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Abstract. We examine the issue of collecting and processing information from various sources,
which involves handling incomplete and inconsistent information. Inspired by the framework first
proposed by Belnap, we consider structures consisting of information sources which provide infor-
mation about the values of formulas of classical propositional logic, and a processor which collects
that information and extends it by deriving conclusions following from it according to the truth ta-
bles of classical logic, applied forward and backward. Our model extends Belnap’s in allowing the
sources to provide information also about complex formulas. As that framework cannot be captured
using finite ordinary logical matrices, if we want to represent each of the relevant logics with a single
matrix, we employ Nmatrices for that purpose. In opposition to the approach proposed in our ear-
lier work, we assume that the information sources are reasonable, i.e. that they provide information
consistent with certain coherence rules.

We provide sound and complete sequent calculi admitting strong cut elimination for the logic of a
single information source, and (several variants of) the logic generated by the source and processor
structures described above. In doing this, we also provide new characterizations for some known
logics. We prove that, in opposition to the variant with unconstrained information sources considered
earlier, the latter logic cannot be generated by structures with any bounded number of sources.
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1. Introduction

The goal of this paper is to present some novel applications of logics with finite-valued semantics (es-
pecially three-valued and four-valued ones) to information processing, and their relationships with some
well-known previous approaches in that area. Our practical motivations stem from the necessity to deal
on a daily basis with vast amounts of information provided by a multitude of various sources. That infor-
mation is often incomplete or inconsistent — but we nevertheless need to draw reasonable conclusions
from it, and use them a basis for our decisions and actions.

The first researcher to propose a logical framework for dealing with the above issue was Belnap. His
famous model, presented in [11, 12], consistemhfafrmation sourcesvhich provided information about
the values oftomicformulas of some logical language, angracessomwhich collected and processed
information from the sources. Belnap’s model was later extended by Carnielli and Lima-Marques [14],
but none of the above proposals went beyond the simple case of sources providing information solely
aboutatomicformulas.

As this is insufficient for dealing with many situations commonly encountered in various information
environments, in this paper we consider a more general approach, where the sources may also provide
information aboutomplex formulaeMoreover, we assume that the sourcesraasonablén the sense
of providing coherent and consistent information.

The rest of the paper is organized as follows. In Section 2, we introduce logical preliminaries, and
present the basic finite-valued matrices used for reasoning about information processing. In Section 3,
we define the information processing framework discussed in the paper. We start with presenting Bel-
nap’s basic information processing model, and proving its correspondence to Dunn-Belnap’s four-valued
matrix, and in case of complete information — to Asenjo’s-Priest’s three-valued matrix. Next we define
general information processing structures for an arbitrary langdaged the logics (consequence rela-
tions) introduced by classes of such structures. Section 4 is devoted to information processing structures
for the languagd.¢ of propositional classical logic. We begin with defining the notions of an infor-
mation source and the standard information processokgrand giving an effective way to compute
the final valuation generated by such a processor. Then we define a standard existential information
processing (EIP) structure fdro. After recalling the notion of non-deterministic matrices (Nmatrices),
we prove that the class of information sources is identical with the class of legal valuations in a certain
three-valued Nmatrix, and the class of all processor valuations generated by EIP structures — with the
class of legal valuations in a certain four-valued Nmatrix (and in case of structures providing complete
information — in another three-valued Nmatrix). We also show that none of the corresponding conse-
guence relations can be generated by a single ordinary finite-valued matrix. Finally, we prove that there
are EIP processor valuations which cannot be generated by a finite number of source valuations, and that
the logics generated by classes of all EIP structures with at masurces are different for different
values ofn, as well as different from the logic generated by the class of all EIP structures. In Section
5, we present sequent proof systems for all the six considered logics, and prove their strong soundness,
completeness and cut-elimination. Section 6 presents an outline of future work.
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2. Basic Finite-valued Logics of Information

2.1. Logical Preliminaries

In the sequell denotes a propositional language with a.deif atomic formulas and a s, of well-
formed formulas. We denote the elementsbby p, g, r (possibly with subscripted indexes), and the
elements ofF, by ¢, p. Sets of formulas ¥, (theories) are denoted i, and finite sets of such
formulas are denoted Hy or A. Following the usual convention, we shall abbrevigte {:)} by I, 1.
More generally, we shall writE, A instead ofl" U A.

Definition 2.1. A (Tarskian)consequence relatidior a languageC is a binary relatior- between theo-
ries inF, and formulas inF, satisfying the following three conditions:

Reflexivity. if v € T,thenT F 4.
Monotonicity.  if 7+« and7 C 7/, then7’ + 1.
Transitivity. if 7FandZ,yF o, thenT + .

Let be a consequence relation 0r

e We say that-is structuralif, for every uniform£-substitutiord and everyZl” andv, if 7 F 4 then
0(T) F 6(¢) (Whered(T) = {0(¢) | ¢ € T}).

¢ We say that- is consistent(or non-trivial) if there exist some non-empty theofy and some
formulay such that7 t/ .

e We say that is finitary if, for every theoryZ and every formula) such thatZ” + , there is a
finitetheoryl’ C 7 such thafl” F .

Definition 2.2.

1. A (propositional)ogicis a pair(L, ) such that’ is a propositional language, ahds a structural,
consistent, and finitary consequence relationddr

2. Alogic (L,F) is decidableif, given a finiteI' C F, andvy € F, it is decidable whethdr +
or not.

The most standard semantic (model-theoretical) way of defining a consequence relation (and so a
logic) is by using the so-called logical matrices:

Definition 2.3. A (multi-valued)matrix for a language’ is a tripleM = (V, D, O), where
e Vis a hon-empty set of truth values,
e D is a non-empty proper subset¥f called thedesignatectlements o, and

e (O includes am-ary functions, : V™ — V for everyn-ary connective> of L.

The condition of being consistent, and even more the condition of being finitary, are not always included in the definition of a
logic, but they should be satisfied by aagplied logic This is why we have included them here.
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Definition 2.4. Let M = (V, D, O) be a matrix forL.
e A (legal) valuationin M is a functionv : 7, — V such that
v(o(Y1, -+ ¥n)) = 3(v(¥1), -, v(¥n))
for everyn-ary connective> of £ and everyy, ..., ¥, € Fr.
e A valuationv in a matrix M is amodelof:
— aformulay (v =M o) if v() € D.
— atheoryI’ C Fr (v EM T)if v =My forally € T.

e Theformula consequence relatianduced by M is the relation-,. on P(F,) x F, such that
T .  if every model ofI" in M is also a model op.

It has been shown in [23] that #1 is afinite matrix for £ (i.e., if its set of truth-values is finite) then
(L,Fam) Is a decidable logic according to Definition 2.2 (in particutary is finitary). Below we refer
to (L, ) asthe logic induced by the matrix1.

2.2. Basic Matrices for Information Processing

Let L be the propositional language based on the connectivasandV.

1. Classical logi@ L is induced by the matrixV, D, ©), whereV = {0,1}, D = {1}, and=, V, and
A are given by the standard two-valued truth tables.

2. The logicK L of Kleene is induced by the 3-valued Kleene matit. = (V, D, O), where
V={0,1,1}, D={1}, O0={5V,A}

and the interpretations of the connectives are given by the following tables:

= | Voot Aloo1
0| 1 0] o011 0] o000
1|0 1] 111 1] 011
L] | I 11 | o 1 |

3. The logicLP of Asenjo-Priest ([4, 22]) is induced by the 3-valued Asenjo-Priest's mattix =
(V,D,0), whereV = {0,1,1}, D = {1,1}, and the interpretations of the connectives are as in
M.

4. The logicDB is induced by the Dunn-Belnap’s matrix ([16, 12, 1M} = (V4, D4, O,), Where
VvV, =A{f, L, T,t}, Dy = {T,t}, and the interpretations of the connectives are as follows:

5 v foL Tt Al L Tt
f t f f 1L T t f | f f f f
N T 1L 1Lt t L] f L f L
T T T T t T t T ff T T
t | f ot t ot ot ot t | f L T t
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Some explanatory comments:

e We have used here 1 (“true”) and 0 (“false”) to denote the classical truth values. The interpretation
of the third valuel is usually taken as “unknown” in case &fZ, and “inconsistent” in case of
LP. Thus, in the two three-valued matrices mentioned in 2. and 3. above, the “truth-values”
are actuallyinformation valuesrepresentindknowledgeabout the truth/falsity of a proposition.
Accordingly, in those matrices 1 actually means “known to be true”, while 0 means “known to be
false”. In turn, the meaning dfin £LP is “known to be true and also known to be false”, while in
KL I represents lack of knowledge.

e The basic idea behindA7, is to haveboth the “unknown” value ofCL and the “inconsistent”
value of LP in the same matrix. The first of those values is denoted herk, byhile the second
by T. Further,t andf roughly correspond to the classical truth-values. The set of elements of
M4 is often identified with{1, 0} x {1,0}. Given a tuplg(a, b), the first component represents
knowledge about the truth of a formula, whileepresents knowledge about its falsity (whereby
the two pieces of knowledge may be independent). According to this interpretation, the meanings
of the four values are as follows:

t=(1,0) - known to be true but not known to be false
f=1(0,1) - known to be false but not known to be true

T =(1,1) -known to be true and known to be false

1 =(0,0) -notknown to be true and not known to be false

This representation leads to two natural partial orderg’gnthe “knowledge” order <, defined by
(a1,b1) <p (ag,be) iff a1 < ag andb; < by, and the'truth” order<, defined by(a1,b1) <; (az, bs) iff
a1 < ao andby, > by. Each of these relations induces a lattice structur®grand together they induce
what is known as thbilattice FOUR (see Figure 1 below). It should be noted that the operaticaisd
A on 'V, correspond (respectively) to the lattice operatisms<, andin f<, induced by<;, while =, V,
andA are allmonotoniowith respect to<y.

Figure 1. FOUR

Note 2.5. FOUR has been generalized to a family of structures cdiiéttices which are very useful
for handling knowledge and information. See e.qg. [19, 18, 3] for further details.

Note 2.6. It should be noted that the upper and lower parts of the bilattice shown in the above figure
(containingf, T,t andf, L, t, respectively) are closed under the interpretations of theonnectives in
FOUR. What is more, the matrix corresponding to the upper sublattice is isomorphic to Asenjo-Priest’s
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matrix A%, under the isomorphisrh(f) = 0, A(T) = I, h(t) = 1, while that corresponding to the lower
one is isomorphic to Kleene matrix(3. under the isomorphism(f) = 0,g(L) = I, ¢(t) = 1. Hence
from now on bothM3, and M3 will be viewed as submatrices d#(%.

3. Information Processing Framework

3.1. Belnap’s Model

The development of new network technologies allows several agents to access and update large knowl-
edge bases, sometimes simultaneously. The process of combining information originating from different
sources and drawing conclusions from it is very complex, especially in case of contradictory (inconsis-
tent) information.

A framework for dealing with this situation based on the 4-valued |layfcdescribed above was first
developed by Belnap in[11, 12]. Its main idea is to interpret the elememisad subsets df0, 1} which
reflect the information on the truth/falsity of a formula of the langubgef classical propositional logic
derived by a processor from the information obtained by it from some set of independent sources. As
in Belnap’s model the sources provide information about atomic formuldg-ainly, aBelnap source
valuation or shortlyBelnap sourcgis a mapping

s: A—{0,1,1}
where A is the set ohtomicformulas of L and, for anyp € A:
e s(p) = 1 amounts to sourcesaying thap is true;
e s(p) = 0 amounts to sourcesaying thap is false;
e s(p) = | amounts to source saying that it has no information abqut

After collecting the above information from the sources, the processor then assigns to arestabset
d(p) of {0, 1} according to the following two simple principles:

(dbA) 1 € d(p) iff there is a source such thats(p) = 1, i.e. s says thap is true;
(dbB) 0 € d(p) iff there is a source such thats(p) = 0, i.e.s says thap is false.

Accordingly, the values i, are now interpreted as follows:

t={1} - said to be true but not said to be false
f={0} - said to be false but not said to be true
T=4{0,1} - said to be true and said to be false

1=10 - not said to be true and not said to be false

Next, the processor assigns a subet) of {0, 1} also to non-atomic formulas dfc using the basic
classical principles. In other words:

(dbl) 0 € d(—y) iff 1 € d(y);
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(db2) 1 € d(—y) iff 0 € d(¢);

(db3) 1 e d(p V) iff 1 € d(p)orl e d(w);

(=

( (
(db4) 0 € d(p Vo) iff 0 € d(¢) and0 € d(v);

( (

(

) )
) )
(db5) 1 e d(p Av)iff 1 € d(p)andl € d(v);
(db6) 0 € d(p A1) iff 0 € d(p) or0 € d(v).

Belnap’s model yields the following characterizations of Dunn-Belnap’s and Asenjo-Priest’'s matrices
in terms of processor valuations:

Theorem 3.1.

1. Any processor valuatioé obtained from a set of Belnap sources in accordance with (dbA)—(dbB)
and (db1)—(db6) above is a legal valuationtit;. Conversely, every legal valuation jtt% can
be obtained as a processor valuatibim a source-processor framework with at most two Belnap
sources.

2. Call a Belnap sourcelassicalif it does not use the value I. If all sources are classical, then the
resulting processor valuation is a legal valuation in the Asenjo-Priest’s metfixsee Note 2.6).
Conversely, every legal valuation i3, can be obtained as a processor valuation a source-
processor framework with (at most two) classical Belnap sources.

Proof:

Part 1. (=) Assumed is a processor valuation obtained out of a set of Belnap soweesording to

rules (dbA-B), (db1-6). Then it is very easy to check, basing on the above ruleg,ishampliant with

M%. For example, assume thaty) = L,v(y)) = T. As L = andT = {0,1}, by the assumption
0 ¢ v(p) andl € v(yp). HenceO ¢ v(y V ¢) by (db4) andl € v(p Vv ¢) by (db3). This yields
v(p V) = {1} = t — which is exactly the value assigned to the disjunction.afnd T in M%.

(<) Let v be a legal valuation iM%, and define Belnap source valuatiofiss! as follows: for any

pE A,
0 if 0€w(p) 1 if1ev(p)
0/ \ 1,y
s (p) = { | otherwise s () { | otherwise

Now takeS = {s’, s'}, and letd be the processor valuation obtained fréhusing (dbA-B), (db1-6).
Then by (dbA-B) we clearly havé(p) = v(p) for everyp € A. Since by(=-) proved abovel is a legal
valuation inM% and each such valuation is uniquely defined by its values for atomsdthen
Part 2. (=) According to Note 2.6, we will treat13, as a submatrix afM %, with | replaced byT. By
Part 1, a processor valuation obtained from classical Belnap sources is a legal valuatign iSince
by induction such a valuation does not take the valyéhen it is a legal valuation in1%, too.
(<) Let v be a legal valuation io\%, and define Belnap source valuatiofiss! as follows: for any
peA,

if v(p) = f, thens®(p) =

if v(p) =t, thens®(p) =

if v(p) = T, thens®(p) =0, s

s'(p)
s'(p)
1

) 1

@
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Thens®, st are classical Belnap sources. Takisig= {s°, s'}, we can easily prove — in a way similar
to the proof of(<«) in Part 1 — that the processor valuation obtained fi®epincides withv. O

It is worth noting that Point 1 of Theorem 3.1 corresponds to one of the main results on Society
Semantics as originally proposed in [14], stating that two sources are always enough to characterize
an open society. As we shall see at the end of Section 4, the situation with respect to the framework
introduced in this paper is very different.

3.2. General information processing structures

Belnap’s model is adequate for the case in which the sources are simple relational databases. However, it
does not capture all the situations encountered in practice. In particular, knowledge bases and disjunctive
databases can provide information also almmmplexormulas. A more general framework, suitable for
handling such a situation, where a source may provide the processor with information (in the form of
a truth value from{0, 1, I'}) aboutarbitrary formulas of L, was considered in [8]. In that framework,

the assignment of subsets{df, 1} to formulas ofL is carried out in two stages. At the first stage, the
processor collects the information from the sources according to some strategy (for example: the strategy
used in Belnap’s model is the existential one, in which the procésiiatly includes a value: € {0, 1}

in the subset of0, 1} assigned to a formula iff some source assignsto ). At the second stage,

the processor expands the information collected at the previous stage by adding to it new information
that can be derived from the initial information using certain rules based on the truth tables of classical
logic. For this stage, the crucial assumption made in [8] was that the final assigno®rgloped by the
processor should include everything that can be derived from the classical truth tables without assuming
consistency or full knowledge. In practice, this means that conditions (db3) and (db6) above should be
weakened, so that only the “if” part is retained (but not the “only if”).

Now the point of introducing this general framework is to allow situations in which a source may
know (for example) that a certain disjunction holds, without knowing which of the disjuncts is the true
one. This does not mean, of course, thatasonablesource may arbitrarily assign truth-values to
formulas. Such a source should for example assignd Woyy whenever it assigns 1 to eitheror .
Moreover: the only other case in which it might assign pt0¢ (without assigning 1 to either of them)
is when it assigng to both (i.e., when it does not know the truth or falsity of eitheor ¢). In other
words: a reasonable source which knows thaty is true, buty (say) is false, cannot claim that it does
not know anything aboup (i.e., cannot assigi to it), or that it knows that) is false. In this case, it
should be able to conclude thatis the true disjunct. Similarly, a reasonable source would not agsign
(or 1) top, and at the same time 0 {9V v, because it should know that a disjunction may be false only
if both disjuncts are false.

Ignoring such obvious principles is the main deficiency of the framework presented in [8]. That
framework simply did not take into consideration the crucial fact that most of the information sources we
encounter in real life, like rational humans, or correctly built computer systems/software programs/agents,
do behave in a reasonable way. In contrast, in the present paper we consider information processing
structures containing solely reasonable sources (described informally above, and defined further on in
the paper). What is more, we generalize the framework presented in [8] to incorporate provision of
information also about values of formulas of languages other thafe.g., first-order or modal one).
Consequently, below we start by formulating a more general notion of an information structure con-
nected with an arbitrary languagkeof some logic. To better capture the multifarious combinations of
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different information collecting and processing mechanisms, we introduce a separate notianforf-an
mation collectorwhich carries out the former process, whil@racessoiis, like in [8], responsible for
expanding the collected information.

Definition 3.1. Consider an arbitrary languade and letA, andF, be the set of all atomic formulas
and the set of all formulas df, respectively.

e By alow-level valuationfor £ we mean a function : 7 — {0,1,1}. The set of all such
valuations will be denoted by ..

e By areasonable source valuatipor reasonable information sourcéor £ we mean a low-level
valuations € V. which satisfies certain coherence conditions dictated by the semantiZs of
The set of all reasonable source valuationsdavill be denoted byS .

e By ahigh-level valuatiorfor £ we mean a function : 7, — P({0, 1}). The set of all high-level
valuations forZ will be denoted byH /.

e By aninformation collectonwe mean a mapping' : P,.(S.) — H,, whereP,,,(Sy) denotes the
set of all multisubsets oV ., i.e. the set of all multisets whose elements are valuatioBg in

¢ By aninformation processowe mean a mapping : H; — H.

All the notions above are defined relative to a langudgéut oncel is fixed, the subscript in the
notation introduced above will be dropped.

The exact shape of the information processor will depend on the semantics of the concrete language
L. On the other hand, information collectors may implement various information collecting strategies.
The two basic collectors represent the existential and universal strategies (considered already in [8]), and
are defined as follows:

Definition 3.2.

e The existential information collectors the mappingC. : P, (Sz) — H such that, for any
S € Pn(Se), and anyp € Fr,

Vo € {0,1} x € (Ce(S))(p) iff Is € S. s(p) = x]

e The universal information collectois the mappingC, : Pn,(Sz) — H, such that, for any
S € Pn(Se), and anyp € Fr,

Vo € {0,1} x € (Cu(S))(p) iff Vs € S. s(p) = x]

Definition 3.3. Let C be an information collector, anel — an information processor for a language
By aninformation processingC, P)-structurefor £ we mean a tuplé& = (S, g, d), where:

1. S € Pn(Sr) is a multiset of information sources fdr;

2To be specified individually for each language
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2. g =C(9) (g is called theglobal (C, P)-valuation generated b§);
3. d=P(g) = P(C(9)) (dis called the theprocessor C, P)-valuation generated b§).

The prefix(C, P) in the above definition will be omitted & and P are understood or immaterial.

Note that the use of multisets in the above definition allows us to capture the situation when differ-
ent information sources provide the same information. As this is quite common in practice, identifying
sources that provide the same information would lead to incorrect results in various information col-
lecting strategies based on the “majority opinion”, or the percentage share of sources providing certain
information.

3.3. Induced consequence relations

Let £ be alanguage. Each information processing structuré mnerates in a natural way a satisfaction
relation onF, determined by its processor valuation. Accordingly, each class of information processing
structures fotZ induces a corresponding consequence relation:

Definition 3.4.

e LetS = (S, g, d) be an information processing structure. Tiiesatisfiegis amodelof) a formula
€ F (or ¢ is satisfied inS), in symbolsk=s ¢, iff 1 € d(y).

e Let 7 be a class of information processing structures. foheula consequence relationduced
by J is the relatiort- 7 onP(F) x F such thafl’ - ¢ if everyS € 7 which is a model of" is
also a model ob.

Note 3.5. It is easy to see that s is a structural consequence relation. In Corollaries 4.4, 4.5, and 4.3
below we show that in the most important cases it is étstary, i.e. (£, ) is alogic (according to
Definition 2.2).

As the proof mechanisms we will use for reasoning about information processing structures in what
follows are Gentzen-type sequent calculi which manipulate sequents, below we introduce the sequential
counterparts of the relations defined in Definition 3.4.

Definition 3.6. Let £ be a language.

e By asequenof £ we mean a structure of the forin = A, wherel’ and A are finitesetsof
formulas of£. The set of all sequents in the languages denoted byseq, .

e LetS = (S, g,d) be an information processing structure. Tisesatisfiegis amodelof) a sequent
Y =T = A, insymbols=s ¥, iff either S is a model of some formula i\, or it is not a model
of some formula i

e Let 7 be a class of information processing structuresgorThe sequent consequence relation
induced by is the relatiort- 7 onP(Seq,) x Seq such tha) 7 X if everyS € J which is
a model of@ is also a model of.



A. Avron, B. Konikowska / Finite-valued Logics for Information Processing 1011

In the above definition, for the sake of simplicity, we use the same symbol for the formula conse-
guence relation and for the sequent consequence relation. However, this will not cause any misunder-
standing, for it will be always clear from the context which relation we actually have in mind.

It is important to recall here two relationships which always hold between a formula consequence
relation and the standard sequent consequence relation which is derived from it like in Definition 3.6.

Fact 3.1. For any set of formulaf C F and any formulgy € F, we have:

o If ['isfinite, thenl 7 ¢ iff 7 (I' = ).

o I'Fyoiff (= |y el}kg (= ¢).

4. Information processing structures for L

The general framework introduced in the preceding section allows for considering many different vari-
ants of information processing structures. Out of them, in this paper we will examine in detail a class of
structures forLo being a direct extension of Belnap’s model — namely, structures employing the exis-
tential information collecto€’, from Definition 3.2, and the so-called standard information procelRsor

that extends the information collected 6y using the rules based on the truth tables of classical logic
defined in [8]. The basic difference with respect to [8] will consist in the fact that the above information
structures will only contain reasonable sources in the sense discussed above, and defined formally below.
4.1. Information sources and information processors forLq

Let F be the set of formulas dfc, A its set of atomic formulasy = V., andH = Hy,..

Definition 4.1.

A reasonable source valuatiomr areasonable information sourcdor Lo is a low-level valuation
s € 'V such that:

(s1) s(—p) = 01iff s(p) = 1;

(s2) s(—p) = 1iff s(¢) = 0;

(s3) If s(p) =1ors(y) =1thens(p V) =1,
(s4) If s(p V) =1ands(¢) = 0thens(y) = 1;
(s5) If s(p v¢) =1ands(¢) = 0thens(p) = 1;
(s6) s(p V) =0iff s(p) =0ands(y) = 0;
(s7) s(p ANY) =11iff s(p) =1ands(y) =1,
(s8) If s(¢p) =00rs(yp) =0thens(p Ay) =0;
(89) If s(p Ap) =0ands(¢) = 1thens(p) = 0;
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(s10) If s(p Ap) = 0ands(p) = 1thens(y) = 0.

The setS;,, of all reasonable source valuations faf is denoted below b$. As from now on we only
consider reasonable sources, the adjective “reasonable” is dropped for brevity.

It can be easily seen that the above conditions characterize the sourdes float provide infor-
mation which is consistent with the truth tables of classical logic, and are also able to derive from the
information they already possess any assignment of a truth value to a formula which is imposed by these
truth tables. Conditions (s3)—(s6), for example, are exact counterparts of the principles concerning as-
signments to disjunction which were explained at the beginning of subsection 3.2. The other conditions
can be justified in a similar way. Moreover: itis not difficult to see thatlfgrthe above list is complete.
Thus as froms(p V 1) = 1 alone one cannot infer in classical logic the value of eitt{er) or s(v),
reasonable sources lacking full knowledge need not satisfy the converse of condition (s3).

Definition 4.2. Letg,d € H. We say thay < dif g(¢) C d(y) for every formulap.

Obviously,=< is a partial order oiH.

Definition 4.3.

The standard information processor fdis is the information processad?; : H — H such that, for
anyg € H, Ps(g) = d, whered is the <-minimal high-level valuation irH satisfying the following
conditions:

(d0) g < d;

(d1) 0 € d(—y) iff 1 € d(y);

(d2) 1 € d(—y) iff 0 € d(p);

) )
(d4) 0 e d(p V) iff 0 € d(p)and0 € d(v);
) (
)

(=
(

d3) 1 ed(pVvy)ifled(p)orl ed(),
(

(d5) 1 e d(p Av)iff 1 € d(e)andl € d(y);
(

(d6) 0 e d(p A)if 0 € d(p)or0 e d(y).

As can be easily seen, rules (d0)—(d6) express the fact that the processor expands information col-
lected from the sources by the information collector (represented by g in rule (d0)) by using the classical
truth tables in both directions: from the values assigned to the components of a compound formula to the
value assigned to that formula, as well as from the value assigned to a compound formula to the values
assigned to its components whenever the said tables determine them in a unique way. Thus the “only if’
in (d4) is justified by the fact that O appears in the truth table for disjunction only when both disjuncts
are assigned 0. In contrast, the classical truth table for disjunction does not determine the values which
are assigned to formulas when their disjunction is assigned 1. Hence in (d3) we have implication rather
than equivalence. The deep reason for this is that information sources may provide information about
complex formulas without providing information about their subformulas, so e.g. in case of disjunctive
information the processor can learn that/ + is true without learning that eithes or v are true (and
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in case of conjunctive information — that A ¢ is false without learning that either or ) are false

— which explains (d6)). Moreover: unlike the case of a reasonable source, even the analogues of rules
(s4), (s5) and (s9), (s10) need not apply to a reasonable processor. The difference is that while a source
assigns at most one classical truth-value to a formula, and is assumed to be consistent, a processor may
assign to a formula both classical values, and so is not assumed to be consistent. Thus the analogue of
(s4) should be rejected, because from the fact thatd(¢ V 1) and0 € d(y) the processor shouhibt

conclude that) is true (i.e.1 € d(%)), since the discussed situation may be due to one source saying
thaty is true (implying thatl € d(y), and sol € d(¢ V1)), andanothersource informing the processor

thaty is false (implying thab € d(y)), without either of them providing any information abajut

The minimality we assume in Definition 4.3 ensures that no superfluous information is added by the
processor, and the processor valuation contains nothing but the information gathered from the sources
and its necessary consequences.

Finally, let us note that in Definition 4.3 we have not provided any rules for implication. The rea-
son is that although appropriate counterparts of (db1)-(db6), (d0)—(d6), and (s1)—(s10) could be easily
formulated for the classical (material) implication, this would be of little value, because the resulting
connective (which can be defined@as> ) = —¢ V 1)) does not correspond to the consequence relations
generated by classes of information processing structures defined in Section 3.3. Indeedpeyes
not valid in the corresponding logics for such an implicatimreven thoughy does follow from itself in
all of them. Hence this connective is not suitable for reasoning about properties of information process-
ing structures, and instead of it we will use a non-nestable version of implication provided by sequents.
More suitable versions of implication on the language level will be considered in future work.

4.2. Expressiveness issues

From Definition 4.3 we can see tHatmulasof L~ do not have sufficient expressive power for describing
some important facts regarding the information processing structures. First, there is no way to express
the fact that a certain formula is not true— i.e., 1 ¢ d(y) — for, unlike classical logic, this is not
equivalent to the truth ofp. Similarly, we cannot expresfisjunctive knowledgef the form “one of

the formulasy and+ is known to be true” — i.e., either € d(y) or 1 € d(¢) — for by (d3) this isnot
equivalent tol € d(¢ V v), as the latter can hold without eithere d(¢) or 1 € d(1)) holding.

However, these problems can be overcome by using Gentzersé¢gpentswhich we have chosen
as our deduction mechanism primarily for the above reason. Namely, given a information processing
structure(S, g, d), a sequenpy, ..., , = 1, ..., Y expresses the information that eitheg d(y1),
orl & d(pse),or...orl & d(py,), orl € d(ip1), or...orl € d(¢y). Note again that this type of
information cannot be expressed by any formula of the language, for the usual translation of sequents to
formulae known from classical logic is not adequate here.

As noted at the end of the previous subsection, another shortcoming of the classical labhgusge
that it does not possess any implication connective that can be used as such in the present framework.
Again this problem is (essentially) overcome by using sequents, since sequents provide a non-nestable
version of implication.
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4.3. Effective method for computing the processor valuation

In the definition of the valuatiod derived by the standard information processbifrom a high-level
valuationg, rules (d1)—(d6) go both down and up the formula structure, which does not explicitly provide
an effective way of computing out of g. We will now prove thatl can be obtained from by a single
“downward” pass, followed by a single “upward” pass.

Definition 4.4. Let h € H be any high-level valuation.

(A) D(h), thedownward closuref h, is the<-minimal valuation, € H such that for any: € {0, 1},
and anyp € F,

(0) h=<h

(1) x € h(—p) =1 —x € h(yp)

(2) 0 € h(¢p V1) = 0 € h(p) and0 € h(v)
(3) 1 € h(p Ap) = 1 € h(p) andl € h(v)

(B) U(h), theupward closureof h, is the<-minimal valuationk* € H such that for any: € {0,1},
anyp € A, and anyp € F,
(i) x € h(p) =z € h*(p)forpe A
(i) zeh*(p)=1—x¢€ h*(~yp)
(i) Leh*(p)orlehn*(p)orl eh(pV)=1€h* (V)
(iv) 0 € h*(p)and0 € h*(yp) = 0 € h*(p V)
(V) 1€ h*(p)andl € h*(¢) = 1 € h*(p AN )
(vi) 0 € h*(p)or0 e h*(yp)or0 € h(p A) =0 € h*(p A1)

Proposition 4.1. The standard information procesd@yis the compaosition of operatior3 andU, i.e.,
foranyg € H, Ps(g) = U(D(9g))-

Proof:
For convenience, denote= Ps(g),g = D(g),g* = U(D(g)).

It can easily be seen that/if ¢ H satisfies conditions (d0)—(d6) from Definition 4.3, thgn=< h. It
follows that in order to prove that* is the minimal high-level valuation satisfying conditions (d0)—(d6)
in Definition 4.3, it suffices to prove thgt satisfies these conditions.

We start with proving (d0). Since < g, we prove instead that

9(p) Cg"(v) 1)

for anyp € F. We argue by induction on the structureynf
First, for atomicy, i.e. p = p € A, (1) follows from (i) in the definition olJ.
Now we assume that (1) holds fet ¢/, and prove that it also holds ferp, ¢ V 1, ¢ A 1:
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¢ = —p: By (1) in the definition ofD, for anyx € {0, 1}, we haver € g(—¢) = 1 —x € G(p). By the
inductive assumption fap, the latter implied — = € g*(y), whence by (ii) in the definition o/
we getl — (1 — z) = x € g*(—p). Accordingly, (1) holds for.

E=pVy: If 0 eg(p V), then by (2) in the definition oD we get0 € g(¢) and0 € g(v), whence
0 € g*(¢) and0 € g*(¢) by the inductive assumption far, ¢). By (iv) in in the definition ofU,
this impliesO € g*(¢ Vv ¢). Finally, if 1 € g(¢ Vv ¢), thenl € g*(¢ V ¥) by the last disjunct in
the antecedent of (iii) in the definition &f. Thus (1) holds forp V 1 too.

¢ = ¢ A The proof is dual to that given in the previous case.

Accordingly, (d0) holds. To prove satisfaction of (d1)—(d6), we first observe that (d3) and (d6) follow
from Points (iii) and (vi) in the definition of/, respectively, while the backward implications in (d1)-
(d2) and (d4)—(d5) follow from Points (ii) and (iv), (v) in that definition, respectively. To see that the
converse implications also hold fgt, it is enough to note that (due to the “upward” constructiogof
from g) the only way to assign a value € {0, 1} to g*(—¢) is by using (ii), the only way to assign
0tog*(e V ¥) is by using (iv), and the only way to assign 1dt(¢ A ) is by using (v). Hence the
single-way implications in those conditions can in fact be replaced by equivalences, and conseguently
satisfies (d1)—(d6) too. O

An obvious consequence of the above theorem, which will prove useful later on, is the possibility to
reduce the above method for computintp a single upward pass if the high-level valuatipis closed
under rules (A)(1)—(3) of Definition 4.4

Corollary 4.1. If a valuationg € H is closed under Conditions (A)(1)—(3) of Definition 4.4, then
D(g) = gandPs(g) = U(g).
4.4. Standard existential information processing structures

After the foregoing preliminaries, we can now define the type of information processing structures that
we will be dealing with from now on:

Definition 4.5.

1. By astandard existential information processing structugieortly: EIP structure for L~ we mean
any information processin’., P;)-structure forL (see Definitions 3.3, 3.2, and 4.3). The class
of all EIP structures will be denoted I&ZP.

2. Let S € P, (S) be a multiset of source valuations. 8 = (S, g,d) is an EIP structure, i.e.
d = Ps(C.(9)), thend is called theEIP processor valuation generated By

3. A high-level valuatiorv € H is called arEIP processor valuatioif there existsS € P,,,(S) such
thatv is the EIP processor valuation generatedsby

Definition 4.5 implies that if(S, g,d) € £ZP, thend satisfies conditions (d0)—(d6) in Definition 4.3,
while, by Definition 3.2g is defined by the following formula: for any € F,

Vo € {0,1} (z € g(p) iff s € S. s(¢) = x) 2
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Itis easy to check that the processor valuatiari an EIP structure can be computed in a simple way
by applying the upper closure operator from Definition 4.4.

Corollary 4.2.  For any EIP structuré& = (S, g,d), we haved = U(g), whereU is defined as in
Definition 4.4. In other words] can be inductively defined as follows:

(i) = € g(p) = x € d(p) foranyz € {0,1} and anyp € A
(i) zed(p) =1—zed(—yp)foranyz € {0,1}

(i) Led(p)orled)orlegleVy)=1€cd(pVy)

(

()

()
(iv) 0 € d(p)and0 e d(yp) = 0€ d(e V)
(V) Led(p)andl € d(v) = 1 e d(p ANy)
()

(vi) 0ed(p)or0ed(yp)or0eglpNy)=0¢cdeAN)

Proof:

By Definition 4.5, we have = P;(g), whereg is defined according to Equation (2). Since each source
valuations € S satisfies Conditions (s1)—(s10) in Definition 4.1, from Equation (2) we can easily deduce
thatg satisfies Conditions (A) (1)—(3) of Definition 4.4. Indeed: (A)(1) follows immediately from Eq. (2)
and (s1)-s(2), (A)(2) — from Eq. (2) and (s6), and finally (A)(3) from Eg. (2) and (s7). Thus the claim
follows from Corollary 4.1. O

45. Non-deterministic semantics

It is not difficult to verify that any valuation in the Kleene Matti( %, is a legal source valuation fdrc,
and that we have the following alternatives for the characterizations given in Theorem 3.1.

Theorem 4.1.

1. If S = (S, g, d) is an EIP structure in which all elements$#fre legal valuations in3,, then the
processor valuatiod is a legal valuation in%. Conversely, every valuation o¥1% coincides
with the processor valuation in some EIP structure having exactly two sources, both of which are
M3.~valuations.

2. If S = (S, g,d) is an EIP structure in which all elements®tre classical valuations then the pro-
cessor valuatiod is a legal valuation inV3,. Conversely, every legal valuation i3, coincides
with the processor valuation in some EIP structure having exactly two sources, both of which are
classical.

Proof:
Part 1. In accordance with Note 2.6, the Kleene matki&;- will be treated as a submatrix gf(%, with
| replaced byl, 1 byt, and0 by f.
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(=) It can be easily checked that all legal valuations\it}, satisfy Conditions (s1)—(s10) of Defi-
nition 4.1, and hence are legal information sourceS.ifurther, if all elements o$ are legal valuations
in M3, then from the properties o#13 it follows that, for anys € S, 1 € s(p vV ) iff 1 € s(¢) or
1 € s(¢), and analogously € s(p A1) iff 0 € s(p) or0 € s(3»). From this we can easily conclude
thatl € g(p Vo) iff 1 € g(p) orl € g(¢), and0 € g(e A ) iff 0 € g(p) or0 € g(v). Since
g = d by Definition 4.3, by the foregoing the componeiits g(¢ V ¢) and0 € g(¢ A ¢) can be
respectively deleted from Conditions (iii) and (vi) in Corollary 4.2. &is the <-minimal valuation in
H satisfying all Conditions of Corollary 4.2, this clearly implies that the implications in (d3) and (d6) of
Definition 4.3 can be replaced by equivalences. This in turn easily entailé thatbe obtained from the
set{s/A|s € S} in accordance with (dbA)—(dbB) and (db1)-(db6) preceding Theorem 3.1. Sinte
is a Belnap source for eashe S, by that Theorend is a legal valuation in\(4,.

(<) Assume now is a legal valuation inM%. Define two valuations?, s € V as follows: for
anyp € A, we take:

SO(p):{O if 0 € v(p) Sl(p):{l if 1€ v(p)

| otherwise | otherwise

and extend the above partial valuations to total valuations of formulds using the truth tables of
Kleene logic. TakeS = {s, s'}, and consider the EIP structu§, g, d), whereg = G.(S),d = Ps(g).
Then, by the definition of°, s!, both of these valuations are legal.v?3.. Moreover,g(p) = v(p) by
Equation 2 following Definition 4.5. Accordingly, from (i) of Corollary 4.2 it follows thgip) C d(p)
for anyp € A. As no values are added thip) by Conditions (ii)-(vi) of that Corollary, and is the
=<-minimal valuation satisfying (i)-(vi), this implied(p) = v(p) for anyp € A. Sincev is a legal
valuation inM%,, and by(=-) proved above so id, we must havel = v, for any such valuation is
uniquely defined by it values for atomic formulas.

Part 2. In accordance with Note 2.6, Asenjo-Priest's matkik’, will be treated as a submatrix of
M, with | replaced byT, 1 by t, and0 by f.

(=) As each classic valuation is a legal valuationii’,, then by Part 1 of the theorethis a legal
valuation in/\/l‘g. Since none of the source valuationsSitake the value |, theg(p) # L foranyy € F
by Equation (2) following Definition 4.5, and hence the same holdg fiorview of Corollary 4.2. As
M3, is a submatrix of\% not containingL, we conclude thad is a legal valuation in\(%,.

(<) Assume now is a legal valuation inV%,. Define valuations?, s € V as follows: for any
p € A, we put:

If v(p) = f, thens®(p) = s'(p) =
If v(p) =t, thens®(p) = s'(p) =
If v(p) = T, thens®(p) = 0,s'(p ) 1
and extend the above partial valuations to total valuations of formul&s ursing the truth tables of
Asenjo-Priest’s logic. The rest of the proof is analogous to thétefin Part 1, and is left to the reader.
O

Corollary 4.3. Let PX L be the class of EIP structures in which all information sources are legal valua-
tions in M3., and letPCL be the class of EIP structures in which all information sources are classical.
Then both(L¢, = PKL) and(L¢, - PCL) are logics.
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Proof:
Immediate by Theorem 4.1. O

On the other hand, by Theorem 4.4 below, neither a general source valuation nor a general EIP
processor valuations can be characterized by a single finite ordinary matrix. The obvious reason is that
such valuations do not respect the principle of truth-functionality, according to which the truth-value of
a complex formula is uniquely determined by the truth-values of its immediate subformulas. Hence,
to ensure an adequate but simple characterization of the above notions, instead of ordinary matrices
we employ here their generalization introduced in [9], in which the truth-value of a formula is chosen
non-deterministically from some nonempty set of options:

Definition 4.6.
1. A non-deterministic matri{Nmatrix) for a language is a triple M = (V, D, O), where

e Vs a non-empty set (of truth values).
e D is a non-empty proper subsetf
e O includes am-ary functiond : V* — 2V \ {(}} for eachn-ary connective> of L.

2. Let M be an Nmatrix forL. An M-valuationv is a functionv : 7 — V such that, for every
n-ary connective> of £ and everyyy,...,v¥, € Wr,

v(o(W, ..., ) € (v (¢1),...,v(y)).

3. Given an NmatrixM, the notions of a model of a formula or a theoryft, and the consequence
relation associated with are defined exactly as in the deterministic case (Definition 2.4).

Clearly, ordinary matrices (Definition 2.3) can be identified with Nmatrices in which the operations
always return a singleton. Hence the semantic framework of Nmatrices is indeed a generalization of the
semantic framework of matrices. This generalization enjoys all the important properties of the narrower
framework. In particular:

Fact 4.1. ([9]) Let M = (V, D, O) be an Nmatrix for a languageé.

1. Letwv : W — V be a partial valuation whose domai¥i is a set of formulas of which is closed
under subformulas. Assume thats consistent withM. Thenv can be extended to a full legal
valuation of formulas in\.

2. If Misfinite (i.e.,V is finite) thenL s = (L, ) is a decidable propositional logic according to
Definition 2.2 (In particular 4 is finitary if M is finite).

On the other hand, the use of Nmatrices allows us in many cases to provide a finite-valued semantics
to logics that cannot be characterized using finite deterministic matrices. Moreover: this semantics
can frequently be constructed imsdularway — something that cannot be done in the framework of
deterministic matrices (see [6, 7] for detaitshccordingly, Nmatrices have found important applications
in reasoning under uncertainty, proof theory, and other subjects (see [10] for a comprehensive survey).
In the present context, their importance is due to the following basic representation theorem:

3The converse is also true: Given a finite Nmatrix, a corresponding proof system for it can often be derived in a modular way.
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Theorem 4.2.

1. Afunction s : F — {0,1,1} is a source valuation iff it is an3-valuation, where the Nmatrix
M3 = (V,D,0) is defined as follows:

Vv=1{0,11}, D={1}, O={5V,A}

and the interpretations of the connectives are given by the following tables:

Voo 1 | Al o1 |
0 | {o} {13 {1} 0 | {0y {0} {0}
L {1y {1y {1} L {oy {1} {1}
oy {1 {1 L] {0}y {1} {o,1}

2. Afunctiond : 7 — {f, L, T,t} is an EIP processor valuation iff it is amtj%-valuation, where the
Nmatrix M3 = (V, D, O) is defined as follows:

V= {f,J_,T,t},D = {Tat}70 = {27\7;&}

and the interpretations of the connectives are given by the following tables:

5 v f i T t A f i T t
f {t} f {£. 73 {t, L} {7} {t} f A {fr {f}
Lo {1t {1y {t, 1} {8 {t Lo Ly {fr {f,L1}
T ATy T {ry  {ty {7} {t} T {fy {fy {7 {T}
t {f} t {t} {tt {t {t t {f+ {f.Lr {7} {t, 7}

Proof:
Part 1. The proof is by a simple check that a valuation — {0, 1, I } satisfies conditions (s1)—(s10) in
Definition 4.1 iff s is a legal valuation ioV3. Indeed, it is easy to see that the group of conditions among
(s1)—(s10) containing a particular connective determines precisely the interpretation of that connective
in M;?. For example, in view of Condition (s6)yl, cannot equal, but both | and 1 are possible, for
(s3) is a one-sided implication, and (s4), (s5) do not apply. Hevice-I{l, 1}.
Part 2. The forward implication is again by a simple check. Namely, we prove that if a valudtion
satisfies Conditions (d1)—(d6) of Definition 4.3, thérespects the Nmatrit14.

For the backward implication, letbe a legal valuation iM?. We must construct € P,,,(S) such
thatv is the EIP processor valuation generatedSoyTo do this, we spliy into a family of low-level
valuationsS, defined as follows:

1. For any atomic formula € A, we include inS,, source valuationsg, 321, such that:

So(p):{o if 0 € v(p) Sl(p):{l if 1€ v(p)

| otherwise | otherwise
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2. For any formula of the fornp Vv v such thatl € v(¢ V v), we include inS, a source valuation
5,vy SUCh that:

sovp (@ Vp) =1, ands,yq (x) = | for every proper subformulg of ¢ v ¢

3. For any formula of the fornp A v such thal) € v(¢ A ¢), we include inS, a source valuation
sony SUCh that:

sonp (@ A1) =0, ands,ay(x) = | for every proper subformulg of p A 9

4. The partial source valuations given in ltems 1-3 above are extended to all formuftabyiras-
signing the value | to all atoms for which the values of those valuations have not been defined in
ltems 1,2, 3, and then extending the resulting new patrtial valuations to all formulas according to
the truth tables of the Kleene matix(3..

Next, we prove that the familg, defined in this way has the following properties:

(i) Eachs € S, represents a legal source valuatior8in

(i) The EIP processor valuation generatedshyis v.

We begin with Point (i). It is easy to see that all the partial valuatkgns}o, Sovis Spny defined in
Items 1-3 above are legal in the Nmat/ix?, and so are their extensions defined by assigning | to all
atoms whose value has not been defined in Items 1-3. As every valuatidriis a legal valuation in
M3, then all total valuations it$,, obtained out of the above-mentioned partial valuations according to
Item 4 are also legal i3, and so represent legal information sourceS.in

To prove Point (i), denote = C.(S),d = Ps(g). We have to prove that

d(p) = v(ep) (3)

foranyy € F.

We argue by induction on the structure of formulas.

For anyz € {0,1}, x € ¢(p) iff z = s(p) for somes € S,. However, by the definition of the
valuations inS,, z = s(p) for s € S, iff s = s°(p) andz € v(p). Thusg(p) = v(p). As by
Corollary 4.2 we havé(p) = g(p), this yieldsd(p) = v(p).

Assume now (3) holds for formulas,, 2. We shall prove it holds forp1, 1 V 2, 1 A 2, tOO.

-1 Substitutingl — y for z in (ii) of Corollary 4.2, we conclude that, for anye {0,1}, y € d(—¢1)
iff 1 —y € d(¢1). Since by the inductive hypothesi$p,) = v(p1), this yieldsy € d(—;) iff
1 —y € v(p1). Asw is a legal valuation in\V4, the latter holds iffy = 1 — (1 — y) € v(—¢1),
whence (3) holds forp;.

©1V i By (iv) of Corollary 4.2, we havé € d(p1 V ¢2) iff 0 € d(¢1) and0 € d(p2), which, by
the inductive hypothesis, holds fife v(1) and0 € v(p2). Aswv is a legal valuation in\(%, the
latter in turn holds iff) € v(¢1 V p2).
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Assume nowl € d(p1 V ¢2). Then, by (iii) of Corollary 4.2, eithet € d(p1) or1 € d(yp3) or
1 € g(p1 V p2). By the inductive hypothesis, the first two cases are equivalehtta () and
1 € v(p2), respectively, and both the latter options yieéld v(p; V ¢2) by the disjunction truth
table of M%. Iffinally 1 € g(¢1 V ¢2), thens(¢1 V p2) = 1 for somes € S,. Then one of the
following must hold:

1. s(p;) = 1 for some;,

2. s(p1) = s(p2) = lands(p1 V p2) = 1.
In Case 1, we havé € g(y;), whencel € d(p;) by (i) of Corollary 4.2, and. € v(y;) by the
inductive hypothesis. Consequentlys v(p1 V 2) by the disjunction truth table of17.

In Case 2, we must clearly have= s, \..,, where the latter source is defined as in Item 2 above
(with ¢, ¢ replaced byp;, p2). Hencel € v(p; V p2) by the quoted Item 2.

For the opposite direction, suppokes v(y1 V 2). Then, by the definition of,, S, contains a
SOUrces = sy, vy, Such thats(yp V ¢2) = 1. Hencel € g(¢1 V ¢2), whencel € d(¢1 V o) by
(i) of Corollary 4.2.

©1 A 2. The proof is again analogous to that for disjunction, with,, of Item 2 replaced by, of
Item 3, (iv) of Corollary 4.2 replaced by (v), and (iii) of that Corollary replaced by (vi).

Thus (3) holds for all formulae, and hence- d. O

Corollary 4.4. (L¢,Ferp) is a (decidable) logic.

Proof:
Immediate from the last theorem and Fact 4.1. O

Theorem 4.3. A functiond is an EIP processor valuation generated by a multiset of sources which taken
together provide complete information about all atomic formulas (i.e. fopanyA, there exists € S

such that(p) # 1), iff it is an M3-valuation, where the Nmatri®t3 = (V, D, O) is defined as follows:

Vv = {f,T,t},D = {T,t},0 = {5,V, A}, and the interpretations of the connectives are given by the
following tables:

= | Vo ot T Ot Al T t
f {t} f T {7} {t} o {f  {f}
T AT T {ry {7} {8 T | A {TH T}
t {f} t {t {ty {t to] {f {1}y {t, T}

Proof:

(=) Suppose thaS = (S, g,d) is an EIP structure, where the sourcesSirtaken together provide
complete information about all atomic formulas.h Then, for anyp € A, there exists € S such
thats(p) # |. By Equation (2) following Definition 4.5, this implieg(p) # L for anyp € A. In turn,
it is easy to see that by Corollary 4.2 the latter yieldg) # L for anyp € F. Hence, in view of
Theorem 4.24 is legal valuation inM? which never takes the value. However, comparing the truth
tables ofM? and M3, we can easily see that any such valuation must be legiljn— whence so igl.
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(«) The backward implication is proved analogously as in Part 2 of Theorem 4.2, with the additional
observation that ifi(p) # L for eachy € F, then the sources ifis), | p € A,i = 0,1} defined as in
the above-mentioned proof taken together provide complete information about all atomic formalas.

Corollary 4.5. Let PJC be the class of EIP structures where the sources provide jointly complete in-
formation about all atomic formulas. Théh¢, Fp7¢) is a decidable logic.

Proof:
Immediate from the last theorem and Fact 4.1. O

Next we prove that the use of non-deterministic matrices for capturing the logics generated by the
valuations considered in Theorems 4.2 and 4.3 is indeed unavoidable, if we want to represent each such
logic using a single matrix.

Theorem 4.4. There is no ordinary, finite-valued matrix which generates the logic of a single source.
The same applies to the logi&c, Fe7p) of EIP structures, and to the logi€c, Fp7¢)-

Proof:
By Theorems 4.2 and 4.3, we have to prove that no ordinary matrix generates the logic induegid by
or the logic induced by\4, or the logic induced bym3.

SupposeM is an ordinaryn-valued matrix. Fop € A, definep! = p andp*t! = p v p* for
k=1,2,.... Now letv be any valuation legal im. Since M is n-valuedmatrix, it can easily be seen
thatv(p"*!) € {v(p'),...,v(p")}. Asaresult, forany € A, v(qgvp™t) € {v(qgvpl),...,v(qgvp™)}.
Sincev is an arbitrary valuation itM, this yieldsq V p', ..., ¢V p™ Faq ¢ V L. However, the above
does not hold for eithem?, M3, or M%. Indeed: the valuation defined byv(q) = I,v(p?) = I for
1<i<n+1l,vgVvp) =tforl <i<n,andv(qVp*!) =lislegalin M3, v = qV p for
1 <i < mnandv £ gV p"t. The counter-example fok} and M3 is the valuationu defined by:
u(g) =f,v(p") =ffor1 <i<n+1,v(gVvp’)=Tforl <i<mn,andv(qVp*t!)=T. O

Next we show that, unlike the case of Belnap’s model (see Theorem 3.1) or its counterparts dealt
with in Theorem 4.1, the logic oF' I P structures cannot be generated by any subclasg®fin which
there is a finite upper bound on the number of sources.

Lemma 4.1. There are EIP processor valuations which cannot be obtained from any finite number of
source valuations.

Proof:
To give an example of such a valuation, take any infinite sequence of atomic forpgutaep-, . . ., and
define sequenceBy, B-, ... andCq, (s, ... of formulae recursively as follows:

By =C1=poVp1
Bpy1=—CpV pny1 (n > 1)

Coy1=Co VB (n>1)
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Now let us define a partial valuatiag by taking:

vo(pn) = Lforalln >0
vo(Bn) =t, v(Cp) =1, v(=C,)=fforalln>1

As the set of formulas occurring in the above definition is closed under subformulag encbmpliant
with the matrixM?, then by Fact 4.1, can be extended to a legal total valuatiom M7, which is a
valid EIP processor valuation.

SupposeS is a set of sources i8 generating the valuation, and letg be the global valuation
generated by defined as in Equation (2) following Definition 4.5. Then< v by condition (dO) of
Definition 4.3 forv. Hence as(p;) = L for all £ > 0, then alsog(p,) = L for all £ > 0. Since by
Equation 2 for any: € {0, 1} we haver € g(py) iff x = s(py) for somes € S, theng(py) = L for all
k > 0impliess(pg) = | forall k > 0 and eacls € S.

Now suppose that for a sourse= S we haves(By) = 1 for somek > 1. As by Theorem 4.2 is a
legal valuation in the Nmatridt? andCj, = Cy_1 V By, then from the truth table of4? for disjunction
we immediately get(Cy) = 1. SinceC,+; = C,, V B4 for eachn > 1, then by simple induction
we obtains(C,,) = 1 for anyn > k, whences(=C},) = 0 for anyn > k by the truth table of\3 for
negation. AsB,, = -~C,,_1 V p, for n > 1, then from the foregoing we conclude — using again the truth
table for disjunction — that(B,,) = s(—Cy—1 V p,) = | foranyn > k.

Consequentlys(B;) = 1 must also imply thats(B,,) = | forall 1 < n < k. Indeed, since
v(By) =t = {1} andg(B,,) C v(By), then0 ¢ g(B,,), whences(B,,) € {1,1}. However,s(B,,) = 1
would imply by the reasoning given above th&B;) = | for each! > n, contradicting the fact that
k> nands(By) = 1.

This implies that for everg > 1 we need a different soureec S to assign 1 ta3;, thus ensuring
thatl € g(By). As by Corollary 4.2 we have = U(g), then, by the definition of/ in Definition 4.4,
g(By) indeed needs to contain 1 in order to ensure ti&,) = t. HenceS must be infinite. 0

Theorem 4.5. Let EIP<,, be the class of EIP structures in which the number of sources is atrmost
Thentezp#terp_, andtezp_, #-ezp_, for n # k. Moreover: for every,, there is a finite sef;, of
formulas and a formula,, such thafl", Ferpo, Yn but neithe’,, Fezp ¢, norl, Ferpoy Yn for
anyk >n.

Proof:
LetI', ={B; |1 <i<n+1}U{C; |1 <i<n+ 1}, whereB; andC; are defined as in the proof of
the Lemma 4.1, and let

’QZJn:(po\/ﬂpo)\/...\/(pn+1\/—\anrl)\/—\Bl\/...—|Bn+1\/—|01\/...—| n+1

It can be easily checked that an EIP processor valuatisra model ofl",, that is not a model of,, iff

v(p;) = L andv(B;) = v(C;) =t foreveryl < i < n+ 1. Now from the proof of Lemma 4.1 it easily
follows that such an EIP processor valuatioaxists, but any set of sources that generates it must have
at leastn + 1 elements. HencE,, and,, have the required properties. O

At this point it should be emphasized that Lemma 4.1 and Theorem 4.5 show a crucial difference
between the logics of information processing structures presented in this paper and the source-processor
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logics given in [8] (where no conditions whatever were imposed on the behavior of sources), as well
as those based on the Society Semantics [14]. Namely, while the two latter types of logics could be
generated by structures containing at most two of sources, the logics of EIP structures depend on the
number of sources in the structures, and some of such logics cannot be characterized by structures with
any finite number of sources.

5. Proof systems

In this section we provide cut-free Gentzen-type systems for all the logics considered above (with one
exception, all of them have been known before).

Definition 5.1.

1. The systenG* is given in Figure 2 below:

Axioms: T ¢ = A9

Rules:  Cut and the following logical rules:

=] P,Fﬁ;;»AA == PF:>:>A7A;:D¢
S S
[FA=] F,ﬂ@ﬁ,f(iA@S,;wAéA (==l er AA,’:(Z’;i)

A e S S e

[Fv=1 rff(jvﬁ)ii [=-V] FérA;K,ﬁ(fzzjgoA)’w

Figure 2. The proof systei@*

2. The systenGy is obtained fronG* by adding to it-), ¢, T' = A as axioms.
3. The systenGp is obtained fronG* by adding to itl' = A, —), ¢ as axioms.
4. The systenG is obtained fronG* by deleting the rule§/ =] and[—A =].

5. The systenG? is obtained fronG4 by adding to itl' = A, -, ¢ as axioms.

6. The systenG? is obtained fronGy. by replacing]v =] and[-A =] with the following rules:



A. Avron, B. Konikowska / Finite-valued Logics for Information Processing 1025

Ay T,p=A '=sA-p Ty=A

Y,
[V=al T ovVe—=A [V=p] TovVe—=A
N-y=A T=Ayp -p=A T'=A
e IO e e T
Theorem 5.1.

1. Soundness and completenes&or any set of sequents C Seqr,, and any sequer € Seqr,.:

(@) Stkgs Xiff SI—M?é E(ande_G4F:>¢iﬁ:F|_M43 ).
(b) SI—GMEiff SI—M;;(Z(andsd—GmF:zpiffFl—M% ).
(c) Sl_Gm: > iff Sl—Msl'D E(andsd—Gw I'= o iff Fl—M:; ).
(d) SFat Siff Sk pu S (@ndso-ga T = 9 iff Tk ).
(e)SI—G?Ziff SFM;Z(andsd—G§F:>¢iﬁFFM§ ).
(f) SFnglﬁSFMg,Z(andSOLG;%FéQbIﬁFFM% 1/))

2. Cut-elimination: LetG € {G*, Gk, Gep, G3,G3,G2}. ThenG admits strong cut elimination:
If S={I'1 = Aq,...,I', = A,} thenS k¢ X iff there is a proof of2 from S in G where all
cuts are made on formulas|iy;’_, (I'; U A;) (in particular-¢ X iff ¥ has a cut-free proof ).

Proof:

The results about’} andG? were already proved in [8]. The soundness and completeness, 6fi.,

and G.p for the corresponding matrices and the cut-elimination theorem for these systems are well
known results (see e.g. [5, 3]). That the latter theorem can be strengthened for them as described in the
formulation of the present theorem can be shown in a way similar to that used below in ¢g5€eTbis

is the case on which the rest of this proof concentrates.

For simplicity, in what follows we drop the decorations len

We start by showing that i$' g3 X, then, for any legal valuation in the NmatrixM? such that
v = S, we havev = X. Obviously, for this it suffices to show the above for 8lIC Seq andX € Seq
such thatS is the set of premises of some rulén C3 andX. is the consequence of that rule. This can be
done by a simple check, which we illustrate below on the example of two non-standard rgfes in

Rule (V =)4: We haveS = {T' = A, —¢; I,y = ALY =T ¢ V1Y = A. Assume now is a
legal valuation in the Nmatrix 12 such thaty = S. Then we have the following two cases:

Caselww ETorvE A AsX =T,¢p V1 = A, then obviously = ¥ too.

Case 2:v = —p andv [~ 1. As the sets of designated and non-designated valugdinare
respectively{1} and{l, 0}, this impliesv(—¢) = 1 andwv(y) € {lI,0}. Hence from the truth tables of
M3 we obtainu(p) = 0 andv(p V ) € {I,0}. Thusv |= X.

Rule (A =)p: We haveS = {I' = A, ¢; I',—p = A}LY =T, (¢ A ) = A. Assume again
v is a legal valuation in\? such that |= S. If eitherv = T orv |= A, then obviously = X. Thus
it suffices to consider the case when= v andv [~ —p. Thenv(y) = 1 andv(—p) € {l1,0}. By the
truth tables ofAM2, the latter yields)(¢) € {I,1}, whencev(p A ) € {I,1} andv(—=(p Av)) € {I,0}.
Consequentlyy = X also in this case.
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To show the converse as well as the cut-elimination part of the theorem, géftnebe the calculus
obtained fromg? by limiting the applications of the cut rule to formulas occurring in the premises of
sequent derivations. In other words:df= {I'; = A; | i € I} thenS g3 ¥ if there is a proof ot
from S in G2 where all cuts are made on formulastittsS) = J;;(T; U ATZ-) (in particular:l—gi X iff
Y has a cut-free proof ig3). We shall prove thagfj is (strongly) complete fof 3, i.e., for any set of
sequentss C Seq and any sequer € Seq, Sty X iff S ng 3. Obviously, this will end the proof
of the theorem.

For simplicity, we first provide the proof in detail for the case in whitls finite. Until the end of
this proof, by “derivable” we mean “derivable }".

We argue by contradiction. Suppose that for a finite set of seqéeatsl a sequerily ="' = A
we haveS 3 Yo, but is not derivable froms. We shall construct a counter-valuatiorsuch that
v ): S butw [75 >o.

SinceSs is finite, so isF'(S). Assume it hag elements. Letq, ¢o,. .., ¢; be an enumeration of the
formulae inF'(S). We shall now define a sequence of sequénts>- A,,,n =0,1,...,(, such that, for
n=0,1,...,0

() TCTh ACA,
(i) If n #0theny, € (T', UA,).
(i) T',, = A, is not derivable fron®.
The above sequences are defined inductively as follows:

e We putl’'y = T', Ay = A. As by our assumptiol = A is not derivable fromS, (i)—(iii) above
are satisfied fon = 0.

e Supposer < [—1 and we have defined the sequenfs= A; satisfying conditions (i)—(iii) for <
n. Then the sequents; =T, = A,, ppa1 andds = ¢,11, 0 = A, cannot be both derivable
from S, since thel”,, = A, would be derivable from them by an allowed cut on the formula
Ynt1 € S. We takel',,11 = A,11 to beXq, if 3; is not derivable, and’; otherwise. Then,
obviously, from the inductive assumption it follows that the sequdnce = A, satisfies
conditions (i)—(iii).

By induction, the whole sequendg, = A,,,n = 0,1,...,[, satisfies the desired conditions (i)—(iii).
What is more, from the inductive construction we can see that

(iv)y T, CTpu1, A C A forn=1,2,...,1 -1

LetI™ = A* be the extension df; = A, to a saturated sequent, i.e. a sequent contaihing 4,
and closed under the logical rulesgﬁ applied backwards. By way of example, a sequént> A’ is
closed under rul¢v =) 4 applied backwards iff vV ¢ C T” implies either-¢ € A’ or¢) € T’. Then
we can easily see that:

() TSI ACAY
() F(S) CT*UA*;
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(1) I = A*is saturated and it is not derivable fratn

Now we define the valuation as follows:

e For any atomig,

1 ifpel™
() v(p)=< 0 if peT*
| otherwise

e For any formulasp, :

1 ifu(p)=0
(i) v(=p) =19 0 ifv(p)=1
I otherwise
1 iff v(p) =1orv(y) =1
B orv(p) = () =landp vy € I
W 0VEI=3 0 it o) = 0 andu(w) = 0
| otherwise
(1 iff v(p) = 1andv(y) =1
_ ) 0 iffu(p)=00rv(y) =0
(iv) v(pAY) = orv(p) = v(¥) = land—=(p A ) € T'*
| otherwise

Clearly, v is well-defined, since and—p cannot both belong tb* (for otherwisel™* = A* would be
an axiom). Moreover, it can be easily checked, by considering the truth tables of the Nmgitrihat
v defined as above is legal valuation for that Nmatrix. It remains to provevtisaindeed the desired

counter-valuation, i.e., that:
() v =X foreach¥ € S; (v = (T = A);

We start with (I1). AsI" C I'*, A C A*, it suffices to prove that = (I'" = A*). SinceD = {1}
andv(p) € {0, 1,1} for any formula, this means we have to show that:

v(y) = Lforanyy € I', v(8) € {0,1} for anys € A*

To do this, we will prove the following for any formula € F:

W wo={0 0w {0 e

We argue by induction on the complexity @f proving simultaneously (A) and (B).

p=pecA
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(A)

(B)

(B)
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We havev(p) = 1 by (i) in the definition ofv if p € T'™*, andwv(¢) = 0 by (ii) in that
definition if -p € I'*, whence (A) holds forp.

If o =p € A*, then, sincd™ = A* is not derivable, we have ¢ I'*, whencev(y) # 1 by

(i) in the definition ofv, which yieldsv(y) € {0, 1}.

In turn, if - € A*, then—p ¢ T'*, for ' = A* is not derivable. Thus again by (i) we have
v(p) # 0, which yieldsv(y) € {1,1}. Hence (B) holds for.

If ¢ € I'*, then— € I'*, whence by the inductive hypothesis iomwe getv(¢) = 0. Hence
by (i) in the definition ofv we havev(y) = v(—¢) = 1.

Suppose nowp € I'*. Then—— € I'*, and, ad™ = A* is saturated, by rul¢-— =)

we havey € I'*. Hence by the inductive hypothesi&)) = 1, which in turn yieldsv(y) =

v(—p) = 0 by an application of (i) in the definition af. Thus (A) holds in this case too.

If o € A%, then— € A*, whence by the inductive hypothesis fowe getv(v) € {1,1}.
By the definition ofv, the latter implies)(¢) = v(—¢) € {0, 1}.

If = € A*, then—-—y € A*, and, as’™ = A* is saturated, by rulé=- ——) we have
¢ € A*. Thus by the inductive hypothesi$y) € {0,1}, whencev(y) = v(—¢) € {1,1}
by the definition ofv. Hence (B) holds fot.

© =11V

(A)

(B)

If ¢ € I'*, then, sincd™ = A* is saturated, by rulév =) 4 we have either (al}y; € A*

or (a2)w, € T*, while by rule(v =)z we get either (b1}, € A* or (b2)1);, € T*.

If either (a2) or (b2) hold, then by inductive hypothesis we have eittws) = 1 for (a2), or
v(¢1) = 1 for (b2). Hence in both casegy) = v(1 V 12) = 1 by the first line in (iii) of
the definition ofv.

If neither (a2) or (b2) hold, then (al) and (bl) do, i-&); € A* and—y, € A*. Hence
by the inductive hypothesis for (B) we havé/ ), v(¢2) € {1,1}. If v(¢;) = 1 for some,
then again(p) = v(y1 V 1) = 1 by the first line in (iii) of the above definition. Finally,
if v(y;) = 1fori = 1,2, then, in view ofy; V i € T'*, by the last clause of the above-
mentioned definition line we get agaiily) = v(11 V ¥) = 1.

In turn, if = € T, then—(y1 V ) € T*. AsT* = A* is saturated, by rule-(v =)
this implies—, 9 € T'*. Hence by the inductive hypothesi&);) = v(¢2) = 0, which
impliesv(y) = v(¢1 V 1p2) = 0 by the second line of (iii) in the definition of (v). This ends
the proof of (A) for.

If o € A*, thenyy V ¢ € A*. Thus, asA* is saturated, by rule= V) we havey; € A*
for i = 1,2. Hence by the inductive hypothesi§y;) € {0,1} for i = 1,2. Moreover, as
1 Ve € A* andl™ F A* is not derivable, them, Vv 9 ¢ T'*. Hence by the definition of
v we havev(i; V ¢5) € {0,1}, so (B) is satisfied.

Next, if -p € A*, then—(y1 V 12) € A*. SinceA* is saturated, from rulé= —Vv) we
obtain—; € A* for somei € {1,2}. Hence by the inductive hypothesi&);) € {1,1} for
somei € {1,2}, and sov(); V 12) € {1,1} by the definition ofv. Thus (B) holds forp.
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© =11 N2

The proof in this case is similar to that in the previous one, and is left for the reader.

It remains to prove (I), i.e., to show that= ¥ for each®: € S. Solet¥ € S. ThenX = ¢1,..., ¢, =
Y1, ..., for some integers, ! and formulasp;,v;,i = 1,...,k,5 = 1,...,l. Clearly, we cannot
have both{y1, ..., ox} C T* and{¢y,..., ¢} C A*, for thenT* = A* would be derivable fronk,
and hence fron$, by weakening. Sincé'(S) C I'* U A*, this implies that eithep; € A* for some;,
ori; € I'* for somej. Hence by (A) and (B), which we have already proved, we have eitherp; for
somei, orv = v; for somej, which implies thav |= 3.

This ends the proof in caseis finite. The proof in cas# is infinite is similar. Using Zorn Lemma
(or an infinitary version of the construction used above for the finite case), we first dxamdlA to a
maximal pair of theorie§T andT such thaf® C 71, A C Ta, and there is no sequeht = A’ such
thatl” C Tp, A’ C Ta, andl¥ = A’ is derivable fromS. It can easily be shown th@t(S) C T U T,
and that the infinite “sequenfft = T is closed under the logical rules@? applied backwards. It
easily follows that we can usg- and7'a to define a counterexamplein exactly the same way d%
andA* have been used for this task in the finite case. O

Corollary 5.1. The cut rule is admissible in all the systems considered in Theorem 5.1.

6. Conclusions

A natural next step in our research will be to extend the language of EIP structures with suitably inter-
preted quantifiers to obtain a first-order logic of information processing structures. Another direction is
to consider other strategies for collecting information from sources, or to use more than four truth values
to characterize the information they provide about formulas.

Further, the problems considered in our work bear an obvious relationship to the works on on social
choice, e.g. [14, 15], where a group of individuals aggregate their individual judgments on some inter-
connected propositions into the corresponding collective judgment. Hence another direction of future
work would be to try to apply our approach to the problems of social choice.
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