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Abstract. Canonical propositional Gentzen-type systems are systems which in addition

to the standard axioms and structural rules have only pure logical rules with the sub-

formula property, in which exactly one occurrence of a connective is introduced in the

conclusion, and no other occurrence of any connective is mentioned anywhere else. In this

paper we considerably generalize the notion of a “canonical system” to first-order lan-

guages and beyond. We extend the propositional coherence criterion for the non-triviality

of such systems to rules with unary quantifiers and show that it remains constructive.

Then we provide semantics for such canonical systems using 2-valued non-deterministic

matrices extended to languages with quantifiers, and prove that the following properties

are equivalent for a canonical system G: (1) G admits Cut-Elimination, (2) G is coherent,

and (3) G has a characteristic 2-valued non-deterministic matrix.
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1. Introduction

There is a long tradition in the philosophy of logic, according to which the
meaning of a connective is determined by the introduction and the elimina-
tion rules which are associated with it1. This tradition goes back to Gentzen,
who made the following remark in his classical paper Investigations Into Log-
ical Deduction ([9]):

The introductions represent, as it were, the ‘definitions’ of the
symbols concerned, and the eliminations are no more, in the final
analysis, than the consequences of these definitions.

Now the supporters of this thesis of Gentzen usually have in mind Natural
Deduction systems of an ideal type. In this type of “canonical systems” each
connective ♦ has its own introduction and elimination rules, in each of which
♦ is mentioned exactly once, and no other connective is involved. The rules
should also be pure in the sense of [1]. Unfortunately, already the handling
of negation requires rules which are not canonical in this sense. This problem
was solved by Gentzen himself by moving to what is now known as Gentzen-
type calculi, which instead of introduction and elimination rules use left and

1See e.g. [11] for details.

Studia Logica 0: 1–20, 2005.
c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.



2 A. Zamansky and A. Avron

right introduction rules. The intuitive notions of a “canonical rule” can be
adapted to such systems in a straightforward way, and it is well-known that
the usual classical connectives can indeed be fully characterized by canon-
ical Gentzen-type rules. Moreover: the cut-elimination theorem obtains in
all the known Gentzen-type calculi for propositional classical logic (or some
fragment of it) which employ only canonical rules.

In [3, 4] these facts were generalized by defining “canonical propositional
Gentzen-type rules and systems” in precise terms. A constructive coherence
criterion for the non-triviality of such systems was then provided, and it
was shown that a system of this kind admits cut-elimination iff it is coher-
ent. It was further proved that the semantics of such systems is provided by
two-valued non-deterministic matrices (2Nmatrices), which form a natural
generalization of the classical matrix. In fact, a characteristic 2Nmatrix was
constructed for every coherent canonical propositional system.

The main difficulty in generalizing these notions and results to quan-
tificational rules is the fact that such rules involve two different types of
substitutions: internal substitution of terms for variables of the language,
and external substitution of formulas for schematic variables. Another diffi-
culty is caused by the fact that such rules are usually no longer pure in the
strict sense of [1]. Still, this paper generalizes the propositional theory of
canonical systems to predicate calculi with unary quantifiers. We propose
a precise characterization of a canonical quantificational rule in such calculi
(not surprisingly, the standard Gentzen-type rules for ∀ and ∃ are canonical
according to it), and give a constructive extension of the coherence criterion
of [3, 4] for canonical systems of this type. Then we prove that again a
canonical Gentzen-type system of this type admits cut-elimination iff it is
coherent, and that it is coherent iff it has a characteristic 2Nmatrix.

In addition to providing a better insight into the phenomenon of cut-
elimination, the results of this paper also provide further evidence for the
thesis that the meaning of a logical constant is given by the introduction (and
“elimination”) rules associated with it. In fact, we show that any reasonable
set of canonical rules for some unary quantifier completely determines the
semantics of that quantifier in the framework of 2Nmatrices.

2. Preliminaries

We start by reproducing the relevant definitions and results of [5] (where
the notion of a non-deterministic martix was generalized to languages with
quantifiers). In what follows, L is a language with unary quantifiers, FrmL

is its set of formulas, Frmcl
L its set of closed formulas, TrL its set of terms and
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Trcl
L its set of closed terms. Var is its set of variables. x, y are meta-variables

ranging over the variables from Var , A,B denote L-formulas, t, t′ denote
L-terms, Γ, ∆ denote sets of formulas. ≡α is the α-equivalence relation
between formulas, i.e identity up to the renaming of bound variables. We
use [ ] for application of functions in the meta-language, leaving the use of
( ) to the object language. A{t/x} denotes the formula obtained from A
by substituting t for x. Given a set of L-formulas Γ and an L-term t, we
denote the set {A{t/x} | A ∈ Γ} by Γ{t/x}. Given an L-formula A, Fv[A]
is the set of variables occurring free in A. Given a set S, P+(S) is the set
of all nonempty subsets of S.

Definition 2.1. A formula A, a set of formulas Γ or a sequent Γ ⇒ ∆
satisfies the pure-variable condition if its set of free variables is disjoint from
its set of bound variables.

Note that the cut-elimination theorem for classical first-order logic holds
only for sequents satisfying the pure-variable condition. We shall see that a
similar limitation holds for all canonical systems.

Definition 2.2. (Non-deterministic matrix) Given a language L based
on connectives and unary quantifiers, a non-deterministic matrix (henceforth
Nmatrix) for L is a tuple M = 〈V,G,O〉, where:

• V is a non-empty set of truth values.

• G (designated truth values) is a non-empty proper subset of V.

• For every n-ary connective ♦ and for every quantifier Q of L,O includes
the corresponding interpretation functions2 :

– ♦̃M : Vn → P+(V)
– Q̃M : P+(V) → P+(V)

The set V − G is denoted by N .

Definition 2.3. (L-structure) Let M = 〈V,G,O〉 be an Nmatrix. An L-
structure for M is a pair S = 〈D, I〉 where D is a (non-empty) domain, and
I is a function interpreting the constants, predicate symbols and function
symbols of L, so that I[c] ∈ D if c is a constant, I[p] : Dn → V if p is an
n-ary predicate, and I[f ] : Dn → D if f is an n-ary function. I is extended
to interpret closed terms of L as follows:

I[f(t1, ..., tn)] = I[f ][I[t1], ..., I[tn]]

2This is a generalization of distribution quantifiers introduced in [8].
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Definition 2.4. ( L(D) ) Let S=〈D, I〉 be an L-structure for an Nmatrix
M. L(D) is the language obtained from L by adding to it the set of individual
constants {a | a ∈ D}. S′ = 〈D, I ′〉 is the L(D)-structure, such that I ′ is
the extension of I satisfying: I ′[a] = a.

Given an L-structure S = 〈D, I〉, we shall refer to the extended L(D)-
structure 〈D, I ′〉 as S and to I ′ as I when the meaning is clear from the
context.

Definition 2.5. (S-substitution) Given an L-structure S = 〈D, I〉 for an
Nmatrix M for L, an S-substitution is a function σ : Var → Trcl

L(D). It is
extended to σ : TrL∪FrmL → Trcl

L(D)∪Frmcl
L(D) as follows: for a term t of

L(D), σ[t] is the closed term obtained from t by replacing every x ∈ Fv[t]
by σ[x]. For a formula B, σ[B] is the sentence obtained from B by replacing
every x ∈ Fv[B] by σ[x]. Given a set Γ of formulas, we denote the set
{σ[A] | A ∈ Γ} by σ[Γ].

Definition 2.6. (Congruence of terms and formulas) Let S be an
L-structure for an Nmatrix M. The relation ∼S is defined inductively as
follows:

• x ∼S x

• For closed terms t, t′ of L(D): t ∼S t′ when I[t] = I[t′].

• If t1 ∼S t′1, ... , tn ∼S t′n, then f(t1, ..., tn) ∼S f(t′1, ..., t
′
n).

• If t1 ∼S t′1, t2 ∼S t′2, ... , tn ∼S t′n, then p(t1, ..., tn) ∼S p(t′1, ..., t
′
n).

• If A1 ∼S B1, ... , An ∼S Bn, then ♦(A1, ..., An) ∼S ♦(B1, ..., Bn) for
any n-ary connective ♦ of L.

• If A{z/x} ∼S B{z/y}, where z is a new variable, then QxA ∼S Qy B
for any unary quantifier Q of L.

Proposition 2.7. For any L-structure S, ∼S is a congruence relation.

Lemma 2.8. Let S be an L-structure for an Nmatrix M. Let A,A′ be for-
mulas of L(D). Let t, t′ be closed terms of L(D), such that t ∼S t′.

1. If A ≡α A′, then A ∼S A′.

2. A{t/x} ∼S A{t′/x}.
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Definition 2.9. (Legal valuation) Let S = 〈D, I〉 be an L-structure for
an Nmatrix M = 〈V,G,O〉. An S-valuation v : Frmcl

L(D) → V is legal in M
if it satisfies the following conditions:

• v[A] = v[A′] for every two sentences A,A′ of L(D), such that A ∼S A′.

• v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]].

• v[♦(A1, ..., An)] ∈ ♦̃M[v[A1], ..., v[An]].

• v[Qx A] ∈ Q̃M[{v[A{a/x}] | a ∈ D}].

Definition 2.10. (Model, M-validity, `M, characteristic Nmatrix)
Let S = 〈D, I〉 be an L-structure for an Nmatrix M, A a sentence of L(D)
and Γ, ∆ sets of formulas of L(D).

1. An M-legal S-valuation v is a model of A (Γ) in M, denoted by
S, v |=M A (S, v |=M Γ), if v[A] ∈ G (S, v |=M A for every A ∈ Γ).

2. A sequent Γ ⇒ ∆ is M-valid in S if for every S-substitution σ and
every S-valuation v legal in M, if S, v |=M σ[Γ] then there exists some
B ∈ ∆ s.t. S, v |=M σ[B]. A sequent is M-valid if it is M-valid in
every L-structure for M.

3. `M, the consequence relation induced by M is defined as follows:
Γ `M ∆ if Γ ⇒ ∆ is M-valid.

4. An L-Nmatrix M is a characteristic Nmatrix of a calculus P over L if
`P = `M.

Lemma 2.11. Let M be an Nmatrix for L and A,A′ L-formulas. If A ≡α A′,
then the sequent A ⇒ A′ is M-valid.

3. Canonical systems with quantifiers

Henceforth we assume that L has an infinite countable set of constants Con
and an infinite countable set of variables Var . In addition, we add to L an
infinite set of propositional constants {q1, q2, ..., } and p - a unary predicate
symbol. Let x, y be meta-variables ranging over variables from Var and c, c′

- over constants from Con.
By a clause we mean a sequent which consists of atomic formulas only. The
following is a generalization of definition 3 from [3]:
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Definition 3.1. 1. A canonical propositional rule of arity n is an expres-
sion of the form {Πi ⇒ Σi}1≤i≤m/C, where m ≥ 0, and for every 1 ≤
i ≤ m, Πi ⇒ Σi is a non-empty clause such that Πi,Σi ⊆ {q1, ..., qn},
and C is either ♦(q1, ..., qn) ⇒ or ⇒ ♦(q1, ..., qn) for some n-ary con-
nective ♦ of L.

2. A canonical quantificational rule is an expression of the form
{Πi ⇒ Σi}1≤i≤m/C, where m ≥ 0, C is either⇒ Qx p(x) or Qx p(x) ⇒
for some quantifier Q of L and for every 1 ≤ i ≤ m: Πi ⇒ Σi is a clause
such that |Πi ∪ Σi| = 1, Πi,Σi ⊆ {p(c)| c ∈ Con} ∪ {p(y) | y ∈ Var}
and every c ∈ Con and y ∈ Var occurs in at most one of the premises.

3. An application of a canonical propositional rule
{Πi ⇒ Σi}1≤i≤m/♦(q1, ..., qn) ⇒ is any inference step of the form:

{Γ,Π∗i ⇒ ∆, Σ∗i }1≤i≤m

Γ,♦(A1, ..., An) ⇒ ∆

where for every 1 ≤ i ≤ m, Π∗i and Σ∗i are obtained from Πi and
Σi respectively by substituting Aj for qj for all 1 ≤ j ≤ n, and Γ,∆
are any sets of formulas. An application of a canonical rule with a
conclusion of the form ⇒ ♦(q1, ..., qn) is defined similarly.

4. An application of a canonical quantificational rule
{Πi ⇒ Σi}1≤i≤m/Qx p(x) ⇒ is any inference step of the form:

{Γ,Π∗i ⇒ ∆, Σ∗i }1≤i≤m

Γ, Qz A ⇒ ∆

where z ∈ Var , A is any L-formula, Γ, ∆ are any sets of L-formulas
and for every 1 ≤ i ≤ m, Π∗i and Σ∗i are obtained from Πi and Σi

respectively by (i) for every c ∈ Con, substitute A{tc/z} for p(c),
where tc is any L-term free for z in A, and (ii) for every y ∈ Var ,
substitute A{wy/z} for p(y), where wy is any variable free for z in A,
which does not occur free in Γ ∪∆ ∪ {Qz A}.
An application of a canonical quantificational rule with a conclusion
of the form ⇒ Qx p(x) is defined similarly.

Note that the constants in rules are used as term variables, while the vari-
ables in rules play the role of eigenvariables.
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Example 3.2.

1. ([4]) The two standard introduction rules for classical conjunction can
be formulated as follows:

{p1, p2 ⇒}/p1 ∧ p2 ⇒ {⇒ p1,⇒ p2}/ ⇒ p1 ∧ p2

2. The two standard introduction rules for ∀ can be formulated as follows:

{p(c) ⇒}/∀x p(x) ⇒ {⇒ p(y)}/ ⇒ ∀x p(x)

Applications of these rules have the forms:

Γ, A{t/w} ⇒ ∆
Γ, ∀w A ⇒ ∆

(∀ ⇒)
Γ ⇒ A{z/w},∆
Γ ⇒ ∀w A, ∆

(⇒ ∀)

where z, w ∈ Var, z is free for w in A, z is not free in Γ∪∆∪{∀wA},
and t is any term free for w in A.

3. An application of the rule {⇒ p(c) , p(y) ⇒}/ ⇒ Q1x p(x) is of the
form:

Γ ⇒ A{t/w}, ∆ Γ, A{z/w} ⇒ ∆
Γ ⇒ Q1w A

where t is free for w in A and z is free for w in A and does not occur
free in Γ ∪∆ ∪ {Q1w A}.

By lemma 2.11, the sequent A ⇒ A′, where A ≡α A′, should be provable
in any proof system which has a characteristic Nmatrix. What natural
syntactic conditions guarantee its derivability from the standard axiom of
Gentzen-type systems is still a question for further research. For now, we
simply strengthen the standard axiom of Gentzen-type systems to A ⇒ A′,
where A ≡α A′. Henceforth we refer to this scheme as the α-axiom.

Definition 3.3. A Gentzen-type calculus G is canonical if in addition to
the α-axiom and the standard structural rules, G has only canonical propo-
sitional and quantificational rules.

Note that the standard classical first-order calculus is a canonical calculus.
Therefore it is not surprising that the following properties of the classical
calculus (see e.g. [12]) hold for any canonical calculus:

Proposition 3.4. (α-conversion) Let Γ′ ⇒ ∆′ be obtained from Γ ⇒ ∆ by
renaming of bound variables. Then any derivation of Γ ⇒ ∆ in a canonical
calculus G can be converted into a derivation in G of Γ′ ⇒ ∆′ by renaming
of bound variables.
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Proposition 3.5. (Substitution) Let G be a canonical calculus. Let
Γ ⇒ ∆ be a sequent derivable in G. For any t free for x in any A ∈ Γ ∪∆,
Γ{t/x} ⇒ ∆{t/x} is derivable in G with the same derivation height.

The proofs of the propositions are rather standard and we omit them.

Now a natural question arises: what properties should a canonical Gentzen-
type calculus G satisfy, so that the relation `G defined by G is non-trivial
(i.e., there exist some non-empty Γ, ∆, such that Γ6 `G ∆)? The follow-
ing definition, which is a generalization of definition 6 from [3], provides a
constructive equivalent for the non-triviality condition:

Definition 3.6. (Coherence) A canonical calculus G is coherent if for
every two canonical rules of G of the form S1/ ⇒ A and S2/A ⇒, the set of
clauses S1 ∪ S2 is classically inconsistent (and so the empty sequent can be
derived from it using first-order resolution).

By the soundness and completeness of the first-order resolution method, a
set of clauses S1 ∪ S2 is classically inconsistent iff there exists no L- struc-
ture, which classically satisfies S1 ∪ S2. Note that if the clauses consist
only of closed formulas, then the cut rule suffices for showing inconsistency
(otherwise, unification is also needed).

Example 3.7. The two classical rules for ∀, {p(c) ⇒}/∀x p(x) ⇒ and
{⇒ p(y)}/ ⇒ ∀x p(x) form a coherent set of rules. Here, S1 = {p(c1) ⇒}
and S2 = {⇒ p(y1)} and so S1 ∪ S2 is the classically-inconsistent set
{p(c1) ⇒,⇒ p(y1)}, from which the empty sequent can be derived using one
step of resolution.

Proposition 3.8. (Decidability of coherence) The coherence of a
canonical calculus G is decidable.

Proof. For every pair of rules S1/ ⇒ A and S2/A ⇒ of G, it is sufficient
to check the satisfiability of S1∪S2, a simple fragment of monadic logic, the
satisfiability for which is decidable.

Properties of canonical systems with quantifiers

Now we establish a deep connection between the possibility to eliminate cuts
in a canonical Gentzen-type system G with quantifiers, the coherence of G,
and the existence of a characteristic 2Nmatrix for it. We begin by showing
that any canonical calculus can be transformed into an equivalent calculus
in normal form, satisfying certain properties defined below.
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Canonical systems in normal form

Definition 3.9. (Equal rules) Two canonical quantificational rules, dif-
ferent only by the names of constants and/or variables, are equal.

Definition 3.10. (Normal form) A canonical calculus G is in normal
form if it satisfies the following conditions:

1. Every canonical propositional rule of G has the form
{Πi ⇒ Σi}1≤i≤n/C, where Πi ∪Σi = {qi} for every 1 ≤ i ≤ n and C is
either ⇒ ♦(q1, ..., qn) or ♦(q1, ..., qn) ⇒ for some n-ary connective ♦.

2. Every canonical quantificational rule of G has one of the following
forms (for some y ∈ Var and c, c′ ∈ Con (c 6= c′)) :

(a) Type AT: {⇒ p(y)}/C

(b) Type AF: {p(y) ⇒}/C

(c) Type ETF: {p(c) ⇒,⇒ p(c′)}/C

where C is either ⇒ Qx p(x) or Qx p(x) ⇒ for some quantifier Q.

3. There is no pair of equal rules in G.

Note that not all of the standard quantificational rules from example 3.2
are in normal form. We shall show their transformation into normal form
shortly.
Notation:3 Let −1 = 0,−0 = 1 and ite(1, A, B) = A, ite(0, A, B) = B.
Let Φ, As (where Φ may be empty) denote ite(s,Φ ∪ {A},Φ). For instance,
in this notation the rule {p(c) ⇒}/∀x p(x) ⇒ has the form {p(c)−s ⇒
p(c)s}/∀x p(x)−r ⇒ ∀x p(x)r for s = r = 0.
In this notation each rule of a canonical calculus in normal form has one of
the following forms (where r, s, s1, ..., sn ∈ {0, 1}):

1. Propositional rules:
{q−si

i ⇒ qsi
i }1≤i≤m/♦(q1, ..., qn)−r ⇒ ♦(q1, ..., qn)r. We denote a rule

of this form by [♦(s1, ..., sn) : r].

2. Quantifier rules, types AF and AT:
{p(y)−s ⇒ p(y)s}/Qx p(x)−r ⇒ Qx p(x)r. We denote a rule of this
form by [Q(s) : r]

3Following [3], notations 3-5.
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3. Quantifier rules, type ETF:
{p(c) ⇒,⇒ p(c′)}/Qx p(x)−r ⇒ Qx p(x)r. We denote a rule of this
form by [Q(V) : r].

Theorem 3.11. (Transformation into normal form) Let G be a canon-
ical calculus. Then a canonical calculus Gn in normal form can be con-
structed, satisfying the following conditions: (i) `G = `Gn, (ii) if G is co-
herent, then Gn is coherent, (iii) if a sequent has a cut-free proof in Gn, then
it has a cut-free proof in G, and (iv) the sets of constants in the different
rules of Gn are disjoint.

Proof. We show the transformation of G to Gn, proceeding in the following
stages.

1. Transform G to G1, such that (i) `G = `G1 , (ii) if G is coherent, then
G1 is coherent, (iii) if a sequent has a cut-free proof in G1, then it has
a cut-free proof in G, and (iv) every propositional rule of G1 of arity
n has the form {Πi ⇒ Σi}1≤i≤n/C, where C is either ⇒ ♦(q1, ..., qn)
or ♦(q1, ..., qn) ⇒ for some n-ary connective ♦ of L, Πi ∪Σi = {pi} for
every 1 ≤ i ≤ n. The transformation is like in [4]4

2. Obtain G2 from G1 by discarding all quantificational rules that include
one of the following combinations in their premises: (i) p(x)−s ⇒ p(x)s

and p(c)s ⇒ p(c)−s for some x ∈ Var , c ∈ Con and s ∈ {0, 1}, or (ii)
⇒ p(x) and p(y) ⇒ for some x, y ∈ Var .
Let R be a rule including both p(x)−s ⇒ p(x)s and p(c)s ⇒ p(c)−s in
its premises. Then an application of R is of the form (the premises are
listed vertically):

Γ,Π∗1 ⇒ ∆,Σ∗1
...

Γ, A{z/x}s ⇒ ∆′, A{z/x}−s

Γ, A{t/x}−s ⇒ ∆, A{t/x}s

...
Γ, Π∗m ⇒ ∆,Σ∗m

Γ, Qx Ar ⇒ ∆, Qx A−r

where t is free for x in A and z is free for x in A and does not occur
free in Γ∪∆∪{Qx A}. By lemma 3.55, if Γ, A{z/x}s ⇒ ∆, A{z/x}−s

4see proof of theorem 4.7 of [4].
5t is free for z in A{z/x}. Since z does not occur free in Γ ∪∆, t is also free for z in

any formula of Γ ∪∆.
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is derivable in G2, then so is Γ, A{t/z}{z/x}s ⇒ ∆′, A{t/z}{z/x}−s,
and since z is free for x in A and does not occur free in Qx A,
A{t/z}{z/x} = A{t/x}. Thus, an application of R can be simulated
using cuts and weakening. The case of a rule including both
p(x)−s ⇒ p(x)s and p(c)s ⇒ p(c)−s in its premises is similar. Hence,
G2 is equivalent to G1. Obviously, any cut-free proof in G2 is also a
cut-free proof in G1, and if G1 is coherent, so is G2.

3. Let s ∈ {0, 1} and n > 1. Obtain G3 from G2 as follows:

(a) For every canonical quantificational rule of G2, which has the
clauses p(y1)−s ⇒ p(y1)s, ..., p(yn)−s ⇒ p(yn)s in its premises,
discard the clauses p(y2)−s ⇒ p(y2)s, ..., p(yn)−s ⇒ p(yn)s.

(b) For every canonical quantificational rule of G2, which has the
clauses p(c1)−s ⇒ p(c1)s, ...p(cn)−s ⇒ p(cn)s in its premises, dis-
card the clauses p(c2)−s ⇒ p(c2)s, ..., p(cn)−s ⇒ p(cn)s.

(c) Replace every canonical quantificational rule S/C of G2 which
has both p(y)−s ⇒ p(y)s and p(c)−s ⇒ p(c)s as its premises in S,
by {p(y)−s ⇒ p(y)s}/C.

It is easy to see that if G2 is coherent, then so is G3. To show that G3

is equivalent to G2 and every cut-free proof in G3 can be transformed
into a cut-free proof in G2, it suffices to show that every application of
a rule R′ obtained from a rule R of G2 by one of the transformations
(a) – (c), can be simulated by an application of R and vice versa. We
will show the proof for (a), leaving the easy proofs for (b) and (c) to
the reader.
Let R be a rule of the form {Πi ⇒ Σi}1≤i≤m/Qx p(x)−r ⇒ Qx p(x)r

and assume that both p(y)−s ⇒ p(y)s and p(c)−s ⇒ p(c)s are among
the premises of R. Let R′ be obtained from R by discarding p(c)−s ⇒
p(c)s. Obviously, an application of R can be simulated by an applica-
tion of R′. An application of R′ has the following form:

Γ,Π∗1 ⇒ ∆,Σ∗1, ...,Γ, A{z/x}−s ⇒ ∆, A{z/x}s , ...,Γ, Π∗m ⇒ ∆,Σ∗m
Γ, Qx A−r ⇒ ∆,Qx Ar

where z is free for x in A and does not occur free in Γ ∪∆ ∪ {Qx A}.
Then the following is an application of R (the premises are listed ver-
tically):
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Γ,Π∗1 ⇒ ∆,Σ∗1
...

Γ, A{z/x}−s ⇒ ∆, A{z/x}s

Γ, A{z/x}−s ⇒ ∆, A{z/x}s

...
Γ, Π∗m ⇒ ∆,Σ∗m

Γ, Qx A−r ⇒ ∆, Qx Ar

Note that in one premise of the application of R, z is an eigenvariable
(taking the place of y), while in the other it is a term (taking the place
of c).

4. Obtain G4 from G3 by replacing every canonical rule of G3 of the form
{p(c)−s ⇒ p(c)s}/C by a pair of rules {p(y)−s ⇒ p(y)s}/C and
{p(c′) ⇒,⇒ p(c′′)}/C where y ∈ Var and c′, c′′ ∈ Con are fresh,
and C is either ⇒ Qx p(x) or Qx p(x) ⇒. It is not difficult to see that
if G3 is coherent, then so is G4. To show that G4 is equivalent to G3

and a cut-free proof in G4 can be transformed into a cut-free proof in
G3, it suffices to show that an application of {p(c)−s ⇒ p(c)s}/C can
be simulated by applications of {p(y)−s ⇒ p(y)s}/C and {p(c′) ⇒,
⇒ p(c′′)}/C, and vice versa:

(a) An application of {⇒ p(c)}/C is of the form:

Γ ⇒ ∆, A{t/x}
Γ, Qz A−r ⇒ ∆, Qz Ar

where t is free for x in A. Let x be a new variable (which does not
occur free in Γ ∪∆ ∪ {QzA}). We simulate it in G4 by applying
first {p(c) ⇒,⇒ p(c′)}/C and then {⇒ p(y)}/C as follows:

Γ, A{x/z} ⇒ ∆, A{t/x} Γ, A{x/z} ⇒ ∆, A{x/z}
Γ, Qz A−r ⇒ ∆,Qz Ar, A{x/z}

Γ, Qz A−r ⇒ ∆, Qz Ar

Similarly for an application of {p(c) ⇒}/C.
(b) An application of {p(y)−s ⇒ p(y)s}/C is of the form:

Γ, A{x/z}−s ⇒ ∆, A{x/z}s

Γ, Qz A−r ⇒ ∆, Qz Ar

where x is free for z in A and does not occur free in Γ∪∆∪{Qz A},
and it is also an application (in G3) of {p(c)−s ⇒ p(c)s}/C.
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(c) An application of {p(c′) ⇒,⇒ p(c′′)}/C is of the form:

Γ, A{t/z} ⇒ ∆ Γ ⇒ ∆, A{t′/z}
Γ, Qz A−r ⇒ ∆, Qz Ar

where t, t′ are free for z in A. We simulate it in G3 by applying
{p(c)−s ⇒ p(c)s}/C (to the first premise if s = 1 and to the
second if s = 0):

Γ, A{t/z}−s ⇒ ∆, A{t/z}s

Γ, Qz A−r ⇒ ∆, Qz Ar

5. Gn is obtained from G4 by discarding all rules which are equal to some
other rule of G4 and renaming constants so that the sets of constants
in different rules are disjoint. The resulting calculus is equivalent to
G4 and if G4 is coherent, so is Gn. It is easy to verify that Gn is indeed
in normal form.

Example 3.12. Consider the calculus G consisting of the standard first-order
rules for ∀, ∃:

{p(c1) ⇒}/∀x p(x) ⇒, {⇒ p(y1)}/ ⇒ ∀x p(x),

{⇒ p(c2)}/ ⇒ ∃x p(x), {p(y2) ⇒}/∃x p(x) ⇒
An equivalent calculus Gn in normal form is as follows:

{{p(c1) ⇒ , ⇒ p(c2)}/∀x p(x) ⇒, {p(y3) ⇒}/∀x p(x) ⇒, {⇒ p(y1)}/ ⇒ ∀x p(x),

{p(c3) ⇒ , ⇒ p(c4)}/ ⇒ ∃x p(x), {⇒ p(y4)}/ ⇒ ∃x p(x), {p(y2) ⇒}/∃x p(x) ⇒}

Canonical systems, Cut-Elimination and 2Nmatrices

Lemma 3.13. Let G be a canonical calculus over a language L with unary
quantifiers.

1. Suppose that if a sequent satisfying the pure-variable condition is prov-
able in G, then it has a cut-free proof in G. Then no clause Γ ⇒ ∆
such that Γ, ∆ are disjoint is provable in G.

2. If no clause Γ ⇒ ∆ such that Γ, ∆ are disjoint is provable in G, then
G is coherent.
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Proof. 1. Assume that if a sequent satisfying the pure-variable condi-
tion is provable in G, then it has a cut-free proof. Let Γ ⇒ ∆ be a
clause, such that Γ, ∆ are disjoint. Then Γ ⇒ ∆ satisfies the pure-
variable condition. Hence if it is provable in G, then it has a cut-free
proof there. However, this is easily seen to be impossible.

2. Assume that for any two disjoint sets of atomic formulas Γ, ∆, Γ ⇒ ∆
is not provable in G. Suppose by contradiction that G is not coherent.
Then there exist two rules S1/ ⇒ A and S2/A ⇒, such that (i) A is
either ♦(q1, ..., qn) for some n-ary connective ♦ of L or Qx p(x) for
some unary quantifier Q of L, and (ii) S1 ∪S2 is classically consistent.
If A is ♦(q1, ..., qn), the proof is easily adapted from [3]. Otherwise A
is Qx p(x).
Suppose that no variables occur free in S1 ∪ S2. S1 ∪ S2 is classically
consistent, so there exists some L-structure which satisfies S1 ∪ S2. It
is easy to see that there also exists a (classical) propositional valuation
vS , satisfying S1 ∪ S2. Let Π′ = {A | vS [A] = 1, A ∈ Γ ∪∆, Γ ⇒ ∆ ∈
S1 ∪ S2} and Σ′ = {A | vS [A] = 0, A ∈ Γ ∪∆, Γ ⇒ ∆ ∈ S1 ∪ S2}.
Let Bj = {Π,Π′ ⇒ Σ, Σ′ | Π ⇒ Σ ∈ Sj} for j = 1, 2. Then B1 and B2

are sets of standard axioms. (Because if vS satisfies Π ⇒ Σ, there is
some A ∈ Π, such that vS [A] = 0, or some A ∈ ∆, such that vS [A] = 1.
In the former case, A ∈ Σ′ and in the latter case, A ∈ Π′.)
Obviously, the following is an application of S1/Qx p(x) ⇒:

B1

Π′, Qx p(x) ⇒ Σ′

In a similar way, by applying the second rule on B2 we obtain
Π′ ⇒ Σ′,Qx p(x). Using cut, Π′ ⇒ Σ′ is provable in G, in contradic-
tion to our assumption.
Otherwise, assume that (p(y) ⇒) ∈ S1 ∪ S2 for some y ∈ Var . Since
S1 ∪ S2 is classically consistent, every sequent of S1 ∪ S2 is of the
form p(z) ⇒ or p(c) ⇒. Then the following is an application of
S1/Qx p(x) ⇒6, where d ∈ Con is a new constant:

p(d) ⇒ p(d) ... p(d) ⇒ p(d)
Qx p(d) ⇒ p(d)

Note that the quantification is vacuous here. Similarly, using the sec-
ond rule we can derive⇒ Qx p(d), p(d), and by cut⇒ p(d) is derivable,

6Let x′ ∈ Var and c′ ∈ Con. Note that p(d) = p(d){x′/x} = p(d){c′/x}.



Cut Elimination in Canonical Systems 15

in contradiction to our assumption.
The proof for the case of ⇒ p(y) ∈ S1 ∪ S2 is symmetric.

Now we define the 2Nmatrix induced by a coherent canonical calculus in
normal form, along the lines of [3]. The intuitive idea is that every canon-
ical propositional rule for ♦ of such calculus imposes a constraint on a set
♦̃M[a1, ..., an] ⊆ {0, 1} for exactly one n-ary vector a1...an ∈ {0, 1}. For
example, the rule {⇒ q1,⇒ q2}⇒ q1 ∧ q2 dictates ∧̃M[1, 1] = {1}. This
approach can be extended to the quantificational canonical rules as follows.
A canonical quantificational rule of a calculus in normal form imposes a
constraint on Q̃M[H] for exactly one (non-empty) set H ⊆ {0, 1}. For ex-
ample, {p(x) ⇒}/ ⇒ Qy p(y) dictates Q̃M[{0}] = {1}, {⇒ p(x)}/Qy p(y) ⇒
dictates Q̃M[{1}] = {0} and {(⇒ p(c)) , (p(c′) ⇒)}/ ⇒ Qy p(y) dictates
Q̃M[{0, 1}] = {1}.

Definition 3.14. (2Nmatrix induced by a coherent canonical calcu-
lus in normal form) Let Gn be a coherent canonical calculus in normal
form over a language L with unary quantifiers, such that the sets of con-
stants occurring in the different rules of Gn are disjoint. Then MGn , the
2Nmatrix for L induced by Gn, is defined as follows:

1. For every n-ary connective ♦ of L and every s1, ..., sn, r ∈ {0, 1}:

♦̃MGn (s1, ..., sn) =

{
{r} if [♦(s1, ..., sn) : r] ∈ Gn

{0, 1} otherwise

2. For every unary quantifier Q of L and every s, r ∈ {0, 1}:

Q̃MGn [{s}] =

{
{r} if [Q(s) : r] ∈ Gn

{0, 1} otherwise

Q̃MGn [{0, 1}] =

{
{r} if [Q(V) : r] ∈ Gn

{0, 1} otherwise

Note that MGn is well defined since Gn is coherent and the sets of constants
occurring in the different rules of Gn are disjoint (see remark at the end of
the section).
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Example 3.15. Consider the first-order paraconsistent system
PLK[(⇒ ∀), (⇒ ∃)] from [5]. This system consists of the α-axiom and the
positive fragment of classical propositional logic with the addition of the stan-
dard rules (⇒ ¬), (⇒ ∀) and (∃ ⇒).
In our notation the rules (⇒ ¬), (⇒ ∀) and (⇒ ∃) are formulated as follows:

{q1 ⇒}/ ⇒ ¬q1

{⇒ p(y)}/ ⇒ ∀x p(x) {⇒ p(c)}/ ⇒ ∃x p(x)

Denote PLK[(⇒ ∀), (⇒ ∃)] by G. After we transform G into an equivalent
system Gn in normal form, the rule {⇒ p(c)}/ ⇒ ∃x p(x) is replaced by
rules:

{⇒ p(z)}/ ⇒ ∃x p(x) {⇒ p(c′) , p(c′′) ⇒}/ ⇒ ∃x p(x)

The 2Nmatrix MGn induced by Gn is defined as follows:

• V = {0, 1}, G = {1}
• ¬̃MGn [0] = {1}, ¬̃MGn [1] = {1, 0}
• ∧̃MGn [1, 1] = {1}, ∧̃MGn [1, 0] = ∧̃MGn [0, 1] = ∧̃MGn [0, 0] = {0}
• ∨̃MGn [0, 0] = {0}, ∨̃MGn [1, 0] = ∨̃MGn [0, 1] = ∨̃MGn [0, 0] = {1}
• ⊃̃MGn [1, 0] = {0}, ⊃̃MGn [1, 1] = ⊃̃MGn [0, 1] = ⊃̃MGn [0, 0] = {1}
• ∀̃MGn [{1}] = {1}, ∀̃MGn [{1, 0}] = ∀̃MGn [{0}] = {1, 0}
• ∃̃MGn [{1}] = ∃̃MGn [{1, 0}] = {1}, ∃̃MGn [{0}] = {1, 0}
We will now show that Gn is sound and cut-free complete for MGn.

Lemma 3.16. (Soundness and cut-free completeness) Let Gn be a co-
herent canonical calculus in normal form over a language L with unary quan-
tifiers, such that the sets of constants occurring in the different rules of Gn

are disjoint. Then (i) any sequent provable in Gn is MGn-valid, and (ii) if
a sequent satisfying the pure-variable condition is MGn-valid, then it has a
cut-free proof in Gn.

Proof.
Soundness: the proof is not hard and is left to the reader.
Completeness and Cut-Elimination:
Let Γ ⇒ ∆ be a sequent satisfying the pure-variable condition. Suppose that
Γ ⇒ ∆ has no cut-free proof in Gn. We will show that it is not MGn-valid.
Obviously, we can limit ourselves to the language L∗, which is a subset of L,
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consisting of all the constants and predicate and function symbols, occurring
in Γ ⇒ ∆. Let T be the set of all the terms in L∗ which do not contain
variables occurring bound in Γ ⇒ ∆. It is a standard matter to show that
Γ,∆ can be extended to two (possibly infinite) sets Γ′, ∆′ (where Γ ⊆ Γ′ and
∆ ⊆ ∆′), satisfying the following properties:

1. For every Γ1 ⊆ Γ′ and ∆1 ⊆ ∆′, Γ1 ⇒ ∆1 does not have a cut-free
proof.

2. There are no A ∈ Γ′ and B ∈ ∆′, such that A ≡α B.

3. For every rule [♦(s1, ..., sn) : r] of Gn, if ♦(A1, ..., An) ∈ ite(r,∆′, Γ′),
then for some 1 ≤ i ≤ n: Ai ∈ ite(si,∆′,Γ′).

4. For every rule [Q(s) : r] of Gn: if Qz A ∈ ite(r,∆′, Γ′), then there
exists some t ∈ T, such that A{t/z} ∈ ite(s,∆′, Γ′).

5. For every rule [Q(V) : r] of Gn: if Qz A ∈ ite(r,∆′, Γ′), then either
A{t/z} ∈ Γ′ for every t ∈ T, or A{t/z} ∈ ∆′ for every t ∈ T.

Let S∗ = 〈T, I∗〉 be the L∗-structure defined as follows: I∗[p][t1, ..., tn] = 1
iff p(t1, ..., tn) ∈ Γ′, I∗[f ][t1, ..., tn] = f(t1, ..., tn), and I∗[c] = c.
Let σ∗ be any S∗-substitution satisfying σ∗[x] = x for every x ∈ T. (Note
that every x ∈ T is also a member of the domain and thus has an individual
name referring to it in L∗(D).)

Lemma 3.17. 1. I∗[σ∗[t]] = t for every t ∈ T.

2. Let A,A′ ∈ Γ′ ∪∆′. If σ∗[A] ∼S∗ σ∗[A′], then A ≡α A′.

Let v be the S∗-valuation defined as follows.

• v[p(t1, ..., tn)] = I∗[p][I∗[t1], ..., I∗[tn]].

• v[♦(A1, ..., An)] = 1 iff one of the following conditions holds:

1. ♦̃MGn [v[A1], ..., v[An]] = {1}.
2. ♦̃MGn (v[A1], ..., v[An]) = {0, 1} and there exists some formula

C ∈ Γ′, such that ♦(A1, ..., An) ∼S∗ σ∗[C].

• v[Qx A] = 1 iff one of the following conditions holds:

1. Q̃MGn [{v[A{a/x}] | a ∈ D}] = {1}.
2. Q̃MGn [{v[A{a/x}] | a ∈ D}] = {0, 1} and there exists some for-

mula C ∈ Γ′, such that Qx A ∼S∗ σ∗[C].
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Lemma 3.18. For every B ∈ Γ′ ∪ ∆′: if B ∈ Γ′, then v[σ∗[B]] = 1, and if
B ∈ ∆′, then v[σ∗[B]] = 0.

The proof is not hard and is omitted here.

Lemma 3.19. Let A,A′ be L∗(D)-sentences. If A ∼S∗ A′, then v[A] = v[A′].

It is now easy to see that v is legal in MGn . Thus we have constructed an
MGn-legal S∗-valuation v refuting Γ′ ⇒ ∆′. Since Γ ⊆ Γ′ and ∆ ⊆ ∆′, it
also refutes Γ ⇒ ∆. Hence, Γ ⇒ ∆ is not MGn-valid.

Now we summarize the main result of the paper in the following corollary.

Corollary 3.20. Let G be a canonical calculus over a language L with
unary quantifiers, such that the sets of constants occurring in the different
rules of G are disjoint. Then the following conditions concerning G are
equivalent:

1. If a sequent satisfying the pure-variable condition is provable in G,
then it has a cut-free proof in G.

2. No clause Γ ⇒ ∆ such that Γ,∆ are disjoint is provable in G.

3. G is coherent.

4. G has a characteristic 2Nmatrix.

Proof. 1 ⇒ 2 and 2 ⇒ 3 follow directly from lemma 3.13. The proof of
4 ⇒ 2 is trivial. To show 3 ⇒ 1 and 3 ⇒ 4, suppose that G is coherent.
By theorem 3.11, we can construct a canonical calculus Gn in normal form,
satisfying the following conditions: (i) Gn is coherent, (ii) `G = `Gn , (iii) if
a sequent has a cut-free proof in Gn, then it has a cut-free proof in G, and
(iv) the sets of constants in the different rules of Gn are disjoint. By lemma
3.16, Gn is sound and cut-free complete for MGn , and by properties (ii) and
(iii), so is G.

Remark: Note that the requirement that the sets of constants occurring in
different rules of G be disjoint is crucial for the above corollary. Consider,
for instance, a canonical calculus G consisting of the rules {p(c) ⇒ ,
⇒ p(c′)}/ ⇒ Qx p(x) and {p(c′′) ⇒,⇒ p(c)}/Qx p(x) ⇒. Let G′ be the
non-coherent calculus obtained from G by renaming of constants: {p(c) ⇒
,⇒ p(c′)}/ ⇒ Qx p(x), {p(c′′) ⇒ , ⇒ p(c′′′)}/Qx p(x) ⇒. Although G is
coherent, neither G nor G′ have a characteristic 2Nmatrix.
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4. Conclusions and further research

In this paper we have extended the definition of canonical calculi, which are
the most natural type of multiple conclusion Gentzen-type systems, to first-
order languages and beyond. We have proposed a precise characterization
of quantificational canonical rules, the well-known instances of which are
the standard rules for ∀ and ∃. Moreover, we have shown that, like in the
propositional case, on the level of languages with quantifiers there exists a
deep connection between the possibility to eliminate cuts in a given canon-
ical Gentzen-type system and the existence of a two-valued characteristic
Nmatrix for it. We have also generalized the coherence criterion of [3, 4] for
the non-triviality of canonical systems and showed that it remains construc-
tive for languages with quantifiers. In addition to providing a better insight
into the phenomenon of cut-elimination, our work also provides further ev-
idence for the thesis that the meaning of a logical constant is given by its
introduction (and “elimination”) rules . We have shown that at least in the
framework of multiple-conclusion consequence relations, any “reasonable”
set of canonical quantificational rules (which we defined in precise terms)
completely determines the semantics of the quantifier.
Some immediate directions for further research are: (a) To investigate the
connection between the cut-elimination phenomenon and Nmatrices in
Gentzen-type proof systems which are less restrictive than the canonical
ones.
(b) To generalize the interpretation of quantifiers in Nmatrices. In particu-
lar, we intend to investigate n-ary quantifiers and such concrete important
cases as Henkin quantifiers, Transitive Closure operations and other exten-
sions.
(c) To generalize the proposed framework to arbitrary finite n-valued Nma-
trices along the lines of [2] and to explore the connection of our current results
on canonical systems to the work of [6, 7]. For instance, in [7] it is shown that
any many-sided propositional calculus which satisfies: (i) a condition similar
to coherence, i.e. certain clause sets corresponding to premises of introduc-
tion rules are refutable by resolution, and (ii) axioms can be reduced to
atomic axioms, has a deterministic characteristic matrix. Our corollary 3.20
sheds some light on what happens in systems which do not satisfy condition
(ii): the corresponding semantics must be generalized to non-deterministic
matrices. Such is, for instance, the system PLK[(⇒ ∀), (⇒ ∃)] from example
3.15. The exact connection between these results is still to be thoroughly
investigated.
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