (and the fact that C' — C is derivable from I1-13) easily imply that if
TO,A |_HLuk C and TO,B |_HLuk C then TO,(A — B) — B |_HLuk C The
Lemma, follows from this fact and the above main property of To'®.
Lemma 2: For every A and B, either v(A) =T or v(B) = F or v(A — B) =
T.
Proof: Applying Lemma 1 to axiom 15 we get that either Ty Fypu B — C
for every C' or To Fpru ((A — B) — A) — A. In the first case v(B) = F.
In the second case v(A) = T or v(A — B) = T by another application of
Lemma 1.

We are ready now to prove that v respects the various operations. As
an example we shall show that v(A — B) = v(A) — v(B) (The other cases
are easier and are left to the reader). Well, This equation is immediate if

v = or 11 v = or 11 v = winile 1n case v = v =11t
(A) = I, orif v(A) =T, or if v(B) = T, while i (A) =v(B) =L

15The proof of this Lemma just follows standard proofs from [AB] that maximal theories
with certain properties are prime, i.e., AV B is provable in them iff either A or B is provable.
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follows from Lemma 2. Suppose finally that v(A) =L and v(B) = F. Then
there exists D such that Ty Fypu A — D, while To Fgyrue B — D. Hence,
by 12, To Yurue A — B and so v(A — B) # T. Since neither A nor B are
theorems of Ty, it follows by Lemma 1 that To Frruw (A — B) — B and so
v(A— B)# F. Hence v(A — B) =L=v(A) — v(B) in this case as well.

5.2 A Gentzen-type formulation

As was emphasized above the structural rule of contraction is not valid for
Frue. A natural first attempt to construct a Gentzen-type formalism for it
would be, therefore, to delete this rule from (an appropriate version of) the
corresponding classical system. The resulting formalism is equivalent to the
Hilbert-type system which is obtained from HLuk above by dropping 14 and
I5. To capture the whole system we need to employ a calculus of Hyperse-
quents '®. We start by recalling the definition of a Hypersequent in [Av5]:

Definition: Let L be a language. A hypersequent is a creature of the form:
[ = Ay = Aq| o T = A,

where I';, A; are finite sequences of formulae of L. The I'; = A; -s will be
called the components of the hypersequent. We shall use GG, H as metavari-
ables for (possibly empty, i.e., without components) hypersequents.

The intended semantics of hypersequents is given in the following natural
generalization of the semantics of Fr:

Definition: A hypersequent G is by, -valid if for every valuation v, there is
a component of G which contains either a formula on its r.h.s. which gets T'
(under v), or a formula on its L.h.s. which gets F', or two different occurrences
of formulae which get L.

We next provide a corresponding (generalized) Gentzen-type formalism.

Axiloms:

A=A

18Such a calculus was first introduce in [Pot] for the modal S5, and independently in
[Av5] for the semi-relevant RM.
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External structural rules:

EW (External Weakening):

Gl

EC (External Contraction):

GII'=Al'= A

GI'= A

EP (External Permutation):

G|F1 = A1|F2 = A2|H

G|F2 = A2|F1 = A1|H

Internal structural rules:

IW (Internal Weakening):
GI'= A

GI'= A

GIA,T = A
IP (Internal Permutation):

G|ly, A, B, Ty = A

Gl = A, A

G|F = A17A7B7A2

GIIy, B, A, Ty = A

M (Merging):
G|F17 F?v FS = Alv A?v AS

GT = Ay, B, A, A,

GII, 19, T = AL AY Ay

G, T = A AT, TS = Ag, ALTs, TG = As, Al

Logical Rules: These are exactly like in Classical Logic, but with “side

”

sequents allowed. For example, the rules for conjunction are:

GILA=A  GI.B= A

GI=AA GI'=AB

GLLAANB=A GILAANB= A
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The Cut-elimination Theorem: If G|I'; = Ay, A and G|A, 'y = A, are
both derivable in Gluk then so is also G|I'1, 'y = Ay, As.

The proof of this theorem uses the “history” technique of [Av5]. Like in
the case of the hypersequential formulation of RM which was investigated
there, external contraction is the source of the main difficulties. The proof,
however, closely follows that in [Av5] and since it is rather tedious we shall
not repeat it here (the lack of the internal contraction rule somewhat sim-
plifies the proof in the present case, though).

Soundness Theorem: Every Hypersequent which is derivable in Gluk is

valid.

Proof: By checking that every rule leads from valid hypersequents to a
valid hypersequent. The only non-standard case is rule M. Given a valua-
tion v, there is again only one intersting case to note: when both I'y, 'y, I's =
A1, Ay, A3 and F;,F;,F; = A;,A;,A; from the premises of the rule have
two occurrences of formulae which get | under v. In this case, however, the
pigeon-hole principle entails that one of the components of the conclusion
will have this property as well.

Definition: Let G be a hypersequent, which is not the empty sequent. We
define its translation, ¢g as follows:

o if (7 is of the form Ay,..., A, = B then ¢g is 41 — (A2 — ... —
(A, — B)...).

o If (¢ has a single nonempty component then ¢¢ is any translation of
one of its single-conclusioned versions (recall that Fp,, is symmetric!).

o If G has the form 51]5;|...]S,, where the S;’s are ordinary sequents
then ¢G is ¢51 vV ¢52 V...V ¢Sn'

Lemma: (' is provable in GLuk iff = ¢4 is.
Proof: It is easy to see that if (G is derivable so is ¢g. The converse is

also not difficult, using the cut elimination theorem. The most significant
step is to show that if = A; V...V A, is provable then so is = A4|...| = A,.
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For this it is enough to show that in general, if G|I' = A, AV B is prov-
able then so is G|I' = A, A|l' = A, B. This can be done by using two
cuts (followed by external contractions), if we start from the given provable
hypersequent and AV B = A|AV B = B. The last hypersequent can be
derived as follows: By applying rule M to A = A and B = B we can infer
A = B|B = A. Two applications of (V =) to this sequent and to its two
premises give then the desired result.

Proof of the completeness of GLuk: By the last Lemma and the com-
pleteness of the Hilbert-type system HLuk it is enough to show that every
theorem of the later is derivable in GLuk. The only problematic cases for
this are 14 and I5. Now by applying rule M to A = A and to B = B we can
obtain B = | = A|A = B. From each of the 3 components of this hyper-
sequent one can easily derive both = I4 and = I5 in the classical system,
without using contractions or cuts (for example: starting from B = and the
easily derived = A, A — B one can infer (A — B) — B = A and then 4 by
weakening and two applications of =—). Since we can independently work
with each component, we can use these three classical proofs and external
contractions to obtain 14 and I5.

6 Proof-theory of RM;

Hilbert-type representations of RM3 and its various fragments were exten-
sively investigated in the past. We refer the reader to [AB] and [Du] for
details and references!'”. Gentzen-type formulations, on the other hand, were
known so far only for the fragments without the combining connectives'®. We
remedy this now by introducing a Gentzen-type formulation for the full sys-
tem. Again we find it necessary to employ hypersequents in order to achieve
this purpose. The discussion closely resembles that of the previous section,
and so we shall make it as brief as possible.

The system GRM3

Axioms, external structural rules and logical rules: Like in GLuk.

17[Av6] includes an axiomatization of the pure implicational fragment which is more
perspicuous than those mentioned in these two resources.
18Such a formulation appears, e.g., in [Av5], but was known long before.
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Internal structural rules:

IC (Internal Contraction):

GIT,A A= A GIT = A, A, A
GIT,A= A Gl = A, A

IP (Internal Permutation): Like in GLuk.
Mi (Mingle):

G|F1 = Al G|F2 = AQ
G|F1,F2 = Al,AQ

WW (Weak Weakening):

G|F1,F2 = Al,AQ
GITy = ATy, TV = Ay, A

provided I'y = Ay is not empty.

The Soundness of GRM3 can easily be proved, while cut-elimination can
again be proved with the help of the history technique. Having done this we
can use the same method of translation as before in order to prove complete-
ness (using the completeness of the Hilbert-type formulations). The use of
hypersequents is necessary for proving the distribution axiom AA (BV () —
(AANB)V (AAC) ™ and the characteristic axiom of RM3: AV A — B. The
proof of the last formula uses, of course, the WW rule. Other details are left
to the reader.

7 References

[AB] Anderson A.R. and Belnap N.D., Entailment vol. 1, Princeton Uni-
versity Press, Princeton,N.J., 1975.

[Av1] Avron A., Simple Consequence Relations, Information and Computa-

tion, vol 92 (1991), pp. 105-139.

19The proof is identical to that given in [Av5] for the RM case.

30



[Av2] Avron A., The Semantics and Proof Theory of Linear Logic, Theo-
retical Computer Science, vol. 57 (1988), pp. 161-184.

[Av3] Avron A., On An Implication Connective of RM, Notre Dame Journal
of Formal Logic, vol. 27 (1986), pp.201-209.

[Av4] Avron A., Relevance and Paraconsistency - A New Approach. Part
II: the Formal systems, Notre Dame Journal of Formal Logic, vol 31

(1990), pp. 169-202.

[Av5] Avron A.; A Constructive Analysis of RM, J.S.L., vol. 52 (1987) pp.
939-951.

[Av6] Avron A. Relevant Entailment: Semantics and Formal Systems, J.S.L.
vol. 49 (1984), pp. 334-342.

[BCJ] Barringer H., Cheng J.H., and Jones C.B.; A Logic Covering Undefi-
ness in Program Proofs, Acta Informatica, vol 21., 1984, PP. 251-269.

[Bel] Belnap N.D., How a Computer Should Think, in Contemporary As-
pects of Philosophy, ed. G. Ryle, Oriel Press, 1977.

[Be2] Belnap N. D., A Useful Four-valued Logic, in Modern Uses of
Multiple-Valued Logic, ed. G. Epstein and J.M. Dunn. Boston,
Reidel, 1977, pp. 8-37.

[Car] Carnielli, W.A., Systematization of Finite Many-valued Logics Through
the Method of Tableauz, J.S.L. vol. 52 (1987) pp. 473-493.

[CP] Colmerauer A. and Pique J.F., About Natural Logic, in Advances
in Database Theory, vol I, Ed. H. Gallaire, J. Minker and J.M.
Nicolas, Plenum Press, 1981.

[dC] da-Costa N.C.A., Theory of Inconsistent Formal Systems, Notre Dame
Journal of Formal Logic, vol 15 (1974), pp. 497-510.

[dCA] da-Costa N.C.A. and Alves E.H., Relations Between Paraconsistent
Logics and Many-valued Logic, Polish Acad. Inst. Philos. Soc. Bull.
Sect. Logic 10 (1981) pp. 185-191.

31



[Du] Dunn J.M. Relevant Logic and Entailment, in: Handbook of Philo-
sophical Logic, vol III, ed. by D. Gabbay and F. Guenthner, Reidel:
Dordrecht, Holland; Boston: U.S.A. (1984).

[Gi] Girard J.Y., Linear Logic, Theoretical Computer Science, vol. 50 (1987),
pp- 1-101.

[Jo] Jones C.B., Systematic Software Development Using VDM, Prentice-
Hall International, U.K. (1986).

[Luk] Lukasiewicz J., On 3-valued Logic (1920), in: McCall S. (ed.) Polish
Logic, Oxford U.P. (1967).

[MM] McCall S. and Meyer R.K., Pure Three-valued Lukasiewiczian Impli-
cation, Journal of Symbolic Logic, vol 31 (1966), pp.399-405.

[Pot] Pottinger G., Uniform, Cut-free Formulations of T, S/ and S5, (ab-
stract), J.S.L., vol. 48 (1983), p. 900.

[Sc1] Scott D., Rules and Derived Rules, in: Stenlund S. (ed.), Logical
theory and semantical analysis, Reidel: Dordrecht (1974), pp. 147-
161.

[Sc2] Scott D., Completeness and Aziomatizability in Many-valued Logic, in:
Proceeding of the Tarski Symposium, Proceeding of Symposia in
Pure Mathematics, vol. XXV, American Mathematical Society, Rhode
Island, (1974), pp. 411-435.

[Se] Sette A.M., On the Propositional Calculus p', Math. Japonicae 16
(1973), pp. 173-180.

[Sob] Sobocinski B., Aziomatization of Partial System of Three-valued Cal-
culus of Propositions, The journal of computing systems, vol 11. 1

(1952), pp. 23-55.

[Tu] Turner R., Logics for Artificial Intelligence, Ellis Horwood ILtd
(1984).

[Ur] Urquhart A. Many-valued Logic, in: Handbook of Philosophical
Logic, vol 111, ed. by D. Gabbay and F. Guenthner, Reidel: Dordrecht,
Holland; Boston: U.S.A. (1984).

32



[Wa] Wajsberg M., Awziomatization of the 3-valued propositional calculus
(1931), in: McCall S. (ed.): Polish Logic, Oxford U.P. (1967).

33



