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Abstract. We examine the issue of collecting and processing information from various sources,
which involves handling incomplete and inconsistent information. Inspired by the framework first
proposed by Belnap, we consider structures consisting of information sources which provide infor-
mation about the values of formulas of classical propositional logic, and a processor which collects
that information and extends it by deriving conclusions following from it according to the truth ta-
bles of classical logic, applied forward and backward. Our model extends Belnap’s in allowing the
sources to provide information also about complex formulas. As that framework cannot be captured
using finite ordinary logical matrices, if we want to represent each of the relevant logics with a single
matrix, we employ Nmatrices for that purpose. In opposition to the approach proposed in our ear-
lier work, we assume that the information sources are reasonable, i.e. that they provide information
consistent with certain coherence rules.

We provide sound and complete sequent calculi admitting strong cut elimination for the logic of a
single information source, and (several variants of) the logic generated by the source and processor
structures described above. In doing this, we also provide new characterizations for some known
logics. We prove that, in opposition to the variant with unconstrained information sources considered
earlier, the latter logic cannot be generated by structures with any bounded number of sources.

Address for correspondence: Beata Konikowska, Institute of Computer Science, Polish Academy of Sciences,
Ordona 21, 01-237 Warsaw, Poland, beatak@ipipan.waw.pl
∗This research was supported by THE ISRAEL SCIENCE FOUNDATION founded by The Israel Academy of Sciences and
Humanities (grant No 280/10).
†This work was supported by the grant N N206 399334 of Polish Ministry of Science and Higher Education



1002 A. Avron, B. Konikowska / Finite-valued Logics for Information Processing

Keywords: Information processing, incomplete information, inconsistent information, finite log-
ics, many-valued logics, non-deterministic logical matrices, sequent calculi.

1. Introduction

The goal of this paper is to present some novel applications of logics with finite-valued semantics (es-
pecially three-valued and four-valued ones) to information processing, and their relationships with some
well-known previous approaches in that area. Our practical motivations stem from the necessity to deal
on a daily basis with vast amounts of information provided by a multitude of various sources. That infor-
mation is often incomplete or inconsistent — but we nevertheless need to draw reasonable conclusions
from it, and use them a basis for our decisions and actions.

The first researcher to propose a logical framework for dealing with the above issue was Belnap. His
famous model, presented in [11, 12], consisted ofinformation sourceswhich provided information about
the values ofatomicformulas of some logical language, and aprocessorwhich collected and processed
information from the sources. Belnap’s model was later extended by Carnielli and Lima-Marques [14],
but none of the above proposals went beyond the simple case of sources providing information solely
aboutatomicformulas.

As this is insufficient for dealing with many situations commonly encountered in various information
environments, in this paper we consider a more general approach, where the sources may also provide
information aboutcomplex formulae. Moreover, we assume that the sources arereasonablein the sense
of providing coherent and consistent information.

The rest of the paper is organized as follows. In Section 2, we introduce logical preliminaries, and
present the basic finite-valued matrices used for reasoning about information processing. In Section 3,
we define the information processing framework discussed in the paper. We start with presenting Bel-
nap’s basic information processing model, and proving its correspondence to Dunn-Belnap’s four-valued
matrix, and in case of complete information — to Asenjo’s-Priest’s three-valued matrix. Next we define
general information processing structures for an arbitrary languageL, and the logics (consequence rela-
tions) introduced by classes of such structures. Section 4 is devoted to information processing structures
for the languageLC of propositional classical logic. We begin with defining the notions of an infor-
mation source and the standard information processor forLC , and giving an effective way to compute
the final valuation generated by such a processor. Then we define a standard existential information
processing (EIP) structure forLC . After recalling the notion of non-deterministic matrices (Nmatrices),
we prove that the class of information sources is identical with the class of legal valuations in a certain
three-valued Nmatrix, and the class of all processor valuations generated by EIP structures — with the
class of legal valuations in a certain four-valued Nmatrix (and in case of structures providing complete
information — in another three-valued Nmatrix). We also show that none of the corresponding conse-
quence relations can be generated by a single ordinary finite-valued matrix. Finally, we prove that there
are EIP processor valuations which cannot be generated by a finite number of source valuations, and that
the logics generated by classes of all EIP structures with at mostn sources are different for different
values ofn, as well as different from the logic generated by the class of all EIP structures. In Section
5, we present sequent proof systems for all the six considered logics, and prove their strong soundness,
completeness and cut-elimination. Section 6 presents an outline of future work.
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2. Basic Finite-valued Logics of Information

2.1. Logical Preliminaries

In the sequel,L denotes a propositional language with a setA of atomic formulas and a setFL of well-
formed formulas. We denote the elements ofA by p, q, r (possibly with subscripted indexes), and the
elements ofFL by ψ, ϕ. Sets of formulas inFL (theories) are denoted byT , and finite sets of such
formulas are denoted byΓ or ∆. Following the usual convention, we shall abbreviateΓ ∪ {ψ} by Γ, ψ.
More generally, we shall writeΓ, ∆ instead ofΓ ∪∆.

Definition 2.1. A (Tarskian)consequence relationfor a languageL is a binary relatioǹ between theo-
ries inFL and formulas inFL satisfying the following three conditions:

Reflexivity: if ψ ∈ T , thenT ` ψ.

Monotonicity: if T ` ψ andT ⊆ T ′, thenT ′ ` ψ.

Transitivity: if T ` ψ andT , ψ ` ϕ, thenT ` ϕ.

Let ` be a consequence relation forL.

• We say that̀ is structuralif, for every uniformL-substitutionθ and everyT andψ, if T ` ψ then
θ(T ) ` θ(ψ) (whereθ(T ) = {θ(ϕ) | ϕ ∈ T }).

• We say that̀ is consistent(or non-trivial) if there exist some non-empty theoryT and some
formulaψ such thatT 6` ψ.

• We say that̀ is finitary if, for every theoryT and every formulaψ such thatT ` ψ, there is a
finite theoryΓ ⊆ T such thatΓ ` ψ.

Definition 2.2.

1. A (propositional)logic is a pair〈L,`〉 such thatL is a propositional language, and` is a structural,
consistent, and finitary consequence relation forL.1

2. A logic 〈L,`〉 is decidableif, given a finiteΓ ⊆ FL andψ ∈ FL, it is decidable whetherΓ ` ψ
or not.

The most standard semantic (model-theoretical) way of defining a consequence relation (and so a
logic) is by using the so-called logical matrices:

Definition 2.3. A (multi-valued)matrix for a languageL is a tripleM = 〈V,D,O〉, where

• V is a non-empty set of truth values,

• D is a non-empty proper subset ofV, called thedesignatedelements ofV, and

• O includes ann-ary function¦̃M : Vn → V for everyn-ary connective¦ of L.

1The condition of being consistent, and even more the condition of being finitary, are not always included in the definition of a
logic, but they should be satisfied by anyapplied logic. This is why we have included them here.
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Definition 2.4. LetM = 〈V,D,O〉 be a matrix forL.

• A (legal) valuationin M is a functionv : FL → V such that

v(¦(ψ1, . . . , ψn)) = ¦̃(v(ψ1), . . . , v(ψn))

for everyn-ary connective¦ of L and everyψ1, . . . , ψn ∈ FL.

• A valuationv in a matrixM is amodelof:

– a formulaψ (v |=M ψ) if v(ψ) ∈ D.

– a theoryT ⊆ FL (v |=M T ) if v |=M ψ for all ψ ∈ T .

• The formula consequence relationinduced byM is the relatioǹ M onP(FL) × FL such that
T `M ϕ if every model ofT in M is also a model ofϕ.

It has been shown in [23] that ifM is afinite matrix forL (i.e., if its set of truth-values is finite) then
〈L,`M〉 is a decidable logic according to Definition 2.2 (in particular,`M is finitary). Below we refer
to 〈L,`M〉 asthe logic induced by the matrixM.

2.2. Basic Matrices for Information Processing

Let LC be the propositional language based on the connectives¬,∧, and∨.

1. Classical logicCL is induced by the matrix〈V,D,O〉, whereV = {0, 1},D = {1}, and¬̃, ∨̃, and
∧̃ are given by the standard two-valued truth tables.

2. The logicKL of Kleene is induced by the 3-valued Kleene matrixM3
K = 〈V,D,O〉, where

V = {0, 1, I}, D = {1}, O = {¬̃, ∨̃, ∧̃}
and the interpretations of the connectives are given by the following tables:

¬̃
0 1
1 0
I I

∨̃ 0 1 I

0 0 1 I

1 1 1 1
I I 1 I

∧̃ 0 1 I

0 0 0 0
1 0 1 I

I 0 I I

3. The logicLP of Asenjo-Priest ([4, 22]) is induced by the 3-valued Asenjo-Priest’s matrixM3
P =

〈V,D,O〉, whereV = {0, 1, I}, D = {1, I}, and the interpretations of the connectives are as in
M3

K .

4. The logicDB is induced by the Dunn-Belnap’s matrix ([16, 12, 11])M4
B = 〈V4,D4,O4〉, where

V4 = {f,⊥,>, t},D4 = {>, t}, and the interpretations of the connectives are as follows:

¬̃
f t
⊥ ⊥
> >
t f

∨̃ f ⊥ > t

f f ⊥ > t
⊥ ⊥ ⊥ t t
> > t > t
t t t t t

∧̃ f ⊥ > t

f f f f f
⊥ f ⊥ f ⊥
> f f > >
t f ⊥ > t
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Some explanatory comments:

• We have used here 1 (“true”) and 0 (“false”) to denote the classical truth values. The interpretation
of the third valueI is usually taken as “unknown” in case ofKL, and “inconsistent” in case of
LP. Thus, in the two three-valued matrices mentioned in 2. and 3. above, the “truth-values”
are actuallyinformation values, representingknowledgeabout the truth/falsity of a proposition.
Accordingly, in those matrices 1 actually means “known to be true”, while 0 means “known to be
false”. In turn, the meaning ofI in LP is “known to be true and also known to be false”, while in
KL I represents lack of knowledge.

• The basic idea behindM4
B is to haveboth the “unknown” value ofKL and the “inconsistent”

value ofLP in the same matrix. The first of those values is denoted here by⊥, while the second
by >. Further,t and f roughly correspond to the classical truth-values. The set of elements of
M4

B is often identified with{1, 0} × {1, 0}. Given a tuple〈a, b〉, the first componenta represents
knowledge about the truth of a formula, whileb represents knowledge about its falsity (whereby
the two pieces of knowledge may be independent). According to this interpretation, the meanings
of the four values are as follows:

t = 〈1, 0〉 - known to be true but not known to be false

f = 〈0, 1〉 - known to be false but not known to be true

> = 〈1, 1〉 - known to be true and known to be false

⊥ = 〈0, 0〉 - not known to be true and not known to be false

This representation leads to two natural partial orders onV4: the “knowledge” order≤k defined by
〈a1, b1〉 ≤k 〈a2, b2〉 iff a1 ≤ a2 andb1 ≤ b2, and the“truth” order≤t defined by〈a1, b1〉 ≤t 〈a2, b2〉 iff
a1 ≤ a2 andb1 ≥ b2. Each of these relations induces a lattice structure onV4, and together they induce
what is known as thebilatticeFOUR (see Figure 1 below). It should be noted that the operations∨̃ and
∧̃ onV4 correspond (respectively) to the lattice operationssup≤t andinf≤t induced by≤t, while ¬̃, ∨̃,
and∧̃ are allmonotonicwith respect to≤k.

6
≤k

-≤t
q⊥

qf qt
q>

¡
¡

@
@¡

¡

@
@

Figure 1. FOUR

Note 2.5. FOUR has been generalized to a family of structures calledbilattices, which are very useful
for handling knowledge and information. See e.g. [19, 18, 3] for further details.

Note 2.6. It should be noted that the upper and lower parts of the bilattice shown in the above figure
(containingf,>, t andf,⊥, t, respectively) are closed under the interpretations of theLC connectives in
FOUR. What is more, the matrix corresponding to the upper sublattice is isomorphic to Asenjo-Priest’s
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matrixM3
P under the isomorphismh(f) = 0, h(>) = I, h(t) = 1, while that corresponding to the lower

one is isomorphic to Kleene matrixM3
K under the isomorphismg(f) = 0, g(⊥) = I, g(t) = 1. Hence

from now on bothM3
P andM3

K will be viewed as submatrices ofM4
B.

3. Information Processing Framework

3.1. Belnap’s Model

The development of new network technologies allows several agents to access and update large knowl-
edge bases, sometimes simultaneously. The process of combining information originating from different
sources and drawing conclusions from it is very complex, especially in case of contradictory (inconsis-
tent) information.

A framework for dealing with this situation based on the 4-valued logicDB described above was first
developed by Belnap in [11, 12]. Its main idea is to interpret the elements ofV4 as subsets of{0, 1}which
reflect the information on the truth/falsity of a formula of the languageLC of classical propositional logic
derived by a processor from the information obtained by it from some set of independent sources. As
in Belnap’s model the sources provide information about atomic formulas ofLC only, aBelnap source
valuation, or shortlyBelnap source, is a mapping

s : A → {0, 1, I}

whereA is the set ofatomicformulas ofLC and, for anyp ∈ A:

• s(p) = 1 amounts to sources saying thatp is true;

• s(p) = 0 amounts to sources saying thatp is false;

• s(p) = I amounts to sources saying that it has no information aboutp.

After collecting the above information from the sources, the processor then assigns to an atomp a subset
d(p) of {0, 1} according to the following two simple principles:

(dbA) 1 ∈ d(p) iff there is a sources such thats(p) = 1, i.e. s says thatp is true;

(dbB) 0 ∈ d(p) iff there is a sources such thats(p) = 0, i.e. s says thatp is false.

Accordingly, the values inV4 are now interpreted as follows:

t = {1} - said to be true but not said to be false

f = {0} - said to be false but not said to be true

> = {0, 1} - said to be true and said to be false

⊥ = ∅ - not said to be true and not said to be false

Next, the processor assigns a subsetd(ϕ) of {0, 1} also to non-atomic formulas ofLC using the basic
classical principles. In other words:

(db1) 0 ∈ d(¬ϕ) iff 1 ∈ d(ϕ);
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(db2) 1 ∈ d(¬ϕ) iff 0 ∈ d(ϕ);

(db3) 1 ∈ d(ϕ ∨ ψ) iff 1 ∈ d(ϕ) or 1 ∈ d(ψ);

(db4) 0 ∈ d(ϕ ∨ ψ) iff 0 ∈ d(ϕ) and0 ∈ d(ψ);

(db5) 1 ∈ d(ϕ ∧ ψ) iff 1 ∈ d(ϕ) and1 ∈ d(ψ);

(db6) 0 ∈ d(ϕ ∧ ψ) iff 0 ∈ d(ϕ) or 0 ∈ d(ψ).

Belnap’s model yields the following characterizations of Dunn-Belnap’s and Asenjo-Priest’s matrices
in terms of processor valuations:

Theorem 3.1.

1. Any processor valuationd obtained from a set of Belnap sources in accordance with (dbA)–(dbB)
and (db1)–(db6) above is a legal valuation inM4

B. Conversely, every legal valuation inM4
B can

be obtained as a processor valuationd in a source-processor framework with at most two Belnap
sources.

2. Call a Belnap sourceclassicalif it does not use the value I. If all sources are classical, then the
resulting processor valuation is a legal valuation in the Asenjo-Priest’s matrixM3

P (see Note 2.6).
Conversely, every legal valuation inM3

P can be obtained as a processor valuationd in a source-
processor framework with (at most two) classical Belnap sources.

Proof:
Part 1. (⇒) Assumed is a processor valuation obtained out of a set of Belnap sourcesS according to
rules (dbA-B), (db1-6). Then it is very easy to check, basing on the above rules, thatd is compliant with
M4

B. For example, assume thatv(ϕ) = ⊥, v(ψ) = >. As⊥ = ∅ and> = {0, 1}, by the assumption
0 6∈ v(ϕ) and1 ∈ v(ψ). Hence0 6∈ v(ϕ ∨ ψ) by (db4) and1 ∈ v(ϕ ∨ ψ) by (db3). This yields
v(ϕ ∨ ψ) = {1} = t — which is exactly the value assigned to the disjunction of⊥ and> in M4

B.
(⇐) Let v be a legal valuation inM4

B, and define Belnap source valuationss0, s1 as follows: for any
p ∈ A,

s0(p) =

{
0 if 0 ∈ v(p)
I otherwise

s1(p) =

{
1 if 1 ∈ v(p)
I otherwise

Now takeS = {s0, s1}, and letd be the processor valuation obtained fromS using (dbA–B), (db1–6).
Then by (dbA-B) we clearly haved(p) = v(p) for everyp ∈ A. Since by(⇒) proved aboved is a legal
valuation inM4

B and each such valuation is uniquely defined by its values for atoms, thend = v.
Part 2. (⇒) According to Note 2.6, we will treatM3

P as a submatrix ofM4
B, with I replaced by>. By

Part 1, a processor valuation obtained from classical Belnap sources is a legal valuation inM4
B. Since

by induction such a valuation does not take the value⊥, then it is a legal valuation inM3
P , too.

(⇐) Let v be a legal valuation inM3
P , and define Belnap source valuationss0, s1 as follows: for any

p ∈ A,
if v(p) = f, thens0(p) = s1(p) = 0
if v(p) = t, thens0(p) = s1(p) = 1
if v(p) = >, thens0(p) = 0, s1(p) = 1
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Thens0, s1 are classical Belnap sources. TakingS = {s0, s1}, we can easily prove — in a way similar
to the proof of(⇐) in Part 1 — that the processor valuation obtained fromS coincides withv. ut

It is worth noting that Point 1 of Theorem 3.1 corresponds to one of the main results on Society
Semantics as originally proposed in [14], stating that two sources are always enough to characterize
an open society. As we shall see at the end of Section 4, the situation with respect to the framework
introduced in this paper is very different.

3.2. General information processing structures

Belnap’s model is adequate for the case in which the sources are simple relational databases. However, it
does not capture all the situations encountered in practice. In particular, knowledge bases and disjunctive
databases can provide information also aboutcomplexformulas. A more general framework, suitable for
handling such a situation, where a source may provide the processor with information (in the form of
a truth value from{0, 1, I}) aboutarbitrary formulas ofLC , was considered in [8]. In that framework,
the assignment of subsets of{0, 1} to formulas ofLC is carried out in two stages. At the first stage, the
processor collects the information from the sources according to some strategy (for example: the strategy
used in Belnap’s model is the existential one, in which the processorinitially includes a valuex ∈ {0, 1}
in the subset of{0, 1} assigned to a formulaψ iff some source assignsx to ψ). At the second stage,
the processor expands the information collected at the previous stage by adding to it new information
that can be derived from the initial information using certain rules based on the truth tables of classical
logic. For this stage, the crucial assumption made in [8] was that the final assignmentv developed by the
processor should include everything that can be derived from the classical truth tables without assuming
consistency or full knowledge. In practice, this means that conditions (db3) and (db6) above should be
weakened, so that only the “if” part is retained (but not the “only if”).

Now the point of introducing this general framework is to allow situations in which a source may
know (for example) that a certain disjunction holds, without knowing which of the disjuncts is the true
one. This does not mean, of course, that areasonablesource may arbitrarily assign truth-values to
formulas. Such a source should for example assign 1 toϕ ∨ ψ whenever it assigns 1 to eitherϕ or ψ.
Moreover: the only other case in which it might assign 1 toϕ∨ψ (without assigning 1 to either of them)
is when it assignsI to both (i.e., when it does not know the truth or falsity of eitherϕ or ψ). In other
words: a reasonable source which knows thatϕ∨ψ is true, butϕ (say) is false, cannot claim that it does
not know anything aboutψ (i.e., cannot assignI to it), or that it knows thatψ is false. In this case, it
should be able to conclude thatψ is the true disjunct. Similarly, a reasonable source would not assignI
(or 1) toϕ, and at the same time 0 toϕ ∨ ψ, because it should know that a disjunction may be false only
if both disjuncts are false.

Ignoring such obvious principles is the main deficiency of the framework presented in [8]. That
framework simply did not take into consideration the crucial fact that most of the information sources we
encounter in real life, like rational humans, or correctly built computer systems/software programs/agents,
do behave in a reasonable way. In contrast, in the present paper we consider information processing
structures containing solely reasonable sources (described informally above, and defined further on in
the paper). What is more, we generalize the framework presented in [8] to incorporate provision of
information also about values of formulas of languages other thanLC (e.g., first-order or modal one).
Consequently, below we start by formulating a more general notion of an information structure con-
nected with an arbitrary languageL of some logic. To better capture the multifarious combinations of
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different information collecting and processing mechanisms, we introduce a separate notion of aninfor-
mation collectorwhich carries out the former process, while aprocessoris, like in [8], responsible for
expanding the collected information.

Definition 3.1. Consider an arbitrary languageL, and letAL andFL be the set of all atomic formulas
and the set of all formulas ofL, respectively.

• By a low-level valuationfor L we mean a functionv : FL → {0, 1, I}. The set of all such
valuations will be denoted byVL.

• By a reasonable source valuation, or reasonable information source, for L we mean a low-level
valuations ∈ VL which satisfies certain coherence conditions dictated by the semantics ofL2.
The set of all reasonable source valuations forL will be denoted bySL.

• By ahigh-level valuationfor L we mean a functionv : FL → P({0, 1}). The set of all high-level
valuations forL will be denoted byHL.

• By an information collectorwe mean a mappingC : Pm(SL) → HL, wherePm(SL) denotes the
set of all multisubsets ofVL, i.e. the set of all multisets whose elements are valuations inSL.

• By an information processorwe mean a mappingP : HL → HL.

All the notions above are defined relative to a languageL, but onceL is fixed, the subscriptL in the
notation introduced above will be dropped.

The exact shape of the information processor will depend on the semantics of the concrete language
L. On the other hand, information collectors may implement various information collecting strategies.
The two basic collectors represent the existential and universal strategies (considered already in [8]), and
are defined as follows:

Definition 3.2.

• The existential information collectoris the mappingCe : Pm(SL) → HL such that, for any
S ∈ Pm(SL), and anyϕ ∈ FL,

∀x ∈ {0, 1}[ x ∈ (Ce(S))(ϕ) iff ∃s ∈ S. s(ϕ) = x]

• The universal information collectoris the mappingCu : Pm(SL) → HL such that, for any
S ∈ Pm(SL), and anyϕ ∈ FL,

∀x ∈ {0, 1}[ x ∈ (Cu(S))(ϕ) iff ∀s ∈ S. s(ϕ) = x]

Definition 3.3. Let C be an information collector, andP — an information processor for a languageL.
By an information processing〈C, P 〉-structurefor L we mean a tupleS = 〈S, g, d〉, where:

1. S ∈ Pm(SL) is a multiset of information sources forL ;

2To be specified individually for each languageL.
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2. g = C(S) (g is called theglobal 〈C, P 〉-valuation generated byS);

3. d = P (g) = P (C(S)) (d is called the theprocessor〈C, P 〉-valuation generated byS).

The prefix〈C, P 〉 in the above definition will be omitted ifC andP are understood or immaterial.

Note that the use of multisets in the above definition allows us to capture the situation when differ-
ent information sources provide the same information. As this is quite common in practice, identifying
sources that provide the same information would lead to incorrect results in various information col-
lecting strategies based on the “majority opinion”, or the percentage share of sources providing certain
information.

3.3. Induced consequence relations

LetL be a language. Each information processing structure forL generates in a natural way a satisfaction
relation onFL determined by its processor valuation. Accordingly, each class of information processing
structures forL induces a corresponding consequence relation:

Definition 3.4.

• LetS = 〈S, g, d〉 be an information processing structure. ThenS satisfies(is amodelof) a formula
ϕ ∈ F (or ϕ is satisfied inS), in symbols|=S ϕ, iff 1 ∈ d(ϕ).

• LetJ be a class of information processing structures. Theformula consequence relationinduced
byJ is the relatioǹ J onP(F)×F such thatT `J ϕ if everyS ∈ J which is a model ofT is
also a model ofϕ.

Note 3.5. It is easy to see that̀J is a structural consequence relation. In Corollaries 4.4, 4.5, and 4.3
below we show that in the most important cases it is alsofinitary, i.e. 〈L,`J 〉 is a logic (according to
Definition 2.2).

As the proof mechanisms we will use for reasoning about information processing structures in what
follows are Gentzen-type sequent calculi which manipulate sequents, below we introduce the sequential
counterparts of the relations defined in Definition 3.4.

Definition 3.6. LetL be a language.

• By a sequentof L we mean a structure of the formΓ ⇒ ∆, whereΓ and∆ are finitesetsof
formulas ofL. The set of all sequents in the languageL is denoted bySeqL.

• LetS = 〈S, g, d〉 be an information processing structure. ThenS satisfies(is amodelof) a sequent
Σ = Γ ⇒ ∆, in symbols|=S Σ, iff eitherS is a model of some formula in∆, or it is not a model
of some formula inΓ.

• Let J be a class of information processing structures forL. Thesequent consequence relation
induced byJ is the relatioǹ J onP(SeqL)× SeqL such thatQ `J Σ if everyS ∈ J which is
a model ofQ is also a model ofΣ.
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In the above definition, for the sake of simplicity, we use the same symbol for the formula conse-
quence relation and for the sequent consequence relation. However, this will not cause any misunder-
standing, for it will be always clear from the context which relation we actually have in mind.

It is important to recall here two relationships which always hold between a formula consequence
relation and the standard sequent consequence relation which is derived from it like in Definition 3.6.

Fact 3.1. For any set of formulasΓ ⊆ F and any formulaϕ ∈ F , we have:

• If Γ is finite, thenΓ `J ϕ iff `J (Γ ⇒ ϕ).

• Γ `J ϕ iff {⇒ ψ | ψ ∈ Γ} `J (⇒ ϕ).

4. Information processing structures forLC

The general framework introduced in the preceding section allows for considering many different vari-
ants of information processing structures. Out of them, in this paper we will examine in detail a class of
structures forLC being a direct extension of Belnap’s model — namely, structures employing the exis-
tential information collectorCe from Definition 3.2, and the so-called standard information processorPs

that extends the information collected byCe using the rules based on the truth tables of classical logic
defined in [8]. The basic difference with respect to [8] will consist in the fact that the above information
structures will only contain reasonable sources in the sense discussed above, and defined formally below.

4.1. Information sources and information processors forLC

LetF be the set of formulas ofLC ,A its set of atomic formulas,V = VLC
, andH = HLC

.

Definition 4.1.

A reasonable source valuation, or a reasonable information source, for LC is a low-level valuation
s ∈ V such that:

(s1) s(¬ϕ) = 0 iff s(ϕ) = 1;

(s2) s(¬ϕ) = 1 iff s(ϕ) = 0;

(s3) If s(ϕ) = 1 or s(ψ) = 1 thens(ϕ ∨ ψ) = 1;

(s4) If s(ϕ ∨ ψ) = 1 ands(ϕ) = 0 thens(ψ) = 1;

(s5) If s(ϕ ∨ ψ) = 1 ands(ψ) = 0 thens(ϕ) = 1;

(s6) s(ϕ ∨ ψ) = 0 iff s(ϕ) = 0 ands(ψ) = 0;

(s7) s(ϕ ∧ ψ) = 1 iff s(ϕ) = 1 ands(ψ) = 1;

(s8) If s(ϕ) = 0 or s(ψ) = 0 thens(ϕ ∧ ψ) = 0;

(s9) If s(ϕ ∧ ψ) = 0 ands(ψ) = 1 thens(ϕ) = 0;
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(s10) If s(ϕ ∧ ψ) = 0 ands(ϕ) = 1 thens(ψ) = 0.

The setSLC
of all reasonable source valuations forLC is denoted below byS. As from now on we only

consider reasonable sources, the adjective “reasonable” is dropped for brevity.

It can be easily seen that the above conditions characterize the sources forLC that provide infor-
mation which is consistent with the truth tables of classical logic, and are also able to derive from the
information they already possess any assignment of a truth value to a formula which is imposed by these
truth tables. Conditions (s3)–(s6), for example, are exact counterparts of the principles concerning as-
signments to disjunction which were explained at the beginning of subsection 3.2. The other conditions
can be justified in a similar way. Moreover: it is not difficult to see that forLC the above list is complete.
Thus as froms(ϕ ∨ ψ) = 1 alone one cannot infer in classical logic the value of eithers(ϕ) or s(ψ),
reasonable sources lacking full knowledge need not satisfy the converse of condition (s3).

Definition 4.2. Let g, d ∈ H. We say thatg ¹ d if g(ϕ) ⊆ d(ϕ) for every formulaϕ.

Obviously,¹ is a partial order onH.

Definition 4.3.

The standard information processor forLC is the information processorPs : H → H such that, for
any g ∈ H, Ps(g) = d, whered is the¹-minimal high-level valuation inH satisfying the following
conditions:

(d0) g ¹ d;

(d1) 0 ∈ d(¬ϕ) iff 1 ∈ d(ϕ);

(d2) 1 ∈ d(¬ϕ) iff 0 ∈ d(ϕ);

(d3) 1 ∈ d(ϕ ∨ ψ) if 1 ∈ d(ϕ) or 1 ∈ d(ψ);

(d4) 0 ∈ d(ϕ ∨ ψ) iff 0 ∈ d(ϕ) and0 ∈ d(ψ);

(d5) 1 ∈ d(ϕ ∧ ψ) iff 1 ∈ d(ϕ) and1 ∈ d(ψ);

(d6) 0 ∈ d(ϕ ∧ ψ) if 0 ∈ d(ϕ) or 0 ∈ d(ψ).

As can be easily seen, rules (d0)–(d6) express the fact that the processor expands information col-
lected from the sources by the information collector (represented by g in rule (d0)) by using the classical
truth tables in both directions: from the values assigned to the components of a compound formula to the
value assigned to that formula, as well as from the value assigned to a compound formula to the values
assigned to its components whenever the said tables determine them in a unique way. Thus the “only if”
in (d4) is justified by the fact that 0 appears in the truth table for disjunction only when both disjuncts
are assigned 0. In contrast, the classical truth table for disjunction does not determine the values which
are assigned to formulas when their disjunction is assigned 1. Hence in (d3) we have implication rather
than equivalence. The deep reason for this is that information sources may provide information about
complex formulas without providing information about their subformulas, so e.g. in case of disjunctive
information the processor can learn thatϕ ∨ ψ is true without learning that eitherϕ or ψ are true (and



A. Avron, B. Konikowska / Finite-valued Logics for Information Processing 1013

in case of conjunctive information — thatϕ ∧ ψ is false without learning that eitherϕ or ψ are false
— which explains (d6)). Moreover: unlike the case of a reasonable source, even the analogues of rules
(s4), (s5) and (s9), (s10) need not apply to a reasonable processor. The difference is that while a source
assigns at most one classical truth-value to a formula, and is assumed to be consistent, a processor may
assign to a formula both classical values, and so is not assumed to be consistent. Thus the analogue of
(s4) should be rejected, because from the fact that1 ∈ d(ϕ ∨ ψ) and0 ∈ d(ϕ) the processor shouldnot
conclude thatψ is true (i.e.1 ∈ d(ψ)), since the discussed situation may be due to one source saying
thatϕ is true (implying that1 ∈ d(ϕ), and so1 ∈ d(ϕ∨ψ)), andanothersource informing the processor
thatϕ is false (implying that0 ∈ d(ϕ)), without either of them providing any information aboutψ.

The minimality we assume in Definition 4.3 ensures that no superfluous information is added by the
processor, and the processor valuation contains nothing but the information gathered from the sources
and its necessary consequences.

Finally, let us note that in Definition 4.3 we have not provided any rules for implication. The rea-
son is that although appropriate counterparts of (db1)–(db6), (d0)–(d6), and (s1)–(s10) could be easily
formulated for the classical (material) implication, this would be of little value, because the resulting
connective (which can be defined asϕ ⊃ ψ = ¬ϕ∨ψ) does not correspond to the consequence relations
generated by classes of information processing structures defined in Section 3.3. Indeed, evenϕ ⊃ ϕ is
not valid in the corresponding logics for such an implication⊃, even thoughϕ does follow from itself in
all of them. Hence this connective is not suitable for reasoning about properties of information process-
ing structures, and instead of it we will use a non-nestable version of implication provided by sequents.
More suitable versions of implication on the language level will be considered in future work.

4.2. Expressiveness issues

From Definition 4.3 we can see thatformulasof LC do not have sufficient expressive power for describing
some important facts regarding the information processing structures. First, there is no way to express
the fact that a certain formulaϕ is not true— i.e., 1 6∈ d(ϕ) — for, unlike classical logic, this is not
equivalent to the truth of¬ϕ. Similarly, we cannot expressdisjunctive knowledgeof the form “one of
the formulasϕ andψ is known to be true” — i.e., either1 ∈ d(ϕ) or 1 ∈ d(ψ) — for by (d3) this isnot
equivalent to1 ∈ d(ϕ ∨ ψ), as the latter can hold without either1 ∈ d(ϕ) or 1 ∈ d(ψ) holding.

However, these problems can be overcome by using Gentzen-typesequents, which we have chosen
as our deduction mechanism primarily for the above reason. Namely, given a information processing
structure〈S, g, d〉, a sequentϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk expresses the information that either1 6∈ d(ϕ1),
or 1 6∈ d(ϕ2), or . . . or 1 6∈ d(ϕn), or 1 ∈ d(ψ1), or . . . or 1 ∈ d(ψk). Note again that this type of
information cannot be expressed by any formula of the language, for the usual translation of sequents to
formulae known from classical logic is not adequate here.

As noted at the end of the previous subsection, another shortcoming of the classical languageLC is
that it does not possess any implication connective that can be used as such in the present framework.
Again this problem is (essentially) overcome by using sequents, since sequents provide a non-nestable
version of implication.
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4.3. Effective method for computing the processor valuation

In the definition of the valuationd derived by the standard information processorPs from a high-level
valuationg, rules (d1)–(d6) go both down and up the formula structure, which does not explicitly provide
an effective way of computingd out of g. We will now prove thatd can be obtained fromg by a single
“downward” pass, followed by a single “upward” pass.

Definition 4.4. Let h ∈ H be any high-level valuation.

(A) D(h), thedownward closureof h, is the¹-minimal valuationh ∈ H such that for anyx ∈ {0, 1},
and anyϕ ∈ F ,

(0) h ¹ h

(1) x ∈ h(¬ϕ) ⇒ 1− x ∈ h(ϕ)

(2) 0 ∈ h(ϕ ∨ ψ) ⇒ 0 ∈ h(ϕ) and0 ∈ h(ψ)

(3) 1 ∈ h(ϕ ∧ ψ) ⇒ 1 ∈ h(ϕ) and1 ∈ h(ψ)

(B) U(h), theupward closureof h, is the¹-minimal valuationh∗ ∈ H such that for anyx ∈ {0, 1},
anyp ∈ A, and anyϕ ∈ F ,

(i) x ∈ h(p) ⇒ x ∈ h∗(p) for p ∈ A
(ii) x ∈ h∗(ϕ) ⇒ 1− x ∈ h∗(¬ϕ)

(iii) 1 ∈ h∗(ϕ) or 1 ∈ h∗(ψ) or 1 ∈ h(ϕ ∨ ψ) ⇒ 1 ∈ h∗(ϕ ∨ ψ)

(iv) 0 ∈ h∗(ϕ) and0 ∈ h∗(ψ) ⇒ 0 ∈ h∗(ϕ ∨ ψ)

(v) 1 ∈ h∗(ϕ) and1 ∈ h∗(ψ) ⇒ 1 ∈ h∗(ϕ ∧ ψ)

(vi) 0 ∈ h∗(ϕ) or 0 ∈ h∗(ψ) or 0 ∈ h(ϕ ∧ ψ) ⇒ 0 ∈ h∗(ϕ ∧ ψ)

Proposition 4.1. The standard information processorPs is the composition of operationsD andU , i.e.,
for anyg ∈ H, Ps(g) = U(D(g)).

Proof:
For convenience, denoted = Ps(g), g = D(g), g∗ = U(D(g)).

It can easily be seen that ifh ∈ H satisfies conditions (d0)–(d6) from Definition 4.3, theng∗ ¹ h. It
follows that in order to prove thatg∗ is the minimal high-level valuation satisfying conditions (d0)–(d6)
in Definition 4.3, it suffices to prove thatg∗ satisfies these conditions.

We start with proving (d0). Sinceg ¹ g, we prove instead that

g(ϕ) ⊆ g∗(ϕ) (1)

for anyϕ ∈ F . We argue by induction on the structure ofϕ.
First, for atomicϕ, i.e. ϕ = p ∈ A, (1) follows from (i) in the definition ofU .
Now we assume that (1) holds forϕ, ψ, and prove that it also holds for¬ϕ,ϕ ∨ ψ, ϕ ∧ ψ:
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ξ = ¬ϕ: By (1) in the definition ofD, for anyx ∈ {0, 1}, we havex ∈ g(¬ϕ) ⇒ 1− x ∈ g(ϕ). By the
inductive assumption forϕ, the latter implies1− x ∈ g∗(ϕ), whence by (ii) in the definition ofU
we get1− (1− x) = x ∈ g∗(¬ϕ). Accordingly, (1) holds for¬ϕ.

ξ = ϕ ∨ ψ: If 0 ∈ g(ϕ ∨ ψ), then by (2) in the definition ofD we get0 ∈ g(ϕ) and0 ∈ g(ψ), whence
0 ∈ g∗(ϕ) and0 ∈ g∗(ψ) by the inductive assumption forϕ,ψ. By (iv) in in the definition ofU ,
this implies0 ∈ g∗(ϕ ∨ ψ). Finally, if 1 ∈ g(ϕ ∨ ψ), then1 ∈ g∗(ϕ ∨ ψ) by the last disjunct in
the antecedent of (iii) in the definition ofU . Thus (1) holds forϕ ∨ ψ too.

ξ = ϕ ∧ ψ: The proof is dual to that given in the previous case.

Accordingly, (d0) holds. To prove satisfaction of (d1)–(d6), we first observe that (d3) and (d6) follow
from Points (iii) and (vi) in the definition ofU , respectively, while the backward implications in (d1)-
(d2) and (d4)–(d5) follow from Points (ii) and (iv), (v) in that definition, respectively. To see that the
converse implications also hold forg∗, it is enough to note that (due to the “upward” construction ofg∗

from g) the only way to assign a valuex ∈ {0, 1} to g∗(¬ϕ) is by using (ii), the only way to assign
0 to g∗(ϕ ∨ ψ) is by using (iv), and the only way to assign 1 tog∗(ϕ ∧ ψ) is by using (v). Hence the
single-way implications in those conditions can in fact be replaced by equivalences, and consequentlyg∗

satisfies (d1)–(d6) too. ut

An obvious consequence of the above theorem, which will prove useful later on, is the possibility to
reduce the above method for computingg to a single upward pass if the high-level valuationg is closed
under rules (A)(1)–(3) of Definition 4.4:

Corollary 4.1. If a valuationg ∈ H is closed under Conditions (A)(1)–(3) of Definition 4.4, then
D(g) = g andPs(g) = U(g).

4.4. Standard existential information processing structures

After the foregoing preliminaries, we can now define the type of information processing structures that
we will be dealing with from now on:

Definition 4.5.

1. By astandard existential information processing structure, shortly:EIP structure, for LC we mean
any information processing〈Ce, Ps〉-structure forLC (see Definitions 3.3, 3.2, and 4.3). The class
of all EIP structures will be denoted byEIP.

2. Let S ∈ Pm(S) be a multiset of source valuations. IfS = 〈S, g, d〉 is an EIP structure, i.e.
d = Ps(Ce(S)), thend is called theEIP processor valuation generated byS.

3. A high-level valuationv ∈ H is called anEIP processor valuationif there existsS ∈ Pm(S) such
thatv is the EIP processor valuation generated byS.

Definition 4.5 implies that if〈S, g, d〉 ∈ EIP, thend satisfies conditions (d0)–(d6) in Definition 4.3,
while, by Definition 3.2,g is defined by the following formula: for anyϕ ∈ F ,

∀x ∈ {0, 1} (x ∈ g(ϕ) iff ∃s ∈ S. s(ϕ) = x) (2)
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It is easy to check that the processor valuationd of an EIP structure can be computed in a simple way
by applying the upper closure operator from Definition 4.4.

Corollary 4.2. For any EIP structureS = 〈S, g, d〉, we haved = U(g), whereU is defined as in
Definition 4.4. In other words,d can be inductively defined as follows:

(i) x ∈ g(p) ⇒ x ∈ d(p) for anyx ∈ {0, 1} and anyp ∈ A
(ii) x ∈ d(ϕ) ⇒ 1− x ∈ d(¬ϕ) for anyx ∈ {0, 1}

(iii) 1 ∈ d(ϕ) or 1 ∈ d(ψ) or 1 ∈ g(ϕ ∨ ψ) ⇒ 1 ∈ d(ϕ ∨ ψ)

(iv) 0 ∈ d(ϕ) and0 ∈ d(ψ) ⇒ 0 ∈ d(ϕ ∨ ψ)

(v) 1 ∈ d(ϕ) and1 ∈ d(ψ) ⇒ 1 ∈ d(ϕ ∧ ψ)

(vi) 0 ∈ d(ϕ) or 0 ∈ d(ψ) or 0 ∈ g(ϕ ∧ ψ) ⇒ 0 ∈ d(ϕ ∧ ψ)

Proof:
By Definition 4.5, we haved = Ps(g), whereg is defined according to Equation (2). Since each source
valuations ∈ S satisfies Conditions (s1)–(s10) in Definition 4.1, from Equation (2) we can easily deduce
thatg satisfies Conditions (A) (1)–(3) of Definition 4.4. Indeed: (A)(1) follows immediately from Eq. (2)
and (s1)–s(2), (A)(2) — from Eq. (2) and (s6), and finally (A)(3) from Eq. (2) and (s7). Thus the claim
follows from Corollary 4.1. ut

4.5. Non-deterministic semantics

It is not difficult to verify that any valuation in the Kleene MatrixM3
K is a legal source valuation forLC ,

and that we have the following alternatives for the characterizations given in Theorem 3.1:

Theorem 4.1.

1. If S = 〈S, g, d〉 is an EIP structure in which all elements ofS are legal valuations inM3
K , then the

processor valuationd is a legal valuation inM4
B. Conversely, every valuation ofM4

B coincides
with the processor valuation in some EIP structure having exactly two sources, both of which are
M3

K-valuations.

2. If S = 〈S, g, d〉 is an EIP structure in which all elements ofS are classical valuations then the pro-
cessor valuationd is a legal valuation inM3

P . Conversely, every legal valuation inM3
P coincides

with the processor valuation in some EIP structure having exactly two sources, both of which are
classical.

Proof:
Part 1. In accordance with Note 2.6, the Kleene matrixM3

K will be treated as a submatrix ofM4
B, with

I replaced by⊥, 1 by t, and0 by f.
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(⇒) It can be easily checked that all legal valuations inM3
K satisfy Conditions (s1)–(s10) of Defi-

nition 4.1, and hence are legal information sources inS. Further, if all elements ofS are legal valuations
in M3

K , then from the properties ofM3
K it follows that, for anys ∈ S, 1 ∈ s(ϕ ∨ ψ) iff 1 ∈ s(ϕ) or

1 ∈ s(ψ), and analogously0 ∈ s(ϕ ∧ ψ) iff 0 ∈ s(ϕ) or 0 ∈ s(ψ). From this we can easily conclude
that 1 ∈ g(ϕ ∨ ψ) iff 1 ∈ g(ϕ) or 1 ∈ g(ψ), and0 ∈ g(ϕ ∧ ψ) iff 0 ∈ g(ϕ) or 0 ∈ g(ψ). Since
g ¹ d by Definition 4.3, by the foregoing the components1 ∈ g(ϕ ∨ ψ) and0 ∈ g(ϕ ∧ ψ) can be
respectively deleted from Conditions (iii) and (vi) in Corollary 4.2. Asd is the¹-minimal valuation in
H satisfying all Conditions of Corollary 4.2, this clearly implies that the implications in (d3) and (d6) of
Definition 4.3 can be replaced by equivalences. This in turn easily entails thatd can be obtained from the
set{s/A|s ∈ S} in accordance with (dbA)–(dbB) and (db1)–(db6) preceding Theorem 3.1. Sinces/A
is a Belnap source for eachs ∈ S, by that Theoremd is a legal valuation inM4

B.
(⇐) Assume nowv is a legal valuation inM4

B. Define two valuationss0, s1 ∈ V as follows: for
anyp ∈ A, we take:

s0(p) =

{
0 if 0 ∈ v(p)
I otherwise

s1(p) =

{
1 if 1 ∈ v(p)
I otherwise

and extend the above partial valuations to total valuations of formulas inF using the truth tables of
Kleene logic. TakeS = {s0, s1}, and consider the EIP structure〈S, g, d〉, whereg = Ge(S), d = Ps(g).
Then, by the definition ofs0, s1, both of these valuations are legal inM3

K . Moreover,g(p) = v(p) by
Equation 2 following Definition 4.5. Accordingly, from (i) of Corollary 4.2 it follows thatv(p) ⊆ d(p)
for any p ∈ A. As no values are added tod(p) by Conditions (ii)-(vi) of that Corollary, andd is the
¹-minimal valuation satisfying (i)-(vi), this impliesd(p) = v(p) for any p ∈ A. Sincev is a legal
valuation inM4

B, and by(⇒) proved above so isd, we must haved = v, for any such valuation is
uniquely defined by it values for atomic formulas.

Part 2. In accordance with Note 2.6, Asenjo-Priest’s matrixM3
P will be treated as a submatrix of

M4
B, with I replaced by>, 1 by t, and0 by f.
(⇒) As each classic valuation is a legal valuation inM3

K , then by Part 1 of the theoremd is a legal
valuation inM4

B. Since none of the source valuations inS take the value I, theng(ϕ) 6= ⊥ for anyϕ ∈ F
by Equation (2) following Definition 4.5, and hence the same holds ford in view of Corollary 4.2. As
M3

P is a submatrix ofM4
B not containing⊥, we conclude thatd is a legal valuation inM3

P .
(⇐) Assume nowv is a legal valuation inM3

P . Define valuationss0, s1 ∈ V as follows: for any
p ∈ A, we put:

If v(p) = f, thens0(p) = s1(p) = 0
If v(p) = t, thens0(p) = s1(p) = 1
If v(p) = >, thens0(p) = 0, s1(p) = 1

and extend the above partial valuations to total valuations of formulas inF using the truth tables of
Asenjo-Priest’s logic. The rest of the proof is analogous to that of(⇐) in Part 1, and is left to the reader.

ut

Corollary 4.3. LetPKL be the class of EIP structures in which all information sources are legal valua-
tions inM3

K , and letPCL be the class of EIP structures in which all information sources are classical.
Then both〈LC ,` PKL〉 and〈LC ,` PCL〉 are logics.
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Proof:
Immediate by Theorem 4.1. ut

On the other hand, by Theorem 4.4 below, neither a general source valuation nor a general EIP
processor valuations can be characterized by a single finite ordinary matrix. The obvious reason is that
such valuations do not respect the principle of truth-functionality, according to which the truth-value of
a complex formula is uniquely determined by the truth-values of its immediate subformulas. Hence,
to ensure an adequate but simple characterization of the above notions, instead of ordinary matrices
we employ here their generalization introduced in [9], in which the truth-value of a formula is chosen
non-deterministically from some nonempty set of options:

Definition 4.6.

1. A non-deterministic matrix(Nmatrix) for a languageL is a tripleM = 〈V,D,O〉, where

• V is a non-empty set (of truth values).

• D is a non-empty proper subset ofV.

• O includes ann-ary function¦̃M : Vn → 2V \ {∅} for eachn-ary connective¦ of L.

2. Let M be an Nmatrix forL. An M-valuationν is a functionν : FL → V such that, for every
n-ary connective¦ of L and everyψ1, . . . , ψn ∈ WL,

ν(¦(ψ1, . . . , ψn)) ∈ ¦̃(ν(ψ1), . . . , ν(ψn)).

3. Given an NmatrixM, the notions of a model of a formula or a theory inM, and the consequence
relation associated withM are defined exactly as in the deterministic case (Definition 2.4).

Clearly, ordinary matrices (Definition 2.3) can be identified with Nmatrices in which the operations
always return a singleton. Hence the semantic framework of Nmatrices is indeed a generalization of the
semantic framework of matrices. This generalization enjoys all the important properties of the narrower
framework. In particular:

Fact 4.1. ([9]) Let M = 〈V,D,O〉 be an Nmatrix for a languageL.

1. Let v : W → V be a partial valuation whose domainW is a set of formulas ofL which is closed
under subformulas. Assume thatv is consistent withM. Thenv can be extended to a full legal
valuation of formulas inM.

2. If M is finite (i.e.,V is finite) thenLM = 〈L,`M〉 is a decidable propositional logic according to
Definition 2.2 (In particular :̀ M is finitary if M is finite).

On the other hand, the use of Nmatrices allows us in many cases to provide a finite-valued semantics
to logics that cannot be characterized using finite deterministic matrices. Moreover: this semantics
can frequently be constructed in amodularway — something that cannot be done in the framework of
deterministic matrices (see [6, 7] for details).3 Accordingly, Nmatrices have found important applications
in reasoning under uncertainty, proof theory, and other subjects (see [10] for a comprehensive survey).
In the present context, their importance is due to the following basic representation theorem:
3The converse is also true: Given a finite Nmatrix, a corresponding proof system for it can often be derived in a modular way.
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Theorem 4.2.

1. A function s : F → {0, 1, I} is a source valuation iff it is anM3
r-valuation, where the Nmatrix

M3
r = 〈V,D,O〉 is defined as follows:

V = {0, 1, I}, D = {1}, O = {¬̃, ∨̃, ∧̃}

and the interpretations of the connectives are given by the following tables:

¬̃
0 {1}
1 {0}
I {I}

∨̃ 0 1 I

0 {0} {1} {I}
1 {1} {1} {1}
I {I} {1} {I, 1}

∧̃ 0 1 I

0 {0} {0} {0}
1 {0} {1} {I}
I {0} {I} {0, I}

2. A functiond : F → {f,⊥,>, t} is an EIP processor valuation iff it is anM4
I -valuation, where the

NmatrixM4
I = 〈V,D,O〉 is defined as follows:

V = {f,⊥,>, t},D = {>, t},O = {¬̃, ∨̃, ∧̃}

and the interpretations of the connectives are given by the following tables:

¬̃
f {t}
⊥ {⊥}
> {>}
t {f}

∨̃ f ⊥ > t

f {f,>} {t,⊥} {>} {t}
⊥ {t,⊥} {t,⊥} {t} {t}
> {>} {t} {>} {t}
t {t} {t} {t} {t}

∧̃ f ⊥ > t

f {f} {f} {f} {f}
⊥ {f} {f,⊥} {f} {f,⊥}
> {f} {f} {>} {>}
t {f} {f,⊥} {>} {t,>}

Proof:
Part 1. The proof is by a simple check that a valuations : F → {0, 1, I} satisfies conditions (s1)–(s10) in
Definition 4.1 iffs is a legal valuation inM3

r. Indeed, it is easy to see that the group of conditions among
(s1)–(s10) containing a particular connective determines precisely the interpretation of that connective
in M3

r. For example, in view of Condition (s6), I∨̃I, cannot equal0, but both I and 1 are possible, for
(s3) is a one-sided implication, and (s4), (s5) do not apply. Hence I∨̃I = {I, 1}.
Part 2. The forward implication is again by a simple check. Namely, we prove that if a valuationd
satisfies Conditions (d1)–(d6) of Definition 4.3, thend respects the NmatrixM4

I .
For the backward implication, letv be a legal valuation inM4

I . We must constructS ∈ Pm(S) such
that v is the EIP processor valuation generated byS. To do this, we splitv into a family of low-level
valuationsSv defined as follows:

1. For any atomic formulap ∈ A, we include inSv source valuationss0
p, s

1
p such that:

s0
p(p) =

{
0 if 0 ∈ v(p)
I otherwise

s1
p(p) =

{
1 if 1 ∈ v(p)
I otherwise
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2. For any formula of the formϕ ∨ ψ such that1 ∈ v(ϕ ∨ ψ), we include inSv a source valuation
sϕ∨ψ such that:

sϕ∨ψ(ϕ ∨ ψ) = 1, andsϕ∨ψ(χ) = I for every proper subformulaχ of ϕ ∨ ψ

3. For any formula of the formϕ ∧ ψ such that0 ∈ v(ϕ ∧ ψ), we include inSv a source valuation
sϕ∧ψ such that:

sϕ∧ψ(ϕ ∧ ψ) = 0, andsϕ∧ψ(χ) = I for every proper subformulaχ of ϕ ∧ ψ

4. The partial source valuations given in Items 1–3 above are extended to all formulas inF by as-
signing the value I to all atoms for which the values of those valuations have not been defined in
Items 1,2, 3, and then extending the resulting new partial valuations to all formulas according to
the truth tables of the Kleene matrixM3

K .

Next, we prove that the familySv defined in this way has the following properties:

(i) Eachs ∈ Sv represents a legal source valuation inS.

(ii) The EIP processor valuation generated bySv is v.

We begin with Point (i). It is easy to see that all the partial valuationss0
p, s

1
p, sϕ∨ψ, sϕ∧ψ defined in

Items 1–3 above are legal in the NmatrixM3
r, and so are their extensions defined by assigning I to all

atoms whose value has not been defined in Items 1–3. As every valuation inM3
K is a legal valuation in

M3
r, then all total valuations inSv obtained out of the above-mentioned partial valuations according to

Item 4 are also legal inM3
r, and so represent legal information sources inS.

To prove Point (ii), denoteg = Ce(S), d = Ps(g). We have to prove that

d(ϕ) = v(ϕ) (3)

for anyϕ ∈ F .
We argue by induction on the structure of formulas.
For anyx ∈ {0, 1}, x ∈ g(p) iff x = s(p) for somes ∈ Sv. However, by the definition of the

valuations inSv, x = s(p) for s ∈ Sv iff s = sx(p) and x ∈ v(p). Thusg(p) = v(p). As by
Corollary 4.2 we haved(p) = g(p), this yieldsd(p) = v(p).

Assume now (3) holds for formulasϕ1, ϕ2. We shall prove it holds for¬ϕ1, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, too.

¬ϕ1: Substituting1− y for x in (ii) of Corollary 4.2, we conclude that, for anyy ∈ {0, 1}, y ∈ d(¬ϕ1)
iff 1 − y ∈ d(ϕ1). Since by the inductive hypothesisd(ϕ1) = v(ϕ1), this yieldsy ∈ d(¬ϕ1) iff
1 − y ∈ v(ϕ1). As v is a legal valuation inM4

I , the latter holds iffy = 1 − (1 − y) ∈ v(¬ϕ1),
whence (3) holds for¬ϕ1.

ϕ1 ∨ ϕ2: By (iv) of Corollary 4.2, we have0 ∈ d(ϕ1 ∨ ϕ2) iff 0 ∈ d(ϕ1) and0 ∈ d(ϕ2), which, by
the inductive hypothesis, holds iff0 ∈ v(ϕ1) and0 ∈ v(ϕ2). As v is a legal valuation inM4

I , the
latter in turn holds iff0 ∈ v(ϕ1 ∨ ϕ2).
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Assume now1 ∈ d(ϕ1 ∨ ϕ2). Then, by (iii) of Corollary 4.2, either1 ∈ d(ϕ1) or 1 ∈ d(ϕ2) or
1 ∈ g(ϕ1 ∨ ϕ2). By the inductive hypothesis, the first two cases are equivalent to1 ∈ v(ϕ1) and
1 ∈ v(ϕ2), respectively, and both the latter options yield1 ∈ v(ϕ1 ∨ ϕ2) by the disjunction truth
table ofM4

I . If finally 1 ∈ g(ϕ1 ∨ ϕ2), thens(ϕ1 ∨ ϕ2) = 1 for somes ∈ Sv. Then one of the
following must hold:

1. s(ϕi) = 1 for somei,

2. s(ϕ1) = s(ϕ2) = I ands(ϕ1 ∨ ϕ2) = 1.

In Case 1, we have1 ∈ g(ϕi), whence1 ∈ d(ϕi) by (i) of Corollary 4.2, and1 ∈ v(ϕi) by the
inductive hypothesis. Consequently,1 ∈ v(ϕ1 ∨ ϕ2) by the disjunction truth table ofM4

I .

In Case 2, we must clearly haves = sϕ1∨ϕ2 , where the latter source is defined as in Item 2 above
(with ϕ,ψ replaced byϕ1, ϕ2). Hence1 ∈ v(ϕ1 ∨ ϕ2) by the quoted Item 2.

For the opposite direction, suppose1 ∈ v(ϕ1 ∨ ϕ2). Then, by the definition ofSv, Sv contains a
sources = sϕ1∨ϕ2 such thats(ϕ1 ∨ ϕ2) = 1. Hence1 ∈ g(ϕ1 ∨ ϕ2), whence1 ∈ d(ϕ1 ∨ ϕ2) by
(i) of Corollary 4.2.

ϕ1 ∧ ϕ2: The proof is again analogous to that for disjunction, withsϕ∨ψ of Item 2 replaced bysϕ∧ψ of
Item 3, (iv) of Corollary 4.2 replaced by (v), and (iii) of that Corollary replaced by (vi).

Thus (3) holds for all formulae, and hencev = d. ut

Corollary 4.4. 〈LC ,`EIP〉 is a (decidable) logic.

Proof:
Immediate from the last theorem and Fact 4.1. ut

Theorem 4.3. A functiond is an EIP processor valuation generated by a multiset of sources which taken
together provide complete information about all atomic formulas (i.e. for anyp ∈ A, there existss ∈ S
such thats(p) 6= I), iff it is an M3

I -valuation, where the NmatrixM3
I = 〈V,D,O〉 is defined as follows:

V = {f,>, t},D = {>, t},O = {¬̃, ∨̃, ∧̃}, and the interpretations of the connectives are given by the
following tables:

¬̃
f {t}
> {>}
t {f}

∨̃ f > t

f {f,>} {>} {t}
> {>} {>} {t}
t {t} {t} {t}

∧̃ f > t

f {f} {f} {f}
> {f} {>} {>}
t {f} {>} {t,>}

Proof:
(⇒) Suppose thatS = 〈S, g, d〉 is an EIP structure, where the sources inS taken together provide
complete information about all atomic formulas inA. Then, for anyp ∈ A, there existss ∈ S such
thats(p) 6= I. By Equation (2) following Definition 4.5, this impliesg(p) 6= ⊥ for anyp ∈ A. In turn,
it is easy to see that by Corollary 4.2 the latter yieldsd(ϕ) 6= ⊥ for any ϕ ∈ F . Hence, in view of
Theorem 4.2,d is legal valuation inM4

I which never takes the value⊥. However, comparing the truth
tables ofM4

I andM3
I , we can easily see that any such valuation must be legal inM3

I — whence so isd.
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(⇐) The backward implication is proved analogously as in Part 2 of Theorem 4.2, with the additional
observation that ifv(ϕ) 6= ⊥ for eachϕ ∈ F , then the sources in{si

p | p ∈ A, i = 0, 1} defined as in
the above-mentioned proof taken together provide complete information about all atomic formulas.ut

Corollary 4.5. Let PJ C be the class of EIP structures where the sources provide jointly complete in-
formation about all atomic formulas. Then〈LC ,`PJC〉 is a decidable logic.

Proof:
Immediate from the last theorem and Fact 4.1. ut

Next we prove that the use of non-deterministic matrices for capturing the logics generated by the
valuations considered in Theorems 4.2 and 4.3 is indeed unavoidable, if we want to represent each such
logic using a single matrix.

Theorem 4.4. There is no ordinary, finite-valued matrix which generates the logic of a single source.
The same applies to the logic〈LC ,`EIP〉 of EIP structures, and to the logic〈LC ,`PJC〉.

Proof:
By Theorems 4.2 and 4.3, we have to prove that no ordinary matrix generates the logic induced byM3

r,
or the logic induced byM4

B, or the logic induced byM3
I .

SupposeM is an ordinaryn-valued matrix. Forp ∈ A, definep1 = p andpk+1 = p ∨ pk for
k = 1, 2, . . .. Now letv be any valuation legal inM. SinceM is n-valuedmatrix, it can easily be seen
thatv(pn+1) ∈ {v(p1), . . . , v(pn)}. As a result, for anyq ∈ A, v(q∨pn+1) ∈ {v(q∨p1), . . . , v(q∨pn)}.
Sincev is an arbitrary valuation inM, this yieldsq ∨ p1, . . . , q ∨ pn `M q ∨ pn+1. However, the above
does not hold for eitherM3

r, M3
I , orM4

B. Indeed: the valuationv defined byv(q) = I, v(pi) = I for
1 ≤ i ≤ n + 1, v(q ∨ pi) = t for 1 ≤ i ≤ n, andv(q ∨ pn+1) = I is legal inM3

r, v |= q ∨ pi for
1 ≤ i ≤ n andv 6|= q ∨ pn+1. The counter-example forM4

B andM3
I is the valuationu defined by:

u(q) = f, v(pi) = f for 1 ≤ i ≤ n + 1, v(q ∨ pi) = > for 1 ≤ i ≤ n, andv(q ∨ pn+1) = f. ut

Next we show that, unlike the case of Belnap’s model (see Theorem 3.1) or its counterparts dealt
with in Theorem 4.1, the logic ofEIP structures cannot be generated by any subclass ofEIP in which
there is a finite upper bound on the number of sources.

Lemma 4.1. There are EIP processor valuations which cannot be obtained from any finite number of
source valuations.

Proof:
To give an example of such a valuation, take any infinite sequence of atomic formulaep0, p1, p2, . . ., and
define sequencesB1, B2, . . . andC1, C2, . . . of formulae recursively as follows:

B1 = C1 = p0 ∨ p1

Bn+1 = ¬Cn ∨ pn+1 (n ≥ 1)
Cn+1 = Cn ∨Bn+1 (n ≥ 1)
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Now let us define a partial valuationv0 by taking:

v0(pn) = ⊥ for all n ≥ 0
v0(Bn) = t, v(Cn) = t, v(¬Cn) = f for all n ≥ 1

As the set of formulas occurring in the above definition is closed under subformulas andv0 is compliant
with the matrixM4

I , then by Fact 4.1v0 can be extended to a legal total valuationv in M4
I , which is a

valid EIP processor valuation.
SupposeS is a set of sources inS generating the valuationv, and letg be the global valuation

generated byS defined as in Equation (2) following Definition 4.5. Theng ¹ v by condition (d0) of
Definition 4.3 forv. Hence asv(pk) = ⊥ for all k ≥ 0, then alsog(pk) = ⊥ for all k ≥ 0. Since by
Equation 2 for anyx ∈ {0, 1} we havex ∈ g(pk) iff x = s(pk) for somes ∈ S, theng(pk) = ⊥ for all
k ≥ 0 impliess(pk) = I for all k ≥ 0 and eachs ∈ S.

Now suppose that for a sources ∈ S we haves(Bk) = 1 for somek > 1. As by Theorem 4.2s is a
legal valuation in the NmatrixM3

r andCk = Ck−1∨Bk, then from the truth table ofM3
r for disjunction

we immediately gets(Ck) = 1. SinceCn+1 = Cn ∨ Bn+1 for eachn ≥ 1, then by simple induction
we obtains(Cn) = 1 for anyn ≥ k, whences(¬Ck) = 0 for anyn ≥ k by the truth table ofM3

r for
negation. AsBn = ¬Cn−1∨pn for n > 1, then from the foregoing we conclude — using again the truth
table for disjunction — thats(Bn) = s(¬Cn−1 ∨ pn) = I for anyn > k.

Consequently,s(Bk) = 1 must also imply thats(Bn) = I for all 1 ≤ n < k. Indeed, since
v(Bn) = t = {1} andg(Bn) ⊆ v(Bn), then0 6∈ g(Bn), whences(Bn) ∈ {1, I}. However,s(Bn) = 1
would imply by the reasoning given above thats(Bl) = I for eachl > n, contradicting the fact that
k > n ands(Bk) = 1.

This implies that for everyk > 1 we need a different sources ∈ S to assign 1 toBk, thus ensuring
that1 ∈ g(Bk). As by Corollary 4.2 we havev = U(g), then, by the definition ofU in Definition 4.4,
g(Bk) indeed needs to contain 1 in order to ensure thatv(Bk) = t. HenceS must be infinite. ut

Theorem 4.5. Let EIP≤n be the class of EIP structures in which the number of sources is at mostn.
Then`EIP 6=`EIP≤n

and`EIP≤n
6=`EIP≤k

for n 6= k. Moreover: for everyn, there is a finite setΓn of
formulas and a formulaψn such thatΓn `EIP≤n

ψn, but neitherΓn `EIP ψn nor Γn `EIP≤k
ψn for

anyk > n .

Proof:
Let Γn = {Bi | 1 ≤ i ≤ n + 1} ∪ {Ci | 1 ≤ i ≤ n + 1}, whereBi andCi are defined as in the proof of
the Lemma 4.1, and let

ψn = (p0 ∨ ¬p0) ∨ . . . ∨ (pn+1 ∨ ¬pn+1) ∨ ¬B1 ∨ . . .¬Bn+1 ∨ ¬C1 ∨ . . .¬Cn+1

It can be easily checked that an EIP processor valuationv is a model ofΓn that is not a model ofψn iff
v(pi) = ⊥ andv(Bi) = v(Ci) = t for every1 ≤ i ≤ n + 1. Now from the proof of Lemma 4.1 it easily
follows that such an EIP processor valuationv exists, but any set of sources that generates it must have
at leastn + 1 elements. HenceΓn andψn have the required properties. ut

At this point it should be emphasized that Lemma 4.1 and Theorem 4.5 show a crucial difference
between the logics of information processing structures presented in this paper and the source-processor
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logics given in [8] (where no conditions whatever were imposed on the behavior of sources), as well
as those based on the Society Semantics [14]. Namely, while the two latter types of logics could be
generated by structures containing at most two of sources, the logics of EIP structures depend on the
number of sources in the structures, and some of such logics cannot be characterized by structures with
any finite number of sources.

5. Proof systems

In this section we provide cut-free Gentzen-type systems for all the logics considered above (with one
exception, all of them have been known before).

Definition 5.1.

1. The systemG4 is given in Figure 2 below:

Axioms: Γ, ψ ⇒ ∆, ψ

Rules: Cut and the following logical rules:

[¬¬⇒]
Γ, ψ ⇒ ∆

Γ,¬¬ψ ⇒ ∆
[⇒¬¬]

Γ ⇒ ∆, ψ

Γ ⇒ ∆,¬¬ψ

[∧⇒]
Γ, ψ, ϕ ⇒ ∆

Γ, ψ ∧ ϕ ⇒ ∆
[⇒∧]

Γ ⇒ ∆, ψ Γ ⇒ ∆, ϕ

Γ ⇒ ∆, ψ ∧ ϕ

[¬∧⇒]
Γ,¬ψ ⇒ ∆ Γ,¬ϕ ⇒ ∆

Γ,¬(ψ ∧ ϕ) ⇒ ∆
[⇒¬∧]

Γ ⇒ ∆,¬ψ,¬ϕ

Γ ⇒ ∆,¬(ψ ∧ ϕ)

[∨⇒]
Γ, ψ ⇒ ∆ Γ, ϕ ⇒ ∆

Γ, ψ ∨ ϕ ⇒ ∆
[⇒∨]

Γ ⇒ ∆, ψ, ϕ

Γ ⇒ ∆, ψ ∨ ϕ

[¬∨⇒]
Γ,¬ψ,¬ϕ ⇒ ∆

Γ,¬(ψ ∨ ϕ) ⇒ ∆
[⇒¬∨]

Γ ⇒ ∆,¬ψ Γ ⇒ ∆,¬ϕ

Γ ⇒ ∆,¬(ψ ∨ ϕ)

Figure 2. The proof systemG4

2. The systemGKL is obtained fromG4 by adding to it¬ψ, ψ,Γ ⇒ ∆ as axioms.

3. The systemGLP is obtained fromG4 by adding to itΓ ⇒ ∆,¬ψ,ψ as axioms.

4. The systemG4
I is obtained fromG4 by deleting the rules[∨ ⇒] and[¬∧ ⇒].

5. The systemG3
I is obtained fromG4

I by adding to itΓ ⇒ ∆,¬ψ, ψ as axioms.

6. The systemG3
r is obtained fromGKL by replacing[∨ ⇒] and[¬∧ ⇒] with the following rules:
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[∨⇒A]
Γ ⇒ ∆,¬ψ Γ, ϕ ⇒ ∆

Γ, ψ ∨ ϕ ⇒ ∆
[∨⇒B]

Γ ⇒ ∆,¬ϕ Γ, ψ ⇒ ∆
Γ, ψ ∨ ϕ ⇒ ∆

[¬∧⇒A]
Γ,¬ψ ⇒ ∆ Γ ⇒ ∆, ϕ

Γ,¬(ψ ∧ ϕ) ⇒ ∆
[¬∧⇒B]

Γ,¬ϕ ⇒ ∆ Γ ⇒ ∆, ψ

Γ,¬(ψ ∧ ϕ) ⇒ ∆

Theorem 5.1.

1. Soundness and completeness:For any set of sequentsS ⊆ SeqLC
and any sequentΣ ∈ SeqLC

:

(a) S `G4 Σ iff S `M4
B

Σ (and sò G4 Γ ⇒ ψ iff Γ `M4
B

ψ).

(b) S `GKL Σ iff S `M3
K

Σ (and sò GKL Γ ⇒ ψ iff Γ `M3
K

ψ).

(c) S `GLP Σ iff S `M3
P

Σ (and sò GLP Γ ⇒ ψ iff Γ `M3
P

ψ).

(d) S `G4
I

Σ iff S `M4
I

Σ (and sò G4
I

Γ ⇒ ψ iff Γ `M4
I

ψ).

(e) S `G3
I

Σ iff S `Mr
I

Σ (and sò G3
I

Γ ⇒ ψ iff Γ `M3
I

ψ).

(f) S `G3
r

Σ iff S `M3
r

Σ (and sò G3
r

Γ ⇒ ψ iff Γ `M3
r

ψ).

2. Cut-elimination: Let G ∈ {G4, GKL, GLP , G4
I , G

3
I , G

3
r}. ThenG admits strong cut elimination:

If S = {Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n} thenS `G Σ iff there is a proof ofΣ from S in G where all
cuts are made on formulas in

⋃n
i=1(Γi ∪∆i) (in particular,̀ G Σ iff Σ has a cut-free proof inG).

Proof:
The results aboutG4

I andG3
I were already proved in [8]. The soundness and completeness ofG4, GKL,

and GLP for the corresponding matrices and the cut-elimination theorem for these systems are well
known results (see e.g. [5, 3]). That the latter theorem can be strengthened for them as described in the
formulation of the present theorem can be shown in a way similar to that used below in case ofG3

r . This
is the case on which the rest of this proof concentrates.

For simplicity, in what follows we drop the decorations on|=.

We start by showing that ifS `G3
r

Σ, then, for any legal valuationv in the NmatrixM3
r such that

v |= S, we havev |= Σ. Obviously, for this it suffices to show the above for allS ⊆ Seq andΣ ∈ Seq
such thatS is the set of premises of some ruler in C3

r andΣ is the consequence of that rule. This can be
done by a simple check, which we illustrate below on the example of two non-standard rules inG3

r .
Rule (∨ ⇒)A: We haveS = {Γ ⇒ ∆,¬ϕ; Γ, ψ ⇒ ∆}, Σ = Γ, ϕ ∨ ψ ⇒ ∆. Assume nowv is a

legal valuation in the NmatrixM3
r such thatv |= S. Then we have the following two cases:

Case 1:v 6|= Γ or v |= ∆. As Σ = Γ, ϕ ∨ ψ ⇒ ∆, then obviouslyv |= Σ too.
Case 2: v |= ¬ϕ andv 6|= ψ. As the sets of designated and non-designated values inM3

r are
respectively{1} and{I, 0}, this impliesv(¬ϕ) = 1 andv(ψ) ∈ {I, 0}. Hence from the truth tables of
M3

r we obtainv(ϕ) = 0 andv(ϕ ∨ ψ) ∈ {I, 0}. Thusv |= Σ.
Rule (¬∧ ⇒)B: We haveS = {Γ ⇒ ∆, ψ; Γ,¬ϕ ⇒ ∆}, Σ = Γ,¬(ϕ ∧ ψ) ⇒ ∆. Assume again

v is a legal valuation inM3
r such thatv |= S. If eitherv 6|= Γ or v |= ∆, then obviouslyv |= Σ. Thus

it suffices to consider the case whenv |= ψ andv 6|= ¬ϕ. Thenv(ψ) = 1 andv(¬ϕ) ∈ {I, 0}. By the
truth tables ofM3

r, the latter yieldsv(ϕ) ∈ {I, 1}, whencev(ϕ∧ ψ) ∈ {I, 1} andv(¬(ϕ∧ ψ)) ∈ {I, 0}.
Consequently,v |= Σ also in this case.
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To show the converse as well as the cut-elimination part of the theorem, defineG3
r to be the calculus

obtained fromG3
r by limiting the applications of the cut rule to formulas occurring in the premises of

sequent derivations. In other words: IfS = {Γi ⇒ ∆i | i ∈ I} thenS `G3
r

Σ if there is a proof ofΣ
from S in G3

r where all cuts are made on formulas inF (S) =
⋃

i∈I(Γi ∪ ∆i) (in particular:`G3
r

Σ iff

Σ has a cut-free proof inG3
r ). We shall prove thatG3

r is (strongly) complete for̀M3
r
, i.e., for any set of

sequentsS ⊆ Seq and any sequentΣ ∈ Seq, S `M3
r

Σ iff S `G3
r

Σ. Obviously, this will end the proof
of the theorem.

For simplicity, we first provide the proof in detail for the case in whichS is finite. Until the end of
this proof, by “derivable” we mean “derivable inG3

r”.

We argue by contradiction. Suppose that for a finite set of sequentsS and a sequentΣ0 = Γ ⇒ ∆
we haveS `M3

r
Σ0, butΣ0 is not derivable fromS. We shall construct a counter-valuationv such that

v |= S butv 6|= Σ0.
SinceS is finite, so isF (S). Assume it hasl elements. Letϕ1, ϕ2, . . . , ϕl be an enumeration of the

formulae inF (S). We shall now define a sequence of sequentsΓn ⇒ ∆n, n = 0, 1, . . . , l, such that, for
n = 0, 1, . . . , l:

(i) Γ ⊆ Γn, ∆ ⊆ ∆n

(ii) If n 6= 0 thenϕn ∈ (Γn ∪∆n).

(iii) Γn ⇒ ∆n is not derivable fromS.

The above sequences are defined inductively as follows:

• We putΓ0 = Γ, ∆0 = ∆. As by our assumptionΓ ⇒ ∆ is not derivable fromS, (i)–(iii) above
are satisfied forn = 0.

• Supposen ≤ l−1 and we have defined the sequentsΓi ⇒ ∆i satisfying conditions (i)–(iii) fori ≤
n. Then the sequentsΣ1 = Γn ⇒ ∆n, ϕn+1 andΣ2 = ϕn+1, Γn ⇒ ∆n cannot be both derivable
from S, since thenΓn ⇒ ∆n would be derivable from them by an allowed cut on the formula
ϕn+1 ∈ S. We takeΓn+1 ⇒ ∆n+1 to beΣ1, if Σ1 is not derivable, andΣ2 otherwise. Then,
obviously, from the inductive assumption it follows that the sequenceΓn+1 ⇒ ∆n+1 satisfies
conditions (i)–(iii).

By induction, the whole sequenceΓn ⇒ ∆n, n = 0, 1, . . . , l, satisfies the desired conditions (i)–(iii).
What is more, from the inductive construction we can see that

(iv) Γn ⊆ Γn+1,∆n ⊆ ∆n+1 for n = 1, 2, . . . , l − 1

Let Γ∗ ⇒ ∆∗ be the extension ofΓl ⇒ ∆l to a saturated sequent, i.e. a sequent containingΓl ⇒ ∆l

and closed under the logical rules inG3
r applied backwards. By way of example, a sequentΓ′ ⇒ ∆′ is

closed under rule(∨ ⇒)A applied backwards iffϕ ∨ ψ ⊆ Γ′ implies either¬ϕ ∈ ∆′ or ψ ∈ Γ′. Then
we can easily see that:

(I) Γ ⊆ Γ∗, ∆ ⊆ ∆∗;

(II) F (S) ⊆ Γ∗ ∪∆∗;
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(III) Γ∗ ⇒ ∆∗ is saturated and it is not derivable fromS.

Now we define the valuationv as follows:

• For any atomicp,

(i) v(p) =





1 if p ∈ Γ∗

0 if ¬p ∈ Γ∗

I otherwise

• For any formulasϕ,ψ:

(ii) v(¬ϕ) =





1 if v(ϕ) = 0
0 if v(ϕ) = 1
I otherwise

(iii) v(ϕ ∨ ψ) =





1 iff v(ϕ) = 1 or v(ψ) = 1
or v(ϕ) = v(ψ) = I andϕ ∨ ψ ∈ Γ∗

0 iff v(ϕ) = 0 andv(ψ) = 0
I otherwise

(iv) v(ϕ ∧ ψ) =





1 iff v(ϕ) = 1 andv(ψ) = 1
0 iff v(ϕ) = 0 or v(ψ) = 0

or v(ϕ) = v(ψ) = I and¬(ϕ ∧ ψ) ∈ Γ∗

I otherwise

Clearly,v is well-defined, sincep and¬p cannot both belong toΓ∗ (for otherwiseΓ∗ ⇒ ∆∗ would be
an axiom). Moreover, it can be easily checked, by considering the truth tables of the NmatrixM3

r, that
v defined as above is legal valuation for that Nmatrix. It remains to prove thatv is indeed the desired
counter-valuation, i.e., that:

(I) v |= Σ for eachΣ ∈ S; (II) v 6|= (Γ ⇒ ∆);

We start with (II). AsΓ ⊆ Γ∗,∆ ⊆ ∆∗, it suffices to prove thatv 6|= (Γ∗ ⇒ ∆∗). SinceD = {1}
andv(ϕ) ∈ {0, 1, I} for any formula, this means we have to show that:

v(γ) = 1 for anyγ ∈ Γ∗, v(δ) ∈ {0, I} for anyδ ∈ ∆∗

To do this, we will prove the following for any formulaϕ ∈ F :

(A) v(ϕ) =

{
1 if ϕ ∈ Γ∗

0 if ¬ϕ ∈ Γ∗
(B) v(ϕ) ∈

{
{0, I} if ϕ ∈ ∆∗

{1, I} if ¬ϕ ∈ ∆∗

We argue by induction on the complexity ofϕ, proving simultaneously (A) and (B).

ϕ = p ∈ A
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(A) We havev(ϕ) = 1 by (i) in the definition ofv if p ∈ Γ∗, andv(ϕ) = 0 by (ii) in that
definition if¬p ∈ Γ∗, whence (A) holds forϕ.

(B) If ϕ = p ∈ ∆∗, then, sinceΓ∗ ⇒ ∆∗ is not derivable, we havep 6∈ Γ∗, whencev(ϕ) 6= 1 by
(i) in the definition ofv, which yieldsv(ϕ) ∈ {0, I}.
In turn, if ¬ϕ ∈ ∆∗, then¬p 6∈ Γ∗, for Γ∗ ⇒ ∆∗ is not derivable. Thus again by (i) we have
v(p) 6= 0, which yieldsv(ϕ) ∈ {1, I}. Hence (B) holds forϕ.

ϕ = ¬ψ

(A) If ϕ ∈ Γ∗, then¬ψ ∈ Γ∗, whence by the inductive hypothesis forψ we getv(ψ) = 0. Hence
by (ii) in the definition ofv we havev(ϕ) = v(¬ψ) = 1.
Suppose now¬ϕ ∈ Γ∗. Then¬¬ψ ∈ Γ∗, and, asΓ∗ ⇒ ∆∗ is saturated, by rule(¬¬ ⇒)
we haveψ ∈ Γ∗. Hence by the inductive hypothesisv(ψ) = 1, which in turn yieldsv(ϕ) =
v(¬ψ) = 0 by an application of (ii) in the definition ofv. Thus (A) holds in this case too.

(B) If ϕ ∈ ∆∗, then¬ψ ∈ ∆∗, whence by the inductive hypothesis forψ we getv(ψ) ∈ {1, I}.
By the definition ofv, the latter impliesv(ϕ) = v(¬ψ) ∈ {0, I}.
If ¬ϕ ∈ ∆∗, then¬¬ψ ∈ ∆∗, and, asΓ∗ ⇒ ∆∗ is saturated, by rule(⇒ ¬¬) we have
ψ ∈ ∆∗. Thus by the inductive hypothesisv(ψ) ∈ {0, I}, whencev(ϕ) = v(¬ψ) ∈ {1, I}
by the definition ofv. Hence (B) holds forϕ.

ϕ = ψ1 ∨ ψ2

(A) If ϕ ∈ Γ∗, then, sinceΓ∗ ⇒ ∆∗ is saturated, by rule(∨ ⇒)A we have either (a1)¬ψ1 ∈ ∆∗

or (a2)ψ2 ∈ Γ∗, while by rule(∨ ⇒)B we get either (b1)¬ψ2 ∈ ∆∗ or (b2)ψ1 ∈ Γ∗.
If either (a2) or (b2) hold, then by inductive hypothesis we have eitherv(ψ2) = 1 for (a2), or
v(ψ1) = 1 for (b2). Hence in both casesv(ϕ) = v(ψ1 ∨ ψ2) = 1 by the first line in (iii) of
the definition ofv.
If neither (a2) or (b2) hold, then (a1) and (b1) do, i.e.¬ψ1 ∈ ∆∗ and¬ψ2 ∈ ∆∗. Hence
by the inductive hypothesis for (B) we havev(ψ1), v(ψ2) ∈ {1, I}. If v(ψi) = 1 for somei,
then againv(ϕ) = v(ψ1 ∨ ψ2) = 1 by the first line in (iii) of the above definition. Finally,
if v(ψi) = I for i = 1, 2, then, in view ofψ1 ∨ ψ2 ∈ Γ∗, by the last clause of the above-
mentioned definition line we get againv(ϕ) = v(ψ1 ∨ ψ2) = 1.

In turn, if ¬ϕ ∈ Γ∗, then¬(ψ1 ∨ ψ2) ∈ Γ∗. As Γ∗ ⇒ ∆∗ is saturated, by rule (¬∨ ⇒)
this implies¬ψ1,¬ψ2 ∈ Γ∗. Hence by the inductive hypothesisv(ψ1) = v(ψ2) = 0, which
impliesv(ϕ) = v(ψ1 ∨ ψ2) = 0 by the second line of (iii) in the definition of (v). This ends
the proof of (A) forϕ.

(B) If ϕ ∈ ∆∗, thenψ1 ∨ ψ2 ∈ ∆∗. Thus, as∆∗ is saturated, by rule(⇒ ∨) we haveψi ∈ ∆∗

for i = 1, 2. Hence by the inductive hypothesisv(ψi) ∈ {0, I} for i = 1, 2. Moreover, as
ψ1 ∨ ψ2 ∈ ∆∗ andΓ∗ ` ∆∗ is not derivable, thenψ1 ∨ ψ2 6∈ Γ∗. Hence by the definition of
v we havev(ψ1 ∨ ψ2) ∈ {0, I}, so (B) is satisfied.

Next, if ¬ϕ ∈ ∆∗, then¬(ψ1 ∨ ψ2) ∈ ∆∗. Since∆∗ is saturated, from rule(⇒ ¬∨) we
obtain¬ψi ∈ ∆∗ for somei ∈ {1, 2}. Hence by the inductive hypothesisv(ψi) ∈ {1, I} for
somei ∈ {1, 2}, and sov(ψ1 ∨ ψ2) ∈ {1, I} by the definition ofv. Thus (B) holds forϕ.
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ϕ = ψ1 ∧ ψ2

The proof in this case is similar to that in the previous one, and is left for the reader.

It remains to prove (I), i.e., to show thatv |= Σ for eachΣ ∈ S. So letΣ ∈ S. ThenΣ = ϕ1, . . . , ϕk ⇒
ψ1, . . . , ψl for some integersk, l and formulasϕi, ψj , i = 1, . . . , k, j = 1, . . . , l. Clearly, we cannot
have both{ϕ1, . . . , ϕk} ⊆ Γ∗ and{ψ1, . . . , ψl} ⊆ ∆∗, for thenΓ∗ ⇒ ∆∗ would be derivable fromΣ,
and hence fromS, by weakening. SinceF (S) ⊆ Γ∗ ∪∆∗, this implies that eitherϕi ∈ ∆∗ for somei,
or ψj ∈ Γ∗ for somej. Hence by (A) and (B), which we have already proved, we have eitherv 6|= ϕi for
somei, or v |= ψj for somej, which implies thatv |= Σ.

This ends the proof in caseS is finite. The proof in caseS is infinite is similar. Using Zorn Lemma
(or an infinitary version of the construction used above for the finite case), we first extendΓ and∆ to a
maximal pair of theoriesTΓ andT∆ such thatΓ ⊆ TΓ, ∆ ⊆ T∆, and there is no sequentΓ′ ⇒ ∆′ such
thatΓ′ ⊆ TΓ, ∆′ ⊆ T∆, andΓ′ ⇒ ∆′ is derivable fromS. It can easily be shown thatF (S) ⊆ TΓ ∪ T∆,
and that the infinite “sequent”TΓ ⇒ T∆ is closed under the logical rules inG3

r applied backwards. It
easily follows that we can useTΓ andT∆ to define a counterexamplev in exactly the same way asΓ∗

and∆∗ have been used for this task in the finite case. ut

Corollary 5.1. The cut rule is admissible in all the systems considered in Theorem 5.1.

6. Conclusions

A natural next step in our research will be to extend the language of EIP structures with suitably inter-
preted quantifiers to obtain a first-order logic of information processing structures. Another direction is
to consider other strategies for collecting information from sources, or to use more than four truth values
to characterize the information they provide about formulas.

Further, the problems considered in our work bear an obvious relationship to the works on on social
choice, e.g. [14, 15], where a group of individuals aggregate their individual judgments on some inter-
connected propositions into the corresponding collective judgment. Hence another direction of future
work would be to try to apply our approach to the problems of social choice.
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